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Abstract
Echoing recent calls to counter reliability and
robustness concerns in machine learning via mul-
tiverse analysis, we present PRESTO, a princi-
pled framework for mapping the multiverse of
machine-learning models that rely on latent rep-
resentations. Although such models enjoy wide-
spread adoption, the variability in their embed-
dings remains poorly understood, resulting in
unnecessary complexity and untrustworthy rep-
resentations. Our framework uses persistent ho-
mology to characterize the latent spaces arising
from different combinations of diverse machine-
learning methods, (hyper)parameter configura-
tions, and datasets, allowing us to measure their
pairwise (dis)similarity and statistically reason
about their distributions. As we demonstrate
both theoretically and empirically, our pipeline
preserves desirable properties of collections of
latent representations, and it can be leveraged to
perform sensitivity analysis, detect anomalous em-
beddings, or efficiently and effectively navigate
hyperparameter search spaces.

1. Introduction
Our ability to design and deploy new machine-learning
models has far outpaced our understanding of their inner
workings. The real-world successes of Variational Auto-
Encoders (VAEs), Large Language Models (LLMs), and
Graph Neural Networks (GNNs) notwithstanding, our
benchmark-driven engineering approaches often come at
the cost of an inability to make formal predictions about
the capacity of a specific model to perform a specific task
on a specific dataset. Thus, when observing a particular
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performance result, we are unsure to which extent it is
impacted by (i) intrinsic problems with the data, such as poor
data quality or data leakage, (ii) intrinsic problems with the
model architecture, such as insufficient learning capacity,
(iii) misfit between the data and the model architecture,
(iv) unsuitable (parameter) choices for the training process,
or (v) an under-explored hyperparameter landscape. These
uncertainties contribute to a looming reproducibility crisis
in machine learning that threatens to impede fundamental
progress and reduce real-life impact (Gundersen et al.,
2022; Haibe-Kains et al., 2020; Kapoor & Narayanan, 2023;
McDermott et al., 2021).

Into the Multiverse. Ensuring robust, reliable, and
reproducible results in machine-learning applications
requires new conceptual frameworks and tools. As a starting
point, we must acknowledge that all data work involves
many different choices that may support many different
conclusions (Simonsohn et al., 2020). In machine learning,
such choices regularly include the model architecture and its
hyperparameters (Feurer & Hutter, 2019), the dataset and its
preprocessing (Muller & Strohmayer, 2022), as well as the
technicalities of model training and evaluation (Sivaprasad
et al., 2020). To rigorously assess machine-learning models,
then, we should explicitly embrace the variation resulting
from all reasonable combinations of reasonable choices,
rather than keep individual choices hidden or implicit. This
is the essence of multiverse analysis (Steegen et al., 2016),
which was originally proposed to mitigate the perceived
replication crisis in psychology (Simmons et al., 2011).

Representation Matters. In multiverse analysis, each
set of mutually compatible choices (according to some
specification) gives rise to a different analytical universe,
and we assess the results of all universes in the same mul-
tiverse collectively to derive our conclusions. While the
early applications of multiverse approaches in machine
learning (Bell et al., 2022; Simson et al., 2023) have
focused on variability in performance (performance
variability), which afflicts all machine-learning models,
the influential class of latent-space models (including
VAEs, LLMs, and GNNs) also exhibits variability in latent
representations (representational variability). In many
cases, even relatively small (hyper)parameter changes can
radically alter the embedding structure of latent-space
models. As an example, consider Figure 1, which depicts
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Figure 1. Entangled disentanglement. The embedding spaces of
DAEs (Cha & Thiyagalingam, 2023) vary widely when we change
the learning rate LR and the batch-normalization hyperparameter α
of the model, and the latent structure of the XYC dataset (shapes
varying in 2D coordinates and color) is properly disentangled only
with the right parameter choices ( ). PRESTO can topologically
assess the (hyper)parameter sensitivity of latent-space models.

two-dimensional representations of the XYC dataset as
generated by Disentangling Auto-Encoders (DAEs) with
different learning rates and batch-normalization parame-
ters. Although DAEs were recently designed by Cha &
Thiyagalingam (2023) precisely to learn disentangled repre-
sentations, and the XYC dataset was introduced to highlight
the power of DAEs, the latent structure of the XYC dataset
is disentangled only with the right parameter choices ( ).
More generally, representational variability in latent-space
models remains poorly understood.

Variability Matters. While the performance variability of
latent-space models is clearly connected to their reliability,
the representational variability of such models is directly
linked to their interpretability and robustness. First, if
models differing only in their (hyper)parameters yield
similar performance based on very dissimilar latent spaces,
we cannot use these latent spaces to understand the
models (impairing their interpretability). Second, if a
small change in the (hyper)parameter or training-data
configuration induces a large change in the latent-space
structure of a model, the model associated with the
original configuration may not capture the essence of
the task, even if the model appears to be competitive
when assessed based on performance-driven evaluation
(indicating a lack of structural robustness). Therefore, rep-
resentational variability not only complements performance
variability in the analysis of latent-space models, but ceteris
paribus, models with lower representational variability
should be preferred over models with higher representa-
tional variability. Hence, understanding representational
variability in latent-space models is crucial to ensure their
overall alignment with responsible-machine-learning goals.

Our Contributions. Motivated by the need for respon-
sible latent-space models, and encouraged by the
promise of topological approaches to representational
variability (Barannikov et al., 2021; 2022; Zhou et al., 2021),
in this work, we use topology to map the multiverse of
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Figure 2. The PRESTO pipeline. For each model Mi in our multi-
verse M, PRESTO computes the persistent homology associated
with the embedding of a dataset Xi generated by Mi, yielding a
set of embeddings E . Thus enabled to compare the latent spaces
of different models via the landscape distance of their persistence
landscapes, with PRESTO, we can cluster, compress, detect outliers
in, and analyze the sensitivity of (hyper)parameter configurations.

machine-learning models that rely on latent representations.
In particular, we ask two guiding questions.

(Q1) Exploring representational variability. How do the
latent representations of machine-learning models
vary across different choices of model architectures,
(hyper)parameters, and datasets?

(Q2) Exploiting representational variability. How can we
use representational variability to efficiently train and
select robust and reliable machine-learning models?

To address these questions, we make five contributions.

(C1) We introduce PRESTO, a topological multiverse
framework to describe and directly compare both
individual latent spaces and collections of latent
spaces, as summarized in Figure 2.

(C2) We capture essential features of latent spaces via
persistence diagrams and landscapes, allowing us to
measure the pairwise (dis)similarity of embeddings
and statistically reason about their distributions.

(C3) We prove theoretical stability guarantees for topolo-
gical representations of latent spaces under projection.

(C4) We develop scalable practical tools to measure rep-
resentational (hyper)parameter sensitivity, identify
anomalous embeddings, compress (hyper)parameter
search spaces, and accelerate model selection.

(C5) We demonstrate the utility of our tools via extensive
experiments in numerous latent-space multiverses.

Our work improves our understanding of representa-
tional variability in latent-space models, and it offers a
structure-driven alternative to existing performance-driven
approaches in the responsible-machine-learning toolbox.

Structure. Having given some background on persistent
homology in Section 2, we introduce PRESTO, our multi-
verse framework for exploring and exploiting representa-
tional variability in latent-space models in Section 3. After
discussing related work in Section 4, we gauge the practical
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utility of our framework through extensive experiments in
Section 5, before concluding with a discussion in Section 6.
Extensive supplements are provided in Appendices A to E.

2. Background
This section briefly introduces persistent homology (PH),
the machinery for capturing essential features of data that
forms the basis of our framework. Additional definitions and
theorems can be found in Appendix A, while Appendix D
contains background information on latent-space models.
Persistent homology (Barannikov, 1994; Edelsbrunner &
Harer, 2010) is a framework used to analyze topologi-
cal characteristics of data at multiple spatial scales. It
systematically quantifies the evolution of both topologi-
cal and geometric features, as tracked by a filtration,
i.e., a consistent ordering of the elements of a space.
Filtrations typically arise by approximating data with
simplicial complexes, i.e., generalized graphs, using metrics
like the L2 distance; we will work with computationally
efficient α-complexes (Edelsbrunner et al., 1983). Thus,
given a topological space X and a filtration {Xt}t∈R, with
each Xt being a subcomplex of X , persistent homology
computes a sequence of homology groups {Hh(Xt)}h≥0

for each t. These groups capture h-dimensional topolo-
gical features such as connected components, cycles, or
voids of Xt at multiple resolutions, and they are invariant
to spatial transformations like translation, rotation, and
uniform scaling (when working with normalized distances).
Moreover, persistent homology varies continuously under
continuous transformations of the space.

Persistent-homology computations are typically sum-
marized using persistence diagrams, which provide a
condensed representation for tracking topological features
across multiple scales. Formally, a persistence diagram
dgm = {(bi, di)}i is a multiset of intervals, where bi
represents the ‘birth time’ and di represents the ‘death
time’ of a given h-dimensional topological feature, i.e.,
bi, di ∈ R ∪ {∞} with bi ≤ di. As the space Dgm
of persistence diagrams is cumbersome to work with and
does not afford efficiently-computable metrics, there are
alternative representations of persistent homology, such
as persistence landscapes (PL), which map persistence
diagrams into a Banach space by transforming them into
piecewise-linear functions Lh : Dgm → R (Bubenik, 2015).
This transformation allows us to compare topological de-
scriptors using computationally efficient metrics, and its
calculation requires neither discretization nor additional pa-
rameter choices. For our work, the stability of persistent ho-
mology and persistence landscapes under perturbations and
transformations of the data is particularly relevant: These
descriptors are well-behaved under structure-preserving em-
beddings (Krishnamoorthy & May, 2023; Sheehy, 2014),

and they capture both geometric and topological properties
of data (Bubenik et al., 2020). Thus, we select persistent ho-
mology and persistence landscapes as our lens for assessing
representational variation.

3. Topological Multiverse Analysis
Having established the necessary background, we now
introduce PRESTO, our multiverse framework for exploring
and exploiting representational variability in latent-space
models via persistent homology. To define a multiverse
of latent representations, we distinguish three categories
of choices, namely, (1) algorithmic choices (i.e., model
architecture and hyperparameters), (2) implementation
choices (such as optimizer, learning rate, number of epochs,
and random seeds), and (3) data choices (i.e., dataset and
preprocessing). The mutually compatible options in each
category give rise to three sets of valid choices, i.e., algorith-
mic choices α ∈ A, implementation choices ι ∈ I , and data
choices δ ∈ D. We will also think of A, I, and D as sets
of vectors, such that we can refer to (α, ι, δ) ∈ A× I ×D
by its parameter vector θ := (α, ι, δ)′ of cardinality c := |θ|.
Thus, we arrive at the notion of a latent-space multiverse.

Definition 3.1 (Latent-Space Multiverse). Given algo-
rithmic choices A, implementation choices I, and data
choices D, a latent-space multiverse M is a subset of
A × I × D. Each element θ ∈ M is a universe with an
associated model Mθ : R∗ → Rd, where d is the desired
embedding dimension (part of θ), ∗ denotes a flexible input
dimension, and we drop θ for conciseness.

In this work, we are interested in finite latent-space multi-
verses, generated by discrete subsets of A, I, and D.

3.1. PRESTO Pipeline

Given a finite latent-space multiverse M ⊆ A × I × D,
to explore representational variability, we would like to
compare the topologies of individual latent spaces and
statistically assess their distribution in M, which will
also prove useful for exploiting representational variability
in practical applications. Unfortunately, working with
the topologies of high-dimensional latent spaces directly,
e.g., by comparing them via the (normalized) bottleneck
distance of persistence diagrams derived from Vietoris–Rips
complexes, is computationally prohibitive. Furthermore,
as persistence diagrams do not live in a Banach space, we
cannot reason about their distributions. Hence, we instead
propose the following scalable framework for topologi-
cal multiverse analysis, which we call PRESTO (PRojected
Embedding Similarity via Topological Overlays).1 For each

1Although we advocate for the pipeline presented below, its
individual steps can be easily modified, e.g., to use other topologi-
cal descriptors. See Appendix B.2 for a detailed discussion.
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model M ∈ M and a dataset X (which can differ from the
training data of M ), PRESTO performs four steps.2

(S1) Embed data. Compute the d-dimensional embedding
E := M(X). Optionally, (a) approximate the diame-
ter of E, and (b) normalize E by this approximation.

(S2) Project embeddings. Project E down to k ≪ d
dimensions. This can be done either deterministically,
e.g., via Principal Component Analysis (PCA), or by
generating a set of π random projections P .3

(S3) Construct persistence diagrams. Calculate the per-
sistence diagram dgm (or dgmi for each projection
Ei ∈ P) based on its h-dimensional α-complex.

(S4) Compute persistence landscapes. Vectorize the per-
sistence diagram dgm into a persistence landscape
L(M) (or dgmi into Li with L(M) :=

∑
i∈[π] Li/π).

Here, S1a and S1b replace exact normalization, and S2
and S3 replace persistence-diagram computation based on
Vietoris-Rips complexes constructed in (potentially) high
dimensions, all of which are computationally costly. S4
guarantees that we operate in a Banach space, and averaging
here increases robustness if we work with random pro-
jections. Since PRESTO is based on persistent homology,
it immediately benefits from PH’s well-studied properties
(see Section 2). Finally, our pipeline is data-agnostic, i.e.,
we can use any dataset X to study variability in M without
requiring access to the training data—and we can even use
PRESTO to study variability in datasets (see Section 5).

3.2. PRESTO Primitives

By performing S1 to S4 for each M ∈ M, we obtain a
set L of persistence landscapes, which allows us to achieve
two fundamental tasks. First, we can measure the distance
between two latent spaces via the PRESTO distance (PD).4

Definition 3.2 (PRESTO Distance [PD]). Given persistence
landscapes L(Mi) and L(Mj), the PRESTOp

h distance up
to topological dimension h between Mi and Mj is

PDp
h(Mi,Mj) :=

h∑

x=0

dLp(Lx(Mi), Lx(Mj)) , (1)

where dLp is the landscape distance based on the Lp norm.

2While we keep the dataset X fixed in our exposition for
notational simplicity, as we illustrate experimentally in Section 5,
we can also use our multiverse approach to assess how changing
X affects our reconstruction of a (set of) latent space(s).

3While the deterministic approach is particularly suited for
comparing different latent spaces, leveraging randomness allows
us to study variability within individual latent spaces.

4In the following, to avoid ambiguity in our PRESTO-related
definitions, we use a superscript p to denote the choice of Lp norm,
and a subscript h to denote the maximum dimension of topological
features considered. Otherwise, we drop these superscripts and
subscripts for simplicity when they are not decisive.

Second, we can assess the variance in a set of latent spaces
via the PRESTO variance (PV).
Definition 3.3 (PRESTO Variance [PV]). Given a set L
of persistence landscapes of cardinality N := |L|, the
PRESTOp

h variance up to topological dimension h of L is

PVp
h(L) :=

1

N

h∑

x=0

∑

L∈Lx

(∥L∥p − µLx)
2
, (2)

where ∥L∥p is the Lp-based landscape norm, Lx denotes the
landscape parts associated with x-dimensional topological
features, and µLx is the mean of landscape norms in Lx.

Although the modifications to an exact pipeline made by
our PRESTO framework induce some changes in our repre-
sentations, they retain the essential features of our original
latent spaces. As a result, the error we introduce into our
measurements in Eqs. (1) and (2) is bounded both theoreti-
cally and empirically, as we show in Sections 3.4 and 5.

3.3. PRESTO Applications

As we demonstrate in our experiments (Section 5), our mul-
tiverse framework and PRESTO primitives are useful for
exploring and exploiting the representational variability of
latent-space models in several different settings. In particu-
lar, they can help us (1) evaluate (hyper)parameter sensitiv-
ity, (2) detect anomalous embeddings, and (3) cluster and
compress (hyper)parameter search spaces.

Sensitivity Analysis. Following the reasoning sketched
in Section 1, choices amplifying representational variability
are both analytically interesting and practically problematic.
Thus motivated to study (hyper)parameter sensitivity in
latent-space multiverses M, our goal here is to quantify
the structural variation in the embedding space when
introducing controlled variation in θ ∈ M. We seek to
assess the local and global sensitivity in M, as well as the
sensitivity at individual coordinates θ in M. To this end,
we introduce our PRESTO sensitivity scores (PS).
Definition 3.4 (PRESTO Sensitivity [PS]). Given a multi-
verse M, fix a model dimension i, and define an equivalence
relation ∼i such that θ′ ∼i θ′′ ⇔ θ′j = θ′′j for all
θ′, θ′′ ∈ M and j ̸= i, yielding qi equivalence classes Qi.

The individual PRESTOp
h sensitivity of equivalence class

Q ∈ Qi in M is

PSp
h(Q | M) :=

√
PVp

h(L[Q]) , (3)

where L[Q] ⊂ L is the set of landscapes associated with
models in equivalence class Q. Aggregating over all
equivalence classes in Qi, we obtain the local PRESTOp

h

sensitivity of M in model dimension i as

PSp
h(M | i) :=

√
1

qi

∑

Q∈Qi

PVp
h(L[Q]) . (4)
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Finally, aggregating over all c = |θ| dimensions of models
in M yields the global PRESTOp

h sensitivity of M, i.e.,

PSp
h(M) :=

√√√√1

c

∑

i∈[c]

1

qi

∑

Q∈Qi

PVp
h(L[Q]) . (5)

Note that when M varies only in one dimension, the
individual, local, and global PRESTO sensitivities are identi-
cal, such that we can simply speak of the PRESTO sensitivity.

Outlier Detection. Since models with anomalous latent
spaces are, by definition, not robust, we should understand
for which sets of choices they occur and avoid working with
them in practice. To detect such anomalous latent spaces
in a multiverse M with associated landscapes L, we can
exploit their Banach-space structure, which allows us to
use the PV (Definition 3.3), along with standard statistical
approaches, to identify landscapes with anomalous norms.

Clustering and Compression. To identify interesting
structure in a collection of latent spaces (arising, e.g., from
a grid search), we can cluster the collection, represented
by a multiverse M with associated landscapes L, based on
the PRESTO distance (Definition 3.2), using any clustering
method based on pairwise distances. Reducing the costs of
exhaustive (hyper)parameter searches, however, requires
us to lower the number of configurations considered in
detail. As we demonstrate experimentally, if two latent
spaces are topologically close in our target setting (i.e., a
search space we would like to avoid exploring exhaustively),
they may also be close in a proxy setting (i.e., a search
space we will explore (or have explored) exhaustively),
such as when training on a related dataset. This permits
us to reuse knowledge generated from proxy settings for
our target setting, motivating the task of search-space
compression. Given results from a proxy setting P , to
compress the search space in our target setting M, we define
a threshold ϵ and select representatives R ⊆ M such that
for each Mi ∈ M, there exists a representative Mj ∈ R
with PDP (Mi,Mj) ≤ ϵ, where PDP denotes the PRESTO
distance in proxy setting P . Appendix C.2 provides more
details on how to pick suitable representatives in practice.

3.4. PRESTO Stability

To ensure scalability, PRESTO computes topological descrip-
tors on low-dimensional projections of embeddings, rather
than working in a high-dimensional latent space. Therefore,
we would like to ascertain that the distortion introduced
by these projections remains bounded. To achieve this, we
require the notion of a multiverse metric space (MMS).
We will work with the L2 landscape norm and consider
topological features up to dimension 2 (i.e., p = h = 2),
dropping the superscript p and the subscript h for notational
conciseness, and deferring all proofs to Appendix A.

Definition 3.5 (Multiverse Metric Space M [MMS]). For a
multiverse M with associated embeddings E , we define the
topological distance of embeddings in E as

dT (Ei, Ej) := d(dgm(Ei), dgm(Ej)) , (6)

where d can be any distance between persistence represen-
tations (e.g., diagrams or landscapes). A multiverse metric
space is the tuple (E , dT ) =: M.

When working with k-dimensional embedding projections,
we operate in a projected multiverse metric space (PMMS).
Definition 3.6 (Projected Multiverse Metric Space Mk

[PMMS]). Given an MMS M = (E , dT ), fix the projection
dimension k ∈ N, s.t. k ≤ di for Ei ∈ E . For a projector
f : R∗ → Rk, let P := {f(E) | E ∈ E} be the set of
projected embeddings. Using dT from Eq. (6), a projected
multiverse metric space is defined as Mk := (P, dT ).

Relating an MMS M to its k-dimensional counterpart Mk,
we arrive at the notion of topological loss, i.e., the decrease
in topological fidelity due to our projection.
Definition 3.7 (Topological Loss). Given an MMS M, a
projector f : R∗ → Rk, and an associated PMMS Mk, with
Pi := f(Ei), the topological loss ℓk of Mk is the maximum
distance between elements of E and P measured by dT , i.e.,

ℓk := max
Ei∈E

dT (Ei, Pi) . (7)

This topological loss bounds the pairwise-distance
perturbation of our metric space under projection.
Theorem 3.8 (Metric-Space Preservation under Projection).
Given an MMS M and an associated PMMS Mk with
topological loss ℓk, we can bound the pairwise-distance
perturbation under projection as Mk[i, j] ≤ M[i, j]+2ℓk .

Consequently, as the topological loss increases, our
precision in distinguishing embeddings decreases in a
controlled manner, and we can further bound the PRESTO
variance under projection as follows.
Theorem 3.9 (PRESTO Variance under Projection).
Consider an MMS M = (E , dT ) with the landscape
distance dT (Ei, Ej) := d(L(Ei), L(Ej)) and associated
persistence landscapes LM. Further, let Mk be a PMMS
with a topological loss ℓk. Then we can bound the maximal
change in any persistence landscape norm as

∥L(Ei)∥ − ℓk ≤ ∥L(Pi)∥ ≤ ∥L(Ei)∥+ ℓk . (8)

Given the PRESTO variance of M, PV(LM), we can bound
the PRESTO variance of Mk, i.e., PV(LMk), as

|PV(LM)− PV(LMk)| ≤ 4ℓk

N
σi +

(
2ℓk
)2

N
, (9)

where σi :=
∑N

i=1(∥L(Ei)∥ − µE).
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As a result, PRESTO is stable as long as we can control
the approximation error induced by the choice of projector
function. To this end, Appendix A provides explicit bounds
for several common classes of projection functions.

3.5. PRESTO Complexity

While scalability is a common concern in computational
topology, our framework is specifically designed for
scalability. We present a detailed complexity analysis
in Appendix C.1.1, showing that, overall, PRESTO’s
computations are approximately linear in the number
of samples in X . In Appendices C.1.2 and C.1.3,
we also validate PRESTO’s time complexity empirically,
demonstrating that PRESTO distances can be computed
faster than related (dis)similarity measures.

4. Related Work
PRESTO connects two strands of literature, i.e., topological
approaches and multiverse approaches in machine learning.
Since our framework additionally draws on numerous other
fields, we provide an extended discussion in Appendix E.

Topological Approaches in Machine Learning. Topo-
logical approaches have been used to analyze and control
representational variation, leading to regularization terms
that preserve topological characteristics (Moor et al.,
2020; Trofimov et al., 2023; Waibel et al., 2022), scores
for assessing disentanglement (Zhou et al., 2021) or
quality (Rieck & Leitte, 2015; 2016), as well as methods
for learning disentangled representations (Balabin et al.,
2023), studying neural networks (Klabunde et al., 2023;
Kostenok et al., 2023; Purvine et al., 2023; Rieck et al.,
2019), measuring generative quality (Kim et al., 2023),
and enabling zero-shot training (Moschella et al., 2023).
Drawing on topological concepts to analyze differences
between latent spaces, the manifold topology divergence and
the representation topology divergence (RTD) (Barannikov
et al., 2021; 2022) are closest to our work. However,
these methods focus on pairwise comparisons of aligned
data, exhibit unfavorable scaling behavior, and do not
enjoy theoretical fidelity guarantees. By contrast, as the
first method for studying representational variability that
leverages persistence landscapes, PRESTO enables a mul-
tiverse analysis in terms of models, (hyper)parameters,
and datasets, readily handles unaligned embeddings, and
quantifies all results in terms of distance metrics, thus
improving their interpretability.

Multiverse Approaches in Machine Learning. Mul-
tiverse analysis (Steegen et al., 2016) aims to reduce
arbitrariness and increase transparency in data analysis via
the joint consideration of multiple reasonable analytical
scenarios. Precursors of a multiverse perspective in machine

learning have assessed hyperparameter choices (Kumar &
Poole, 2020; Sivaprasad et al., 2020; Smith, 2018; Zhang
et al., 2019), studied the causal structure of latent rep-
resentations (Leeb et al., 2022), or compared different
models (Diedrichsen & Kriegeskorte, 2017; Diedrichsen
et al., 2020; Vittadello & Stumpf, 2021). By contrast,
PRESTO provides a unified framework for the structural
analysis of latent spaces across models, (hyper)parameters
and datasets. While Bell et al. (2022) consider a model
multiverse, their work differs in its goals and its methods. In
particular, they focus on the performance-driven exploration
of continuous search spaces via tools from statistics, while
we pursue the structure-driven characterization of discrete
search spaces using tools from topology.

5. Experiments
In our experiments, we ask three questions:

(Q0) PRESTO’s distinctive properties.
How does PRESTO relate to existing measures of rep-
resentational (dis)similarity and variability?

(Q1) PRESTO for exploring representational variability.
How can PRESTO help us understand representational
variability across different choices of model architec-
tures, (hyper)parameters, and datasets?

(Q2) PRESTO for exploiting representational variability.
How can PRESTO help us to efficiently train and select
robust and reliable machine-learning models?

To address our guiding questions, we generate multiver-
ses for two types of generative models, i.e., variational
autoencoders as generators of images, and transformers
as generators of natural language. We are particularly
interested in the impact of algorithmic choices A, im-
plementation choices I, and data choices D on the
generated representations. Further experiments (including
on dimensionality reduction), a multiverse analysis of the
choices involved in the PRESTO pipeline, and more details
on all results reported here can be found in Appendix B.5

VAE Multiverses. In brief, our VAE experiments study
representational variation in the following dimensions.

A. We consider three VAE architectures: (1) β-VAE
(Higgins et al., 2017), (2) INFOVAE (Zhao et al.,
2019), and (3) WAE (Tolstikhin et al., 2018). For
each architecture, we investigate the interplay between
hyperparameter choices and latent-space structure
when navigating trade-offs between reconstruction bias
and KL-divergence weight in conjunction with loss
variations and kernel parameters.

I. Specifically for β-VAE, in Appendix B.1.2, we explore

5Code: https://github.com/aidos-lab/Presto. Reproducibility
package: https://doi.org/10.5281/zenodo.11355446. Unless
otherwise noted, all experiments use normalization.
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Figure 3. Comparing PRESTO distances with other measures.
We show the Pearson correlations between PRESTO, RTD, kCKA,
and lCKA, on random data (left), VAE embeddings (center),
and LLM embeddings (right). PRESTO captures representational
variation differently from existing methods.

the relation between β and five implementation choices:
(1) batch size b, (2) hidden dimensions h, (3) learning
rate l, (4) sample size s, (5) and train-test split t.

D. We train on five datasets: (1) celebA, (2) CIFAR-10,
(3) dsprites, (4) FashionMNIST , and (5) MNIST .

For a detailed description, see Appendices B.1.1 and B.1.2.

Transformer Multiverses. Based on access to pretrained
language models only, we focus our transformer experi-
ments on algorithmic and data choices. In Appendices B.2.2
to B.2.4, we additionally use transformers to study the
impact of implementation choices in the PRESTO pipeline.

A. We consider six transformer models: (1) ADA,
(2) MISTRAL, (3) DISTILROBERTA, (4) MINILM,
(5) MPNET, and (6) QA-DISTILBERT. The first two
models are large language models from OpenAI and
MistralAI, respectively, whereas the other four models
are sentence transformers taken from the sentence-
transformers library (Reimers & Gurevych, 2019).

I. To analyze the implementation multiverse of PRESTO
pipeline choices, we introduce variation in the
(1) number of samples s embedded, (2) number of
projection components k considered, as well as in
(3) embedding-projection method (PCA vs. random
projections) and number of random projections π.

D. We probe each trained model by embedding abstracts
from four summarization datasets, i.e., (1) arXiv,
(2) bbc, (3) cnn, and (4) patents, all of which are
available via HuggingFace.

See Appendix B.2.1 for a detailed description.

5.1. PRESTO’s Distinctive Properties

With our experimental setup in place, we turn to our zeroth
guiding question: understanding PRESTO’s distinctive
properties. To begin, we compare PRESTO distances with
other measures of representational (dis)similarity on the
basic task of pairwise comparisons between aligned em-
beddings (a limitation imposed by competitor methods).
Summarizing the correlation between PRESTO and RTD,
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Figure 4. Comparing PRESTO, latent-space geometry, and
model performance. We show the distribution of correlations
between PRESTO distances and geometric latent-space distances
in the VAE multiverse, estimating geometric distances based on
the Pearson distance between Euclidean metric spaces of aligned
random samples of size 512 over 256 random draws (left), as
well as the relationship between landscape norms and model
performance for β-VAE (right). PRESTO captures geometric
similarity between latent spaces and is orthogonal to performance.

both topology-based dissimilarity measures, as well as
RBF-kernel and linear Centered Kernel Alignment (kCKA
and lCKA), both similarity measures, in Figure 3, we
observe that there is no consistent relationship between
PRESTO distances, RTDs, and CKA scores. This indicates
that PRESTO captures variation in latent-space structure
differently from existing methods, which appears desirable,
given the known limitations of existing approaches (cf.
Davari et al., 2023).

To understand what exactly is captured by PRESTO, in
the left panel of Figure 4, (see also Appendix B.1.4),
we correlate unnormalized PRESTO distance matrices for
different VAE hyperparameter multiverses with estimates
of geometric distances between pairs of latent spaces
(i.e., Pearson distances between random, aligned metric
subspaces), displaying the distribution of correlations over
multiple random draws. We expect to see some correlation
between PRESTO distances and geometric distances because
our framework is based on PH, which also captures some
geometric properties (Bubenik et al., 2020). In line with this
expectation, we see that PRESTO distances are correlated
with geometric distances, albeit to different extents across
models and datasets. In the right panel of Figure 4,
we further examine the relationship between landscape
norms, the foundation of PRESTO variances, and the
performance of models in the β-VAE hyperparameter mul-
tiverse. We observe that while larger landscape norms are,
overall, associated with larger losses, models with similar
performance exhibit substantial variability in their land-
scape norms. This suggests that the variability captured
by PRESTO is orthogonal to variability in performance (an
impression further corroborated by an extended experiment
in Appendix B.1.5), underscoring PRESTO’s capacity to
complement performance-based metrics, shed light on
variability in similarly-performing models, and promote
representational stability as a target in model evaluation.
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Figure 5. Landscape-norm distributions in our VAE hyperpa-
rameter multiverse. We show the distribution of landscape
norms after initialization (left) and training (center), as well as
the distribution of PRESTO distances between the landscape at
initialization and the landscape after training (right). Thick lines
indicate means, thin black lines indicate interquartile range, and
black dots indicate outliers. Training differentially affects land-
scape norms across models and datasets.
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Figure 6. Distributions of individual PRESTO sensitivity in our
VAE hyperparameter multiverse. We show the distribution of
individual PRESTO sensitivity scores for all equivalence classes
of models that vary a particular parameter θi while keeping the
others constant. Marker colors indicate the number of observations
per equivalence class, the solid red line marks the median, and
dashed red lines indicate interquartile range. INFOVAE exhibits
the largest variability in hyperparameter sensitivities.

5.2. Exploring Representational Variability

Reassured by PRESTO’s distinctive properties, we now
leverage our framework to explore representational
variability in our VAE and transformer multiverses. We
find that landscape norms are approximately normally
distributed, such that they permit standard statistical
approaches to outlier detection. As shown in Figure 5,
training affects landscape norms differentially, depending
on model and dataset choices. We observe that INFOVAE
exhibits a larger fraction of anomalous configurations than
β-VAE and WAE, which motivates us to explore individual
PRESTO sensitivities for the main hyperparameters of our
VAE models. Studying the distribution these sensitivities,
depicted in Figure 6, reveals that INFOVAE has the
largest variability in hyperparameter sensitivities—i.e., for
INFOVAE, the effect of changing a hyperparameter depends
more strongly on the position in the hyperparameter space
than for β-VAE and WAE. We conclude that INFOVAE is
less representationally stable than its contenders, which is
confirmed by an analysis of the local and global PRESTO
sensitivities of all models in Appendix B.1.3.
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Figure 7. Comparing MMSs across transformer models. We
show the (dis)similarity between the transformer multiverses
associated with each of our models, as measured by the Wasserstein
distance (lower triangles), the bottleneck distance (upper triangle
left), or the Mantel correlation (upper triangle right). Topological
distances provide a more nuanced perspective than permutation-
based correlation assessments, and they clearly distinguish the
MMSs of large language models from those of smaller models.
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Figure 8. Compressing the VAE hyperparameter multiverse.
We show the compression of the hyperparameter multiverse split
by models (left) and datasets (right) achieved by restricting the hy-
perparameter search to set-cover representatives which guarantee
that each universe has a representative at distance no larger than
the qth quantile of the distribution of pairwise distances in the mul-
tiverse. With PRESTO, we can halve the size of the hyperparameter
search space while ensuring low topological distortion.

Turning to our transformer multiverses, and further
demonstrating the exploratory power of PRESTO, in
Figure 7, we use our topological tools to directly compare
the multiverse metric spaces (MMSs) of our transformer
models. We see that we can distinguish large language
models from smaller language models based on topo-
logical comparisons between their embedding multiver-
ses. Furthermore, topological comparisons between multi-
verse metric spaces have higher discriminatory power than
comparisons based on Mantel correlation (Mantel, 1967).

5.3. Exploiting Representational Variability

In our explorations of representational variability, we have
seen that PRESTO supports sensitivity analysis and outlier
detection for latent-space models. Encouraged by these
findings, we further investigate how our framework can
leverage representational variability (and the lack thereof)
to facilitate the efficient selection of representationally
robust and reliable latent-space models in practice. As
shown in Figure 8, with PRESTO, we can compress
a VAE hyperparameter search space by 50%, ensuring
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Figure 9. Reusing hyperparameter knowledge. We show the
Mantel correlation (color) between the hyperparameter multiverses
of our three VAE models when trained on five different datasets,
annotating Bonferroni-corrected p-values at the 95% (∗) and the
99% (∗∗) significance level. The topological reusability of hyper-
parameter knowledge strongly depends on the chosen model.

that each coordinate is matched to a structurally similar
representative in the compressed space. This suggests that
there exist opportunities for environmentally conscious, yet
empirically sound hyperparameter selection based on topolo-
gical insights into latent-space structure (see Appendix B.1.6
for an additional experiment exploring such opportunities).

In Figure 9, we perform MMS comparisons with PRESTO
to assess when the widespread custom of reusing hy-
perparameter knowledge across datasets is topologically
justified. We find that among our VAE models, only
β-VAE exhibits the cross-dataset latent-space consistency
required for such a transfer. Theoretically sound knowledge
transferability promotes sustainable yet rigorous machine-
learning practices, and PRESTO appears as a promising tool
to evaluate the cross-dataset representational consistency of
latent-space models that is required to ensure it.

Finally, Appendix B.4 shows how PRESTO can be leveraged
in the context of data analysis, e.g., when reasoning about
the results of non-linear dimensionality-reduction methods.

6. Discussion and Conclusion
We introduced PRESTO, a topological multiverse framework
to describe and relate (collections of) latent representations.
PRESTO flexibly and scalably compares spaces varying
in cardinality and dimension, surpassing existing work in
generality while still capturing salient topological signal and
benefiting from theoretical stability guarantees. By offering
novel topological diagnostics for distributions of latent
spaces, PRESTO unlocks a structure-driven alternative for
studying representational variability in generative models,
complementing performance-driven approaches. Drawing
on the notion of multiverse metric spaces, we used PRESTO
to develop scalable practical tools for efficiently evaluating
and selecting latent-space models, including VAEs and
transformers, across a wide range of configurations.

Limitations. PRESTO allows us to measure the sensitivity
of latent-space models to changes in algorithmic, implemen-

tation, and data choices, and we can identify outliers among
latent spaces. To the best of our knowledge, no suitable
baselines currently exist for these purposes, since existing
methods are based on model performance. Hence, exploring
alternative approaches to sensitivity analysis and outlier
detection for latent-space models based on their internal
representations constitutes a crucial avenue for future work.

Moreover, each step in our PRESTO framework offers a
number of choices. For example, we can opt to work
with normalized or unnormalized embeddings, and choose
deterministic or random projections. Based on preliminary
experiments, our intuition is that normalization emphasizes
topological variability, whereas computations based on
unnormalized embeddings chiefly capture geometric
variability. Similarly, random projections seem particularly
suitable for studying variability within individual latent
spaces, whereas deterministic projections appear to excel at
comparisons between different latent spaces. However, how
the representational variabilities observed under each choice
(or combination of choices) are related, and how they can
be interpreted, merits a separate in-depth investigation.

Finally, while PRESTO improves our understanding and
handling of representational variability in latent-space
models, we have only scratched the surface regarding its
applications. Thus, we envisage (1) leveraging PRESTO to
study latent representations beyond the generative domain,
such as graph embeddings and internal neural-network
layers (see Appendix B.3 for preliminary experiments on
the latter), (2) extending PRESTO’s reach to other areas of
responsible and efficient model selection, such as represen-
tational biases and zero-shot stitching, and (3) integrating
PRESTO’s hyperparameter-compression and sensitivity-
scoring methods into machine-learning-operations tools.
Moreover, while our initial experiments on hyperparameter-
search-space compression and hyperparameter-knowledge
reuse seem promising, additional research is necessary
to understand when and how we can leverage insights
from one setting to inform hyperparameter-search and
hyperparameter-selection strategies in other settings.

Overall, we believe that multiverse approaches are essential
in the development of responsible machine-learning
practices, and that PRESTO constitutes an important step
toward establishing those approaches in the community.

Impact Statement
In this paper, we introduce a topological framework for
understanding representational variability in latent spaces,
along with scalable practical tools to efficiently select robust
and reliable machine-learning models. Thus, our work
directly contributes to the advancement of responsible-
machine-learning goals.
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Locatello, F., and Rodolà, E. Relative representa-
tions enable zero-shot latent space communication. In
International Conference on Learning Representations,
2023.

Muller, M. and Strohmayer, A. Forgetting practices in the
data sciences. In CHI Conference on Human Factors in
Computing Systems, New York, NY, USA, 2022. ACM.

Purvine, E., Brown, D., Jefferson, B., Joslyn, C., Praggastis,
B., Rathore, A., Shapiro, M., Wang, B., and Zhou,
Y. Experimental observations of the topology of
convolutional neural network activations. Proceedings
of the AAAI Conference on Artificial Intelligence, 37(8):
9470–9479, 2023.

Reimers, N. and Gurevych, I. Sentence-BERT: Sentence
embeddings using Siamese BERT-networks. In Inui, K.,
Jiang, J., Ng, V., and Wan, X. (eds.), Proceedings of
the 2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint

Conference on Natural Language Processing (EMNLP-
IJCNLP), pp. 3982–3992. Association for Computational
Linguistics, 2019.

Rieck, B. and Leitte, H. Persistent homology for
the evaluation of dimensionality reduction schemes.
Computer Graphics Forum, 34(3):431–440, 2015.

Rieck, B. and Leitte, H. Exploring and comparing
clusterings of multivariate data sets using persistent ho-
mology. Computer Graphics Forum, 35(3):81–90, 2016.

Rieck, B., Togninalli, M., Bock, C., Moor, M., Horn,
M., Gumbsch, T., and Borgwardt, K. Neural persis-
tence: A complexity measure for deep neural networks
using algebraic topology. In International Conference on
Learning Representations, 2019.

Roweis, S. T. and Saul, L. K. Nonlinear Dimensionality
Reduction by Locally Linear Embedding. Science, 290
(5500):2323–2326, 2000.

Scoccola, L. and Perea, J. A. FibeRed: Fiberwise
Dimensionality Reduction of Topologically Complex
Data with Vector Bundles, 2023. arXiv:2206.06513.

Sheehy, D. R. The Persistent Homology of Distance
Functions under Random Projection. In Proceedings of
the 30th Annual Symposium on Computational Geometry,
pp. 328–334, 2014.

Simmons, J. P., Nelson, L. D., and Simonsohn, U. False-
positive psychology: Undisclosed flexibility in data
collection and analysis allows presenting anything as
significant. Psychological Science, 22(11):1359–1366,
2011.

Simonsohn, U., Simmons, J. P., and Nelson, L. D.
Specification curve analysis. Nature Human Behaviour,
4(11):1208–1214, 2020.

Simson, J., Pfisterer, F., and Kern, C. Using multi-
verse analysis to evaluate the influence of model design
decisions on algorithmic fairness. In HHAI 2023:
Augmenting Human Intellect, pp. 382–384. IOS Press,
2023.

Sivaprasad, P. T., Mai, F., Vogels, T., Jaggi, M., and Fleuret,
F. Optimizer benchmarking needs to account for hy-
perparameter tuning. In Daumé III, H. and Singh, A.
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Appendix
In this appendix, we provide the following supplementary materials.

A. Extended Theory. Definitions, proofs, and results omitted from the main text.
B. Extended Experiments. Additional details and experiments complementing the discussion in the main paper.
C. Extended Methods. Further details on properties and parts of the PRESTO pipeline.
D. Extended Background. More information on the latent-space models to which PRESTO can be applied.
E. Extended Related Work. Discussion of additional related work.

A. Extended Theory
In this section, we state the definitions, provide the proofs of our main theoretical results, and derive the additional results
omitted from the main text.
Definition A.1 (Bottleneck Distance dB). Let X and Y be two finite metric spaces. The bottleneck distance between the
persistence diagrams of X and Y is denoted by dB(·, ·) and defined as

dB(D1, D2) = min
γ : D1→D2

max
x∈D1

∥x− γ(x)∥∞ , (10)

for a bijection γ : D1 → D2.
Definition A.2 (Vietoris–Rips Complex). The Vietoris–Rips complex of a metric space (X, d) at diameter r, denoted as
VR(X, r), is defined as

VR(X, r) = {σ ⊆ X | ∀x, y ∈ σ, d(x, y) ≤ r} . (11)

The elements σ of VR(X, r) are the simplices of the complex, and they represent subsets of X such that the pairwise
distances between their elements are at most r.

Notation. Following the form and notation of the results in Krishnamoorthy & May, which are proved for Vietoris–Rips
filtrations, we write dgm(X) for the Vietoris–Rips persistence diagram of a metric space X , and similarly dB(X,Y ) for the
bottleneck distance between two persistence diagrams dgm(X) and dgm(Y ).
Definition A.3 (Normalized Bottleneck Distance dN ). For metric spaces (X, dX) and (Y, dY ) with diameters
diam(X),diam(Y ), the normalized bottleneck distance is defined as

dN (X,Y ) = dB

(
X

diam(X)
,

Y

diam(Y )

)
. (12)

Moreover, as proved by Krishnamoorthy & May, dN has the favorable properties of scale invariance and stability.
Definition A.4 (Johnson–Lindenstrauss Projection). Let (X, dX) and (Y, dY ) be metric spaces. A Johnson-Lindenstrauss
projection (JL projection) is a linear map f : X → Y that satisfies the following inequality for some 0 < ε < 1:

(1− ε) dX(u, v)2 ≤ dY (f(u), f(v))
2 ≤ (1 + ε) dX(u, v)2 . (13)

The JL projection provides a controlled distortion of pairwise distances, allowing for a significant reduction in dimensionality
while approximately preserving the geometry of the original space. The celebrated JL Lemma guarantees the existence of
such a projection f .
Lemma A.5 (Johnson–Lindenstrauss Persistent Homology Preservation). Let X ⊂ Rd and ε ∈ (0, 1). If f : Rd → Rm is
a JL linear projection, then

dN (X, f(X)) ≤ ε ,

where n, the dimension of the projection, is assumed to be larger than 8 ln(|X|)/ε2.

JL-linear maps represent the most efficient methods to collapse extremely large latent spaces. In practice, Gaussian random
projections are used, but even random orthogonal projections are sufficient to preserve the topology. However, to achieve
even tighter bounds on the topology of the projection at even lower dimensions, we can invoke more sophisticated projection
methods.

Multidimensional Scaling (MDS). Given an input metric space X = {x1, . . . , xn} with a metric dX and desired reduced
dimension m, MDS finds a centered data set X̃ = {x̃1, . . . , x̃n} ⊂ Rm such that

∑n
i,j=1 (d(xi, xj)− ∥x̃i − x̃j∥)2 is

minimized. This projection is achieved in two steps:
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1. Obtain a realization Φ of X in Rk for some k, i.e., Φ: X → Φ(X) ⊂ Rk is an isometry.
2. Orthogonally project the realized data onto the first m ≤ d dominant eigenvectors of the covariance matrix C(Φ(X)).

To find a realization of X in Rk, use the fact that −1/2D◦2
X = CnGXCn, where GX is the Gram matrix of X , and

Cn = In − 1/n1n is the centering matrix. Since GX is positive semidefinite, it has a unique root Z = [z1, . . . , zn] ∈ Rk×n

such that ZTZ = GX . The realization of X is given by Φ(X) = {z1, . . . , zn}. With the realization matrix Z, compute
the singular-value decomposition Z = UΣV T , where Σ = diag(σ1, . . . , σn) with σ1 ≥ . . . ≥ σn. The eigenvectors of
C(Z) = ZZT = UΣ2UT are the columns of U , and the eigenvalues λi of C(Z) are σ2

i . Take the first m columns of U to
perform an orthogonal projection.

Definition A.6 (Metric Multidimensional Scaling [mMDS]). Let (X, dX) = {x1, . . . , xn} ⊂ Rd be a finite metric
space with GX = UΣ2UT the corresponding Gram matrix, and Z = [z1, . . . , zn] a realization of X in Rk where
GX = ZTZ. To embed X into dimension 0 < m ≤ d, we project onto the first m dominant eigenvectors of GX , defined
as Ũ = [u1, . . . , um]. The mMDS reduction P

(m)
X : X → Rm is the map

P
(m)
X (xi) = x̃i = projIm(Ũ)(zi) . (14)

Lemma A.7 (mMDS Homology Preservation). Let X ⊂ Rd and 0 < m ≤ d. Then P
(m)
X : X → Rm preserves the

homology of X according to the following bound on dN :

dN (X,P
(m)
X ) ≤ 2

√
2

diam(Pm
X (X))

4

√√√√ (
∑m

1 λ2
i )(
∑d

m+1 λ
2
i )

(
∑d

1 λ
2
i )

,

where λi is defined to be the ith eigenvalue of the covariance matrix C(X).

Lemma A.8 (bi-Lipschitz Homology Preservation). For metric spaces (X, dX), (Y, dY ), let f : X → Y be a k-bi-Lipschitz
map. The change in dN can be bounded as

dN (X,Y ) =

∣∣∣∣
k2 − 1

k

∣∣∣∣
diam(X)

diam(Y )
. (15)

Before we can prove general statements about the preservation of our topological distance under projections, we need to
prove some supporting lemmas concerning the relationships between various topological distances.

Lemma A.9 (Bottleneck-Distance Bound). Let p ∈ R>0 and Wp denote the pth Wasserstein distance between persistence
diagrams. Then the bottleneck distance dB constitutes an upper bound for Wp, i.e., Wp ≤ dB .

Proof. We prove a more general statement. For p ≤ q, the function ϕ(x) := x
q
p is convex. Thus, for any function f and any

probability measure µ, we have

(∫
fpdµ

) 1
p

= ϕ

((∫
fpdµ

) 1
p

) 1
q

(16)

≤
(∫

ϕ (fp) dµ

) 1
q

(by Jensen’s inequality) (17)

=

(∫
fqdµ

) 1
q

. (18)

As this result holds for general functions f , it particularly holds for the cost functions used in the calculation of the
Wasserstein distance between persistence diagrams. Finally, we have limp→∞ Wp = dB (some works even use the
suggestive notation W∞ to denote the bottleneck distance), concluding the proof.

Continuing in a similar vein, we turn to the analysis of the norms of persistence landscapes.

Lemma A.10 (Landscape-Norm Bound). Let p ∈ R>0 and ∥ · ∥p denote the pth persistence landscape norm (Bubenik, 2015,
Section 2.4). Then the infinity norm ∥ · ∥∞ is an upper bound for ∥ · ∥p, i.e., ∥λ∥p ≤ ∥λ∥∞ for all persistence landscapes λ.
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Proof. The persistence landscape norm is simply an Lp norm, calculated for a specific class of piecewise-linear functions,
i.e., the persistence landscapes. We prove a more general result holding for all functions f that satisfy a certain integral
property. Specifically, we assume that f ∈ Lq , i.e., the absolute value of f , raised to the qth power, has a finite integral. This
holds for a large class of functions, and for all persistence landscapes in particular. Since |f |p ≤ |f |q for p ≤ q, this implies
that f ∈ Lp. Now let a := q/p and b := q/q−p. Since 1/a + 1/b = 1, the numbers a and b are Hölder conjugates and we may
apply Hölder’s inequality with g = 1, the function that is identically to 1 over the domain of f , yielding

∥fp · 1∥1 ≤ ∥fp∥a · ∥1∥b . (19)

The left-hand side is equivalent to ∥f∥pp, while the right-hand side, following the definition of the norm, evaluates to

∥fp∥a =

∫ (
|fp| qp dµ

) p
q

(20)

= ∥f∥pq . (21)

By definition of the norm, the other factor satisfies ∥1∥b ≥ 1. Putting this together, we have

∥f∥pp ≤ ∥f∥pq (22)

∴ ∥f∥p ≤ ∥f∥q . (23)

As a consequence, the persistence-landscape norms are bounded similarly to the Wasserstein distances. Noticing that
limp→∞ ∥f∥p = ∥f∥∞ concludes the proof.

The immediate consequence of Lemma A.9 and Lemma A.10 is that any bound calculation of our topological distances
is, eventually, upper-bounded by the bottleneck distance between persistence diagrams. While such a bound is by its very
nature potentially rather coarse, the bottleneck distance is suitable as the most extreme upper topological bound since it
is known to be itself bounded by the geometrical variation between the two spaces from which the respective persistence
diagrams arise. More precisely, we have

dB(X,Y ) ≤ 2dGH(X,Y ) , (24)

where dGH denotes the Gromov–Hausdorff distance between X and Y (Chazal et al., 2014a). Thus, any topological variation,
regardless of the distance metric, is upper-bounded by the geometrical variation between two spaces.

Theorem 3.8 (Metric-Space Preservation under Projection). Given an MMS M and an associated PMMS Mk with
topological loss ℓk, we can bound the pairwise-distance perturbation under projection as Mk[i, j] ≤ M[i, j] + 2ℓk .

Proof. Following the preceding discussion, as well as Lemma A.9 and Lemma A.10, it is sufficient to phrase the desired
inequality in terms of the bottleneck distance between two spaces. Let Ei, Ej denote the respective embeddings, and let f
be a projector. Starting from the left-hand side, and using the triangle inequality, we get

dB (f (Ei) , f (Ej)) ≤ dB (f (Ei) , Ei) + dB (Ei, f (Ej)) (25)
≤ dB (f (Ei) , Ei) + dB (Ei, Ej) + dB (Ej , f (Ej)) (26)
≤ M[i, j] + dB (f (Ei) , Ei) + dB (Ej , f (Ej)) . (27)

The last two terms on the right-hand side depend on the selected projector function. By Eq. (7), we see that their sum is
upper-bounded by 2ℓk, concluding the proof.

Theorem 3.8 might not be entirely satisfying because ℓk still has an underlying dependency on the projector. However, there
are no general bounds available unless we choose a specific projector. Notice that for many classes of projectors, including
metric MDS, PCA, and random projections, suitable bounds for ℓk itself may be obtained.

Theorem 3.9 (PRESTO Variance under Projection). Consider an MMS M = (E , dT ) with the landscape distance
dT (Ei, Ej) := d(L(Ei), L(Ej)) and associated persistence landscapes LM. Further, let Mk be a PMMS with a topological
loss ℓk. Then we can bound the maximal change in any persistence landscape norm as

∥L(Ei)∥ − ℓk ≤ ∥L(Pi)∥ ≤ ∥L(Ei)∥+ ℓk . (8)
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Given the PRESTO variance of M, PV(LM), we can bound the PRESTO variance of Mk, i.e., PV(LMk), as

|PV(LM)− PV(LMk)| ≤ 4ℓk

N
σi +

(
2ℓk
)2

N
, (9)

where σi :=
∑N

i=1(∥L(Ei)∥ − µE).

Proof. For the first part of the statement, we notice that ∥L(Ei)∥ = d(L(Ei), ∅), i.e., the distance of a given persistence
landscape to the empty landscape. Thus,

∥L(Ei)∥ ≤ d(L(Ei), L(Pi)) + d(L(Pi), ∅) (triangle inequality) (28)
= d(L(Ei), L(Pi)) + ∥L(Pi)∥ (by definition of the norm) (29)

≤ ∥L(Pi)∥+ ℓk (by definition of ℓk). (30)

Applying the same argument to ∥L(Pi)∥ concludes the proof of this part. As for the second part, we recall that we want to
bound |PV(LM)− PV(LMk)|. To this end, we need to find a suitable bound for the second term, i.e., the term that deals
with projected embeddings. Here, we note that each summand is of the form (∥L(Pi)∥ − µP)

2, for which we can obtain a
bound using Eq. (8) as

∥L(Pi)∥ − µP ≤ ∥L(Ei)∥+ ℓk − µP (31)

≤ ∥L(Ei)∥+ ℓk − µE + ℓk , (32)

with the second inequality arising from the lower bound of Eq. (8). |PV(LM) − PV(LMk)|. Putting this together and
calculating the differences per term, we get

|PV(LM)− PV(LMk)| ≤ 4ℓk

N

N∑

i=1

(∥L(Ei)∥ − µE) +

(
2ℓk
)2

N
. (33)

B. Extended Experiments
In this section, we provide additional details and experiments complementing the discussion in Section 5, presenting

1. extended experiments in our VAE hyperparameter multiverse and our β-VAE implementation multiverse,
2. extended experiments in our transformer multiverse, including a multiverse analysis of the PRESTO pipeline,
3. preliminary experiments exploring PRESTO’s use as a dissimilarity measure for neural-network representations, and
4. a multiverse analysis of non-linear dimensionality-reduction methods.

We make all our code, data, and results available at https://doi.org/10.5281/zenodo.11355446. Our code is maintained at
https://github.com/aidos-lab/Presto.

B.1. Extended Experiments in VAE Multiverses

Here, we provide further details on the configuration of our VAE multiverses, as well as additional experiments
complementing our discussion in the main text.

B.1.1. THE VAE HYPERPARAMETER MULTIVERSE

As previewed in the main text, our VAE hyperparameter multiverse investigates the hyperparameter space for three commonly
cited autoencoder architectures, namely (1) β-VAE (Higgins et al., 2017), (2) INFOVAE (Zhao et al., 2019), and (3) WAE
(Tolstikhin et al., 2018), covering hyperparameters ranges that appear commonly in the literature, as well as widely used
open-source implementations. The explicit values and brief descriptions of the grid searches that determine our multiverse
are detailed in Table 1.

We select three hyperparameters for each architecture, combining their searches to generate 24 unique configurations. Each
model was trained using a random [0.6, 0.3, 0.1] train/validation/test split for each of our five datasets. Furthermore, to
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VAE θi Values Description

β-VAE
β 1, 4, 16, 64 Recon Bias
γ 500, 750, 1 000 KLD Bias
ℓ B,H Loss Variations

INFOVAE
β 1, 5, 10 Recon Bias
α −5,−2,−0.5, 0 KLD Bias
κ imq, rbf MMD Kernel

WAE
λ 10, 20, 50, 100 MMD Prior Bias
ν 1, 2, 3 Kernel Width
κ imq, rbf MMD Kernel

Table 1. VAE Hyperparameter Multiverse. For each of three VAEs, we explore the product of all varied-parameter values across five
datasets for two sample sizes (100% and 50% of the training set), for a total of 3 · 5 · 4 · 2 · 3 · 2 = 720 configurations. In particular, we
get 48 configurations per architecture, which we use to evaluate sensitivity in Tables 5 and 6, detect outliers in Figure 5, and compare
multiverses in Figure 9. For β-VAE loss variations, H is the original implementation from Higgins et al. (2017), and B stems from
Burgess et al. (2018).

Parameters Datasets

celebA CIFAR-10 dsprites FashionMNIST MNIST

Hidden Dimensions (32, 64, 128, 256, 512) (32, 64, 128) (8, 16) (32, 64) (32, 64)
Latent Dimension 50 25 25 10 10
Batch Size 128 128 128 64 64

Table 2. Default implementation choices in the VAE hyperparameter multiverse. We show our fixed implementation parameters, over
which we vary the algorithmic parameters listed in Table 1. Each model was trained using an ADAM optimizer with a learning rate of
0.001 over 30 epochs.

understand the variability in latent structure under different cardinalities, we train models with 100% (0.6) and 50% (0.3)
training-set sizes, keeping validation- and test-set cardinalities fixed.

Although our multiverse approach supports varying algorithmic, implementation, and data choices, we found it prudent to
design an environment that demonstrates the latent variability of algorithmic choices. Naturally, this required fixing some
parameters across runs (e.g., our train/test/split ratios). See Table 2 for the values of our fixed implementation choices.

B.1.2. THE β-VAE IMPLEMENTATION MULTIVERSE

Complementing our VAE hyperparameter multiverse, we design a multiverse to explore how implementation choices, i.e.,
(1) batch size b, (2) hidden dimensions h, (3) learning rate l, (4) sample size s, (5) and train-test split t can affect the latent
representations of variational autoencoders. We focus on β-VAE, varying the aforementioned parameters. Our exact choices
are detailed in Table 3 and Table 4.

β Parameter Values

{2, 16, 64}
Batch Sizes (b) 8, 16, 32, 64, 128, 256

Learning Rates (l) 0.002, 0.004, 0.008, 0.016, 0.032, 0.064
Training Sample Sizes (s) 0.5, 0.6, 0.7, 0.8, 0.9, 1

Table 3. β-VAE Implementation Multiverse. For β-VAE, we explore the relation between the β hyperparameter and various implemen-
tation choices. This table contains our choices for batch size (b), learning rate (l), and sample size (s). Our choices for train-test split (t)
and hidden dimensions (h), are explained in Table 4 and Appendix B.1.2, respectively.
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Hidden Layers celebA CIFAR-10 dsprites FashionMNIST MNIST

2

(16, 32) (8, 16) (8, 16) (8, 16) (8, 16)
(32, 64) (16, 32) (16, 32) (16, 32) (16, 32)
(64, 128) (32, 64) (32, 64) (32, 64) (32, 64)
(128, 256) (64, 128) (64, 128) (64, 128) (64, 128)

3 (32, 64, 128) (8, 16, 32) (16, 32, 64) (16, 32, 64)
(32, 64, 128)

4 (16, 32, 64, 128) (16, 32, 64, 128) (16, 32, 64, 128)

5 (32, 64, 128, 256, 512)

Table 4. Implementation choices in the β-VAE implementation multiverse: Hidden layers for our datasets. Given the varying
complexity of each dataset in our β-VAE implementation multiverse, we vary the complexity of the layer as seen in the literature and
popular PYTORCH autoencoder frameworks.

Our train-test splits iterate over five random train/validation/test splits at a fixed size of [0.6, 0.3, 0.1]. Moreover,
acknowledging interplay between algorithmic and implementation choices, we train each implementation configuration
over 3 different choices for β ∈ {2, 16, 64}, for the datasets that we also considered in the hyperparameter multiverse, i.e.,
(1) celebA, (2) CIFAR-10, (3) dsprites, (4) FashionMNIST , and (5) MNIST .

B.1.3. PRESTO SENSITIVITIES

Our sensitivity scores are based on the variance in the structure of a distribution of latent spaces, as measured by PRESTO.
Though this is not restricted to multiverse analysis (i.e., the variation in landscape norms can be applied to any distribution
of embeddings), the multiverse treatment of different algorithmic, implementation, and data choices results naturally in a
collection of latent representations. Thus, we tailor our scores specifically to understanding variation within a multiverse.
As stated in the main text, we define three different variations of PRESTO sensitivity (PS) in Definition 3.4 that make use of
Definition 3.3. We repeat these definitions here for convenience.

Given a multiverse M, fix a model dimension i, and define an equivalence relation ∼i such that θ′ ∼i θ
′′ ⇔ θ′j = θ′′j for all

θ′, θ′′ ∈ M and j ̸= i, yielding qi equivalence classes Qi.

The individual PRESTOp sensitivity of equivalence class Q ∈ Qi in M is

PSp
h(Q | M) :=

√
PVp

h(L[Q]) ,

where L[Q] ⊂ L is the set of landscapes associated with models in equivalence class Q. Aggregating over all equivalence
classes in Qi, we obtain the local PRESTOp sensitivity of M in model dimension i as

PSp
h(M | i) :=

√
1

qi

∑

Q∈Qi

PVp
h(L[Q]) .

Finally, aggregating over all c = |θ| dimensions of models in M yields the global PRESTOp sensitivity of M, i.e.,

PSp
h(M) :=

√√√√1

c

∑

i∈[c]

1

qi

∑

Q∈Qi

PVp
h(L[Q]) .

Recall from Definition 3.3 that p and h represent the p-norm for landscapes and the homology dimension, respectively.
In our experiments, we consider up homology features up to second order (h = 2), which preserves the scalability of our
pipeline while still capturing descriptive higher-dimensional topological information. Additionally, we default to p = 2,
understanding nicely the theoretical trade-offs for different p-norms (cf. Lemma A.10).

19



Mapping the Multiverse of Latent Representations

µ∥L∥ σ∥L∥ µPS σPS σ∥L∥/µ∥L∥ σPS/µPS µPS/µ∥L∥ σPS/σ∥L∥
VAE θi

β-VAE
β 0.0171 0.0012 0.0067 0.0012 0.0714 0.1762 0.3899 0.9615
γ 0.0171 0.0017 0.0065 0.0016 0.1021 0.2453 0.3807 0.9148
ℓ 0.0171 0.0015 0.0065 0.0015 0.0893 0.2364 0.3819 1.0105

INFOVAE
α 0.0182 0.0063 0.0072 0.0044 0.3475 0.6176 0.3953 0.7026
β 0.0182 0.0040 0.0081 0.0047 0.2191 0.5815 0.4461 1.1841
κ 0.0182 0.0043 0.0081 0.0047 0.2344 0.5820 0.4421 1.0978

WAE
λ 0.0185 0.0008 0.0075 0.0005 0.0405 0.0610 0.4063 0.6111
ν 0.0185 0.0011 0.0075 0.0010 0.0573 0.1306 0.4022 0.9168
κ 0.0185 0.0013 0.0074 0.0013 0.0690 0.1705 0.3978 0.9824

Table 5. Local PRESTO sensitivity in the VAE hyperparameter multiverse. Along with the average and standard deviation of the
landscape norms for the latent representations associated with each architecture (µ∥L∥, σ∥L∥), we display the local sensitivities for each
of the main parameters searched (see Table 1 for our parameter list). Recall that local PS is an average over different equivalence classes
that partition M, denoted (µPS). Given the standard partition sizes in this multiverse (equal number of hyperparameter configurations
per architecture), we can also take standard deviations (σPS) and other derivatives, further describing the relative variability between
architectures. We see that different VAE architectures have varying levels of sensitivities and robustness across their hyperparameter
spaces, which should be investigated thoroughly when using them as generative models.

µ∥L∥ σ∥L∥ µPS σPS σ∥L∥/µ∥L∥ σPS/µPS µPS/µ∥L∥ σPS/σ∥L∥
VAE

β-VAE 0.0171 0.0015 0.0066 0.0014 0.0876 0.2193 0.3842 0.9623
INFOVAE 0.0182 0.0049 0.0078 0.0046 0.2670 0.5937 0.4278 0.9948
WAE 0.0185 0.0011 0.0075 0.0009 0.0556 0.1207 0.4021 0.8368

Table 6. Global PRESTO sensitivity in the VAE hyperparameter multiverse. Here, we aggregate the local sensitivities into a global
sensitivity score, analyzing the representational variability across 48 unique latent representations for each VAE architecture in the
multiverse. Again, we provide additional derivative statistics to give context for the scale of these scores. These values echo our findings
described in the main paper: INFOVAE has the highest representational variability in the VAE hyperparameter multiverse.
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Figure 10. PRESTO sensitivity in the β-VAE implementation multiverse. We show the PRESTO sensitivity scores for the β-VAE as a
function of β when varying (from left to right) batch size b, hidden dimensions h, learning rate l, sample size s, and the train-test split t.
There is no consistent relationship between the choice of β and the sensitivity of the latent space to implementation-parameter choices.

Against this background, we provide overviews of local and global PRESTO sensitivities and related statistics in the VAE
hyperparameter multiverse in Tables 5 and 6, along with an analysis of PRESTO sensitivities in the β-VAE implementation
multiverse in Figure 10. The overview tables confirm our impression from the main paper that INFOVAE has the
highest representational variability among our VAE models, whereas Figure 10 highlights the complex interplay between
hyperparameter and implementation choices.
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Parameter Value

Dataset MNIST
Batch Size 64

Model β-VAE
Seeds* 0, 21, 22, 23, 24, 25, 26, 27

Latent Dimension 5
Hidden Dimensions (8, 16)
β 4
γ 1000.0
Loss Type H

Optimizer Adam
Learning Rate 0.001

Table 7. Model configurations for experiment with random initializations. To investigate how training affects variability in latent-space
models, we train eight β-VAE models on a fixed training set of MNIST . The models only differ in their random initializations (Seeds*).

(a) Untrained Models

0.000

0.005

0.010

0.015

0.020

(b) Trained Models

Figure 11. Examining latent representations pre- and post-training. We juxtapose the pairwise PRESTO distances of untrained latent
representations that arise from identical β-VAE model configurations trained on MNIST with different random seeds (a) with the pairwise
PRESTO distances of latent representations arising from these configurations after training (b). We find that training decreases the
structural variability among randomly seeded models, implying that models agree about key topological features. Moreover, PRESTO is
able to detect anomalous seeds, i.e., seeds resulting in latent representations that, when trained, constitute structural outliers.

Extending our exploration of how training affects variability in latent-space models (cf. Figure 5), we further investigate the
sensitivity of random initializations in a small multiverse of β-VAE models trained on the MNIST dataset. In particular,
we fix all parameters except for the random seed that initializes the β-VAE, leading to eight models in the multiverse
(see Table 7 for the full configurations). We use PRESTO to assess how much structural variability is induced by random
initializations alone, and compare this to the variability we observe in the latent spaces of our trained models. To this end,
we compute the PRESTO sensitivity over eight untrained embeddings and eight trained embeddings based on a fixed training
set from MNIST . We find that the sensitivity of the initial embeddings is higher (PS = 0.0188) than that of the trained
embeddings (PS = 0.0076).

To complement this analysis, we additionally compute the multiverse metric spaces (MMSs) for the multiverses arising from
our initialized and trained embeddings, visualizing the pairwise PRESTO distances between the universes in each MMS
in Figure 11. Again, we find that the topological variation of the initial embeddings is higher than that of their trained
counterparts, indicating a convergence to similar topological features over training. PRESTO’s invariance to scaling (when
using normalization) allows us to analyze this convergence despite geometric differences in coordinate systems between the
trained latent representations. We also observe that PRESTO reveals a seed resulting in an anomalous latent representations
(here: seed 26), highlighting the importance of tools like PRESTO that can understand distributions of latent representations
and reassess the impact of choices like random initialization that are often overlooked in practice.

21



Mapping the Multiverse of Latent Representations

B.1.4. PRESTO’S RELATION TO GEOMETRIC AND GENERATIVE SIMILARITY

Having revisited PRESTO sensitivities, we now expand our discussion around Figure 4, where we asked what geometric and
generative signal exactly is picked up by our framework. We begin by describing our experimental setup in more detail and
then move on to discuss PRESTO’s relation to various notions of geometric and generative similarity.

Experimental Setup. Let E = M(X) for M ∈ M be a latent space in our VAE multiverse, where X is a training set
of images. Fix a subspace cardinality (N ), such that we can choose a random sample from the training set S ⊆ X such
that |S| = N . We then map S into the latent space, obtaining M(S) ⊆ E, which will be our objects of comparison, i.e.,
S := {M(S) | M ∈ M}, where |S| = nd is the number of random draws. This results in a set of random latent subspaces,
used to compute the correlations displayed in Figure 4.

Geometric Similarity. To study the similarity in geometric structure between latent spaces, we can use a number of tools
from representation learning. Recognizing the plethora of well-studied approaches in the field, and acknowledging the
myriad interesting tools we could use to further investigate this phenomenon in future work, for the purposes of our current
exposition, we take relatively simple approach. We opt to endow each M(S) ∈ S with a metric, such that we can compare
metric spaces between M(S),M ′(S) ∈ S2 using the Pearson distance between their matrix representations. Note that
these are indeed metric subspaces of the original embeddings. By aggregating the observed behavior over a large number
of random draws, we obtain a computable baseline for assessing the geometric capabilities of PRESTO (working without
normalization). Given that the α-complexes leveraged by PRESTO default to using Euclidean distances between points,
we also use this to produce a (pairwise distance) matrix representation of the elements of S. The results are displayed in
the left panel of Figure 4. Additionally, given the utility of cosine similarity in the study of latent spaces, we compute
the Pearson distance between the pairwise cosine similarity matrices for M(S),M ′(S), to assess PRESTO’s relation to a
different geometric signal in the right panel of Figure 12.

β INFO WAE

0.00

0.25

0.50

0.75

1.00

M
an

te
lC

or
re

la
tio

n

PRESTO | Generative

β INFO WAE

PRESTO | Cosine
celebA
CIFAR-10
MNIST

Figure 12. PRESTO’s correlation with generated images and cosine distances. We assess PRESTO’s ability to detect generative
(dis)similarity between models by measuring its correlation with batch MSE loss for random subsets of images, generated by perturbing
aligned latent coordinates (left), as well as its correlation with the Pearson distance between random subspaces represented by their
pairwise cosine similarity matrices (right). Some VAE architectures show potential to have unsupervised generative properties described
by the topological and geometric properties of their latent spaces.

Generative Similarity. As established in Figure 4, with further details provided in Appendix B.1.5, PRESTO is in many
ways orthogonal to performance. This leads us to an interesting question: Are there other properties of a model’s latent
space, also orthogonal to performance, that can describe a the model’s properties as a generator? While this merits its
own extensive study, for the purposes of this work, we are interested in designing an experiment that could relate a
notion of unsupervised generative similarity to PRESTO. Using the experimental design described above, namely S, we
suggest generating comparable images that were unseen during training using the following pipeline. For each M(S) ∈ S:
(1) Compute the centroid C of the original latent space E. (2) For v ∈ M(S), compute ṽ = (1− t)v + tC, where t ∈ R is
a (small) perturbation parameter. (3) Use the decoder associated with M to generate a new image Iṽ .

This establishes a set of generated images Ĩ := {Iṽ : v ∈ M(S)} that is robust to multiverse considerations—as various
latent spaces are encoded into very different scales and coordinate systems, directly sampling from the latent space becomes
impractical. In contrast, we provide an unsupervised approach for generating principled comparisons between M(S),M ′(S)
in the pixel space by comparing the batch Mean-Squared Error (MSE) between Ĩ and Ĩ ′. We display our results for
measuring the correlation between PRESTO and the generative distance matrices over different random draws of S, such
that each cell in the matrix M [i, j] that compares Ei to Ej is computed by MSE(Ĩi, Ĩj), in the left panel of Figure 12.
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B.1.5. PRESTO’S RELATION TO PERFORMANCE

Continuing the corresponding discussion in the main paper, we now further analyze the relationship between PRESTO, an
inherently structural measure, and performance. Figure 4 from the main text highlights that, in many of our evaluations,
the latent spaces from the most stable and reliable VAE architecture (β-VAE) show no correlation between PRESTO
and performance. In a similar vein, Figure 13 depicts the relationship between landscape norms and performance (MSE
reconstruction loss on the test set) for WAE and INFOVAE. p vs. landscape norm. Like β-VAE, landscape norms for WAE
appear to be orthogonal to performance, whereas the conclusion for INFOVAE (our overall weakest performer) is not nearly
as clear and merits additional exploration in future work. Across all model architectures, however, PRESTO demonstrates
the capacity to characterize differences between the latent spaces of models with similar performance.
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Figure 13. Relationships between landscape norms and performance. To assess the relationship between generative-model performance
and PRESTO, we compare landscape norms, a proxy for topological complexity, and test reconstruction loss (MSE errors) for the WAE
and INFOVAE architectures. We observe that PRESTO can distinguish WAE models that perform similarly across multiple datasets, while
INFOVAE’s hyperparameter space, which is sensitive with respect to performance and representational variability, results in unnecessary
complexity that should encourage additional care when applying this model to known and unknown tasks.

B.1.6. LOW-COMPLEXITY TRAINING

Finally, we examine PRESTO’s ability to perform hyperparameter compression in low-complexity training environments.
While we already established exciting opportunities for hyperparameter reuse across datasets using PRESTO (cf. Figure 9),
low-complexity training constitutes another avenue for leveraging PRESTO’s hyperparameter compression to dismantle the
environmentally costly culture of brute-force performance-based hyperparameter optimization. In Figure 14, we investigate
the stability of our compression routine when halving the size of the training set (i.e., reducing it to 50% of its original size).
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Figure 14. Opportunities for low-complexity training. We show the pairwise PRESTO distances between individual universes and their
closest representatives in the β-VAE FashionMNIST hyperparameter multiverse, as assessed based on training with 50% (blue) or 100%
(teal) of the training data, where the set of representatives is computed based on the 50%-multiverse. Red lines show the threshold value
associated with the x-axis quantile q in the 50%-multiverse, and markers with y = 0 indicate self-representation. With PRESTO, we can
compress the hyperparameter search space in a low-complexity training setting and perform high-complexity training only on a smaller
set of representatives, with limited topological distortion.
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B.2. Extended Experiments in Transformer Multiverses

Here, we provide further details on the configuration of our transformer multiverse, as well as additional experiments
assessing the effect of choices in the PRESTO pipeline on our landscape norms, distances, and sensitivity scores.

B.2.1. THE TRANSFORMER MULTIVERSE

While our VAE multiverses focused on representational variability induced by hyperparameter and implementation choices,
our transformer multiverse is designed to investigate both PRESTO’s power as a black-box diagnostic and the impact
of choices in the PRESTO pipeline on our measurements. To this end, we embed 214 = 16 384 abstracts from four
summarization datasets using six pretrained transformer models, covering different levels of textual technicality and language-
model sophistication. Thus, we obtain 24 sets of (214 × ∗)-dimensional embeddings, where ∗ ∈ {384, 768, 1 024, 1 536} is
the embedding dimensionality of the respective language model. From these embeddings, we generate projections onto
k ∈ [4] components via PCA or Gaussian random projections, using s ∈ {2i | i ∈ {10, . . . , 14}} embedded samples to
compute persistent homology, as well as π ∈ {2i | i ∈ {3, . . . , 9}} projections to average landscapes when using random
projections. We summarize the setup of our transformer multiverse in Table 8.

Decision θi Values

Model M ADA, DISTILROBERTA, MINILM, MISTRAL, MPNET, QA-DISTILBERT
Dataset X arXiv, bbc, cnn, patents
Dataset sample size s 2i for i ∈ {10, 11, 12, 13, 14}
Number of projection components k 1, 2, 3, 4
Projection method PCA, Gaussian Random Projections
Number of Gaussian projections π 2i for i ∈ {3, 4, 5, 6, 7, 8, 9}

Table 8. Transformer Multiverse. We work with 6 · 4 = 24 sets of embeddings, investigating each through the lens of multiple
combinations of different choices involved in the PRESTO pipeline.

All datasets, as well as our four smaller transformer models, are available on HuggingFace.

(1) Datasets.
(a) arXiv: abstracts of all arXiv articles up to the end of 2021;
(b) bbc: summaries of BBC news articles;
(c) cnn: summaries of news articles from CNN and DailyMail; and
(d) patents: abstracts of U.S. patent applications.

We embed the first 214 samples from the designated training sets of these datasets with each of our models.
(2) Models.

(a) DISTILROBERTA: general-purpose model, embedding dimension 768, maximum sequence length 512 word pieces;
(b) MINILM: general-purpose model, embedding dimension 384, maximum sequence length 256 word pieces;
(c) MPNET: general-purpose model, embedding dimension 768, maximum sequence length 384 word pieces; and
(d) QA-DISTILBERT: QA-specialized model, embedding dimension 768, maximum sequence length 512 word pieces.

These models are provided as pretrained by the sentence-transformers library (Reimers & Gurevych, 2019). They come
with normalized embeddings, and we truncate the texts to be embedded in the (rare) event that they exceed a model’s
maximum sequence length.

To obtain embeddings from our two large language models, ADA (embedding dimension: 1 536) and MISTRAL (embedding
dimension: 1 024), we query the corresponding APIs of their providers (OpenAI and MistralAI, respectively).

B.2.2. LANDSCAPE NORMS

To start, we investigate how our choice of projector interacts with our chosen sample size s, keeping the number of projection
components fixed at k = 3. In particular, we are interested in how our landscape norms change as we vary these parameters,
since landscape norms underlie both our PRESTO distances and our PRESTO sensitivities. Inspecting the distributions
of landscape norms when working with Gaussian random projections in Figure 15, we see that norms are approximately
normally distributed, and that larger sample sizes are associated with smaller landscape-norm means as well as smaller
landscape-norm variance.

24

https://huggingface.co/datasets/gfissore/arxiv-abstracts-2021
https://huggingface.co/datasets/EdinburghNLP/xsum
https://huggingface.co/datasets/cnn_dailymail
https://huggingface.co/datasets/big_patent
https://huggingface.co/sentence-transformers/all-distilroberta-v1
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://huggingface.co/sentence-transformers/multi-qa-distilbert-cos-v1


Mapping the Multiverse of Latent Representations

1

2

3

∑
‖L
‖

arxiv — ada arxiv — distilroberta arxiv — MiniLM arxiv — mistral arxiv — mpnet arxiv — qa-distilbert

1

2

3

∑
‖L
‖

bbc — ada bbc — distilroberta bbc — MiniLM bbc — mistral bbc — mpnet bbc — qa-distilbert

1

2

3

∑
‖L
‖

cnn — ada cnn — distilroberta cnn — MiniLM cnn — mistral cnn — mpnet cnn — qa-distilbert

210 211 212 213 214

s

1

2

3

∑
‖L
‖

patents — ada

210 211 212 213 214

s

patents — distilroberta

210 211 212 213 214

s

patents — MiniLM

210 211 212 213 214

s

patents — mistral

210 211 212 213 214

s

patents — mpnet

210 211 212 213 214

s

patents — qa-distilbert

Figure 15. Distribution of landscape norms when projecting via Gaussian random projections and varying the sample size s. We
show the distribution of landscape norms when working with π = 29 = 512 Gaussian random projections and varying the sample size s
of the embedded dataset. Larger sample sizes are associated with smaller landscape norms, and the landscape norm distributions of large
language models are clearly distinguishable from those of smaller transformer models.
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Figure 16. Landscape norms when projecting with PCA and
varying the sample size s. We show the landscape norms of PCA-
based projections as a function of the sample size s of the embedded
dataset. While landscape norms obtained via PCA live on a scale
which is different from that of landscape norms obtained via Gaussian
Random projections, their distinguishing power and behavior under
sample-size variation are qualitatively similar.

Next, we compare the distributions of norms under
Gaussian random projections with the fixed norms we
obtain under PCA. We observe that although the norms
live on different scales, with PCA-based norms being
much smaller than the norms of Gaussian random pro-
jections, the change pattern when varying the sample
size s is qualitatively similar, and the distinction between
large language models and smaller transformer models is
equally evident. Hence, while Gaussian random projec-
tions allow us explore representational variability within
individual latent spaces, when comparing between latent
spaces, we may use PCA as well. Thus, we fix PCA as
a projector for the remainder of our experiments.
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Figure 17. PRESTO distances between transformer models. We show the PRESTO distance between transformer models as measured
on different datasets (lines) as a function of the number of projection components k, where the bands indicate the range of measurements
across varying dataset sample sizes s (from 210 to 214), and we typeset comparisons involving exactly one large language model in bold.
For k > 2 projection components, PRESTO distances distinguish large language models from smaller models based on technical datasets.

B.2.3. PRESTO DISTANCES

In Figure 7, we showed the pairwise distances between the multiverse metric spaces associated with our transformer models.
For a more fine-grained perspective, in Figure 17, we additionally depict the range of pairwise PRESTO distances between
individual models as we vary the number of projection components k and the number of samples s considered. We see that
as we increase the number of projection components, PRESTO’s capacity to distinguish large language models from smaller
transformer models increases. Furthermore, in many comparisons involving exactly one large language model, for k > 2,
the PRESTO distance between the compared models is larger for our technical datasets (arXiv, patents) than for our news
datasets (bbc, cnn).

B.2.4. PRESTO SENSITIVITIES

Complementing our assessment of PRESTO sensitivities in the VAE hyperparameter and implementation multiverses
(Figures 6 and 10), we now investigate the local PRESTO sensitivities of models and datasets in our transformer multiverse
as a function of the number of samples s and the number of projection components k. When exploring sensitivity to model
variation in Figure 18, we observe two trends: PRESTO sensitivities become smaller as we increase the number of samples
s, and they become larger as we increase the number of projection components k. These trends persist when we turn to
dataset variation, depicted in Figure 19. Since a smaller number of samples provides a rougher picture of a model’s latent
space, and a larger number of projection components allows us to capture more variation, these patterns are to be expected,
which further increases our confidence in PRESTO. Finally, Figure 19 reveals that the PRESTO sensitivity when varying
datasets differs widely between models—and notably, PRESTO’s dataset sensitivity separates our two large language models,
ADA and MISTRAL (cf. Figure 19, middle panel).
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Figure 18. Local PRESTO sensitivity of models in the transformer multiverse. In the left and middle panels, we show the local PRESTO

sensitivity scores of the model choice α (lines), along with the range of individual PRESTO sensitivities across our models (bands), as a
function of the number of samples s and the number of projection components k. In the right panel, we show the local PRESTO sensitivity
scores of the model choice α (lines), along with the range of individual PRESTO sensitivities across sample sizes s (bands), as a function
of the number of projection components k and the dataset δ. The smaller the number of samples, and the larger the number of projection
components, the higher the relevance of the model choice.
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Figure 19. Local PRESTO sensitivity of datasets in the transformer multiverse. In the left panel, we show the local PRESTO sensitivity
scores of the dataset choice δ (lines), along with the range of individual PRESTO sensitivities across our datasets (bands), as a function
of the number of samples s and the number of projection components k. In the middle and right panels, we show the local PRESTO

sensitivity scores of the dataset choice δ (lines), along with the range of individual PRESTO sensitivities across our number of samples s
(bands), as a function of the number of projection components k and the transformer model α. Both the local PRESTO sensitivity and the
variance in individual PRESTO sensitivities are highly dependent on the chosen transformer model.

B.3. PRESTO as a Dissimilarity Measure for Neural-Network Representations

PRESTO is designed for comparisons between general latent spaces, not neural representations specifically, and we
deliberately deferred an in-depth treatment of PRESTO for neural-network forensics to future work. To gauge the potential of
PRESTO as a dissimilarity measure in this context, we compare PRESTO with two variants of CKA (Kornblith et al., 2019).
When measured by CKA, representations in neighboring neural-network layers are consistently judged as more similar to
each other than to representations in more distant neural-network layers. Our preliminary experiments using the MNIST-
trained neural-network representations made publicly available in the CKA repository, summarized in Table 9, indicate that
PRESTO captures this trend as well. In Figure 20, we additionally depict the similarity ranks of PRESTO (transformed into a
similarity measure) as well as lCKA and kCKA for relationships between different layers in the same model (intra-model
relationships) as well as relationships between the same or different layers of differently seeded models (inter-model
relationships). However, we also emphasize that there is no reason to expect, a priori, that the relationships between the
internal representations of a neural-network model should be quantitatively the same across differently (hyper)parameterized
neural-network models. Rather, this is an interesting hypothesis that PRESTO will allow us to test going forward.

B.4. Multiverse Analysis of Non-Linear Dimensionality-Reduction Methods

Manifold-learning techniques are essential tools in various applied sciences, including computational biology and medicine,
where algorithms such as UMAP, T-SNE, and PHATE (McInnes et al., 2020; Moon et al., 2019; van der Maaten & Hinton,
2008) are commonly used to generate low-dimensional embeddings of complex datasets, imbuing these computationally
tractable representations with geometric and topological structure learned from the data manifold.
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Type of Correlation

Comparison Pearson Spearman Kendall

PRESTO vs. lCKA −0.88 (p = 0.02) −0.89 (p = 0.02) −0.73 (p = 0.06)
PRESTO vs. kCKA −0.75 (p = 0.09) −0.89 (p = 0.02) −0.73 (p = 0.06)

Table 9. PRESTO’s relationship to CKA variants. We display the correlations between PRESTO (a dissimilarity measure) and lCKA
resp. kCKA (similarity measures) for neural-network models trained on MNIST using different seeds.
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Figure 20. Comparing neural activations. We replicate an experiment by Kornblith et al. (2019), who assess the similarity of neural
activations in 4-layer CNNs trained on MNIST, comparing PRESTO (turned into a similarity measure) with similarities produced by lCKA
and kCKA. For each method, we show the similarity ranks for different layers in the same model (left and middle subpanels) as well as
for different layers across two different models (right subpanels). Here, similarity ranks are computed column-wise, and darker colors
indicate higher ranks (i.e., if in the comparison between model 1 [M1] and model 2 (M2), the square in position [i, j] is colored in dark
blue, layer j of M1 is most similar to layer i of M2).

Model

Dataset Isomap LLE Phate t-SNE UMAP

Breast Cancer 13.41 4.59 1.52 0.21 0.34
Diabetes 0.22 51.19 0.37 0.06 0.32
Digits 0.35 0.94 0.24 0.24 1.14
Iris 0.46 9.01 0.52 0.74 1.28
Moons 0.00 0.00 1.67 1.34 0.22
Swiss Roll 1.56 0.26 1.28 0.42 0.60

Table 10. Sensitivity of dimensionality-reduction methods. We show
the PRESTO sensitivity scores of the number-of-neighbors parameter
for five dimensionality-reduction algorithms on six datasets. Popular
dimensionality-reduction vary widely in hyperparameter sensitivity.

These methods also exhibit representational variability
that can be measured with PRESTO, especially when
varying their hyperparameters. Among the most
critical parameters determining the structure of a low-
dimensional representation is the parameter controlling
the locality of the dimensionality-reduction method,
which manifests in various variants of a number-of-
neighbors parameter (named differently for different
algorithms). In Table 10, we use PRESTO’s sensitivity
scores based on the distribution of landscapes that arise
from varying this locality parameter across different
synthetic and real-world datasets.

To further demonstrate PRESTO’s utility in the
manifold-learning space, in Figure 21, we cluster the
latent representations arising from different combinations of dimensionality-reduction algorithms, hyperparameters, and
datasets based on the multiverse metric space constructed from pairwise PRESTO distances between embeddings. We are
confident that PRESTO-based tools will be useful for practitioners in the applied sciences by (1) allowing them to assess the
sensitivity of their algorithms and datasets with respect to their hyperparameter choices, and (2) helping them condense the
multiverse of representations into a manageable set of structurally distinct representatives via hyperparameter compression.

s|p|20 s|p|40 s|p|10 d|p|40 s|t|40 s|p|5 s|t|20 d|t|5

d|t|10 d|t|20 d|t|40 s|t|10 d|p|20 s|t|5 d|p|5 d|p|10

Figure 21. Clustering embeddings with PRESTO. We show the dendrogram of a complete-linkage clustering of 2-dimensional
embeddings based on PRESTO distances (left), as well as the clustered embeddings, colored by their cluster when cutting the dendrogram
at distance 1 (right). Annotations are of shape dataset|method|n, where dataset ∈ {swiss roll (s), diabetes (d)}, method ∈ {phate (p),
t-SNE (t)}, and n ∈ {5, 10, 20, 40} is the nearest-neighbors parameter of both methods. With PRESTO, we can compare potentially
unaligned embeddings originating from different datasets and methods.
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C. Extended Methods
In this section, we provide details on the computational complexity of topological multiverse analysis and detail how we can
pick good representatives for (hyperparameter-)search-space compression.

C.1. PRESTO Complexity

C.1.1. THEORETICAL ANALYSIS

The individual PRESTO steps of the PRESTO pipeline exhibit the following computational complexities.

(S1) Embed data. The complexity of computing E = M(X) ∈ Rs×∗ for X ∈ Rs×∗ depends only on X and M , and
hence, is independent of our specific design choices.

(S2) Project embeddings. Given embedding E ∈ Rs×d, computing k-dimensional PCA takes O(ksd) time via truncated
SVD, while generating π random projections of E onto k dimensions takes O(πksd) time.

(S3) Construct persistence diagrams. When constructing an h-dimensional α-complex from s points, the bottleneck is
computing the Delaunay triangulation, which takes worst-case expected time O(s⌈h/2⌉+1) but often runs in O(s log s)
time in practice.

(S4) Compute persistence landscapes. If done exactly, computing a persistence landscape from s birth-death pairs takes
O(s2) time. However, at the cost of a small perturbation in our persistence diagrams, we can round birth and death
times to lie on a grid of constant size, such that we can obtain persistence landscapes in O(s log s) time (Bubenik &
Dłotko, 2017). When working with random projections, averaging π exact persistence landscapes takes O(s2π log π)
time, whereas averages of approximate landscapes can be computed in O(sπ) time (Bubenik & Dłotko, 2017).

Hence, for a constant number of latent dimensions d and (if applicable) projections π, the topology-based steps of the
PRESTO pipeline can be performed in Õ(s) time, i.e., our computations are approximately linear in the number of samples in
X . This also holds for the computation of our PRESTO primitives, i.e., the PRESTO distance (PD) and the PRESTO variance
(PV). Overall, we obtain a scalable toolkit for the topological analysis of representational variability in latent-space models.

C.1.2. EMPIRICAL ANALYSIS

We supplement our theoretical analysis with PRESTO’s empirical running times, detailed in Table 11. Note that these running
times are based on a single-CPU implementation. Various optimization and parallelization strategies for persistent-homology
calculations and diameter approximations exist, and PRESTO can benefit from them directly.

d

s 128 256 512

212 0.30± 0.03 0.30± 0.01 0.34± 0.04
214 1.16± 0.02 1.20± 0.04 1.26± 0.03
216 5.36± 0.28 5.28± 0.11 7.26± 0.88
218 25.86± 1.31 28.43± 2.04 36.26± 9.70

(a) PRESTO without Normalization

d

s 128 256 512

212 0.59± 0.04 0.69± 0.03 0.92± 0.02
214 2.35± 0.04 2.84± 0.06 4.01± 0.14
216 10.45± 0.34 12.32± 0.41 38.20± 0.95
218 67.54± 2.27 154.47± 36.00 156.71± 45.48

(b) PRESTO with Normalization

Table 11. Empirical running times of PRESTO. We report the average running times (seconds) of computing PRESTO distances across
random embeddings of varying sizes on a single CPU. We compute 10 different pairs of randomly seeded embeddings for each size (s, d).
We project the embeddings using PCA into 2 dimensions and fit our landscapes using Alpha Complexes for homology dimensions 0 and 1.

C.1.3. RUNTIME COMPARISON WITH OTHER METHODS

Unlike other methods, PRESTO can compare latent spaces with hundreds of thousands of samples embedded into large
latent dimensions on commodity hardware. In the age of large LLM embeddings, our method allows users with limited
computational resources to run PRESTO quickly and without using paralyzing amounts of memory. In Table 12, we compare
the running times of computing PRESTO distances with the running times of computing several other (dis)similarity measures.
Here, “Pairwise” refers to computing basic pairwise distances in the high-dimensional space, “VR” refers to constructing a
Vietoris-Rips complex based on these distances, and “IMD” (Intrinsic Multi-scale Distance) refers to the method by Tsitsulin
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s d PRESTO (no norm.) PRESTO (norm.) CKA Pairwise VR IMD

212 128 0.308 0.721 22.568 0.23 3.113 2.692
212 256 0.302 1.149 24.643 0.446 5.558 4.772
212 512 0.313 2.184 27.689 0.692 9.641 6.633
214 128 1.236 2.816 2 601.56 9.614 170.41 33.968
214 256 1.197 4.652 2 646.33 10.649 220.507 64.061
214 512 1.248 11.096 2 445.32 18.081 272.997 101.336

Table 12. Comparative running times. We compare PRESTO to other representational similarity methods, reporting the run times
(seconds) for PRESTO (with and without normalization), CKA, Pairwise Distances (scikit-learn), Vietoris Rips (guhdi), and IMD
on a pair of random embeddings of varying sizes on a single CPU. PRESTO times are averaged over 10 pairs of embeddings.

et al. (2020). We do not include running times for Representation Topological Divergence (RTD) (Trofimov et al., 2023)
because it is designed specifically for GPUs. Furthermore, we note that PRESTO’s computational complexity in large spaces
hinges on the computation of alpha complexes, persistence landscapes, and diameter approximations (when normalizing
spaces). These have the potential to be accelerated and parallelized nicely (Chazal et al., 2014b; 2015). We leave the
integrations and analyses of these optimizations to future work and will reflect updates in our open-source implementation.

C.2. PRESTO Compression

When using PRESTO for search-space compression, our goal is to select a small set of representatives R (e.g., hyperparameter
vectors) to explore in detail such that each universe in the original search space has a representative in the compressed
search space at topological distance no larger than ϵ. To obtain an efficient set of such representatives (i.e., a small set of
configurations that together satisfy our topologically-dense-sampling criterion), we can take two approaches. First, we
can cluster a multiverse based on the pairwise topological distances between its universes using a method that bounds
intra-cluster distances (e.g., using agglomerative complete-linkage clustering and cutting the dendrogram at height ϵ) and
pick one representative from each cluster. Alternatively, to bound the size of the representative set as a function of its
minimum size, we can interpret topologically dense sampling as a set-cover problem (or equivalently, a hitting-set problem),
where our universes are both the elements (to be represented themselves) and the candidate sets (representing themselves
and others). While minimum set cover is NP-hard (Karp, 1972), the simple greedy approximation algorithm that picks
the candidate universe capable of representing the largest number of unrepresented universes can guarantee that our set of
representatives has size at most |R| ≤ H(m)c∗, where m := |M| is the size of our multiverse, H(m) ∈ O(logm) denotes
the m-th harmonic number, and c∗ is the minimum number of representatives needed to cover all configurations in M.

D. Extended Background
This section provides some background information on latent-space models, the objects of our variability assessment. We
provide further details on two categories of latent-space models that are particularly relevant to our work: generative models
and representation-learning algorithms. However, our framework can be applied to any model that uses embeddings.

D.1. Generative Models

Generative models, such as those developed by Vaswani et al. (2017) or Goodfellow et al. (2014), are at the forefront of
deep-learning research, enabling the synthesis of new data as well as complex data transformations such as style transfer.
They rely on embeddings, i.e., learned low-dimensional representations of data, to drive their generative capabilities.
The geometric relationships within the context of the latent space are learned by the model during training, becoming a
cornerstone of the model’s characteristics as a generator. Here, we discuss variational autoencoders (VAEs) as the class of
generative models featuring most prominently in our experiments. Originally developed by (Kingma & Welling, 2013),
VAEs are probabilistic models that learn a generative distribution p(x, z) = p(z)p(x|z), where p(z) represents a prior
distribution over the latent variable z, and p(x|z) is the likelihood function responsible for generating the data x given z.
VAEs are trained with the objective of maximizing a variational lower bound LVAE(x) on the log-likelihood log p(x), subject
to the inequality log p(x) ≥ LVAE(x). The expression for the variational lower bound of a VAE is

LVAE(x) = Eq(z|x)[log p(x|z)]− KL(q(z|x)||p(z)) , (34)
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where q(z|x) stands for an approximate posterior and KL denotes the Kullback–Leibler divergence (Joyce, 2011). Here, the
term Eq(z|x)[log p(x|z)] represents the expected log-likelihood of x given z under the approximate posterior q(z|x), while
KL(q(z|x)||p(z)) quantifies the divergence between q(z|x) and the prior p(z). The ultimate objective during the training of
VAEs is to maximize the expected lower bound Epd(x)[LVAE(x)], where pd(x) is the data distribution.

D.2. Representation-Learning Algorithms

Representation-learning algorithms leverage salient features of the input data to obtain structure-preserving representations.
Many (though not all) representation-learning algorithms are based on the manifold hypothesis, which posits that data are
sampled from an (unknown) low-dimensional latent manifold. Even in light of a compelling and ongoing line of research
that questions the integrity of the manifold hypothesis for certain datasets (Brown et al., 2023; Scoccola & Perea, 2023;
von Rohrscheidt & Rieck, 2023), the need to embed data into low-dimensional latent spaces remains a key aspect for both
data preprocessing and the development of generative models. Though linear methods like Principal Component Analysis
(PCA) are incredibly useful in their own right, nowadays, significant emphasis is placed on non-linear dimensionality-
reduction algorithms (NLDR algorithms) as the most prominent methods for preserving salient geometric relationships.
These algorithms are maps fred : R

D → Rd, typically with d ≪ D, that make use of local geometric information in a
high-dimensional space to estimate properties of the underlying manifold. When mapping into the latent space, such
algorithms often aim to maintain pairwise geodesic distances between neighboring points. Some of the most widely used
NLDR algorithms include UMAP by (McInnes et al., 2020), PHATE by (Moon et al., 2019), t-SNE by (van der Maaten &
Hinton, 2008), Isomap by (Tenenbaum et al., 2000), and LLE by (Roweis & Saul, 2000).

Although the precise behavior of the mapping is unique to individual implementations, many algorithms rely on estimating
local properties of the data via k-nearest-neighbor graphs, treating k as the locality scale, also known as the n-neighbors
parameter. In combination with the other hyperparameters (if any), this helps the algorithm obtain a final representation of
the crucial geometric relationships in the data. For unsupervised tasks, this raises a non-trivial decision: What is the correct
scale at which to probe a particular dataset? In the absence of labels, the answer to this question is highly context-specific:
The most insightful geometric relationships cannot be known a priori. Here, we can use PRESTO to understand the multiverse
of representations that arise from the various algorithmic choices, implementation choices, and data choices involved in
non-linear dimensionality reduction. As demonstrated for VAEs and transformers in the main text, PRESTO can describe
the distribution of embeddings arising from multiverse considerations and quantify representational variability in NLDR.
See Appendix B.4 for supplementary experiments on hyperparameter sensitivity in NLDR algorithms and clustering of
embeddings across different algorithmic, hyperparameter, and data choices.

E. Extended Related Work
In addition to the related work mentioned in the main paper, which directly deals with representational variability in one
way or the other, our analyses and definitions draw upon a wealth of additional research in topological data analysis.
Here, seminal works by Bubenik (2015) and Adams et al. (2017) introduce persistence landscapes and persistence images,
respectively, opening the door toward more efficient topological descriptors that can be gainfully deployed in a machine-
learning setting. We focus on persistence landscapes in this paper since they do not require any additional parameter choices,
but our pipeline remains valid for persistence images. Persistence landscapes have the advantage that more of their statistical
behavior has been studied (Bubenik & Dłotko, 2017), and recent work even shows that they capture certain geometric
properties of spaces (Bubenik et al., 2020). This consolidates their appeal as an expressive shape descriptor of data.

Beyond research in topological data analysis, several works address the backbone of our pipeline, i.e., persistent homology,
directly. Cohen-Steiner et al. (2007) prove the seminal stability theorem upon which most of the follow-up work is based,
and Chazal et al. (2015) establish the foundation for understanding the behavior of topological descriptors (including
persistence landscapes) under subsampling. Furthermore, Chazal et al. (2014a) show that all geometric constructions like
the Vietoris–Rips complex lead to stable outcomes in the sense that geometric variation always provides an upper bound on
topological variation. We will subsequently make use of this seminal result to motivate the stability and choice of metrics.

Finally, topological approaches have also shown their utility in the context of studying individual neural-network models.
Of particular interest in current research are the investigation of representational similarities (Klabunde et al., 2023) or
the analysis of particular parts of a larger model, such as attention matrices (Smith et al., 2023). This strand of research
is motivated by insights into how understanding geometrical-topological characteristics of data and models can lead to
improvements in certain tasks (Chen et al., 2019; van der Merwe et al., 2022)—or, specifically, how the topology of data can
be used to characterize the loss landscape of a model (Freeman & Bruna, 2017; Horoi et al., 2022).
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