
HookMoE: A learnable performance compensation strategy of
Mixture-of-Experts for LLM inference acceleration

Anonymous ACL submission

Abstract

Mixture of Experts (MoE) architectures have001
emerged as a promising paradigm for scaling002
model capacity through top-k routing mecha-003
nisms. Although reducing the number of acti-004
vated experts inherently enables inference ac-005
celeration, this efficiency gain typically comes006
at the cost of significant performance degra-007
dation. To address this trade-off between ef-008
ficiency and performance, we propose Hook-009
MoE, a plug-and-play single-layer compensa-010
tion framework that effectively restores perfor-011
mance using only a small post-training cali-012
bration set. Our method strategically inserts013
a lightweight trainable Hook module imme-014
diately preceding selected transformer blocks.015
Comprehensive evaluations on four popular016
MoE models, with an average performance017
degradation of only 2.5% across various bench-018
marks, our method reduces the number of acti-019
vated experts by more than 50% and achieves020
a 1.42× inference speed-up during the prefill021
stage. Through systematic analysis, we further022
reveal that the upper layers require fewer active023
experts, offering actionable insights for refining024
dynamic expert selection strategies and enhanc-025
ing the overall efficiency of MoE models. 1026

1 Introduction027

Large language models (LLMs), built on the Trans-028

former architecture (Vaswani, 2017), have substan-029

tially reshaped the landscape of natural language030

processing by enabling advanced language under-031

standing and generation across various applica-032

tions (Brown, 2020; Achiam et al., 2023). Tra-033

ditional dense models involve all parameters in034

computation, which can lead to inefficiencies, es-035

pecially as the size of the models increases (Ka-036

plan et al., 2020). In contrast, Mixture of Experts037

(MoE) models have emerged as a key variant of038

LLMs, addressing challenges of scalability and039

computational efficiency (Lepikhin et al., 2020;040

1The code will be released upon acceptance.

Fedus et al., 2022), and a key distinguishing fea- 041

ture of MoE models are active parameters. For 042

example, Mixtral-8x22B (Jiang et al., 2024) only 043

activates 39B parameters, allowing it to perform 044

on a par with LLaMA3-70B on multiple evaluation 045

tasks (Dubey et al., 2024). 046

Despite these advantages, deploying large-scale 047

MoE models in real-world applications remains 048

challenging due to high inference costs. As model 049

sizes grow and user demands for complex reason- 050

ing increase, the need for efficient inference has be- 051

come increasingly critical in both academia and in- 052

dustry. Current reasoning strategies such as Chain 053

of Thought (CoT) (Wei et al., 2022) require a model 054

to process longer token sequences at inference time. 055

Recent progress in high-bandwidth memory2 lets 056

modern GPUs keep all expert parameters on the 057

chip, so weights no longer need to be offloaded to 058

the CPU. With this memory bottleneck removed, 059

researchers can now focus on improving computa- 060

tional efficiency during inference. 061

MoE routes each token to the top-k experts, ex- 062

cluding all nonactivated experts from the computa- 063

tion. This activation sparsity makes it possible to 064

reduce the number of active parameters even fur- 065

ther. Recent studies reduce the running time cost by 066

dynamically decreasing the number of experts per 067

token (Huang et al., 2024; Szatkowski et al., 2023), 068

but aggressive reduction often leads to significant 069

performance degradation. 070

In this paper, we introduce a systematic com- 071

pensation strategy that maintains model quality 072

while keeping only a minimal set of experts ac- 073

tive. Typically, we adjust the top-k routing to limit 074

the number of activated experts and introduce a 075

lightweight, learnable Hook compensation module 076

to mitigate performance degradation. This com- 077

ponent can be seamlessly integrated into existing 078

2See https://www.nvidia.com/en-us/data-center/
h200 for details of the NVIDIA H200.

1

https://www.nvidia.com/en-us/data-center/h200
https://www.nvidia.com/en-us/data-center/h200

MoE architectures. We demonstrate the efficacy of079

our approach by applying it to four popular MoE080

models and evaluating their performance across081

multiple benchmarks. Remarkably, our approach082

strikes an advantageous balance with negligible ex-083

tra training effort: merely 0.14% to 0.70% of the084

overall parameters need fine-tuning on a calibration085

dataset comprising only 512 samples. Moreover,086

each baseline model can complete its training in087

four hours when using 8 H800 GPUs. Compared to088

top-k routing alone, Hook compensation reduces089

the number of activated experts by 50%–75%. This090

decrease in expert activation directly yields compu-091

tational savings, delivering over a 1.42× inference092

speed-up in the prefill stage.093

Moreover, we analyze layer-depth based094

dynamic-k gating and observe that post-trained095

MoE models usually can activate fewer experts096

in their upper layers, and introduce the strategy097

Top Layer Needs Less Experts (TLNLE). Com-098

bined with TLNLE, HookMoE outperforms exist-099

ing State of the Art (SOTA) dynamic-k methods by100

over 0.6% in overall performance while reducing101

the same number of activated experts. Our contri-102

butions are threefold:103

Lightweight Hook Compensation Module. We104

propose a lightweight Hook compensation method105

that inserts a pluggable module before the Feed-106

Forward layer in a single transformer block. This107

module learns state-space corrections on a cali-108

bration dataset to counteract the performance loss109

from reduced expert usage, only increasing tiny110

parameters for fine-tuning.111

Layer-Depth Based Dynamic-k Gating. We112

systematically vary the number of active experts113

between layers and discover the TLNLE pattern.114

TLNLE identifies layers, typically near the mid-115

dle, that are most sensitive to expert count and are116

therefore chosen for hook insertion. Meanwhile,117

it also refines the current SOTA dynamic-k gating118

and further cuts the computation without sacrificing119

accuracy.120

Comprehensive Quantitative and Qualitative121

Experiments. We conducted thorough evaluations122

of our method on four widely used MoE models,123

covering the parameters from 14.3 billion to 140.6124

billion, and measured the inference speed-up on125

two different NVIDIA GPUs. Both quantitative126

metrics and qualitative analyzes show that our ap-127

proach improves accuracy while activating fewer128

experts than competitive baselines.129

2 Related Works 130

2.1 Mixture-of-Experts Models 131

Mixture-of-Experts (MoEs), first introduced by Ja- 132

cobs et al. (1991), employ a gating mechanism to 133

route inputs to a subset of experts, typically se- 134

lecting the top-k most relevant experts per token. 135

MoEs can be categorized by expert size: coarse- 136

grained expert models like Mixtral (Jiang et al., 137

2024) deploy fewer but larger general-purpose ex- 138

perts, whereas fine-grained expert models such as 139

Qwen (Bai et al., 2023) and DeepSpeed-MoE (Dai 140

et al., 2024) feature many smaller, specialized ex- 141

perts, offering enhanced flexibility and specializa- 142

tion without incurring excessive overhead. 143

2.2 Dynamic-k Gating 144

Conventional top-k gating in MoEs assumes the 145

same number of experts is activated for each to- 146

ken, neglecting the variability in task complexity 147

across different inputs and potentially resulting in 148

redundant computation. Thus, recent studies have 149

revisited the core mechanism of expert activation 150

under the framework of Dynamic-k Gating. For 151

example, NAEE (Lu et al., 2024) selects experts 152

based on predefined ratios inferred from impor- 153

tance scores, effectively eliminating less critical 154

experts. D2D (Huang et al., 2024) adopts a prob- 155

abilistic approach, dynamically adjusting expert 156

activation according to input complexity. Further- 157

more, MoED (Szatkowski et al., 2023) leverages 158

the sparsity of activation to determine the optimal 159

number of experts per input in real time. 160

2.3 Parameter-Efficient Fine-Tuning 161

Parameter-Efficient Fine-Tuning (PEFT) provides a 162

practical means of adapting LLMs to downstream 163

tasks without incurring excessive computational 164

or storage overhead (Han et al., 2024). Typically, 165

these strategies can be categorized into three ap- 166

proaches: introducing additional parameters by 167

freezing most of the base model and fine-tuning 168

a small set of newly added parameters (Houlsby 169

et al., 2019); selecting existing parameters by lim- 170

iting the scope of fine-tuning to a restricted subset 171

of the original parameters (He et al., 2023); and 172

applying low-rank adaptations, such as LoRA (Hu 173

et al., 2021), which decompose the weight matrices 174

of the model into low-dimensional components. In 175

this study, PEFT are employed to mitigate the per- 176

formance degradation that arises when the number 177

of active experts is reduced. 178

2

3 Method179

In this section, we first present the preliminary180

MoE, and then introduce the proposed compen-181

sation module for the MoE model, with the aim182

of minimizing performance loss due to reduced183

activated experts. We also provide corresponding184

mathematical derivation.185

3.1 Preliminary186

The general architecture of the MoE layer consists187

of N experts {e1, e2, . . . , eN}, and each expert is a188

neural network capable of processing input tokens.189

For each input token xi in the sequence, the router190

calculates a set of routing weights as follows:191

P (xi) = Softmax(xi ·W), (1)192

where W ∈ Rh×N is a learned projection matrix193

and xi is the embedding of the token, h is the194

dimension of hidden states. The routing weights195

determine the relevance of each expert for the given196

input token. In practice, the top-k experts with the197

highest routing weights are selected, with k being198

a hyperparameter of the model, and these experts199

then process the input token.200

The top-k routing strategy ensures that only a201

small subset of experts contribute to each token’s202

output, which significantly reduces the computa-203

tional cost. The output of the MoE layer for the to-204

ken xi is a sum of the output of the selected experts.205

Thus, the output for the token can be expressed as:206

zi =

∑
j∈top-k Pj · ej(xi)∑

m∈top-k Pm
(2)207

where ej(xi) is the output of the j-th activated208

expert, and Pj is the routing weight of the j-th209

expert.210

In the case where the MoE utilizes shared ex-211

perts, the output zi is modified to incorporate the212

outputs of all shared experts in addition to the top-k213

selected experts. The output of the token xi is then214

the sum of the outputs of both selected and shared215

experts:216

zi = zi +
∑

s∈Shared

es(xi). (3)217

where es(xi) represents the output of the s-th218

shared expert.219

01234567
gidx_s

0
1

2
3

4
5

6
7

g i
dx

_e

0.65

0.65

0.66

0.66

0.67

0.67

0.68

Figure 1: Mixtral-8x7B consists of 32 layers, which
are structured into 8 groups, with each group contain-
ing 4 layers, with group boundaries defined by start
index gidx_s and end index gidx_e. For layers within the
range [4× gidx_s, 4× gidx_e+3], we apply the function
Expert_N(k, l, r) with fixed k = 2, l = 4× gidxs , and
r = 4×gidxe+3. The effectiveness of this configuration
is evaluated across general tasks, with average perfor-
mance scores visualized and detailed results presented
in Tab. 6.

3.2 Layer-Depth based Dynamic-k Gating 220

Inspired by work on overthinking in neural net- 221

works (Kaya et al., 2019; Huang et al., 2024), we 222

conduct a simple study to measure how dynami- 223

cally varying the top-k gate size as a function of 224

layer depth affects a post-trained MoE model. We 225

hypothesize that activating fewer experts in deeper 226

layers within a layer range [l, r] has a limited im- 227

pact on model performance. Consequently, we 228

define the number of active experts in the layer L 229

as follows, where k is the activate expert number 230

of base model: 231

Expert_N(k, l, r) =

{
k − 1, l ≤ L ≤ r,

k, otherwise.
(4) 232

We systematically sweep the boundaries l and r 233

and evaluate general-purpose tasks using the bench- 234

marks described in Sec.4.1. The experiments were 235

performed on Mixtral-8x7B. The results in Fig.1 236

reveal a clear pattern that we term Top Layers Need 237

Less Experts (TLNLE). This insight enables a de- 238

crease in the number of active experts, while caus- 239

ing only a slight decline in performance. Specifi- 240

cally, when l is 16 and r is 31, which means layers 241

[16, 31] activate only the top-1 expert, while re- 242

taining top-2 experts for layers from 0 to 15, we 243

observe only a 1.1% decrease in performance. 244

Based on this observation, we find that the right 245

3

Transformer Block x L

Attention

Add & Norm

Feed
Forward

Add & Norm

Nr

Router

1 2 3

Top-k

Transformer Block x 1

Attention

Add & Norm

Feed
Forward

Add & Norm

Attention

Add & Norm

Hook Module

Add

Feed
Forward

Add & Norm

(a) Stage 1: Reduce Top-k In All Layer (b) Stage 2: Add Trainable Hook Module

Figure 2: The two-stage framework of our proposed Hook compensation method. (a) Stage 1 employs the TLNLE
strategy to reduce the number of activated experts and identifies a suitable layer for Hook Module integration. (b)
Stage 2 incorporates the Hook Module, consisting of two linear layers with ReLU activation, before the Feed-
Forward component of the selected layer. Detailed architecture is presented in Sec.3.3.

boundary r can be fixed to the total number of lay-246

ers without loss of generality. Therefore, TLNLE247

can be parameterized solely by the left boundary l.248

Formally, we define:249

TLNLE(k, l) = Expert_N(k, l, rmax), (5)250

where rmax denotes the index of the final layer in251

the model. This strategy effectively reduces compu-252

tational overhead by limiting the number of experts253

utilized in the top layers, thereby accelerating in-254

ference, while still leveraging the full potential of255

the MoE for complex tasks.256

3.3 A Hook Compensation Module257

In this section, we present the proposed Hook com-258

pensation method, a fine-tuning approach that in-259

troduces an additional learnable module into the260

selected layer of the model, guided by the TLNLE261

strategy, to mitigate the performance loss caused by262

reducing the number of activated experts in MoE263

models. The strategy identifies the most suitable264

layer for inserting the Hook module by evaluating265

the degree of performance degradation between dif-266

ferent candidate layers. This evaluation is based on267

the average scores on general tasks, as introduced268

in Sec. 4.1.269

Specifically, we apply TLNLE starts by initial-270

izing k as the base number of routed experts per271

layer and l as the number of model layers. We first272

fix l, and iteratively reduce k until either (i) the273

performance drop exceeds a predefined threshold p,274

or (ii) k = 2, since at least one expert must remain275

active in each MoE layer to preserve functionality.276

The parameter p controls the trade-off between277

model efficiency and performance stability. A278

smaller p results in fewer reductions and better 279

performance preservation, while a larger p allows 280

more aggressive pruning at the cost of potential 281

performance loss. In our experiments, we typically 282

set p = 1.0%, which provides a reasonable balance 283

between efficiency gains and model quality. 284

After determining the optimal k, we proceed to 285

reduce l iteratively using the same performance 286

deviation criterion based on p. Finally, we further 287

reduce the number of activated experts by setting 288

all layers to use k − 1 experts, and insert the Hook 289

module into the selected layer l, as illustrated in 290

Fig. 2. This fine-tuning phase aims to compensate 291

for performance degradation caused by the addi- 292

tional reduction in expert activation before the layer 293

l. 294

The Hook Module consists of two lightweight 295

and trainable linear layers, which are added as a 296

residual connection to the original input xi. The 297

module processes xi and compensates for potential 298

activation loss as follows: 299

xi = xi + Linear(ReLU(Linear(xi)))× r (6) 300

Here, r denotes a scaling factor, which is a training 301

parameter initialized to 0.5. The latent space size 302

of the Hook module for coarse-grained experts is 303

set to the intermediate size of the MoE, whereas for 304

fine-grained experts in MoE, the latent space size 305

is twice the MoE intermediate size. The output of 306

Eq. 6 is then used as the input of Eq. 1. 307

To better understand how the Hook module mit- 308

igates the impact of expert reduction, we analyze 309

the behavior of the model from a state space per- 310

spective. In this context, state space refers to the 311

representation space formed by intermediate acti- 312

4

vations across the model layers, reflecting how in-313

formation is transformed through the network. We314

define the state space vector of the original MoE as315

So, the state space of the MoE with reduced acti-316

vated experts as Sc, and the state space of the Hook317

module as SH. The objective is to ensure that SH,318

the state space of the learnable module, effectively319

compensates for the loss caused by the reduced320

number of activated experts. This is achieved by321

minimizing the discrepancy as follows:322

min(∥SH − Sc + So∥) (7)323

Next, applying the triangle inequality to the L2324

norm of the state space difference, we expand the325

left-hand side as follows:326

∥SH − Sc + So∥22 ≤ ∥SH − Sc∥22 + ∥So∥22 (8)327

Direct evaluation of the model state space before328

and after compression is not feasible. Therefore,329

we rely on an evaluation dataset that defines the330

state space represented by the model on the vali-331

dation set as Sv. This allows us to further expand332

∥SH − Sc∥22:333

∥SH − Sc∥22 = ∥SH − Sv + Sv − Sc∥22334

≤ ∥SH − Sv∥22 + ∥Sv − Sc∥22 (9)335

Combining the above, we seek to minimize the336

following:337

min
(
∥SH − Sv∥22 + ∥Sv − Sc∥22 + ∥So∥22

)
(10)338

Since Sc, Sv, and So are considered fixed, our pri-339

mary objective is to minimize ∥SH − Sv∥22. Given340

that the training data of the MoEs are inaccessible,341

we introduce a small calibration data set to com-342

pensate for activation losses as much as possible.343

From the expression, it is clear that to improve the344

efficacy of this method, the state space of the cal-345

ibration dataset should closely match that of the346

evaluation dataset. Furthermore, selecting a diverse347

evaluation dataset ensures that the data distribu-348

tion of the evaluation set is more representative of349

real-world scenarios. The calibration data set is350

introduced in Sec. 4.1.351

4 Experiment352

In this section, we first present an overview of the353

model, the calibration datasets, and the benchmarks354

in Sec. 4.1. We then systematically evaluate our355

proposed HookMoE framework from three primary356

Model Expert Count
(Activ. / Total) dexpert

Share Expert
Count Attention

Mixtral-8x7B 2 / 8 dffn 0 GQA
Mixtral-8x22B 2 / 8 dffn 0 GQA
Qwen1.5-14.3B-A2.7B 8 / 64 1

4
dffn 4 MHA

DeepSeek-V2-Lite 8 / 66 ≈ 1
8
dffn 2 MLA

Table 1: Architectural specifications of the benchmark
models

perspectives. Specifically, in Sec. 4.2, we describe 357

the experiments on the Hook module for both gen- 358

eral and domain-specific tasks. In Section 4.3, we 359

illustrate how the TLNLE strategy enhances the 360

dynamic routing method and the Hook module. Fi- 361

nally, in Sec. 4.4, we assess the effectiveness of our 362

approach in acceleration of inference. 363

4.1 Implementation Details 364

Model Settings. A comprehensive systematic 365

evaluation was conducted to validate the effective- 366

ness of the proposed framework in four state-of- 367

the-art MoE architectures. Mixtral-8×7B (Jiang 368

et al., 2024), Mixtral-8×22B(Jiang et al., 2024), 369

DeepSeek-V2-Lite (Dai et al., 2024), and Qwen1.5- 370

MoE-A2.7B (Bai et al., 2023). The architecture 371

details are shown in Tab. 1, these models demon- 372

strate distinct architectural implementations in both 373

expert routing strategies and attention mechanisms. 374

Specifically, the Mixtral series adopts a uniform 375

top-k routing mechanism across all expert mod- 376

ules, integrated with Grouped-Query Attention 377

(GQA) (Ainslie et al., 2023) for efficient com- 378

putation. In contrast, Qwen1.5-MoE-A2.7B and 379

DeepSeek-V2-Lite implement a hybrid expert man- 380

agement system, where shared experts remain per- 381

manently activated while routed experts are dy- 382

namically selected, combined with Multi-Head At- 383

tention (MHA) (Vaswani, 2017) and Multi-Head 384

Latent Attention (MLA) (Dai et al., 2024) mecha- 385

nisms, respectively. 386

Calibration Datasets and Benchmarks. Our 387

calibration framework draws on two comple- 388

mentary corpora: the open domain C4 (Raf- 389

fel et al., 2020) and the mathematically focused 390

MATH (Hendrycks et al., 2021b). From each data 391

set, we randomly sub-sample 512 examples for cali- 392

bration. The C4 provides broad linguistic coverage, 393

which is essential for cross-domain generalization, 394

while the MATH specifically targets mathematical 395

reasoning through its problem-solution pairs. Eval- 396

uation employs a series of standardized metrics 397

to assess both linguistic and mathematical reason- 398

ing abilities, ensuring a comprehensive evaluation 399

across diverse domains. 400

5

Method Activated
Params General Tasks Domain-Specific Tasks

None (Top-2) 12.88B 67.80 48.34

Top-1 7.24B 62.87 41.43
Ours (C4) 7.36B 65.52 40.16
Ours (Math) 7.36B 65.36 41.91

Table 2: Analysis of the effects of different calibration
datasets on general and domain-specific tasks.

Evaluation employs a multi-aspect benchmark401

architecture comprising ten standardized tasks from402

lm-evaluation-harness (Gao et al., 2023). For gen-403

eral language understanding assessment under zero-404

shot settings, we utilize eight established bench-405

marks: ARC Challenge and ARC Easy (Clark et al.,406

2018), BoolQ and RTE (Wang et al., 2019), Hel-407

laSwag (Zellers et al., 2019), MMLU (Hendrycks408

et al., 2021a), OpenBookQA (Mihaylov et al.,409

2018), and Winogrande (Sakaguchi et al., 2019).410

Mathematical reasoning evaluation employs two411

specialized benchmarks: GSM8K (Cobbe et al.,412

2021) and Minerva Math (Hendrycks et al., 2021c).413

Evaluation Metrics. For the evaluations, we414

first measure the model performance on the bench-415

marks mentioned above. Subsequently, we eval-416

uate the model’s inference acceleration using the417

Hook strategy. In particular, we track four key418

metrics: average activated expert counts per token419

(Act), average scores on evaluated tasks (Lm-Eval),420

time to first token (TTFT) and inter-token latency421

(ITL). Following NVIDIA’s recommended LLM in-422

ference metrics3, TTFT is calculated as the latency423

between the arrival of a request and the generation424

of the first token during the pre-fill stage, while425

ITL is computed as the latency between succes-426

sive token generations for the same request in the427

decoding stage.428

4.2 Compensation Performance for Models429

In this subsection, we evaluate the proposed Hook430

method in both general and domain-specific tasks431

to provide a comprehensive assessment of model432

performance when reducing the number of acti-433

vated experts.434

Experiment Setup. We conduct experiments on435

four widely used MoE models, setting the perfor-436

mance degradation tolerance r to 1.5%. Using a437

binary search procedure, we determine the specific438

layers for inserting the Hook module. For each439

selected layer, the Hook module is placed in front440

of the gate within the MoE module, and the top-k441

3Our implementation is based on https://docs.nvidia.
com/nim/benchmarking/llm/latest/metrics.html.

parameter is adjusted accordingly. 442

For general tasks, we used 512 calibration sam- 443

ples from the C4 dataset, each with a sequence 444

length of 2048. For domain-specific tasks, we sam- 445

ple 512 instances from the MATH dataset, also 446

with a sequence length of 2048. For Mixtral-8x7B 447

and Mixtral-8x22B, the hidden dimension of Hook 448

module is set to the intermediate size of the expert, 449

whereas for Qwen1.5-14.3B-A2.7B and DeepSeek- 450

V2-Lite (fine-grained expert models), the hidden 451

dimension is configured to be twice the intermedi- 452

ate size of the expert. All parameters remain frozen 453

during fine-tuning, except those within the Hook 454

module, which constitute only 0.14%–0.70% of 455

the total parameters. We set the learning rate to 456

1× 10−4 and fine-tuned it for 1000 epochs. 457

Once the Hook module is fine-tuned, we evaluate 458

the performance of the compressed MoE models. 459

For general tasks, we report zero-shot accuracies on 460

eight benchmarks. For domain-specific math tasks, 461

we provide 4-shot results for Minerva Math and 5- 462

shot results for GSM8K. Due to space constraints, 463

we present results for domain-specific tasks only 464

for Mixtral-8x7B. 465

Compensation performance for General 466

Tasks. Tab. 3 summarizes the precision, param- 467

eter count, and number of activated experts for the 468

four baseline models. We also provide baseline 469

results under a lower top-k activation for reference. 470

Across all four models, our Hook method deliv- 471

ers superior performance compared to the original 472

model, despite activating fewer experts. 473

Concretely, activating only one expert in Mixtral- 474

8x7B reduces activated parameters to 57.1% com- 475

pared to two activated experts, at the cost of a 476

mere 2.5% performance drop. Using the Hook 477

module for accuracy compensation, performance 478

improves by an additional 2.43% compared to sim- 479

ply reducing the number of active experts with- 480

out Hook. Similarly, activating a single expert in 481

Mixtral-8x22B reduces the activated parameters 482

to 57.3%, with a performance decrease of 1.68%, 483

and Hook recovers 3.01%. For Qwen1.5-14.3B- 484

A2.7B, activating an expert yields 76.9% of the 485

original parameters activated (with four experts), 486

causing only a performance degradation of 1.87%, 487

while Hook further recovers 0.31%. Lastly, acti- 488

vating three experts in DeepSeek-V2-Lite reduces 489

the activated parameters to 76.4% of the original 490

six-expert setting, reducing performance by 1.81%, 491

which Hook mitigates by 0.32%. In general, Hook 492

activates only 25%–50% of the experts compared 493

6

https://docs.nvidia.com/nim/benchmarking/llm/latest/metrics.html
https://docs.nvidia.com/nim/benchmarking/llm/latest/metrics.html

Model Activated
Params

Total
Params Act. ARC-c ARC-e BoolQ HellaSwag MMLU OBQA RTE WinoGrande Average

Mixtral-8x7B
Origin (k=2) 12.90B 46.70B 2.00 56.66 84.34 85.23 64.82 67.88 35.20 71.48 76.80 67.80
Top-k (k=1) 7.24B 46.70B 1.00 50.90 78.87 80.80 60.65 61.60 31.40 68.23 70.48 62.87
Hook 7.36B 46.82B 1.00 55.80 82.07 85.63 64.06 62.82 34.40 64.26 73.32 65.30 (+2.43)

Mixtral-8x22B
Origin (k=2) 39.15B 140.60B 2.00 59.39 85.94 88.07 67.15 74.35 37.00 69.31 80.58 70.22
Top-k (k=1) 22.24B 140.60B 1.00 52.99 81.78 84.01 63.24 68.86 34.00 63.54 75.85 65.53
Hook 22.44B 140.80B 1.00 58.19 84.97 85.29 66.38 69.28 34.80 72.90 76.48 68.54 (+3.01)

Qwen1.5-14.3B-A2.7B
Origin (k=4) 2.69B 14.31B 4.00 46.08 75.34 86.42 62.84 74.12 33.20 74.37 74.74 65.89
Top-k (k=1) 2.06B 14.31B 1.00 46.76 77.06 85.26 57.49 66.45 30.20 75.09 71.35 63.71
Hook 2.07B 14.32B 1.00 48.38 77.48 85.35 58.10 66.34 30.00 76.17 70.32 64.02 (+0.31)

DeepSeek-V2-Lite
Origin (k=6) 2.80B 16.40B 6.00 46.59 78.32 79.08 58.55 54.81 33.40 61.37 70.32 60.31
Top-k (k=3) 2.13B 16.40B 3.00 42.92 77.02 76.09 56.73 52.00 32.00 60.29 68.35 58.18
Hook 2.14B 16.41B 3.00 43.77 77.06 76.18 56.81 51.80 31.80 62.45 68.11 58.50 (+0.32)

Table 3: Performance comparison of four general MoE models under various top-k settings with and without the
proposed Hook method. For each model, we report the number of activated parameters, total parameters, and the
zero-shot accuracies on eight general tasks, followed by the overall average.

to the original models, recovering an additional494

0.31%–3.01% accuracy relative to simply lowering495

the top-k without Hook.496

Compensation performance for Domain-497

Specific Tasks. As shown in Tab. 2, for domain-498

specific tasks, using task-specific calibration data499

yields better performance than using the general500

pre-trained dataset. Hence, when selecting calibra-501

tion data, it is advantageous to use data that closely502

align with the target domain.503

Analysis of Performance Gains Across Mod-504

els. Hook module consistently achieves strong505

performance across different MoE architectures,506

with the most pronounced gains observed in coarse-507

grained models, where it significantly outperforms508

the baseline on all benchmarks. In fine-grained509

MoE models, such as Qwen1.5-14.3B-A2.7B and510

DeepSeek-V2-Lite, it still achieves statistically sig-511

nificant improvements on five of the same bench-512

marks, albeit with smaller absolute gains. In such513

architectures, individual experts are less capable514

and there is greater redundancy among them. Con-515

sequently, reducing activation sparsity results in516

only a slight performance drop, limiting the po-517

tential for compensation. However, consistent out-518

performance of the baseline on the majority tasks519

demonstrates that Hook module is broadly applica-520

ble and effective on diverse granularities of MoE.521

4.3 Effect of TLNLE522

In this subsection, we explore the broader appli-523

cability of the TLNLE strategy, including its inte-524

gration with existing dynamic-k methods and the525

Hook module. The results are based on the Mixtral-526

8x7B model.527

Experiment Setup. In the experiment combin-528

Route Act. Lm-Eval

Origin (Top-2) 2.00 67.80

MoED (p = 0.6) 1.31 66.37
MoED (p = 0.7) 1.59 67.06
D2D (τ = 0.5) 1.50 67.17
D2D (τ = 0.6) 1.38 66.68
NAEE 1.50 67.32
MoED + TLNLE 1.33 66.82
D2D + TLNLE 1.39 67.19

MoED (p = 0.52) 1.07 64.88
D2D (τ = 0.9) 1.09 64.96
Hook + TLNLE 1.06 65.52

Table 4: Performance comparison of different routing
methods.

ing our method with the SOTA dynamic-k gating 529

methods, we replicate the baselines of dynamic-k 530

gating and incorporate the TLNLE strategy. The 531

dynamic-k gating method uses a threshold to de- 532

termine whether to skip an expert. The TLNLE 533

strategy adjusts this threshold layer by layer, re- 534

ducing the number of activated experts in top lay- 535

ers. Specifically, in the MoED (Szatkowski et al., 536

2023)experiment, the threshold p starts at 0.7 for 537

the first layer and decreases by 0.2/32 for each sub- 538

sequent layer. In the D2D (Huang et al., 2024) 539

experiment, the threshold τ starts at 0.5 for the first 540

layer and increases by 0.2/32 for each subsequent 541

layer. In the Hook experiment, TLNLE activates 542

two experts in the two bottom layers and one ex- 543

pert in the remaining layers. We report the Act 544

and LM-Eval metrics. The Act results are derived 545

from approximately 1 billion tokens in the router’s 546

choice statistics. 547

Baselines for Comparison. Previous stud- 548

ies, such as MoED (Szatkowski et al., 2023), 549

D2D (Huang et al., 2024), and NAEE (Lu et al., 550

7

2024), have implemented dynamic-k routing us-551

ing fixed thresholds for expert activation. In these552

methods, expert activation is determined by com-553

paring the router’s output to predefined thresholds.554

Evaluation Results. As shown in Tab.4, com-555

pared to the baselines, the integration of our method556

with MoED and D2D results in minimal increases557

in the Act. MoED + TLNLE activates only 0.02558

more experts than MoED (p = 0.6), yet achieves559

a 0.45 increase in accuracy. Similarly, D2D +560

TLNLE activates 0.01 more experts than D2D (τ =561

0.6), but outperforms D2D (τ = 0.5). Compared to562

the SOTA dynamic-k gating method, the combina-563

tion of Hook + TLNLE achieves an improvement564

of over 0.6% in overall performance, with a similar565

number of activated experts.4566

4.4 Acceleration of Inference Speed567

In this subsection, we apply our proposed method568

to the Mixtral-8x7B model and evaluate its perfor-569

mance on two key inference metrics. We conducted570

experiments on two different types of GPU to as-571

sess the effectiveness of our method in accelerating572

the inference speed.573

Experiment Setup. The experiments are car-574

ried out using transformers Python library. For575

the TTFT measurement, the input sequence lengths576

are set at 1024, 2048, and 4096 tokens, and the577

output length is set at 1 token. Timestamps are578

recorded immediately before and after inference,579

with each measurement repeated 100 times. For580

ITL measurement, the setup remains the same, ex-581

cept that the maximum number of new tokens is582

set to 256. The experiments are carried out on583

systems with 1 node featuring 2x NVIDIA A800-584

SXM-80GB GPUs (400GB/s NVLink bandwidth585

and Bfloat16 Tensor Core with 312 TFLOPS) and586

1 node with 2x NVIDIA H20-SXM-96GB GPUs587

(900GB/s NVLink bandwidth and Bfloat16 Tensor588

Core with 148 TFLOPS). The A800 is a compute-589

oriented GPU, known for its high single-card per-590

formance, while the H20 is an inference-oriented591

GPU, optimized for high inter-GPU communica-592

tion bandwidth. Model inference is performed us-593

ing the Bfloat16 representation.594

Evaluation Results. As illustrated in Fig.3, our595

method achieves a TTFT speedup ranging from596

1.24x to 1.46x, and an ITL speedup between 1.09x597

and 1.13x, compared to the baseline model. In par-598

ticular, the speed-up is more pronounced on the599

4Futher details of Act are provided in A.4.

1k 2k 4k
Context Length

200

300

400

500

600

700

Ti
m

e(
m

s)

(a)

1.24x

1.34x

1.39x
Origin(Top-2)
HookMoE

1k 2k 4k
Context Length

200

400

600

800

1000

Ti
m

e(
m

s)

(b)

1.42x

1.46x

1.43x
Origin(Top-2)
HookMoE

1k 2k 4k
Context Length

92
94
96
98

100
102
104

Ti
m

e(
m

s)

(c)

1.11x
1.09x

1.08x

Origin(Top-2)
HookMoE

1k 2k 4k
Context Length

70
72
74
76
78
80
82

Ti
m

e(
m

s)

(d)

1.13x 1.13x

1.12x

Origin(Top-2)
HookMoE

Figure 3: Performance comparison of TTFT and ITL
metrics on Mixtral-8x7B model. The subfigures demon-
strate: (a) TTFT measurements using A800 GPU; (b)
TTFT measurements using H20 GPU; (c) ITL measure-
ments using A800 GPU; (d) ITL measurements using
H20 GPU.

inference-oriented H20 GPU than on the compute- 600

oriented A800 GPU. This outcome aligns with our 601

goal of accelerating inference for post-trained mod- 602

els while preserving accuracy. Our approach is par- 603

ticularly well-suited for deployment on inference- 604

optimized GPUs. 605

By activating fewer experts, our method directly 606

lowering the dominant GPU compute cost. How- 607

ever, as revealed by profiling with Nvidia Nsight, 608

CPU scheduling overhead alone can account for 609

up to 50% of the total inference time (Srivatsa 610

et al.). Thus, although our current implementa- 611

tion achieves a TTFT speedup ranging from 1.24x 612

to 1.46x under these conditions, we anticipate that 613

this speedup will become increasingly as modern 614

inference engines, such as vLLM (Kwon et al., 615

2023) and SGLang (Zheng et al., 2024), continue 616

to improve their CPU scheduling efficiency. 617

5 Conclusion 618

In this paper, we propose a novel and lightweight 619

Hook compensation module for MoE models, ef- 620

fectively addresses the challenge of balancing com- 621

putational efficiency and model performance. Our 622

approach introduces minimal training overhead and 623

demonstrates consistent effectiveness across vari- 624

ous MoE models and hardware platforms. By in- 625

tegrating this module with the observed TLNLE 626

property, we offer a practical solution for deploying 627

efficient yet performant MoE models. This work 628

not only enhances the understanding of MoE ar- 629

chitectures but also provides valuable insights for 630

future research on efficient LLMs deployment. 631

8

Limitations632

Our approach effectively reduces the number of ex-633

perts activated during inference and compensates634

for performance degradation by adding parameters,635

making it more efficient to deploy the mixture of ex-636

perts (MoE). Despite the improvements, there are637

several limitations. First, the hook method demon-638

strates stronger compensation when fewer experts639

are activated. However, as the number of activated640

experts increases and approaches the original set-641

ting, the accuracy compensation may become less642

significant. Second, due to resource constraints, we643

have not evaluated MoEs with over 141B param-644

eters, such as DeepSeek-V3, Grok-1 and Qwen3.645

As MoE continue to evolve and computational re-646

sources expand, we plan to conduct experiments647

on larger models to more comprehensively assess648

the generalizability and scalability of our method.649

Ethics Statement650

Our research focuses on mitigating performance651

degradation caused by reducing the number of acti-652

vated experts by adding parameters for fine-tuning,653

with the goal of improving inference speed with-654

out sacrificing model performance. Although our655

approach offers potential benefits for more effi-656

cient deployment of advanced large language mod-657

els (LLMs), we acknowledge the importance of658

carefully considering the ethical implications of659

deploying such models. The responsible use of660

LLMs involves addressing biases, improving the661

interpretability of the output, protecting data pri-662

vacy, and conducting risk assessments. We are663

committed to making our code transparent for the664

responsible review and evaluation of the research665

community.666

References667

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama668
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,669
Diogo Almeida, Janko Altenschmidt, Sam Altman,670
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.671
arXiv preprint arXiv:2303.08774.672

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury673
Zemlyanskiy, Federico Lebrón, and Sumit Sanghai.674
2023. Gqa: Training generalized multi-query trans-675
former models from multi-head checkpoints. arXiv676
preprint arXiv:2305.13245.677

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,678
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei679

Huang, et al. 2023. Qwen technical report. arXiv 680
preprint arXiv:2309.16609. 681

Tom B Brown. 2020. Language models are few-shot 682
learners. arXiv preprint arXiv:2005.14165. 683

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, 684
Ashish Sabharwal, Carissa Schoenick, and Oyvind 685
Tafjord. 2018. Think you have solved question an- 686
swering? try arc, the ai2 reasoning challenge. ArXiv, 687
abs/1803.05457. 688

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, 689
Jacob Hilton, Reiichiro Nakano, Christopher Hesse, 690
and John Schulman. 2021. Training verifiers to solve 691
math word problems. Preprint, arXiv:2110.14168. 692

Damai Dai, Chengqi Deng, Chenggang Zhao, RX Xu, 693
Huazuo Gao, Deli Chen, Jiashi Li, Wangding 694
Zeng, Xingkai Yu, Y Wu, et al. 2024. Deepseek- 695
moe: Towards ultimate expert specialization in 696
mixture-of-experts language models. arXiv preprint 697
arXiv:2401.06066. 698

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, 699
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, 700
Akhil Mathur, Alan Schelten, Amy Yang, Angela 701
Fan, et al. 2024. The llama 3 herd of models. arXiv 702
preprint arXiv:2407.21783. 703

William Fedus, Barret Zoph, and Noam Shazeer. 2022. 704
Switch transformers: Scaling to trillion parameter 705
models with simple and efficient sparsity. Journal of 706
Machine Learning Research, 23(120):1–39. 707

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, 708
Sid Black, Anthony DiPofi, Charles Foster, Laurence 709
Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, 710
Kyle McDonell, Niklas Muennighoff, Chris Ociepa, 711
Jason Phang, Laria Reynolds, Hailey Schoelkopf, 712
Aviya Skowron, Lintang Sutawika, Eric Tang, An- 713
ish Thite, Ben Wang, Kevin Wang, and Andy Zou. 714
2023. A framework for few-shot language model 715
evaluation. 716

Zeyu Han, Chao Gao, Jinyang Liu, Jeff Zhang, and 717
Sai Qian Zhang. 2024. Parameter-efficient fine- 718
tuning for large models: A comprehensive survey. 719
arXiv preprint arXiv:2403.14608. 720

Haoyu He, Jianfei Cai, Jing Zhang, Dacheng Tao, 721
and Bohan Zhuang. 2023. Sensitivity-aware visual 722
parameter-efficient fine-tuning. In Proceedings of the 723
IEEE/CVF International Conference on Computer 724
Vision, pages 11825–11835. 725

Dan Hendrycks, Collin Burns, Steven Basart, Andy 726
Zou, Mantas Mazeika, Dawn Song, and Jacob Stein- 727
hardt. 2021a. Measuring massive multitask language 728
understanding. Proceedings of the International Con- 729
ference on Learning Representations (ICLR). 730

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul 731
Arora, Steven Basart, Eric Tang, Dawn Song, and 732
Jacob Steinhardt. 2021b. Measuring mathemati- 733
cal problem solving with the math dataset. arXiv 734
preprint arXiv:2103.03874. 735

9

https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://doi.org/10.5281/zenodo.10256836
https://doi.org/10.5281/zenodo.10256836
https://doi.org/10.5281/zenodo.10256836

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul736
Arora, Steven Basart, Eric Tang, Dawn Song, and737
Jacob Steinhardt. 2021c. Measuring mathematical738
problem solving with the math dataset. NeurIPS.739

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,740
Bruna Morrone, Quentin De Laroussilhe, Andrea741
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.742
Parameter-efficient transfer learning for nlp. In In-743
ternational conference on machine learning, pages744
2790–2799. PMLR.745

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan746
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,747
and Weizhu Chen. 2021. Lora: Low-rank adap-748
tation of large language models. arXiv preprint749
arXiv:2106.09685.750

Quzhe Huang, Zhenwei An, Nan Zhuang, Mingxu Tao,751
Chen Zhang, Yang Jin, Kun Xu, Liwei Chen, Song-752
fang Huang, and Yansong Feng. 2024. Harder tasks753
need more experts: Dynamic routing in moe models.754
arXiv preprint arXiv:2403.07652.755

Robert A Jacobs, Michael I Jordan, Steven J Nowlan,756
and Geoffrey E Hinton. 1991. Adaptive mixtures of757
local experts. Neural computation, 3(1):79–87.758

Albert Q Jiang, Alexandre Sablayrolles, Antoine759
Roux, Arthur Mensch, Blanche Savary, Chris Bam-760
ford, Devendra Singh Chaplot, Diego de las Casas,761
Emma Bou Hanna, Florian Bressand, et al. 2024.762
Mixtral of experts. arXiv preprint arXiv:2401.04088.763

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B764
Brown, Benjamin Chess, Rewon Child, Scott Gray,765
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.766
Scaling laws for neural language models. arXiv767
preprint arXiv:2001.08361.768

Yigitcan Kaya, Sanghyun Hong, and Tudor Dumitras.769
2019. Shallow-deep networks: Understanding and770
mitigating network overthinking. In International771
conference on machine learning, pages 3301–3310.772
PMLR.773

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying774
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gon-775
zalez, Hao Zhang, and Ion Stoica. 2023. Efficient776
memory management for large language model serv-777
ing with pagedattention. In Proceedings of the 29th778
Symposium on Operating Systems Principles, pages779
611–626.780

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu,781
Dehao Chen, Orhan Firat, Yanping Huang, Maxim782
Krikun, Noam Shazeer, and Zhifeng Chen. 2020.783
Gshard: Scaling giant models with conditional com-784
putation and automatic sharding. arXiv preprint785
arXiv:2006.16668.786

Xudong Lu, Qi Liu, Yuhui Xu, Aojun Zhou, Siyuan787
Huang, Bo Zhang, Junchi Yan, and Hongsheng Li.788
2024. Not all experts are equal: Efficient expert789
pruning and skipping for mixture-of-experts large790
language models. arXiv preprint arXiv:2402.14800.791

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish 792
Sabharwal. 2018. Can a suit of armor conduct elec- 793
tricity? a new dataset for open book question answer- 794
ing. In EMNLP. 795

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine 796
Lee, Sharan Narang, Michael Matena, Yanqi Zhou, 797
Wei Li, and Peter J Liu. 2020. Exploring the lim- 798
its of transfer learning with a unified text-to-text 799
transformer. Journal of machine learning research, 800
21(140):1–67. 801

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhaga- 802
vatula, and Yejin Choi. 2019. Winogrande: An ad- 803
versarial winograd schema challenge at scale. arXiv 804
preprint arXiv:1907.10641. 805

Vikranth Srivatsa, Dongming Li, Yiying Zhang, and 806
Reyna Abhyankar. Can Scheduling Overhead Domi- 807
nate LLM Inference Performance? A Study of CPU 808
Scheduling Overhead on Two Popular LLM Infer- 809
ence Systems. https://mlsys.wuklab.io/posts/ 810
scheduling_overhead/. 811

Filip Szatkowski, Bartosz Wójcik, Mikołaj Piórczyński, 812
and Kamil Adamczewski. 2023. Sadmoe: Exploiting 813
activation sparsity with dynamic-k gating. arXiv e- 814
prints, pages arXiv–2310. 815

A Vaswani. 2017. Attention is all you need. Advances 816
in Neural Information Processing Systems. 817

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Aman- 818
preet Singh, Julian Michael, Felix Hill, Omer Levy, 819
and Samuel Bowman. 2019. Superglue: A stickier 820
benchmark for general-purpose language understand- 821
ing systems. In Advances in Neural Information 822
Processing Systems, volume 32. Curran Associates, 823
Inc. 824

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten 825
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, 826
et al. 2022. Chain-of-thought prompting elicits rea- 827
soning in large language models. Advances in neural 828
information processing systems, 35:24824–24837. 829

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali 830
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a 831
machine really finish your sentence? In Proceedings 832
of the 57th Annual Meeting of the Association for 833
Computational Linguistics. 834

Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Chuyue 835
Sun, Jeff Huang, Cody Hao Yu, Shiyi Cao, Christos 836
Kozyrakis, Ion Stoica, Joseph E Gonzalez, et al. 2024. 837
Sglang: Efficient execution of structured language 838
model programs. arXiv preprint arXiv:2312.07104. 839

10

https://mlsys.wuklab.io/posts/scheduling_overhead/
https://mlsys.wuklab.io/posts/scheduling_overhead/
https://mlsys.wuklab.io/posts/scheduling_overhead/
https://proceedings.neurips.cc/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf

A Appendix840

A.1 Evaluation of Adjust Top-k841

In the top-k adjustment experiment, we control the842

number of experts activated per layer by modifying843

the number of activated experts parameter in the844

configuration file, varying it from 1 to 8. Fig. 4845

illustrates the results of varying top-k settings. As846

observed, performance is optimal with the origi-847

nal top-2 configuration, while performance signifi-848

cantly drops with top-1. However, when increasing849

the number of experts from the top-3 to top-8, per-850

formance still declines slightly. This phenomenon851

shows that after the key experts are activated, the852

model’s ability to resist noise increases.853

1 2 3 4 5 6 7 8
Top-K

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

A
cc

ur
ac

y

K = 2

Arc challenge
Arc easy
Boolq
Hellaswag
MMLU
Rte
Winogrande

Figure 4: Evaluation Mixtral-8×7B in different general
tasks.

A.2 Parameter Calculate for MoE Models854

Consider a Mixture of Experts (MoE) model with855

the following parameters:856

P = L×(PAttention+PMoE)+PEmbedding+PLM_head857

Let L be the number of transformer blocks, h rep-858

resent the hidden size, hffn−expert the hidden size859

of the expert, k the number of experts selected per860

token, nr
e the total number of router experts, ns

e the861

total number of shared experts, and v the size of862

the vocabulary. The total number of parameters in863

the model is given by:864

Pt = L

×
(
h2 × 4 + h× hffn_moe × 3× (nr

e + ns
e)
)

+ 2× v × h

865

The term h2 × 4 corresponds to the Attention layer866

parameters PAttention, and the term h×hffn_moe×867

3× (nr
e + ns

e) accounts for the MoE layers PMoE, 868

including both routing and shared experts. Both 869

parameters PEmbedding and PLM_head are v×h. Simi- 870

larly, the activation values are calculated as follows: 871

Pa = L

×
(
h2 × 4 + h× hffn_moe × 3× (k + ns

e)
)

+ 2× v × h

872

This expression captures the contributions from 873

both the standard transformer layers and the MoE 874

layers, as well as the embedding layer correspond- 875

ing to the vocabulary. 876

A.3 Training Curve 877

In this subsection, we present the loss curve for four 878

baseline models during training in Fig. 5. A consis- 879

tent trend is observed across all four MoE models: 880

a steady reduction in loss. This indicates that the 881

models effectively explored and implemented more 882

optimal activation compensation strategies. 883

0 200 400 600 800 1000
Epochs

0.5

1.0

1.5

2.0

Lo
ss

Mixtral-8x7B

0 200 400 600 800 1000
Epochs

0.0

0.5

1.0

1.5

2.0

Lo
ss

Mixtral-8x22B

0 200 400 600 800 1000
Epochs

0.0

0.5

1.0

1.5

2.0

2.5

Lo
ss

Qwen1.5-14.3B-A2.7B

0 200 400 600 800 1000
Epochs

0.2

0.4

0.6

0.8

Lo
ss

DeepSeek-V2-Lite

Figure 5: Loss curves for four baseline models.

A.4 Details of Dynamic-k Routing 884

In this subsection, we present a comprehensive 885

analysis of the average number of activated experts 886

at each of the 32 layers in Mixtral-8×7B, evaluated 887

over 2.1M tokens. Our investigation compares var- 888

ious dynamic-k routing strategies to highlight their 889

impact on the utilization of experts across different 890

layers. Details are shown on Tab.5. 891

A.5 LLM Inference Metrics 892

Time to First Token (TTFT): This metric mea- 893

sures the latency that a user experiences before re- 894

ceiving the model’s output. TTFT covers the prefill 895

time. Specifically, TTFT increases with the length 896

11

Layer MoED D2D TLNLE

0 1.04 1.05 2.00
1 1.07 1.08 2.00
2 1.06 1.08 1.00
3 1.07 1.09 1.00
4 1.06 1.08 1.00
5 1.07 1.08 1.00
6 1.08 1.10 1.00
7 1.08 1.10 1.00
8 1.09 1.11 1.00
9 1.09 1.11 1.00

10 1.09 1.11 1.00
11 1.06 1.08 1.00
12 1.07 1.09 1.00
13 1.10 1.13 1.00
14 1.09 1.11 1.00
15 1.08 1.10 1.00
16 1.09 1.11 1.00
17 1.07 1.09 1.00
18 1.08 1.09 1.00
19 1.07 1.08 1.00
20 1.07 1.08 1.00
21 1.07 1.09 1.00
22 1.07 1.09 1.00
23 1.07 1.09 1.00
24 1.07 1.08 1.00
25 1.06 1.08 1.00
26 1.06 1.08 1.00
27 1.06 1.07 1.00
28 1.05 1.07 1.00
29 1.06 1.07 1.00
30 1.05 1.07 1.00
31 1.08 1.10 1.00

Act. 1.07 1.09 1.06
LM-Eval 64.88 64.96 65.52

Table 5: Layer-wise comparison of the average number
of activated experts for MoED (p = 0.52), D2D (τ =
0.9), and TLNLE (2,2).

of the input prompt due to the attention mecha-897

nism’s requirement to process the entire input se-898

quence and build the key-value cache (KV cache),899

which is essential for initiating the iterative token900

generation loop. The longer the prompt, the greater901

the TTFT, as more time is needed to prepare the902

KV-cache.903

Inter-token Latency (ITL): ITL represents the904

average time between the generation of consecutive905

tokens, also known as the time per output token906

(TPOT). ITL is formally defined as:907

ITL =
e2e_latency − TTFT

Total_output_tokens − 1
908

Here, e2e_latency denotes the total end-to-end la-909

tency of the inference process, and TTFT is the910

time to the first token. The subtraction of 1 from911

the denominator reflects the fact that the first token912

generation is excluded from the ITL calculation,913

as it pertains to the prefill stage, not the iterative914

decoding process.915

It is important to note that as the length of the 916

output sequence increases, the size of the KV-cache 917

also grows, which increases memory consumption. 918

Additionally, the computational cost of the atten- 919

tion mechanism increases linearly with the length 920

of the input and output sequence generated so far. 921

Although this computation is typically not compute 922

bound, the growing memory demand can impact 923

overall performance. 924

A.6 Activation Visualization 925

In this subsection, we visualize the activation val- 926

ues during Mixtral-8×7B inference to qualitatively 927

assess the impact of our method on the output. 928

Specifically, we input the word HooKMoE into 929

the tokenizer, which divides the word into three 930

tokens: Hook, M, and OE. These tokens are then 931

sequentially fed into the model for forward propa- 932

gation. We extract the tensor at the last index from 933

the final layer, resulting in a tensor of size 4096. 934

The extracted tensor is then reshaped to a 64x64 935

matrix, normalized, and visualized. The results are 936

shown in Fig.6. As illustrated, although our method 937

activates only the top-1 expert, the activation com- 938

pensation through the Hook Module ensures that 939

the visualized output at the bottom layer closely 940

approximates that of the original model. 941

Hook M oE

0.0

0.2

0.4

0.6

0.8

1.0

Origin
(Top-2)

Method
(Ours)

Figure 6: Visualization of activation values at the bottom
layer during model inference with three tokens.

A.7 Benchmark Descriptions 942

The following section provides a brief overview 943

of the benchmarks used in our evaluation. These 944

benchmarks are designed to assess various aspects 945

of language understanding and reasoning capabil- 946

ities across diverse domains. Tab. 7 summarizes 947

each benchmark and its corresponding task descrip- 948

tion. 949

12

gidx_s gidx_e Act ARC-c ARC-e BoolQ HellaSwag MMLU OBQA RTE WinoGrande Average

0 0 1.88 57.34 83.92 85.41 64.76 67.25 33.40 69.68 74.11 66.98
0 1 1.75 56.23 83.38 85.11 64.27 66.43 33.20 66.79 74.19 66.20
0 5 1.25 55.12 81.99 85.32 62.78 63.47 32.00 64.98 73.40 64.88
0 6 1.13 54.35 81.31 85.38 62.50 63.47 31.40 64.62 72.30 64.42
1 2 1.75 55.12 83.29 85.17 64.05 65.23 33.80 67.51 75.61 66.22
1 3 1.63 55.03 82.49 85.02 63.83 63.84 34.00 66.06 73.72 65.50
1 4 1.50 53.67 82.41 85.26 63.34 63.82 33.80 64.98 74.74 65.25
1 5 1.38 53.07 81.65 84.98 62.81 63.90 33.00 64.26 74.90 64.82
1 6 1.25 52.90 81.14 85.02 62.85 63.92 32.00 65.34 73.72 64.61
1 7 1.13 53.84 81.19 85.20 62.77 63.85 32.40 66.06 74.27 64.95
3 3 1.88 55.89 83.63 85.60 64.64 66.18 34.20 69.31 76.24 66.96
3 4 1.75 55.89 83.63 85.60 64.64 66.18 34.20 69.31 76.24 66.96
4 5 1.75 54.95 82.41 85.17 63.82 67.83 33.80 70.40 75.61 66.75
4 6 1.63 54.52 82.49 84.83 63.52 67.87 32.00 71.48 75.45 66.52
4 7 1.50 55.12 82.11 84.83 63.56 67.79 33.20 70.76 75.93 66.66
6 6 1.88 56.57 84.09 85.38 64.63 68.02 33.40 70.40 76.40 67.36
0 2 1.63 55.29 83.33 85.14 63.62 65.00 32.80 67.87 74.43 65.94
0 3 1.50 54.78 82.79 84.98 63.63 63.54 34.60 65.70 73.72 65.47
0 4 1.38 54.78 82.74 85.17 63.05 63.15 32.60 64.26 72.61 64.80
0 7 1.00 54.35 81.31 85.38 62.50 63.47 31.40 64.62 72.30 64.42
1 1 1.88 55.46 83.46 85.54 64.56 66.68 33.60 68.59 76.40 66.79
2 2 1.88 56.40 84.18 85.11 64.37 66.42 35.20 69.68 75.77 67.14
2 3 1.75 55.03 83.21 85.32 64.18 64.85 35.00 68.23 76.32 66.52
2 4 1.63 53.92 82.74 85.41 63.72 64.78 34.00 67.15 75.30 65.88
2 5 1.50 53.67 81.90 85.47 63.10 65.12 33.80 67.51 75.14 65.71
2 6 1.38 53.58 81.48 85.47 63.08 65.03 34.20 67.15 74.66 65.58
2 7 1.25 52.82 81.82 85.47 63.04 64.92 34.20 68.23 74.74 65.66
3 5 1.63 54.35 81.82 85.44 63.37 66.06 33.40 67.15 75.22 65.85
3 6 1.50 53.84 81.78 85.54 63.25 66.13 32.40 67.51 75.06 65.69
3 7 1.38 53.92 81.65 85.29 63.25 66.08 33.00 66.79 74.35 65.54
4 4 1.88 55.46 83.25 85.23 64.41 67.75 34.60 70.40 75.85 67.12
5 5 1.88 56.14 83.38 84.98 64.43 68.02 34.60 71.12 75.77 67.31
5 6 1.75 55.89 83.08 84.86 64.13 68.00 33.80 70.40 76.01 67.02
5 7 1.63 55.72 82.95 84.92 64.03 68.03 35.20 71.12 76.24 67.28
6 7 1.75 55.55 83.42 85.32 64.54 67.81 36.20 71.12 75.77 67.47
7 7 1.88 56.74 83.75 85.29 64.84 67.73 36.20 70.76 75.93 67.66

Table 6: Evaluation results of act and 8 general tasks under different sets of gidx_s and gidx_e.

Benchmark Description

ARC-c / ARC-e Tasks involving complex reasoning
over a diverse set of questions.

HellaSwag Tasks to predict the ending of sto-
ries or scenarios, testing compre-
hension and creativity.

MMLU Massive Multitask Language Under-
standing benchmark for broad do-
main language evaluation. Several
variants are supported.

OBQA Open-book question answering
tasks that require external knowl-
edge and reasoning.

RTE / BoolQ A suite of challenging tasks de-
signed to test a range of language
understanding skills.

WinoGrande A large-scale dataset for corefer-
ence resolution, inspired by the
Winograd Schema Challenge.

Table 7: Overview of the benchmarks used in the evalua-
tion, including their descriptions and target capabilities.

13

	Introduction
	Related Works
	Mixture-of-Experts Models
	Dynamic-k Gating
	Parameter-Efficient Fine-Tuning

	Method
	Preliminary
	Layer-Depth based Dynamic-k Gating
	A Hook Compensation Module

	Experiment
	Implementation Details
	Compensation Performance for Models
	Effect of TLNLE
	Acceleration of Inference Speed

	Conclusion
	Appendix
	Evaluation of Adjust Top-k
	Parameter Calculate for MoE Models
	Training Curve
	Details of Dynamic-k Routing
	LLM Inference Metrics
	Activation Visualization
	Benchmark Descriptions

