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Abstract

Vision-language foundation models such as CLIP have showcased impressive zero-shot ca-
pabilities. However, their applicability in resource-constrained environments is limited due
to their size and the resulting latency. Knowledge distillation allows to mitigate these chal-
lenges by distilling small image encoders that can replace the large CLIP image encoder. In
a zero-shot setting, where only the class names are known, no real domain images can be
used for this process. Instead, we investigate the use of synthetic images for this purpose.
Unlike existing works that focus on improving the quality of synthetic images to bridge the
performance gap compared to training on natural images, we find the choice of loss to be a
crucial factor. Specifically, minimizing only the distance between the student and teacher
image features, without incorporating image captions in the loss function, increases the
robustness to spurious features and data corruptions. As a result, this feature distillation
approach greatly improves the transfer performance from synthetic to real images. Lever-
aging these insights, we are able to train domain-specific students that achieve zero-shot
performance comparable to a ViT-B/32 teacher on six fine-grained classification datasets
while using up to 92% fewer parameters.

1 Introduction

Motivation. Image classifiers built on top of large vision(-language) foundation models, such as CLIP
(Radford et al., 2021) or DINOv2 (Oquab et al., 2023), have shown impressive zero-shot capabilities across
various tasks. However, their extensive parameter count and high inference latency present significant
challenges for deployment in resource-constrained edge devices used in driver-assistance systems, automated
driving, mobile robotics, or video surveillance. Due to their reduced capacity, smaller models cannot be
expected to match the performance of larger ones in arbitrary domains. Additionally, training large-scale
foundation models typically involves several millions or billions of images, making it expensive and time-
consuming. Together, this motivates the need for smaller domain-specific models, as well as data-efficient
training procedures. In this work, we specifically focus on zero-shot image classification, for which only a
small-scale image encoder is required. Class-specific text embeddings are fixed and can be precomputed
off-device, while only image embeddings are computed on-device. Thus, our goal is to distill smaller drop-in
replacements (students) of the CLIP image encoder (teacher) that achieve on-par performance on the specific
target domains of interest. In particular, we want to specialize the image encoder student to novel domains
for which we only know the relevant classes, but do not have access to actual images, the so called zero-shot
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Figure 1: Overview over our zero-shot distillation framework and the observed properties of
vision-language distillation and feature distillation. We only use the class names to generate domain-
specific synthetic images for the distillation of small CLIP image encoders. The reported test accuracies are
from domain-specific TinyViT-11M students on six fine-grained classification datasets. The crucial factor to
closely reach the performance of the teacher is to minimize the distance between image features of the teacher
image encoder and the student encoder (feature distillation). The common approach of aligning the text and
image features (vision-language distillation) leads to substantially worse performance. This observation can
be attributed to improved robustness properties of feature distillation against spurious features and common
corruptions which we discuss in our findings.

distillation setting. For zero-shot distillation, domain-specific data can be obtained from “general-purpose”
generative models, such as large-scale latent diffusion models (Podell et al., 2023), by class-aware prompting.
However, learning from synthetic images has proven challenging (Sariyildiz et al., 2022; Azizi et al., 2023).
Despite attempts to improve synthetic images in terms of quality and diversity (Yu et al., 2023) in order
to reduce the domain gap to natural images, there still remains a substantial drop in performance when
transferring from the synthetic to real image domain (Azizi et al., 2023; Sariyildiz et al., 2022).

While previous works primarily focus on improving the synthetic data for zero-shot learning, we identify the
loss function as a critical factor that impacts performance when training on synthetic images. Specifically, we
observe that two classes of loss functions exhibit distinct properties when transferring between the synthetic
and real domain. Therefore, we differentiate between vision-language distillation and feature distillation. For
vision-language distillation, the embeddings of image-caption pairs are aligned through the loss function.
Feature distillation relies solely on matching the image embeddings of a trainable student to those of a
frozen teacher. We find that vision-language distillation has several drawbacks, including the susceptibility
to spurious features and common corruptions in the training set. This impedes the generalization from a
synthetic train to a real test set. Conversely, feature distillation demonstrates greater robustness to these
influences. Thereby, it improves the zero-shot transfer from synthetic images. Moreover, we find that the
specificity of the data influences the distillation process of image encoders. Current baselines for distilled
CLIP image encoders (Wu et al., 2023; Yang et al., 2023a; Vasu et al., 2023) are trained on large-scale common
crawl datasets, relying on the models’ generalization for zero-shot performance. For small image encoders
with a substantially smaller capacity, however, this cannot be achieved. Thus, our approach first distills
on domain-agnostic datasets with diverse images, such as DataComp (Gadre et al., 2023), ImageNet (Deng
et al., 2009) or SynthCI (Hammoud et al., 2024), and subsequently on domain-specific synthetic datasets,
like pets, food or similarly. This strategy results in superior domain-specific performance, especially for
smaller image encoders.
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Contributions and findings. In this work, we show that small replacements of the CLIP vision encoder
can be efficiently and robustly trained using feature distillation on synthetic images. Therefore, we introduce
a unifying framework for training vision encoders in a zero-shot setting. The main results are stated in Figure
1 and our key findings within this framework are summarized as follows:

1. Feature Distillation is Less Susceptible to Spurious Visual Features Than Vision-
Language Distillation. We hypothesize that vision-language distillation is misguided by spurious
correlations on the class level. We find evidence for this claim by observing a drop in performance
when training on real and synthetic datasets with deliberately introduced spurious features. Unlike
vision-language distillation, feature distillation using loss functions such as the L2 distance between
the student and teacher embeddings is robust to these spurious correlations.

2. Feature Distillation Increases Robustness to Common Corruptions. We investigate the
influence of corruptions on the distilled image encoders. In this respect, feature distillation achieves
substantially better robustness compared to vision-language distillation, especially when distilling
on synthetic images.

3. Initial Domain-Agnostic Distillation Accelerates Domain-Specific Distillation. We find
that the process of distilling models on domain-specific synthetic data can be accelerated if the
students are distilled on domain-agnostic datasets beforehand. The difference in final performance
between using the images of ImageNet (Deng et al., 2009), SynthCI (Hammoud et al., 2024) or
DataComp (Gadre et al., 2023) for the domain-agnostic distillation is negligible.

4. Feature Distillation Bridges the Gap to Baselines Trained on Real Images. Based on
our first three findings, we distill a ViT-B/32 CLIP vision encoder into students based on the
TinyViT (Wu et al., 2022) and EfficientNet Tan & Le (2019) architectures with up to 92% fewer
parameters using feature distillation on synthetic images. The resulting students closely match
the classification performance of the teacher on the Oxford Pets (Parkhi et al., 2012), Flowers-102
(Nilsback & Zisserman, 2008), Stanford Cars (Krause et al., 2013), Food-101 (Bossard et al., 2014),
Describable Textures (Cimpoi et al., 2014) and Aircrafts (Maji et al., 2013) datasets. Notably, our
students are on par or even surpass the current baselines for distilled CLIP models, including the
TinyCLIP model with 8 times more trainable parameters and MobileCLIP which was trained on
over 100 times more images using stronger teachers.

5. Smaller Students Benefit More from Domain-Specific Distillation. Due to their lower
capacity, we observe that small models effectively benefit more from domain-specific distillation in
comparison to pure domain-agnostic distillation.

2 Related Work

Knowledge Distillation of Vision-Language Models. Knowledge Distillation (Hinton et al., 2015) is
a widely used technique for transferring knowledge from larger teachers to smaller students. In its vanilla
form, the approach involves combining a standard training loss with a distillation loss that considers the
output of both the student and teacher on logit-level, penalizing discrepancies between the two models.
Knowledge distillation has been observed to not only benefit the test accuracy of the student on the target
datasets but transfer other favorable properties of the teacher such as domain generalization (Ojha et al.,
2023). While this approach has been well-established for single-modality tasks including vision (Wu et al.,
2022; Mirzadeh et al., 2020; Marrie et al., 2024) or language (Sanh et al., 2020; Jiao et al., 2020), recent
works have extended the concept to the multi-modal setting, specifically in the context of vision-language
models. CLIP-KD (Yang et al., 2023a) provides an extensive set of experiments comparing various different
loss combinations. TinyCLIP (Wu et al., 2023) proposed an advanced initialization process using weight
inheritance from the teacher to the student as well as a multi-stage progressive distillation culminating in
students that are only one fourth the size of a ViT-B/32 CLIP model. MobileCLIP (Vasu et al., 2023) further
refined the distillation process by incorporating image augmentation, synthetic captions, and dedicated
architectural choices. In contrast to these existing methods, our approach focuses on finding only a one-
to-one replacement of the vision encoder while the text encoder remains frozen. Apart from CLIP-specific
techniques, unsupervised distillation based purely on images without labels has been identified as a data-
efficient alternative to supervised training for vision encoders (He et al., 2022). We build on this observation
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by combining domain-agnostic with domain-specific distillation, both in an unsupervised setting without any
labels. Despite knowledge distillation being a widely adopted training technique, it has been observed that
it does not always work as commonly understood. Even when the student features the same capacity as the
teacher, there can be significant discrepancies in their predictive distributions (Stanton et al., 2021; Ojha
et al., 2023).
Properties of Contrastive Losses. Several works have highlighted shortcomings of contrastive training.
In particular, for contrastive vision-language loss functions Chen & Li (2020) observed the phenomenon
of feature suppression where a few easy-to-learn shared features can suppress or prevent the learning of
competing features. In a multi-caption setup, Bleeker et al. (2024) highlight that contrastive losses are prone
to learning shortcuts contained in the captions. We extend on these observations, by finding that models
trained through vision-language distillation are misguided by class-level spurious features and overfit to the
synthetic data domain. This impairs the zero-shot generalization properties. Existing approaches that aim at
mitigating spurious correlations in multi-modal learning (Yang et al., 2023b) require detecting the spurious
features which is inherently difficult in the case of visually not apparent spurious features or corruptions
in synthetic images. Our approach using feature distillation increases the robustness to spurious features
without having to detect them.
Training and Distillation Using Synthetic Images. Recent advancements in generative text-to-image
models have sparked a growing interest in the use of synthetic images for vision applications. Azizi et al.
(2023) demonstrated that images from fine-tuned text-to-image models can be combined with real images to
enhance the accuracy of classifiers on ImageNet-1k (Deng et al., 2009). For text-to-image generation, diffusion
models are commonly employed, particularly for knowledge distillation (Li et al., 2023b). However, it was
observed that the performance deteriorates, in particular when the number of synthetic images surpasses
that of real images or when training only on generated images (Hennicke et al., 2024). Yu et al. (2023)
attributed this decline to the lack of diversity in the used synthetic images. To mitigate this issue, they
proposed a diversification strategy for the image generation process by incorporating prompts generated by
large language models, thereby enhancing content and style variation. Another approach to diversification
in the few-shot setting was presented by da Costa et al. (2023), which involved augmentations and low-rank
adaptation. By scaling up synthetic datasets, Tian et al. (2023a) and Hammoud et al. (2024) demonstrated
the feasibility of training vision-language foundation models solely using images from text-to-image models.
However, achieving performance on par with or surpassing models trained on real data necessitates the
utilization of a large number of synthetic images, in the order of 107 or 108. This prolongs the already
long training process and introduces additional computational overhead. Furthermore, Geng et al. (2024)
observe that images for diffusion models frequently posses visual artifacts that deteriorate the performance in
comparison to training on images retrieved from common crawl datasets. Importantly, the reported results
for models trained on synthetic images are typically obtained by linear probing or after few-shot training
and not obtained in zero-shot setting.

3 Zero-Shot Distillation for Transfer Learning from Synthetic Images
Zero-shot distillation is a framework for transferring knowledge from a teacher to a student in a setting
where one does not have access to images from the target domain but only textual descriptions of classes.
The framework specifically focuses on the ability of foundation models as teachers to perform well on unseen
data due to their generalization properties. The objective is to transfer this performance to a smaller student
without utilizing any data from the unseen target domain. Therefore, the primary goal is not to address the
disparity between the datasets used to train the teacher and student, but rather to extract domain-specific
knowledge from the teacher without having access to data from the target domain. The term zero-shot
distillation has been introduced previously (Nayak et al., 2019), yet only in the setting for single-modal
classifiers that were trained using the cross-entropy loss. In our case, we consider CLIP which is a vision-
language model instead of a simple image classifier. For zero-shot distillation, we use two types of teacher
knowledge. On the one hand, explicit distillation from a CLIP teacher through the loss function. On the
other hand, implicit distillation from the generative text-to-image model that generates the synthetic images.
In this section, we discuss the four aspects that constitute the zero-shot distillation framework: the data
domain, the training pipeline, the generation of diversified synthetic training data and the selection of an
appropriate loss function.
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3.1 Data Domain

For training in a zero-shot setting, there are currently two core approaches. The first one involves relying
on large-scale, domain-agnostic data such as common crawl datasets (Schuhmann et al., 2021; Gadre et al.,
2023). While this approach is feasible for large foundation models, it poses challenges for smaller models as
these lack the capacity to fit diverse data to the same extent as larger ones. The second approach involves
domain-specific distillation using either purely synthetic images (Hammoud et al., 2024; Tian et al., 2023b;a)
or a combination of real and synthetic images (Yu et al., 2023; Azizi et al., 2023). Yet, the existing works
that use this approach incorporate few-shot learning on real images (Hammoud et al., 2024; Tian et al.,
2023b) or linear probing (Hammoud et al., 2024; Tian et al., 2023a;b) after training on synthetic data.
Consequently, the reported accuracies are no longer zero-shot. Within our framework, we find that best
zero-shot performance is achieved through a two-stage approach: first training on domain-agnostic images,
followed by training on domain-specific synthetic images. An alternative to using synthetic images would be
to retrieve images from the dataset on which the generative model was trained on. However, this dataset
might be proprietary or strictly regulated due to privacy concerns such that synthetic images are the only
feasible option. Thus, we focus on using synthetic images for domain-specific distillation in our framework.

3.2 Training Pipeline

In order to shorten training in comparison to training from scratch, Wu et al. (2023) introduced weight
inheritance as an initialization scheme for distilling CLIP models. This method has a significant limitation
as it can only be applied when the student shares a similar architecture with the teacher. Instead of using
weight inheritance, our framework comprises of training on a domain-agnostic dataset, which is also referred
to as pre-training (Gan et al., 2022), before training on domain-specific synthetic datasets. Training large
foundation models like the original CLIP (Radford et al., 2021) typically requires substantial computational
resources due to the use of billions of images. Yet, He et al. (2022) observed that domain-agnostic dis-
tillation on natural images can be sped up significantly by using feature distillation. For our purpose of
distilling CLIP vision encoders using synthetic images, this step has further advantages: by aligning the
teacher and student image features, we can mitigate phenomena like the modality gap (Liang et al., 2022)
where corresponding output vectors are located in different areas of the embedding space. Through feature
distillation, we ensure that the students geometrically match the teacher and can be used as direct replace-
ments. After domain-agnostic distillation, we perform the domain-specific distillation on synthetic images.
Domain-agnostic distillation only needs to carried out once for all students. The additional costs compared
to distillation from scratch only on the synthetic images are therefore negligible if domain-specific distillation
is performed for many target domains.

3.3 Data Diversification of Synthetic Images

In the context of zero-shot learning for image classification, synthetic data generation is based on the class
names. However, it has been observed that using only the names to generate images using diffusion models
leads to suboptimal performance (Sariyildiz et al., 2022). This is primarily due to the lack of diversity in
the generated images as well as class ambiguity (da Costa et al., 2023). To address this challenge, recent
approaches have turned to leveraging large language models (LLMs) to enhance diversity in the prompts. In
addition to class names, LLMs are guided by additional inputs for diversification, such as information from a
concept bank (Hammoud et al., 2024) or specific requirements related to contextual and style diversification
(Yu et al., 2023). By incorporating these additional sources of guidance, the generated synthetic data becomes
more diverse and aligned with the desired objectives of the target setting. Using the approach from Yu et al.
(2023), our framework focuses on contextual dimensions to achieve diversification. These dimensions are
attributes that describe the context of the image such as the background, camera angle, object position,
presentation style, and superclasses, all of which are tuned specifically for the target dataset. In contrast to
Yu et al. (2023), we do not prompt the LLM for each caption separately, but ask for different options for
each contextual dimension. This reduces the risk of obtaining similar captions. The final prompt used for
the text-to-image model is a comma-separated list of options for these contextual dimensions. Instead of
using all possible combinations of options, which would result in a strongly growing number of images given
more options, we use an approach based on combinatorial testing (Ahmed et al., 2017; Nie & Leung, 2011)
described in Section A.3.
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Evaluation Domain- Domain- Natural Synthetic Data
Name Metric Agnostic Specific Images Images Diversification Loss
StableRep (Tian et al., 2023b) Linear probe, few-shot ✓ ✓ MP
SynCLR (Tian et al., 2023a) Linear probe ✓ ✓ ✓ MP
SynthCLIP (Hammoud et al., 2024) Linear probe, few-shot ✓ ✓ ✓ CLIP
Fake it till you make it (Sariyildiz et al., 2022) Zero-Shot Acc. ✓ ✓ Cross-entropy
Diversify don’t finetune (Yu et al., 2023) Accuracy ✓ ✓ ✓ ✓ Custom
(Azizi et al., 2023) Accuracy ✓ ✓ ✓ Cross-entropy
DM-KD (Li et al., 2023b) Accuracy∗ ✓ ✓ Logit-based knowledge distillation
TinyCLIP (Wu et al., 2023) Zero-Shot Acc. ✓ ✓ CLIP, Affinity mimicking
MobileCLIP (Vasu et al., 2023) Zero-Shot Acc. ✓ ✓ CLIP, Affinity mimicking
Zero-Shot Distillation (Ours) Zero-Shot Acc. ✓ ✓ ✓ ✓ ✓ L2 feature distillation

Table 1: Our framework differs from previous approaches by using feature distillation instead
of vision-language distillation. For DM-KD, the teacher was trained on the real domain-specific images,
which is not possible in a zero-shot setting. This is symbolized by ∗.

3.4 Loss Selection

The choice of loss function distinguishes our framework from existing approaches for distillation in the zero-
shot setting. The critical distinction lies between vision-language distillation and feature distillation. The
latter ultimately improves effective transfer learning from synthetic images which we demonstrate through
our five findings in Section A.9. Therefore, our framework is based on feature distillation.

Vision-Language Distillation. Training image encoders is typically carried out using loss functions such
as the cross-entropy loss that consider image-class pairs and tries to optimize for correct class predictions.
The training of small models can be improved by adding guidance from a larger model through knowl-
edge distillation. Standard knowledge distillation compares the predictive distribution between student and
teacher over the classes. When training image encoders or vision-language models on common crawl, class-
based loss functions are not applicable as the images are paired with captions instead of class labels. For this
purpose, the contrastive InfoNCE loss (van den Oord et al., 2019), also know as CLIP loss, aims at aligning
the embeddings between image and caption. In the case of training on datasets with image-class pairs, the
CLIP loss can still be applied by using the zero-shot captions "a photo of {class name} which is a type
of {superclass}". These were originally introduced for the zero-shot inference of the original CLIP model
(Radford et al., 2021). "Superclass" refers to a general description of the object that can be encountered
such as pets, food, cars or similarly. By using these class-specific prompts, several images in a batch may
share the same caption. This conflicts the goal of decreasing the similarity of image embeddings to the text
embeddings of not matching captions in the CLIP loss. An alternative to the CLIP loss is given by the
multi-positive contrastive loss introduced in StableRep (Tian et al., 2023b). The details on how to adapt
the multi-positive (MP) loss to our setting are given in Section A.15. In the following, we refer to the CLIP
and MP losses as vision-language losses.

Feature Distillation. (Romero et al., 2014) found that the generalization and training speed of thin
convolutional neural networks can be improved by adding an additional loss that aligns the features of the
student and teacher. In contrast to the vision-language distillation, the student directly learns from the
image features of the teacher without considering the captions. Like He et al. (2022), our framework builds
on the L2 distance between the normalized student and teacher image features as loss function. This choice
is motivated by the theoretical investigation presented in Section A.16, which highlights that low L2 loss and
high train-test similarity are sufficient to ensure student-teacher agreement. An alternative loss function for
feature distillation is investigated in Section A.7.

3.5 Positioning of Existing Approaches in our Framework

To complement the framework, we position existing baselines with respect to the discussed components in
Table 1. The first difference between existing works and our setup is that apart from DM-KD (Li et al.,
2023b), none of the other approaches perform distillation on domain-specific datasets. The most crucial
aspect is that all baselines using synthetic images are trained with vision-language losses whereas we use
feature distillation. Based on our findings presented in Section 5, these differences are decisive for enabling
effective transfer learning from synthetic images.
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4 Experimental Setup

In this section, we briefly describe the setup used to conduct the experiments supporting our findings.

Datasets and Hyperparameters. As introduced in Section 3.2, the first step of our framework is to
perform feature distillation on a large-scale, domain-agnostic dataset. For this purpose, we select DataComp
medium (Gadre et al., 2023) with 123 million images and train for a single epoch. At the time we conducted
our experiments 86% of the original image URLs were still active. For comparison, we perform to domain-
agnostic distillation on ImageNet (Deng et al., 2009) with 1.28 million images and SynthCI 30M Hammoud
et al. (2024) with 30 million synthetic images in Section 5.3. For domain-specific distillation, we target the
Oxford Pets (Parkhi et al., 2012), Oxford Flowers (Nilsback & Zisserman, 2008), Food-102 (Bossard et al.,
2014), Stanford Cars (Krause et al., 2013), Describable Textures (Cimpoi et al., 2014) and Aircrafts (Maji
et al., 2013) datasets. In the appendix, we include ImageNet-100 (Tian et al., 2020) as a non-domain-specific
dataset for reference. These datasets are only used for testing while the actual datasets used for training
are synthetically generated based on the class names. Using the diversification strategy discussed in Section
3.3, we select a set of five different contextual dimensions and corresponding weights in the prompts for the
diffusion model. The number of images per class roughly matches the size of the real training datasets. We
use 265 images per class for the smaller, less diverse datasets and 1011 for the larger ones. More details
on the selection of contextual dimension and the dataset sizes are given in Section A.3. As the selection of
options for the contextual dimensions and superclasses are relatively simple, we can use a smaller language
model Llama-2 7B fine-tuned for chats (Touvron et al., 2023) and still obtain sufficiently diverse prompts.
For the generation of the images, we utilize a LCM LoRA (Luo et al., 2023) of Stable Diffusion XL (Podell
et al., 2023). Due to the LCM LoRA architecture, 6 inference steps together with a guidance scale of 0.5
suffice to obtain high-quality images. For both domain-agnostic and domain-specific distillation we use
the same hyperparameters. We train using a batch size of 256 and a constant learning rate of 5 × 10−4

using the AdamW optimizer (Loshchilov & Hutter, 2019). All other hyperparameters and augmentations
were kept consistent with the CLIP training methodology (Radford et al., 2021). One epoch of training on
DataComp medium corresponds to 4.3×105 optimization steps. For domain-specific distillation, we perform
96 optimization epochs for all models. Ablations with a different teacher model and synthetic data generator
are contained in the supplementary material.

Student and Teacher Architectures. As teacher, we employ a ViT-B/32 (Dosovitskiy et al., 2021)
CLIP vision encoder that was trained on DataComp-XL, a dataset consisting of 12.8 billion image-text pairs
from common crawl (Gadre et al., 2023). The corresponding text encoder follows the same architecture as
described in the original CLIP paper, with 63 million parameters (Radford et al., 2021) and an embedding
dimension of 512. For our students, we utilize two different types of state-of-the-art architectures: Efficient-
Nets (Tan & Le, 2019), which are based on convolutional neural networks, and TinyViTs (Tan & Le, 2019),
which are hybrid models combining convolutions and transformers. For our final results, we respectively
select three models in the 5, 10, and 20 million parameter range from each architecture type. To present our
findings, we report the results on the TinyViT with 11 million parameters. To align the output of the vision
encoder with the embedding dimension of the teacher, we apply a single linear projection head.

5 Findings
In this section, we present our five main findings that provide insights into why and how feature distillation
greatly improves transfer learning from synthetic images.

5.1 Finding 1: Feature Distillation is Less Susceptible to Spurious Visual Features Than
Vision-Language Distillation

Our first set of experiments is designed to test the hypothesis that class-level information introduced through
the captions in vision-language distillation leads the model to learn spurious features as well as character-
istics of synthetic images. To validate our hypothesis, we conducted two experiments on the pets dataset,
deliberately introducing dedicated spurious features into real and synthetic images.
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Train Data Test Data L2 CLIP MP L2+CLIP L2+MP Teacher
Real without spurious features 88.9 60.0 77.3 88.0 90.0 89.8

Real with spurious features 90.3 96.5 96.5 95.7 88.3 89.6
Real with shuffled spurious features 88.0 48.7 51.7 88.0 88.6 88.7

Real without spurious features 84.4 24.3 31.0 81.2 35.6 89.8
Synthetic with spurious features 94.2 100.0 100.0 99.3 100.0 93.3

Synthetic without spurious features 90.9 53.6 61.7 91.4 66.7 93.9
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Table 2: Feature distillation increases the robustness to spurious features. The accuracies refer
to students distilled and evaluated on pets. The spurious features are introduced through adding colored
shapes (real) or class-specific unicolor backgrounds (synthetic). For the test set "shuffled spurious features"
the coloured shapes are shuffled among the classes. Red indicates a performance drop due to the reliance on
spurious features.

Natural Images with Spurious Features. To investigate the impact of spurious features in the natural
image domain, we add class-specific colored shapes to the images in the pets dataset. These shapes were
added to each image in the training split. Examples can be seen in Figure 2. Using these images, we perform
domain-specific distillation with different losses after the domain-agnostic distillation. The test accuracies
of the resulting models are shown in Table 2. We observe a decrease in performance on the test set without
spurious features when the students were trained with vision-language distillation using the CLIP or multi-
positive (MP) loss. This suggests that these students did not acquire any additional class-specific features
during domain-specific distillation with vision-language losses. Instead, they overfit on the visual spurious
features. When evaluating these students on a test set of real images where the colored shapes are shuffled
between classes, we observe a significant degradation in performance. In contrast, the students trained with
the L2 loss achieves accuracies comparable to the dataset without spurious features on both test sets. These
findings highlight the robustness of feature distillation in mitigating the negative impact of spurious features
in the natural image domain.

Synthetic Images with Spurious Features. To investigate whether the observed behavior on real im-
ages can be replicated with synthetic ones, we generated a synthetic dataset incorporating dedicated spurious
features. Specifically, we sample images where pets are positioned against a solid-colored background, with
each class assigned a distinct color. The results shown in Table 2 indicate that the performance of students
trained with vision-language distillation deteriorates when confronted with the presence of these spurious
features. Figure 2 showcases instances of misclassifications. Importantly, the student trained through fea-
ture distillation exhibited a test accuracy of 84.4%, which is only 5% lower than the accuracy of the teacher
despite the domain gap between real and synthetic images, as well as the presence of spurious features.

5.2 Finding 2: Feature Distillation Increases Robustness to Common Corruptions

In addition to the influence of spurious features, we hypothesize that feature distillation increases robustness
against common corruptions. In order to evaluate this claim, we conducted a comprehensive benchmark
study and assessed the performance of the classifiers under 15 common corruptions and five severity levels
(Hendrycks & Dietterich, 2019) on the pets dataset. In Table 3 we report the relative performance under
corruption with respect to the classification accuracy as defined by (Michaelis et al., 2019). Further results
are provided in the Supplementary Section A.9. Our observations reveal that feature distillation improves
the robustness, regardless of whether training is performed on real or synthetic data. The distinction to
the models trained with vision-language losses is particularly prominent when training on domain-specific
synthetic data. In this case, the models trained with the CLIP loss perform worse than the models trained
purely on domain-agnostic data. The models trained using only feature distillation achieve the strongest
robustness which reflects the observations from Sections 5.1.
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Training Images Testing Images 

Class: Chihuahua
CLIP: Chihuahua 

: Chihuahua
 

Class: Basset Hound
CLIP: Chihuahua 

: Basset Hound
 

Class: Persian
CLIP: Chihuahua 

: Persian
 

Class: Ragdoll
CLIP: Ragdoll 

: Ragdoll
 

Class: Ragdoll
CLIP: Chihuahua 

: Ragdoll

Class: Samoyed
CLIP: Ragdoll
 : Samoyed
 

Class: Ragdoll

 

Class: Chihuahua

 

No spurious feature Spurious feature:
Red ellipse

Spurious feature:
Magenta ellipseMagenta ellipse

Spurious feature:

 
Citrine gold background
Spurious feature: Natural image with 

gold background 
Natural image with 
gold background 

Natural image with 
gold background 

Natural Training
Image

Synthetic Training
Image

Figure 2: Examples for the influence of spurious features in the training images. Examples for the
correct and incorrect classifications. The first row corresponds to the setting of training on natural images
with colored shapes spurious features. The second corresponds to students trained on synthetic images where
the background colors are spurious features. All of the test examples are classified correctly by the teacher
and the students trained through L2 feature distillation.

Domain-Specific Train Data Test Data L2 CLIP MP L2+CLIP L2+MP Teacher
Real Real (corrupted) 0.82 0.78 0.79 0.86 0.79 0.85
Synthetic Real (corrupted) 0.79 0.49 0.50 0.77 0.52 -

feature

distillation

vision-language

distillation

feature and vision-language

distillation combined

Table 3: Feature distillation increases robustness to common corruptions. Relative performance
under corruption with respect to the classification accuracy on the pets dataset under 15 common corruptions
and five severity levels as defined by (Michaelis et al., 2019)
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Figure 3: Initial domain-agnostic distillation on large-scale datasets of natural images accel-
erates subsequent domain-specific distillation on synthetic images. We perform domain-specific
distillation of TinyViT 11M students on synthetic images and report the zero-shot classification accuracy
depending on the number of epochs. The students are either distilled from scratch (no domain-agnostic
distillation) or after initial domain-agnostic distillation on ImageNet, DataComp medium or SynthCI 30M.

5.3 Finding 3: Initial Domain-Agnostic Distillation Accelerates Domain-Specific Distillation

To complement our previous findings, we investigate the influence of domain-agnostic distillation on the
domain-specific performance of the students. Therefore, we compare domain-agnostic distillation on Dat-
aComp medium, ImageNet and SynthCI 30M as well as no domain-agnostic distillation (domain-specific
distillation from scratch). In Figure 3, the accuracies depending on the number of epochs are shown for
students trained on domain-specific synthetic data. First, we find that when distilling for less than 100
epochs, initial domain-agnostic distillation consistently leads to higher accuracies. Furthermore, the accu-
racy of the models with initial domain-agnostic distillation converges within fewer epochs. When performing
domain-specific distillation for 300 epochs, the models without domain-agnostic distillation come closer to
the performance of the models with domain-agnostic distillation. The difference on the cars and food datasets
is within 3%. On the pets and flowers dataset, however, the margin still remains greater than 5%. Domain-
agnostic distillation only needs to be performed once for all students. Therefore, its additional costs become
negligible if domain-specific distillation is performed for many target domains. Second, we find that the
data with which the domain-agnostic distillation is performed has a marginal impact on the performance of
the models after domain-specific distillation. The difference of the final performance (after domain-specific
distillation) using domain agnostic-distillation on ImageNet or SynthCI versus DataComp is smaller than 2%
on all four datasets. In contrast, the accuracy of the students distilled only on the domain-agnostic datasets
differs more strongly. For example, the model distilled on ImageNet is 19% better on pets but 21.7% worse on
cars compared to the model that was distilled on DataComp medium. This can be explained by the overlap
between classes in the train and test datasets. 25 of the 37 classes from Oxford Pets are already contained
in ImageNet. This also explains why domain-specific distillation on pets after distillation on ImagNet leads
to a slight decrease in performance. In contrast, none of the classes of the cars dataset are part of ImageNet.
The student distilled on the synthetic images from SynthCI 30M achieves accuracies similar to the student
distilled on DataComp medium apart from the cars dataset where the SynthCI model only reaches 8.4%
accuracy. Regardless of whether the initial domain-specific distillation was performed on synthetic images
or real images, the difference in performance of the students after subsequent domain-specific distillation
is marginal. This indicates that the decisive factor for accelerating the domain-specific distillation is the
diversity of the images for the domain-agnostic distillation and not whether they are real or synthetic.
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Trainable Params.
Model Loss Training Dataset ImgEnc TxtEnc #Samples Seen Pets Flowers Cars Food
ViT-B/32 CLIP DataComp-XL 86M 63M 12.8B 89.7 72.9 85.4 82.9
ViT-B/32 CLIP DataComp-medium 86M 63M 128M 43.1 29.7 28.0 41.7
RN-50 CLIP openai 86M 63M 32×400M 85.3 65.2 54.5 80.8
ViT-61M/32-29M CLIP+AM LAION-400M 61M 29M 38×400M 87.3 64.7 79.1 73.4
ViT-40M/32-19M CLIP+AM LAION-400M 40M 19M 38×400M 84.4 61.0 74.2 71.4
ViT-8M/16-3M CLIP+AM YFCC-15M 8M 3M 50×15M 45.8 57.4 8.0 56.2
RN-19M-19M CLIP+AM LAION-400M 19M 19M 12×400M 81.0 56.4 70.1 66.7
MobileCLIP-S2 CLIP+AM DataCompDR 56M 63M 13B 92.7 74.7 86.2 86.8
MobileCLIP-S1 CLIP+AM DataCompDR 22M 63M 13B 93.1 72.9 84.2 84.9
MobileCLIP-S0 CLIP+AM DataCompDR 11M 42M 13B 89.9 67.8 79.4 79.1
TinyViT-11M CLIP DataComp-medium 11M - 110M 10.4 4.2 5.4 4.7
TinyViT-11M L2 DataComp-medium 11M - 110M 71.4 39.9 45.0 52.9
TinyViT-11M L2 DataComp-medium 11M - 5× 110M 78.4 50.0 58.7 61.1
TinyViT-11M L2 DataComp-medium 11M - 110M

CLIP + Synthetic Training Images +1M-9M 66.7 39.1 64.2 28.0
TinyViT-11M L2 DataComp-medium 11M - 110M

L2 + Synthetic Training Images +1M-9M 87.5 68.3 81.9 71.9
TinyViT-11M* L2 DataComp-medium 11M - 110M

CLIP + Real Training Images +1M-7M 88.0 90.6 90.7 89.1
TinyViT-11M* L2 DataComp-medium 11M - 110M

L2 + Real Training Images +1M-7M 88.7 68.4 83.8 83.0
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Table 4: Our models trained on synthetic images bridge the gap to training on natural images.
The upper part summarizes the baseline CLIP, TinyCLIP and MobileCLIP. “Domain-agnostic” denotes
distillation only on DataComp medium. “Domain-agnostic+Domain-specific” contains the results where
either synthetic data or real data is used for subsequent domain-specific distillation. The blue box highlights
our final models using synthetic images. Gray numbers indicate that the performance is not zero-shot.

5.4 Finding 4: Zero-Shot Distillation Bridges the Gap to Baselines Trained on Real Images

Our goal is to achieve state-of-the-art zero-shot accuracy on fine-grained visual classification tasks. Based on
findings 1 and 2, we hypothesize that feature distillation greatly improves zero-shot training of small vision
encoders on synthetic data. Therefore, we report the zero-shot classification accuracy of image encoders
based on TinyViT-11M architecture and compare them to existing baselines. The results are shown in Table
4 with additional datasets presented in Table 5.

Baselines. The main baseline is the performance of the ViT-B/32 teacher trained on DataComp-XL and
the same model trained on DataComp-medium. The teacher achieves zero-shot accuracies of over 80% on
the pets, cars and food datasets as well as over 70% on the flowers dataset. The accuracies of the ViT/B-
32 CLIP model trained on DataComp medium are substantially worse. The performance gap is between
28% and 42%. Additionally, we report the accuracies of four TinyCLIP and three MobileCLIP models.
These models have undergone extensive training on large-scale datasets for multiple epochs. In the case of
TinyCLIP, the LAION-400M (Schuhmann et al., 2021) or YFCC-15M (Thomee et al., 2016) datasets were
used. Even the smallest TinyCLIP model has been exposed to six times as many images as our models,
while the largest models have encountered over 120 times as many samples. The TinyCLIP models exhibit a
comparable size to our models in terms of the number of parameters when not considering the text encoder
which is not required for zero-shot classification. The largest TinyCLIP model has 40% fewer parameters
than the ViT-B/32 CLIP model and achieves its performance up to a margin of 9%. The smallest TinyCLIP
model features the same number of trainable parameters as our students but has a gap of over 75% to the
ViT-B/32 CLIP model on the cars dataset. Of the MobileCLIP models, the smallest one features an image
encoder that is comparable in size to our students. Its performance, however, is comparable to the largest
TinyCLIP model. This can be attributed to the fact that it was trained on a dataset featuring the same
number of images as DataComp-XL but with synthetically enhanced captions and additional augmentations.
Furthermore, the MobileCLIP models are not distilled from a single teacher but from an ensemble of ViT-L
teachers, which are stronger than the teacher of our models. At the time of conducting our experiments, we
were unable to compare our results with CLIP-KD (Yang et al., 2023a) as these models were not publicly
available.
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Figure 4: Domain-specific distillation is more effective for models with fewer parameters. Zero-
shot classification performance of the students after domain-agnostic distillation on DataComp medium for
one epoch (solid) and after subsequent domain-specific distillation on the synthetic datasets for 96 epochs
(hatched). All experiments were performed using feature distillation.

Our models. From our framework, we report two types of models: domain-agnostic distillation and
domain-agnostic followed by domain-specific distillation. Based on finding 3, we expect the best performance
from the second group. For reference, we include models that were domain-specifically distilled on the
complete real datasets as well. However, these accuracies are not zero-shot. First, we observe that vision-
language distillation using the CLIP loss results in substantially worse performance both in the domain-
agnostic and domain-specific case. This reflects our findings 1 and 2 and provides justification to base our
framework solely on feature distillation. We find that the resulting models outperform even the largest
TinyCLIP model on three of the four datasets despite having 88% fewer trainable parameters. Moreover,
they achieve comparable performance to the teacher with a margin of 5% on the same datasets. The larger
performance gap on the food dataset can likely be attributed to the more diverse and larger test set. When
comparing to ViT-B/32 trained on DataComp-medium, which has been trained on a comparable number
of images, even the models that were distilled purely on domain-agnostic data demonstrate substantially
superior performance. The MobileCLIP-S0 model features a similarly large image encoder as our models
and achieves comparable accuracies despite being trained on a much larger dataset with stronger teachers.

5.5 Finding 5: Smaller Students Benefit More from Domain-Specific Distillation

Based on the fact that small image encoders have a lower capacity, we formulate our fifth hypothesis: for
models with fewer parameters, domain-specific distillation is more effective when comparing to pure domain-
agnostic distillation. To test this, we report the zero-shot performance of five additional students after
domain-agnostic and domain-specific feature distillation in Figure 4. There is a general trend of improved
performance with increasing model size. Yet, we observe that the effectiveness of domain-specific distillation
is more pronounced for smaller models compared to larger ones. The difference in performance between
the largest and smallest models is around 10% to 15% after domain-specific distillation, while after only
domain-agnostic distillation it is as high as 30%. These findings support our claim that domain-specific
distillation is particularly effective for smaller students since it allows them to adapt to the target domain,
without requiring real in-domain data.

6 Conclusion
In this work, we introduced a framework for distilling small CLIP image encoders in a zero-shot setting
using synthetic images. We identify vision-language distillation as a potentially detrimental factor for gener-
alization capabilities of models between synthetic and real data, due to exploitation of spurious features and
the susceptibility to common corruptions. By employing feature distillation, we successfully mitigate these
limitations. As a result, we are able to train models that surpass the current state-of-the-art for zero-shot
CLIP distillation.
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Limitations and Future Work. In our work, we show that feature distillation is sufficient to greatly
improve the transfer performance of small image encoders between synthetic and real data. However, as
image generators continue to improve, the synthetic-to-real gap is becoming smaller which could create
scope for alternative approaches. To broaden the applicability of our framework, future research could
extend zero-shot distillation beyond CLIP image encoders to encompass other computer vision tasks. For
instance, architectures such as BLIP-2 (Li et al., 2023a) or LLava (Liu et al., 2024; 2023a;b) are built on
top of CLIP image encoders. In these models, however, the image encoder only accounts for a small portion
of the overall model size, so that the remaining architectural components must also be considered for model
compression. Another potential application of our findings is in the context of dataset distillation where,
as in our zero-shot distillation framework, training is performed on synthetic data in which correlations and
biases may be present (Cui et al., 2024).
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A Appendix

A.1 Additional Datasets

In addition to the results presented in Section 5, we report the accuracies on three additional datasets. One
one-hand, on the Describable Textures (Cimpoi et al., 2014) and Aircraft (Maji et al., 2013) dataset, which
contain fine-grained, domain-specific classes, as well as ImageNet-100 (Tian et al., 2020), which is a non-
domain-specific subset of ImageNet (Deng et al., 2009). The results on textures and aircrafts consolidate our
findings from Section 5. On ImageNet-100, domain-specific feature distillation yields almost the same zero-
shot accuracy as pure domain-agnostic distillation. This is different to the domain-specific datasets where
we could observe a consistent improvement. Presumably, this can be attributed to the greater diversity of
the real test images in ImageNet-100, which is not sufficiently captured by the synthetic training data.

A.2 Evaluation on the Retrieval Task

In addition to image classification, we consider retrieval on MSCOCO (Lin et al., 2014) as a further down-
stream task for CLIP models. To evaluate our students, we consider two settings. First, the standard
text-to-image and text-to-image retrieval tasks on the entire validation set. The goal of text-to-image re-
trieval is to select images from a large pool that best match a given caption (the so-called query). For
image-to-text retrieval, the setup is the other way around, i.e. querying with an image and selecting relevant
captions. With CLIP models, text-to-image retrieval is performed by selecting the images or captions from
the pool whose embeddings have the highest cosine similarity to the query. For this, the image encoders need
strong domain-agnostic performance, since all images have to be encoded in a meaningful way. The images
are not restricted to a specific domain. Therefore, we refer to this setting as domain-agnostic retrieval. As
second setting, we consider a domain-specific image-to-text retrieval task for which only images from a spe-

Model Loss Training Dataset DTD Aircraft ImageNet-100
ViT-B/32 CLIP DataComp-XL 54.6 23.9 86.1
ViT-B/32 CLIP DataComp-medium 20.6 3.1 49.6
RN-50 CLIP openai 39.5 17.4 77.5
ViT-61M/32-29M CLIP+AM LAION-400M 49.4 17.4 81.1
ViT-40M/32-19M CLIP+AM LAION-400M 49.1 13.5 79.8
ViT-8M/16-3M CLI+AMP LAION-400M 26.3 7.0 65.5
RN-19M-19M CLIP+AM YFCC-15M 45.3 13.2 77.3
MobileCLIP-S2 CLIP+AM DataCompDR-1B 30.4 59.8 90.4
MobileCLIP-S1 CLIP+AM DataCompDR-1B 27.2 59.0 89.7
MobileCLIP-S0 CLIP+AM DataCompDR-1B 53.8 20.2 85.4
TinyViT-11M CLIP DataComp-medium 19.3 1.2 22.6
TinyViT-11M L2 DataComp-medium 45.1 3.4 74.3
TinyViT-11M L2 DataComp-medium

CLIP + Synthetic 38.8 17.1 53.2
TinyViT-11M L2 DataComp-medium

L2 + Synthetic 47.4 24.3 74.0
TinyViT-11M* L2 DataComp-medium

CLIP + Real Train Images 69.7 58.6 87.0
TinyViT-11M* L2 DataComp-medium

L2 + Real Train Images 53.0 23.6 81.8
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Table 5: Three additional datasets consolidate our findings. As in Table 4, the upper part summarizes
the baseline CLIP, TinyCLIP and MobileCLIP. “DA” denotes domain-agnostic distillation for one epoch on
DataComp medium and “domain-specific” contains the results where either synthetic data (zero-shot) or real
data is used for domain-specific distillation of the model. The blue box highlights our final models. Gray
numbers indicate that the performance is not zero-shot.
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Figure 5: Feature distillation improves domain-agnostic retrieval on MSCOCO. We evaluate four
of our students based on the TinyViT 11M architecture, the teacher and the TinyCLIP ViT-8M/16-3M model
on MSCOCO text-to-image and image-to-text retrieval tasks. The domain-agnostic students were distilled
for one epoch on DataComp medium using either L2 feature distillation of vision-language distillation based
on the CLIP loss. The domain-specific student are subsequently distilled on the synthetic images from the
pets domain.

cific domain need to be encoded. We only select query images that contain objects from the specific domains
that the students are distilled for and perform retrieval over the entire set of captions. We denote this task
as domain-specific retrieval. In the following two sections, we discuss the performance of our students in
these two tasks and compare them to baselines.

A.2.1 Domain-Agnostic Retrieval

The results for the domain-agnostic retrieval task can be seen in Figure 5. We report the recall@1,5,10 and
50 for both the text-to-image and text-to-image task. As baselines we include the teacher and the TinyCLIP
ViT-8M/16-3M model with the same number of trainable parameters as our TinyViT 11M students. Of our
students, we evaluate two models after only domain-agnostic distillation for one epoch on DataComp medium
using either L2 feature distillation or vision-language distillation based on the CLIP loss. In addition, we
evaluate two students that were domain- specifically distilled (after initial domain-agnostic distillation) on
the synthetic pets or food data. We observe that our domain-agnostic student distilled through feature
distillation achieves performances slightly better than the TinyCLIP model. In contrast, the performance
of the domain-agnostic student trained through vision-language distillation is substantially worse with only
2% recall@1 in both retrieval tasks. Furthermore, we observe that the retrieval performance of the domain-
specific students is worse than for the domain-agnostic students. This can be attributed to the fact that for
domain-agnostic retrieval, all images have to be encoded and not only images from a specific target domain
that the students were distilled for. The evaluation of the domain-specific models on retrieval tasks within
their target domains is discussed in the next section.

A.2.2 Domain-Specific Retrieval

For domain-specific retrieval, we consider image-to-text retrieval and restrict the query images to the subset
of MSCOCO that contains objects from specific domains. This task requires only the encoding of images
from a restricted number of classes in comparison to domain-agnostic retrieval where all images must be
encoded. In Table we report the performance for the pets and food domain. For the pets domain we
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Domain of Query Images L2 CLIP MP L2+CLIP L2+MP Teacher Domain-Agnostic
Pets 48.7 1.2 2.0 46.1 2.0 66.2 44.9
Food 47.5 2.1 1.1 40.1 7.9 62.4 41.5

feature

distillation

vision-language

distillation

feature and vision-language

distillation combined

Table 6: Domain-specific retrieval improves image-to-text retrieval in the target domain. The
results state the recall@1 for the domain-specific image-to-text retrieval task on subsets of MSCOCO that
correspond to the pets or food domain. Apart from the teacher and domain-agnostic student in the rightmost
column, the results are for domain-specific students distilled on synthetic data. Bold numbers indicate
the best performance amongst the students and red numbers highlight low recall.

select only the images associated to the categories "cat" and "dog" and for the food domain we filter for
the categories "banana", "apple", "sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza", "donut" and
"cake". We observe that the performance of the domain-specific student trained with feature distillation
on synthetic data increases substantially compared the domain-agnostic student. The performance of the
students distilled with vision-language distillation drops to a very low level. This demonstrates that our
main finding also applies to retrieval: feature distillation on synthetic images improves the performance over
pure domain-agnostic distillation while vision-language distillation deteriorates the performance.

A.3 Details of the Synthetic Data Generation

In this section, we provide further details on the synthetic data generation and the diversification process.
As mentioned in Section 3.3, the prompts used to synthesize the images are based on the class names
and additional information given by an LLM. For each class, we ask the language model to provide
information with respect to four contextual dimensions as well as a superclass. The contextual dimensions
are dataset specific and summarized in Table 7. Figure 6 shows a concrete example for a class from
the pets dataset. For each of the contextual dimensions we collect 15 or 30 options from Llama 2 7B
fine-tuned for chats (Touvron et al., 2023). The larger number of options for the food and ImageNet-100
datasets are used to accommodate its larger test set. In Table 8 we summarize the sizes of the real target
datasets. Instead of using all possible combinations of options for the contextual dimensions to generate
the prompts, we use combinatorial testing (Ahmed et al., 2017; Nie & Leung, 2011). This approach is
inspired by a recent work on systematic error identification (Metzen et al., 2023). It reduces the number
of images per class while ensuring that the prompts systematically cover the diversity contained in the
answers from the LLM. For example, in case of 15 options per contextual dimension, this results in 265
images per class instead of 50625. The prompts are a comma separated list of the selected options,
which are weighted to accommodate for contextual dimensions that are more or less important for certain
datasets. These weighted prompts are then used as input for a diffusion model. Specifically, we use
Stable Diffusion XL (Podell et al., 2023) LCM LoRA (Luo et al., 2023). To ensure sufficient image quality
and diversity we employ a guidance scale of 0.5 and 6 inference steps. Further example images can be
found in Figure 7. These also showcase some of the known problems with diffusion models such as parts
of the prompts which are missing in the image (Zhang et al., 2023) as in the first example for the food dataset.

Diversified Caption

"A saint bernard (Dog, 
pet), Near a lake or 
river, 12:00 PM, Lying 

down, Directly 
overhead"

1. "What type of pet is a saint bernard?" 
2."Where could a photo of a saint bernard be 
taken? Output only 15 numbered bullet points 

without complete sentences and no explanations."
2. "At what daytime ..."
3. "In which position ..."

4. "From which camera angle ..."

saint bernard

Synthetic ImageSDXL
 LCM 
LoRA

Llama-2 7B
Chat

Combinatorial 
Testing

Figure 6: Process for generating synthetic images. Illustration for the example class "saint bernard"
from the pets dataset.
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A photo of a keeshond (Dog, pet), A cozy 
living room with a comfortable couch and 
a warm fireplace., 10:00 AM, Sitting on a 
blanket, Directly overhead

A photo of a pink primrose (Rose, flower), 
Straight-on, Meadow, Candy Apple, 12pm

A photo of a Mineral Grey Metallic BMW 
M3 Coupe 2012 (Sports car, car), a coastal 
highway with a beautiful ocean view, 2:00 
PM, Wide-angle shot from the front

A photo of a Granite Crystal Metallic Jeep 
Liberty SUV 2012 (Sport, car), A dense 
forest with tall trees, 2:00 PM, Directly in 
front of the car

A photo of a peruvian lily (Alstroemeria, 
flower), close-up shot of the blossom, A 
garden or botanical garden with a variety 
of flowers and plants., White, Early 
morning (5:00-6:00 AM)

A photo of a frangipani (Plumeria, flower), 
Top-down, A jungle or rainforest, , 
Orange, Early afternoon (1:00-2:00 PM)

A photo of a persian (Cat, pet), A serene 
garden or park with lush greenery and a 
comfortable spot for the cat to lounge., 
Afternoon, around 1-2pm., Lying on a soft 
blanket, looking adorable, Directly above

A photo of a russian blue (Cat, pet), A 
picturesque beach with sand and seashells, 
and a cat-friendly pier., 6:00 PM, Bottom 
of the frame, Directly above 

A photo of a Black Jeep Liberty SUV 2012 
(Sport, car), A desert landscape with cacti 
and sand dunes, 6:00 PM, Directly in front 
of the car

A photo of a bruschetta, as a side dish 
with grilled meats, Side angle, background 
is sandy beach with a scenic view, Top-
down, Golden hour

A photo of a waffles, with fresh fruit and 
whipped cream, Side angle, background is 
a breakfast nook in a cozy kitchen, Top-
down angle, 9:00 AM

A photo of a lobster roll sandwich, Served 
with a side of tangy, creamy sauce., Side 
angle, background is a picturesque seaside 
park, Top-down, 2:00 PM
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Figure 7: Examples images. Taken from the synthetic pets, flowers, cars and food training datasets
together with the prompts used to generate them.

20



Published in Transactions on Machine Learning Research (11/2024)

Weight of Contextual Dimensions Options Images
Dataset Classname and Weights in Braket per Dimension per Class
Pets 1.5 superclass (1.2), locations, 15 265

position, daytime, camera angle
Flowers 1.2 superclass, color, locations, 15 265

daytime (0.1), camera angle (0.1)
Cars 1.0 superclass, locations, 15 265

color, daytime, camera angle
Food 1.2 superclass, locations, way of serving (1.5), 30 1011

daytime(0.1), camera angle(0.1)
Textures 1.5 superclass (1.2), color, daytime(0.1), 15 265

camera angle(0.1), location (0.1)
Aircraft 1.5 superclass (0.1), locations, 15 265

position, daytime, camera angle
ImageNet-100 1.2 superclass (1.2), locations, 30 1011

position, daytime, camera angle

Table 7: Contextual dimensions and prompt weights for the diversified data generation.

Dataset #classes #training images #test images
Pets 37 3680 3669
Flowers 102 1020 6149
Cars 196 8144 8041
Food 101 75750 25250
Texture 47 1880 1880
Aircraft 100 3334 3333
ImageNet-100 100 130000 5000

Table 8: Overview over the size of the real target datasets.

A.4 Generalization From Real to Synthetic Images.

To consolidate or findings from Section 5, we investigate the domain shift in the opposite direction. That is,
we assess how the models trained on real or synthetic images perform on synthetic images. For this purpose,
we generate an additional synthetic dataset for pets using the same methodology as for the synthetic training
sets. Subsequently, we evaluate the students on this dataset. The results are presented in Table 9. The
students distilled through vision-language distillation on real data exhibit lower test accuracies in comparison
to feature distillation. For the models trained on synthetic data the reverse is true. Using the CLIP or MP
loss results in the highest accuracy on the synthetic test data. As in Section 5 this discrepancy suggests that
these models learned features of natural or synthetic images over class-specific features. As a result, their
ability to generalize between natural and synthetic images is limited.

A.5 Top-5 Test Accuracies

To complement the results in Section 5, we provide the Top-5 accuracies of the models. Figure 8 visualizes
the results. The trends mirror the observations from the Top-1 accuracy with an even smaller gap to the
teacher.
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Training Data Test Data L2 CLIP MP L2+CLIP L2+MP Teacher Domain-Agnostic
Real Synthetic 91.7 85.6 82.9 89.8 86.9 93.8 79.9
Synthetic Synthetic 94.5 97.9 97.7 96.7 97.8 - -

feature

distillation

vision-language

distillation

feature and vision-language

distillation combined

Table 9: Feature distillation generalizes better between real and synthetic images. The accuracies
refer to the domain-specific models for pets that were trained either on real or synthetic images. The
evaluation is performed on a synthetic pets dataset which was sampled independently from the train set.
Red indicates overfitting to synthetic images.
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Figure 8: Top-5 accuracies. The student were trained on DataComp medium for one epoch (solid) and
subsequently on the synthetic datasets for 96 epochs (hatched). The black lines indicate the top-5 accuracy
of the teacher.

A.6 Training Accuracies

In addition to the test accuracies stated in the main paper, we report the training accuracies of the domain-
specific models in Table 10. We observe that the models trained with a vision-language loss achieve higher
training accuracy than the students obtained from feature distillation. This holds in particular on synthetic
data. In combination with the results from Section 5, this underlines our hypothesis that vision-language
losses lead to learning datatype specific features over actual class or object specific features.

A.7 Contrastive Image Loss

As an alternative to the L2 feature loss, we test a contrastive feature loss that is purely based on the image
features of the student and teacher. Using the notation from Section 3.4, it is defined as

Limage
contrastive =

N∑
i=1

−log exp(⟨IS
i , IT

i ⟩/τ)∑N
k=1 exp(⟨IS

i , IT
k ⟩/τ)

(1)

where τ denotes a learnable temperature parameter. We use this loss both for domain-agnostic and domain-
specific distillation of a TinyViT 11M with the same setup as for the L2 loss in Section 5. The results are
reported in Table 11. We observe that for domain-specific distillation, the contrastive image loss results in
better performance in comparison to the L2 loss, while for domain-specific it is the other way around. Yet,
the contrastive image loss still clearly outperforms the CLIP loss when training on domain-specific synthetic
data. This validates our observation from Section 5 that using a loss purely based on the image features of
student and teacher improves the generalization between synthetic and real data.
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Pets Pets Flowers Flowers Cars Cars Food Food
Train set Loss Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

L2 87.7 99.0 70.3 89.3 83.8 99.1 79.3 93.7
CLIP 89.7 98.5 97.3 100.0 90.6 100.0 97.6 99.2
MP 89.1 98.5 97.5 100.0 90.7 100.0 97.5 99.2

L2+CLIP 91.2 99.9 90.6 98.0 92.2 100.0 90.8 98.3
L2+MP 100.0 100.0 97.7 100.0 92.8 100.0 98.5 99.6

L2 95.3 100.0 68.0 90.1 75.9 95.7 84.5 96.3
CLIP 100.0 100.0 97.8 98.9 90.0 99.2 99.7 100.0
MP 99.9 100.0 99.5 100.00 87.6 98.4 99.7 100.0

L2+CLIP 97.9 100.0 85.8 96.9 91.0 99.7 93.2 98.8
L2+MP 100.0 100.0 99.6 100.0 94.7 100.0 99.9 100.0
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Table 10: Vision-Language distillation yields high training accuracies. The accuracies refer to a
TinyViT 11M student evaluated in the domain-specific datasets it was distilled on. They contrast with the
low test accuracies under the domain shift from synthetic to real images in Table 4.

Train set Training Loss Pets Flowers Cars Food
Domain-Agnostic Contrastive Image 72.8 39.6 46.5 54.5

Difference to L2 +1.4 +0.5 +1.5 +1.4
Difference to Contrastive +52.4 +35.4 +41.1 +49.8

Image-Text (CLIP)
Domain-Specific Contrastive Image 83.9 64.9 81.4 80.4

Difference to L2 -4.8 -3.5 -2.4 -2.6
Difference to Contrastive -5.5 -25.7 -9.3 -2.6

Image-Text (CLIP)
Domain-Specific Contrastive Image 80.5 57.7 79.3 68.8

Difference to L2 -7.0 -10.6 -2.6 -3.1
Difference to Contrastive +13.8 +18.6 +15.1 +40.8

Image-Text (CLIP)
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Table 11: Contrastive feature distillation performs comparably to L2 feature distillation. Accu-
racy of the models that were domain-agnostically and domain-specifically trained using distillation with the
contrastive image loss. The differences to L2 feature distillation and training using the CLIP loss are shown
in gray.

A.8 Influence of Image Diversity

To assess the influence of diversified images, we utilize the zero-shot prompts "a photo of a ..." to generate
images instead of diversified prompts from a LLM. We sample a synthetic pets dataset with the same number
of images per class as in the diversified case. Example images are shown in Figure 9. The diversity of the
images decreases, especially with regard to the camera angle, as almost all images show only a frontal shot
of the animals with the focus on the face. Furthermore, the variety of backgrounds decreases. We train
a TinyViT 11M model on this dataset. The test accuracies on the real pets dataset are stated in Table
12. The accuracy of feature distilled student exhibits only a small decrease in performance in contrast to
the diversified images, while the performance of the models which were trained through vision-language
distillation decreased significantly. This findings indicates that feature distillation is more robust to a lack
of diversity during domain-specific distillation.
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A photo of a chihuahuaA photo of a abyssinianA photo of a maine coone

Figure 9: Examples for images without diversification. The shown images were generated using the
zero-shot prompts "a photo of ...". The resulting images feature less diversity in comparison to the diversified
prompts generated by an LLM depicted in Figure 7.

Training Data Test Data L2 CLIP MP L2+CLIP L2+MP
Synthetic (simple) Real 85.9 40.7 45.2 81.8 49.1
Difference to synthetic (diversified) -1.6 -26.0 -21.3 -5.4 -19.0
Synthetic (simple) Synthetic (diversified) 93.0 86.6 85.0 93.8 87.6
Difference to synthetic (diversified) -1.5 -10.9 -12.7 -2.9 -10.2

feature

distillation

vision-language

distillation

feature and vision-language

distillation combined

Table 12: Feature distillation is more robust to a lack of diversity in the training images.
The reported accuracies refer to TinyViT 11Ms models distilled for one epoch on DataComp medium and
subsequently distilled on synthetically generated pets test data. The difference to the results in Section 5, is
that the synthetic images were sampled with the zero shot prompts "a photo of ..." instead of diverse prompts
from a LLM. The performance of the students distilled through vision-language distillation deteriorates more
than that of students distilled through feature distillation.

A.9 Evaluation Under Common Corruptions

In this section, we provide more details for the performance evaluation under common corruptions. In Table
3, we report the relative performance under corruption (rPC). According to Michaelis et al. (2019), it is
defined as

rPC = mPC

Pclean
(2)

where Pclean is the clean performance and mPC is the mean performance under corruption given by

mPC = 1
NcNs

Nc∑
c=1

Ns∑
s=1

Pc,s. (3)

Pc,s denotes the classification accuracy on test data corrupted with corruption c under severity level s. In our
case Nc = 15 and Ns = 5 are the number of corruptions and corruption strengths (Hendrycks & Dietterich,
2019). In addition to Table 3, Table 13 shows the mean performance under corruption and the performance
drop compared to the clean performance referred to as the degradation under corruption by Hendrycks &
Dietterich (2019).
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Domain-Specific Train Data Test Data L2 CLIP MP L2+CLIP L2+MP Teacher Domain-Agnostic
Real Real (corrupted) 72.7 68.6 70.3 78.9 71.6 76.2 43.6

-16.0 -19.4 -18.7 -12.8 -19.0 -13.5 -27.8
Synthetic Real (corrupted) 77.0 32.7 32.6 67.1 35.4 - -

-10.5 -34.0 -34.1 -20.1 -22.7
Real Synthetic (corrupted) 86.2 76.5 72.3 87.1 79.1 89.2 77.0

-5.5 -9.1 -10.6 -2.7 -7.8 -4.7 -16.9
Synthetic Synthetic (corrupted) 83.2 69.5 69.4 83.1 72.4 - -

-10.7 -28.4 -28.3 -16.6 -25.4

feature

distillation

vision-language

distillation

feature and vision-language

distillation combined

Table 13: Mean performance under corruption. The reported accuracies apply to classification on
the pets dataset under 15 common corruptions and five severity levels as defined by Michaelis et al. (2019).
The numbers in grey state the degradation under corruption.

Domain-Specific Train Data Probing Data L2 CLIP MP L2+CLIP L2+MP Teacher Domain-Agnostic
Real Real 89.8 88.3 88.9 92.1 90.2 90.4 81.6
Real Synthetic 82.1 87.7 88.3 87.7 88.9 84.0 71.8
Synthetic Real 89.6 73.7 72.6 90.1 75.3 - -
Synthetic Synthetic 80.9 64.5 65.0 82.8 65.8 - -

feature

distillation

vision-language

distillation

feature and vision-language

distillation combined

Table 14: Linear probing using real images yields better accuracies than probing with synthetic
images. The reported accuracies are obtained through linear probing of the teacher as well as our domain-
specific TinyViT 11Ms models on pets. The linear accuracy of the models that were trained with domain-
specific synthetic data is increased substantially by probing with real data compared to probing with synthetic
data.

A.10 Linear Probing

To evaluate the linear probe accuracy of the teacher as well as the TinyViT 11M models on the pets dataset,
we fit a linear classifier based on the unnormalized image features after the projection head. The classifier is
fitted either using synthetic or real data, where only the case of synthetic data corresponds to the zero-shot
setting. The hyperparameter sweeps for the regularization are performed on a validation split as in the
original CLIP paper (Radford et al., 2021). The results are shown in Table 14. For the models trained on
domain-specific synthetic data, the performance is 8 to 10 % worse when probing with synthetic data in
comparison to fitting the linear classification head with real data. This highlights that using linear probing
based on real data improves the linear classification accuracy by a substantial margin. In contrast, the true
zero-shot linear classifiers, where the classification head is fitted using synthetic data, perform comparable to
or worse than pure zero-shot classification using the similarity between the image and prompt embeddings.
In contrast to our framework, previous works (Tian et al., 2023b;a; Hammoud et al., 2024) mainly focus
on the linear accuracy where the classification head is fitted with real data instead of targeting the true
zero-shot setting without any real data which is the more difficult task to accomplish.

A.11 Linear Classification Head Instead Of CLIP Architecture

Instead of using the CLIP architecture, we train and distill TinyViT 11M model with a linear classification
head on the pets dataset for comparison. We either train from scratch or initialized weights from domain-
agnostic training on ImageNet-22k (with the exception of the linear classification head which is always
randomly initialized). As most of the classes from the pets dataset are contained in ImageNet-22k, the
latter does not correspond to a strict zero-shot setting even when subsequently performing domain-specific
distillation on synthetic data. To train the models, we optimize the standard cross-entropy loss as well as
a sum of cross-entropy loss and the original knowledge distillation loss of Hinton et al. (2015). We use the
AdamW optimizer (Loshchilov & Hutter, 2019) with no weight decay and the learning rate is set to 5 × 10−4

which is the same as used by Wu et al. (2022) for fine-tuning. First, we observe that the drop in performance
when training with synthetic data in comparison to real data is similar to the CLIP models based on vision-
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Domain-Specific Data Domain-Agnostic Data CE CE+KL
Real - 47.8 47.2
Synthetic - 26.9 29.9
Real ImageNet-22k 91.2 91.6
Synthetic ImageNet-22k 71.3 67.4

Table 15: Students with classification heads exhibit a drop in performance when being trained
on synthetic images over natural ones. Training was performed on the synthetic and real pets datasets
for 96 epochs using the cross-entropy loss (CE) with or without knowledge distillation (KL). The architecture
is a TinyViT-11M with a linear classification head.

Domain-Specific Data Pets Flowers Cars Food
Real 93.4 98.8 88.9 90.6
Synthetic 86.6 67.8 53.1 58.4

Table 16: Training standard classification models does not yield good zero-shot classifiers.
We fine-tune a ViT-B/32 classification model on either the real or synthetic domain-specific datasets and
evaluate the classification accuracies on the real test sets. Training on synthetic images corresponds to the
zero-shot setting. We observe a substantial drop in performance between synthetic and real datasets. In
particular, the zero-shot performance achieved by training the standard classification model on synthetic
images is worse than the ViT-B/32 CLIP teacher and our CLIP students.

language losses. Additionally, the performance of the model with classification head is worse compared to
the CLIP models when trained from scratch. In contrast, the classifiers pre-trained on ImageNet-22k and
subsequently trained on the domain-specific real training data achieve the best performance overall. This can
presumably be attributed to the fact that most of the classes are already included in ImageNet-22k which
was used for domain-agnostic distillation. Using knowledge distillation for the models with classification
head only has a minor effect.

A.12 Standard Classification Models as Teachers in the Zero-Sot Setting

An alternative to feature distillation of CLIP models in the zero-shot setting would be the direct distillation
of standard classification models with backbone and classification head. Performing feature distillation in
this setting requires a teacher with the standard classification architecture. However, since the classification
head has to be trained specifically for every set of target classes, there are no general-purpose zero-shot
models with this architecture. The only way to use teachers with standard classification architecture in a
zero-shot setting is to train them with synthetic images. For this purpose, we consider a ViT-B/32 model
that has been pre-trained on ImageNet 21k (Steiner et al., 2022) and train it as a possible zero-shot teacher.
In Table 16, we compare the domain-specific training of these models using synthetic and real images. The
zero-shot teacher trained with standard classification architecture on synthetic images performs worse than
the CLIP teacher and our CLIP students. The gap in accuracy between training on the domain-specific
synthetic or real images is up to 35%. This justifies why distilling CLIP models is clearly the better setting
for zero-shot classification.

A.13 Using a Different Teacher

To ablate the role of the teacher model, we distill students from a CLIP ViT B/16 teacher trained on LAION
2B instead of the CLIP ViT B/32 trained on DataComp XL which we used previously. All other factors
are left untouched to enable a direct comparison. We perform one epoch of domain-agnostic distillation on
DataComp medium followed by domain-specific distillation on four synthetic datasets (pets, flowers, cars,
food). The results are shown in Table 17. We find that main finding also holds with a different teacher.
Domain-specific distillation through feature distillation results in zero-shot accuracies that closely match
the performance of the teacher. In contrast, vision-language distillation using the CLIP loss result in worse
accuracies with a difference of up to 79% compared to the teacher.
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Model Loss Training Dataset Pets Flowers Cars Food

CLIP ViT-B/16 CLIP LAION 2B 89.3 69.7 87.0 83.2

TinyViT-11M L2 DataComp-medium 67.0 39.2 39.0 51.7
TinyViT-11M L2 DataComp-medium

CLIP + Synthetic 63.1 41.3 64.9 23.9
TinyViT-11M L2 DataComp-medium

L2 + Synthetic 84.1 63.2 79.5 70.4

C
LI

P
D

A
D

A
+

D
S

Table 17: Using a different teacher consolidates our findings. The setup is the same as for Table 4 but
with a CLIP ViT B/16 teacher trained on LAION 2B instead of the CLIP ViT B/32 trained on DataComp
XL. “DA” denotes domain-agnostic distillation for one epoch on DataComp medium and “DA+DS” contains
the results where synthetic data is used for subsequent domain-specific distillation of the students. The blue
box highlights the final models distilled through feature distillation.

A.14 Using a Different Synthetic Data Generator

To ablate on the role of the synthetic data generator, we perform domain-specific distillation on datasets
generated by Stable Diffusion 1.5 LCM LoRA Luo et al. (2023) instead of Stable Diffusion XL LCM LoRA.
We keep the setting from Section 5.4 including the diversified prompt generation, the number of inference
steps for the data generation as well as the hyperparameters for distilling the students. We select a TinyViT
11M student and perform the domain-specific distillation after domain-agnostic distillation for one epoch
on DataComp medium. The results stated in Table 18 confirm our main finding that feature distillation
greatly improves the zero-shot classification accuracy over vision-language distillation. In particular, feature
distillation is more robust to a change in the synthetic data generator. The drop in performance between
Stable Diffusion 1.5 and Stable Diffusion XL LCM lies within 5% for feature distillation. For vision-language
distillation the performance deteriorates by up to 23% using the CLIP loss and up to 58% using the MP
loss.

Synthetic Data Generator Dataset L2 CLIP MP L2+CLIP L2+MP
Stable Diffusion 1.5 LCM LoRA Pets 86.0 50.8 48.8 83.7 51.6
Difference to Stable Diffusion XL LCM LoRA -1.5 -15.9 -17.7 -3.4 -16.5
Stable Diffusion 1.5 LCM LoRA Flowers 63.6 21.0 22.3 63.0 29.0
Difference to Stable Diffusion XL LCM LoRA -4.6 -18.1 -20.3 -5.0 -20.4
Stable Diffusion 1.5 LCM LoRA Cars 78.9 33.2 11.9 76.7 63.1
Difference to Stable Diffusion XL LCM LoRA -3.0 -23.8 -58.1 -6.3 -19.3
Stable Diffusion 1.5 LCM LoRA Food 70.0 16.0 18.0 67.3 29.6
Difference to Stable Diffusion XL LCM LoRA -2.0 -12.0 -5.2 -3.2 -12.4

feature

distillation

vision-language

distillation

feature and vision-language

distillation combined

Table 18: Feature distillation is more robust to a change in synthetic image generator. The
reported accuracies are for TinyViT 11Ms student distilled for one epoch on DataComp medium and subse-
quently distilled on synthetically generated pets test data. The difference to Section 5 is that the synthetic
images were generated by Stable Diffusion 1.5 LCM LoRA instead of Stable Diffusion XL LCM LoRA. We
find that feature distillation is more robust to the change in diffusion model and the accuracies decrease
substantially less in comparison to vision-language distillation.
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A.15 Multi-Positive Contrastive Loss

To adapt the multi-positive (MP) loss to our setting, we replace the anchor sample by the embedding of a
class-specific zero-shot prompt. By Zk denote the normalized embedding of the zero-shot prompt for class
k and by Ii the normalized embedding of image i. The image label is given by l(Ii). Given class k from a
set of K classes and batchsize N , the contrastive distribution is given by

qi(k) = exp(⟨Ii, Zk⟩/τ)∑K
j=1 exp(⟨Ii, Zj⟩/τ)

(4)

and the ground-truth categorical distribution is

pi(k) =
1l(Ii)=k∑N

j=1 1l(Ij)=k

. (5)

The overall MP loss is then computed as

LMP = − 1
K

K∑
k=1

N∑
i=1

pi(k) log qi(k). (6)

A.16 Theoretical Bound on Teacher-Student Agreement

Conclusively, we present a theoretical motivation of the L2 feature loss for the distillation of a CLIP image
encoder. Therefore, we consider the following notions. Let be Dtrain = {(ii, ti)|i ∈ [Ntrain] be a train set
consisting of image-caption pairs and Dtest = {(ii, li)|i ∈ [Ntest]} a test set with image-classlabel pairs. By
IT (i) denote the normalized embedding of image i from the teacher image encoder and by IS(i) the normalized
embedding of image i from the student image encoder. Similarly, let Zk be normalized embedding of the
zero-shot prompt "a photo of a {classname}" of class k ∈ [Nclasses]. In this setting, the following statement
holds.
Lemma 1. Assume that for a given ϵ > 0 it holds that for every image i ∈ Dtest there exists an image
ĩ ∈ Dtrain such that

∥IT (i) − IT (̃i)∥2 < ϵ and ∥IS(i) − IS (̃i)∥2 < ϵ (7)
If it holds that ∥IT (̃i) − IS (̃i)∥2 < ϵ for every image ĩ ∈ Dtrain, then

⟨IS(i), ZpS(i)⟩ − ⟨IS(i), ZpT (i)⟩ < 6ϵ (8)

for every image i ∈ Dtest where pS(i) and pT (i) are the teacher and student class predictions.

pT (i) = argmaxk∈[Nclasses]⟨IT (i), Zk⟩ and pS(i) = argmaxk∈[Nclasses]⟨IS(i), Zk⟩ (9)

Proof. Without loss of generality, we assume there exists an image i ∈ Dtest and j, k ∈ [Nclasses], j ̸= k such
that for the student

⟨IS(i), Zj⟩ > ⟨IS(i), Zk⟩ (10)
but for the teacher

⟨IT (i), Zj⟩ < ⟨IT (i), Zk⟩. (11)
Then, it holds that

⟨IS(i), Zj⟩ = ⟨IS(i) − IT (i), Zj⟩ + ⟨IT (i), Zj⟩ (12)
< ⟨IS(i) − IT (i), Zj⟩ + ⟨IT (i), Zk⟩ (13)
≤ ∥IS(i) − IT (i)∥2∥Zj∥2 + ⟨IT (i), Zk⟩ (14)
= ∥IS(i) − IT (i)∥2 + ⟨IT (i), Zk⟩ (15)
= ∥IS(i) − IT (i)∥2 + ⟨IT (i) − IS(i), Zk⟩ + ⟨IS(i), Zk⟩ (16)
≤ 2∥IS(i) − IT (i)∥2 + ⟨IS(i), Zk⟩. (17)
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By using assumption 7, there exists an image ĩ ∈ Dtrain such that we get

∥IS(i) − IT (i)∥2 ≤ ∥IS(i) − IT (̃i)∥2 + ∥IT (̃i) − IT (i)∥2 (18)
≤ ∥IS(i) − IS (̃i)∥2 + ∥IS (̃i) − IT (̃i)∥2 + ∥IT (̃i) − IT (i)∥2 (19)
≤ 3ϵ (20)

Overall, we get
⟨IS(i), Zj⟩ − ⟨IS(i), Zk⟩ < 2∥IS(i) − IT (i)∥2 ≤ 6ϵ (21)

which proves the statement.

Lemma 1 highlights that minimizing the L2 loss on a training set where the image embeddings are close to
the embeddings of the test images yields a sufficient criterion for agreement of the teacher and student on
the test set. This motivates directly optimizing the L2 loss through feature distillation over vision-language
distillation.
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