
000 DMAP: A DISTRIBUTION MAP FOR TEXT

001

002

003 **Anonymous authors**

004 Paper under double-blind review

005

006

007 **ABSTRACT**

009 Large Language Models (LLMs) are a powerful tool for statistical text analysis,
010 with derived sequences of next-token probability distributions offering a wealth of
011 information. Extracting this signal typically relies on metrics such as perplexity,
012 which do not adequately account for context; how one should interpret a given
013 next-token probability is dependent on the number of reasonable choices encoded
014 by the shape of the conditional distribution. In this work, we present DMAP, a
015 mathematically grounded method that maps a text, via a language model, to a set
016 of samples in the unit interval that jointly encode rank and probability informa-
017 tion. This representation enables efficient, model-agnostic analysis and supports
018 a range of applications. We illustrate its utility through three case studies: (i) val-
019 idation of generation parameters to ensure data integrity, (ii) examining the role
020 of probability curvature in machine-generated text detection, and (iii) a forensic
021 analysis revealing statistical fingerprints left in downstream models that have been
022 subject to post-training on synthetic data. Our results demonstrate that DMAP of-
023 fers a unified statistical view of text that is simple to compute on consumer hard-
024 ware, widely applicable, and provides a foundation for further research into text
025 analysis with LLMs.

026

027 1 INTRODUCTION

028

029 A language model p provides a wealth of information about a text $\underline{w} = (w_1 \cdots w_T)$ through the
030 sequence of next-token probability distributions $p(\cdot | w_1 \cdots w_{i-1})$. We ask how to use this informa-
031 tion to learn something about the text \underline{w} or the language model p . To date, most efforts that use a
032 language model to report statistical properties of a text use metrics that measure how unexpected
033 each token is under p . A standard such metric is the average log-likelihood of each observed token,

034

$$035 \frac{1}{T} \sum_{i=1}^T \log p(w_i | w_1 \cdots w_{i-1}),$$

036

037 while a related but coarser variant, log-rank, replaces $p(w_i | w_1 \cdots w_{i-1})$ with the ordinal *rank*
038 $r(w_i | w_1 \cdots w_{i-1})$ of the observed token in the descending list of next token probabilities. *Perplexity*
039 is the exponential of the negative average per-token log probability.

040 Log-likelihood, log-rank and perplexity have been widely used in the training, evaluation, and de-
041 tection of language models. For example, a body of work seeks to use perplexity to predict the
042 readability of texts (Trott & Rivière, 2024), and to use the strength of the correlation between per-
043 perplexity and human reading time as a measure of the quality of a language model (Oh & Schuler,
044 2023). However, in some settings these metrics are problematic (Meister & Cotterell, 2021; Fang
045 et al., 2024), and often require contextualization to be useful.

046 In this work we use *contextualization* to describe the process of interpreting a raw statistic of a text
047 (such as per-token log-likelihood) in terms of the content of the text. At the broadest level, one can
048 give better answers to questions such as ‘is a per-token log-likelihood score of 4 unusually high?’
049 if one knows whether the text under consideration is a factual essay about chemistry or a piece of
050 creative writing. A finer-grained approach is to compare the log-likelihood of a token present in a
051 text to the expected log-likelihood of alternative tokens randomly sampled from a language model.
052 The crux of the *contextualization problem* is that the way one should interpret a token w_i being
053 the third most likely, or having model probability 0.1, depends on the number of reasonable token

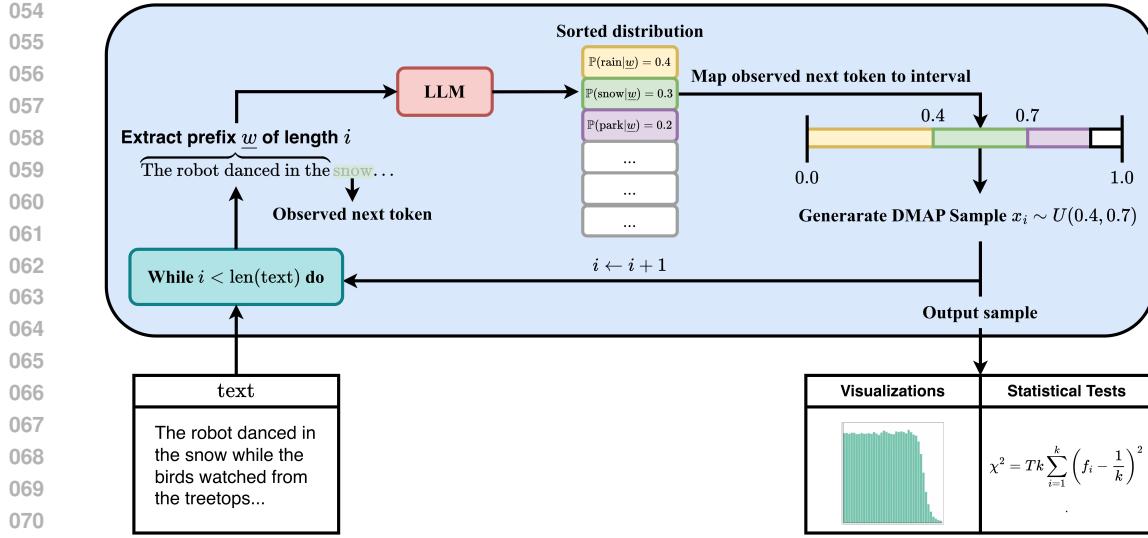


Figure 1: The DMAP algorithm. Given a text \underline{w} of length T , this diagram illustrates how DMAP generates a collection of samples $x_1 \dots x_T$ in $[0, 1]$. These may be analyzed quantitatively or qualitatively by splitting $[0, 1]$ into equal sized bins and plotting a histogram, as illustrated in Figure 2. We initialize $i = 1$. Our experiments demonstrate these visualizations identify decoding parameters (top- p , top- k , temperature), yield insights into black box machine-generated text detection algorithms based on probability curvature, and reveal statistical fingerprints left by performing supervised fine-tuning (SFT) on synthetic data.

choices. These differences, encoded by the shape of the conditional distributions, are prone to persist over long passages of text.

Recently, a body of work initiated by DetectGPT (Mitchell et al., 2023) has tried to use a language model p to address the contextualization problem and extract more nuanced information from next token probability distributions in the context of machine-generated text detection (Bao et al., 2023; Su et al., 2023; Hans et al., 2024). Inspired by these ideas, we introduce a distribution map, DMAP, which is statistically rigorous and lends itself better to visualization. In essence, DMAP is a recipe for mapping a text \underline{w} onto a density function $f : [0, 1] \rightarrow \mathbb{R}^+$ that encodes information from both the rank and perplexity of the token in a principled way. As we shall see, this addresses the contextualization problem and provides a simple yet surprisingly powerful mathematical lens through which to measure and compare texts.

Contributions

1. **Introduce the DMAP algorithm.** We introduce DMAP, a simple method to represent a text \underline{w} through a language model p as a set of samples in $[0, 1]$ that jointly encode rank and probability information. DMAP is open-sourced¹, computationally efficient, and can be applied effectively on consumer hardware with small models such as OPT-125m (Zhang et al., 2022).
2. **Demonstrate applications of DMAP.**
 - (a) **Validate generation parameters.** Detecting incorrect or inconsistent generation settings in published data, such as top- k , top- p , temperature, or the language model itself.
 - (b) **Design machine-generated text detectors.** Using DMAP, we identify design weaknesses of existing zero-shot detectors based on probability curvature and propose alternative principles for detector design.
 - (c) **Reveal statistical signatures of post-training data in instruction-tuned models.** We investigate overconfidence in instruction-tuned models using DMAP and reveal

¹www.github.com/<redacted>. Code to be made available after anonymity period. An anonymous GitHub link will be shared with reviewers once the discussion period opens (ICLR code release Option 3).

108 alignment between downstream generated text distributions and fine-tuning datasets,
109 even without access to internal model probabilities.
110

111 We expect that the strengths of DMAP in statistical rigor and convenient visualization will see it
112 find many applications beyond these.
113

114 2 RELATED WORK 115

116 **The Probability Integral Transform.** The probability integral transform (PIT) (Fisher, 1928) was
117 introduced as a method for mapping a continuous probability distribution on the real line onto the
118 uniform distribution on $[0, 1]$, and as such is similar in philosophy to DMAP. One could combine
119 PIT with the distributional transform to deal with non-continuous random variables, this corresponds
120 exactly to our step of sampling from the uniform distribution on I_i . However, it only makes sense
121 to use PIT with categorical variables if one has a natural ordering of the categorical variables, and
122 if the bias which one is hoping to detect presents itself in terms of this ordering. While we have
123 framed our work as turning log-rank into a statistically useful measure, one could instead think of
124 DMAP as applying PIT and the distributional transform to the case of texts generated by language
125 models, but with a crucial additional step of dynamic re-ordering tokens by model probability.
126

127 **Text Visualization.** GLTR (Gehrmann et al., 2019) introduced a tool to color-code text according
128 to token rank. This is an effective visualization, but inherits the issues of rank as a crude measure of
129 where a token sits in the probability distribution. Our DMAP framework extends this visualization
130 paradigm by providing a continuous, mathematically grounded representation that preserves both
131 rank and probability information while enabling statistical inference.
132

133 **Machine-Generated Text Detection.** Several key approaches have emerged to address the so-
134 cially pertinent problem of detecting synthetically generated text. DetectGPT (Mitchell et al., 2023)
135 pioneered the use of probability curvature, measuring how perturbing a text affects its likelihood
136 under a language model. This approach was refined by DetectLLM (Su et al., 2023), who adapted
137 DetectGPT to use rank information, rather than exact probabilities. FastDetectGPT (Bao et al., 2023)
138 addressed efficiency issues related to perturbation and the contextualization problem by normaliz-
139 ing probability distributions at each step. More recently, Binoculars (Hans et al., 2024) proposed
140 a promising cross-model approach using probability ratios, though the theoretical justification for
141 their normalization scheme remains unclear. Unlike these approaches, DMAP does not directly
142 address the text detection problem. Instead, it provides a unified statistical framework that maps
143 probability information to a standardized representation, enabling broader text analysis applications
such as informing the design of future detectors.
144

145 **Model Calibration and Overconfidence.** Recent work has identified systematic overconfidence
146 in instruction-tuned language models. Luo et al. (2025) demonstrated that alignment procedures
147 can degrade calibration, while Shen et al. (2024) proposed temperature scaling methods for post-
148 hoc calibration. Chhikara (2025) investigated the relationship between alignment objectives and
149 confidence estimation, and Zhu et al. (2023) analyzed calibration across different model scales.
150 Yang & Holtzman (2025) explored how alignment training affects uncertainty quantification. DMAP
151 contributes to this literature by providing a tool to visualize and quantify distributional changes
152 induced by post-training procedures, revealing statistical fingerprints that persist in downstream
model behavior.
153

154 The key distinction of DMAP is its ability to map arbitrary probability distributions to a standardized
155 unit interval representation, enabling both intuitive visualization and rigorous statistical analysis
156 while addressing the fundamental contextualization challenges that limit existing approaches based
on surprisal metrics.
157

158
159
160
161

162 3 DMAP: A DISTRIBUTION MAP FOR TEXT
163

164 3.1 DEFINING DMAP
165

166 Let p be a language model, which we call the *evaluator model*, and let $w = w_1 \dots w_T$ be a text with
167 tokens w_i belonging to a vocabulary V . For each sequence position $i \in \{1, \dots, T\}$, the candidate
168 tokens $v \in V$ can be ordered by decreasing probability $p(v | w_1 \dots w_{i-1})$. We construct a sequence
169 of points $x_1 \dots x_T \in [0, 1]^T$ referred to as a *DMAP sample* as follows, see Figure 1 for an overview.

170 Given a text $w_1 \dots w_T$ and an index $i \in \{1, \dots, T\}$, DMAP works by first defining an interval
171 I_i and then sampling a point x_i from the uniform distribution on I_i . If w_i is judged by
172 the language model p to be the most likely token to follow $w_1 \dots w_{i-1}$, the interval I_i will be
173 $[0, p(w_i | w_1 \dots w_{i-1})]$. More generally, I_i is the interval of length $p(w_i | w_1 \dots w_{i-1})$ whose left end
174 point a_i is the total mass of the set of tokens judged more likely by the language model.

175 Formally, let

$$V_i^+ = \{v \in V : p(v | w_1 \dots w_{i-1}) > p(w_i | w_1 \dots w_{i-1})\}$$

176 be the set of tokens judged by p to be more likely than w_i to appear next in the sequence.
177

178 Now, define two points a_i and b_i by

$$180 \quad a_i = \sum_{v \in V_i^+} p(v | w_1 \dots w_{i-1}),$$

181
182

183 and $b_i = a_i + p(w_i | w_1 \dots w_{i-1})$.
184

185 Finally, define the interval $I_i \subset [0, 1]$ by $I_i := [a_i, b_i]$ and, for each i , let $x_i = D(w_i | w_1 \dots w_{i-1})$
186 be chosen by sampling from the uniform distribution $U(a_i, b_i)$ on I_i , yielding the desired sequence
187 $x_1 \dots x_T$. In practice, to visualize the resulting set of samples x_i we split the unit interval $[0, 1]$ into
188 k equally-sized bins and plot the resulting histogram. For the plots in this article we use $k = 40$.
189 Other quantitative and qualitative measures of the set x_i may be informative and we leave this for
190 future work.

191 In the following proposition, pure sampling from language model p refers to the practice of autore-
192 gressively generating a sequence $w_1 \dots w_T$ by, at each step i , selecting token w_i with probability
193 $p(w_i | w_1 \dots w_{i-1})$. We later also consider top- k , nucleus and temperature sampling, see Section B
194 for definitions.

195 **Proposition 3.1.** *When generating a text $w_1 \dots w_T$ by pure sampling from language model p , the
196 corresponding sequence $x_1 \dots x_T$ obtained by applying DMAP to $w_1 \dots w_T$ with evaluator model
197 p will be independent and identically distributed (i.i.d.) according to the uniform measure on $[0, 1]$.*

198 *Proof.* See Appendix A. □
199

200 This proposition is particularly useful in Section 5.1, since the i.i.d. structure of the sequence
201 $x_1 \dots x_T$ allows one to use off the shelf results about convergence rates. In particular, it allows
202 one to compute the chi-squared statistic of the distribution of the set of points $\{x_1, \dots, x_T\}$, uncov-
203 ering errors in the process of text generation with a high degree of confidence.

204 We can also use DMAP to visualize texts using an evaluator language model modified by a decoding
205 strategy such as top- k , top- p or temperature sampling. For example, to see how $w_1 \dots w_T$ looks to
206 language model p at temperature τ with top- $p = \pi$, one simply needs to replace the next token
207 probabilities $p(v | w_1 \dots w_{i-1})$ with the probabilities $q(v | w_1 \dots w_{i-1})$ resulting from sampling from
208 p with temperature τ . Proposition 3.1 continues to apply; see Appendix A.
209

210 3.2 DEFINING ENTROPY-WEIGHTED DMAP
211

212 There are two practical issues with the definition of DMAP in Section 3.1. First, there is randomness
213 in the selection of x_i from I_i that introduces noise and makes DMAP non-deterministic. Second,
214 if the language model p has high certainty about the choice of next token, then a choice of x_i
215 contains little useful information and we should assign less weight to this choice of x_i . We present
216 an alternative version of DMAP that mitigates these shortcomings by removing this randomness and

216 weighting the outcome of each token by the entropy of the next token probability distribution. A
 217 version of Proposition 3.1 continues to hold, see Appendix A. In Appendix F we make DMAP plots
 218 restricted to times where the next-token probability distribution has low entropy, and see that these
 219 plots contain little useful information, justifying our de-weighting of these points.

220 In broad terms, our map \hat{D} defined below makes two changes to DMAP. Firstly, rather than plotting
 221 an unweighted histogram of DMAP samples, we use the entropy of the next-token probability
 222 distribution to weight each sample point, up to a chosen maximum clipped weighting of $\lambda = 2$
 223 for stability. Secondly, we mitigate the randomness in the selection of x_i and, instead of plotting
 224 the (weighted) proportion of samples in each bin, we plot the expectation of this, removing the
 225 randomness. A precise mathematical description goes as follows.

226 Given a language model p and a text $w_1 \dots w_T$, generate the sequence of intervals $I_1 \dots I_T$ as with
 227 DMAP. Also, compute $h_1 \dots h_T$ where

$$229 \quad h_i := - \sum_{v \in \mathcal{V}} p(v|w_1 \dots w_{i-1}) \log p(v|w_1 \dots w_{i-1})$$

231 is the entropy of the probability distribution $p(\cdot|w_1 \dots w_{i-1})$. Let $h'_i := \max\{h_i, \lambda\}$ and return the
 232 function $\hat{D}(w) : [0, 1] \rightarrow \mathbb{R}$ given by

$$235 \quad \hat{D}(w) = \hat{D}(w_1 \dots w_T, p) := \frac{\sum_{i=1}^T h'_i \frac{\chi_{I_i}}{|I_i|}}{\sum_{i=1}^T h'_i},$$

237 where χ_{I_i} is the characteristic function equal to 1 on I_i and 0 elsewhere, and $|I_i|$ is the length of
 238 interval I_i . This gives that $\chi_{I_i}/|I_i|$ is the function of integral 1 taking value 0 outside of I_i and
 239 constant value on I_i . Thus, \hat{D} is a step function of integral one supported on $[0, 1]$. Finally, we may
 240 make an entropy-weighted DMAP plot by splitting the unit interval into, for example, $k = 40$ bins
 241 and averaging the value of \hat{D} over each bin. Since the entropy is potentially very large, in practice
 242 we recommend clipping it at $\lambda = 2$ for stability.

243 The entropy h_i can be viewed as the expected information obtained by revealing the next token w_i .
 244 Therefore, entropy weighting places more weight on the times when the choice of next token is
 245 more uncertain, and so we have more to learn. This amplifies the differences between our output
 246 distribution and the uniform distribution at $[0, 1]$, by reducing the weight associated with times i
 247 where the next token is known with extremely high probability, making DMAP a more sensitive
 248 tool. Hereafter, we use entropy-weighted DMAP unless otherwise specified. See Appendix F for
 249 more information on entropy weighting.

251 3.3 INTERPRETING DMAP VISUALIZATIONS

253 DMAP samples may be analyzed quantitatively, as in the χ^2 tests of Section 5.1, or qualitatively
 254 via simple histograms. These visualizations reveal whether certain portions of the model next-token
 255 probability distribution are systematically over- or underrepresented in the text. Three particularly
 256 common behaviors that we observe are: **Head Bias** (e.g. Figure 2 (c)) - tokens viewed as likely by
 257 the evaluator model are over-represented in the text. **Tail Bias** (e.g. Figure 2 (f)) - tokens viewed as
 258 unlikely by the evaluator model are over-represented in the text. Text generated by one base model
 259 and evaluated by another base model with a similar entropy will typically display this behavior. **Tail**
 260 **Collapse** (e.g. Figure 2 (e)) - a small portion at the bottom of the evaluator model distribution is
 261 strongly under-represented in the text. Often seen in human-written text, this is consistent with the
 262 folklore intuition that model distributions place too much weight on tokens which are not realistic,
 263 an oft-cited motivation for top- p (nucleus) sampling.

264 4 ILLUSTRATIVE VISUALIZATIONS FROM DMAP

265 This section takes a first look at some histogram plots from \hat{D} . We take text from different sources,
 266 both human and machine, and evaluate them using OPT-125m as recommended by [Mireshghallah et al. \(2024\)](#). This evaluator demonstrates DMAP can be run effectively on consumer hardware in a
 267 few minutes. Throughout, we run DMAP over 300 texts each of around 300 tokens.

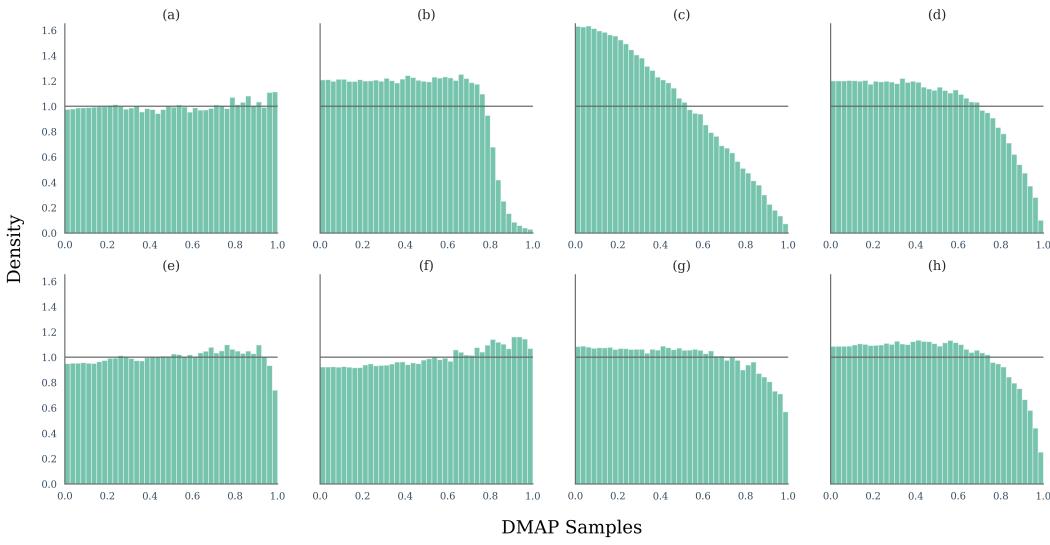


Figure 2: Illustrative DMAP histograms. The first row shows plots of XSum data (Narayan et al., 2018) generated by OPT-125m, evaluated by OPT-125m. The generation strategies (left to right) are (a) pure sampling, (b) top- $p = 0.8$ sampling, (c) temperature $\tau = 0.8$ sampling, and (d) top- $k = 50$. The second row shows various different types of text evaluated by DMAP: (e) a news dataset of human text from RAID, (f) text generated by Mistral 7B (Albert Q. Jiang and others, 2023) using pure sampling ($\text{top-}p=1$), (g) text generated by Mistral 7B Instruct, and (h) text generated by ChatGPT from the Ghostbusters dataset (Verma et al., 2024). OPT-125m was used as the scoring model to generate DMAP samples. See Appendix N for examples with larger evaluation models.

The top row of Figure 2 considers the case where the language model used to generate the texts is also used to generate the DMAP plot. We consider pure sampling (a), where token w_i is selected at time i according to its model likelihood $p(w_i|w_1 \dots w_{i-1})$, along with top- p (nucleus) (b), temperature (c), and top- k (d) sampling. See Appendix B for an explanation of these decoding strategies. As predicted in Proposition 3.1, the DMAP plot from pure-sampled text with the same generator and evaluator language models is close to the uniform distribution. Temperature, top- p and top- k sampling are methods for increasing the probability of sampling from the head of the model distribution, corresponding to the left side of a DMAP histogram. They each produce head-biased DMAP plots with a highly characteristic shape. In particular, the plot for top- p sampling is flat on $[0, \pi]$ before rapidly dropping off, and the plot for top- k sampling is flat on roughly the first half of the interval before smoothly dropping off. These shapes can be explained in terms of the statistics of the space of conditional probability distributions; see Appendix B.

In the bottom row of Figure 2 we produce DMAP plots for text generated in various ways. Two things can be seen in the distribution of human-written text (e). The distribution generally shows that human-written tokens are somewhat surprising to OPT-125m. However, there is a sharp drop off on the very right hand side of the distribution, reflecting the fact that the bottom five percent of the OPT-125m distribution places too much weight on tokens which are not representative of human writing. This drop-off is much less pronounced when using more modern language models as detectors. Several other phenomena are easy to observe. Text generated by Mistral 7B (a base model) and evaluated by OPT-125m (f) is tail-biased. This means, on average, Mistral 7B generated text is surprising to OPT-125m. This phenomena should be expected when evaluating base models, see Section C, and is repeated when Mistral (Albert Q. Jiang and others, 2023), Falcon (Ebtesam Almazrouei and others, 2023) and Llama 3.1 8B (Grattafiori et al., 2024) look at the text generated by one another, see Figures 9 and Figure 8. In contrast to text generated by base models, text generated by instruction-tuned models Mistral-Instruct (g) and ChatGPT (h) is head-biased; on average these models are much more likely to pick tokens that are unsurprising to OPT. One might speculate that something in the post-training regime has profoundly altered the language model distribution. We study this question in more detail in Section 5.3.

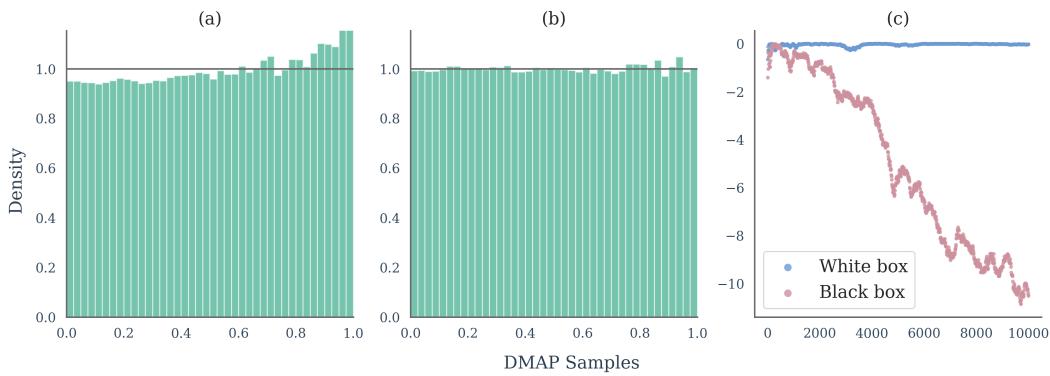


Figure 3: Quantitative validation of decoding parameters. (a) shows a DMAP plot for the black-box case of Llama 3.1 8B generated text evaluated by Mistral 7B. (b) shows a DMAP plot for the white-box case of Llama 3.1 8B generated text evaluated by Llama 3.1 8B. (c) plots the \log_{10} p-values resulting from our χ^2 uniformity test. This demonstrates how quantitative evidence can be extracted from DMAP samples to investigate hypothesis about possible generated strategies. For example, (c) tells us that after evaluating 10000 tokens of Llama generated text with Mistral-7B as the evaluation model, the probability that Mistral would produce text with such an extreme χ^2 distribution is less than 10^{-10} . We can conclude that it is not plausible that the text under review was generated by pure sampling from Mistral 7B.

5 APPLICATIONS

This section contains three example applications of DMAP, though we anticipate further use cases.

5.1 VALIDATING GENERATION PARAMETERS

Research claims in natural language processing are often sensitive to the precise decoding parameters used to generate text, see Section 5.2. Therefore, when generating text, or using publicly available samples, it is crucial to be able to validate the reported language model and generation hyperparameters such as top- p , top- k , or temperature.

For example, using DMAP, we discovered a major data-error affecting most of the top papers in zero-shot machine-generated text detection (Mitchell et al., 2023; Su et al., 2023; Bao et al., 2023; Hans et al., 2024; Dugan et al., 2024). At the time of their writing, HuggingFace enabled top- k by default with $k = 50$, making it very easy for researchers to innocently and accidentally leave top- k enabled while reporting that experiments were run on texts generated with pure sampling. Further works such as Dubois et al. (2025) use texts generated by other papers where the error was present. In this section, we present how DMAP may be used as a qualitative or quantitative tool to help researchers validate their data to prevent such occurrences.

Qualitative Validation. DMAP is an easy method for visually checking the integrity of machine-generated text for open-weight models. When text is claimed to be generated by pure sampling, Proposition 3.1 proves that the DMAP samples should be approximately uniformly distributed. Text generated by a given decoding strategy is clearly identified from the DMAP plots, see Figure 2. Alternatively, to test a specific combination of decoding parameters, we could test whether a uniform distribution is recovered when modifying DMAP to use the probability measure q arising from sampling from p with the specified decoding strategy.

Quantitative Validation. To go beyond a visual check, we have the following method for determining the consistency of the data with a reported generation method. Firstly, DMAP is applied to generate points $x_1 \dots x_T$, adapted for the parameter settings, for example, by multiplying logits by $1/\tau$ for temperature sampling at temperature τ . Next, the unit interval is divided into k equal-sized

378 bins, and frequencies $f_1 \dots f_k$ computed, where
379

$$380 \quad f_i = \frac{\#\{j \in \{1, \dots, T\} : \frac{j-1}{k} \leq x_j < \frac{i}{k}\}}{T}.$$

381

382 We follow the Terrell-Scott rule (Terrell & Scott, 1985) for choosing the number of bins, letting
383 $k = (2T)^{\frac{1}{3}}$. Then, compute the χ^2 statistic
384

$$385 \quad \chi^2 = Tk \sum_{i=1}^k \left(f_i - \frac{1}{k} \right)^2.$$

386

387

388 We then compute the probability that text generated by the reported generation method would have
389 such an extreme χ^2 statistic. This p -value determines the consistency of the text with the reported
390 generation method, see Figure 3 and Appendix D for further details, and Goodman (2008) for guid-
391 ance on the interpretation of p -values for this test.
392

393 5.2 DESIGNING METHODS TO DETECT MACHINE-GENERATED TEXT 394

395 This section describes how to use DMAP to gain insight into differences between human- and
396 machine-generated text, and what conclusions can be drawn on the performance of current detec-
397 tors and the design of future detectors. This is pertinent since, as discussed in Section 5.1, there
398 are data errors in a substantial portion of the research on the detection of machine-generated text.
399 Consequently, we discover that the principles underlying the design of many AI text detectors are
400 not universally true, the primary being the *probability curvature* thesis. Other observations for the
401 interested reader are provided in Appendix L.
402

5.2.1 PROBABILITY CURVATURE FOR BASE AND INSTRUCTION-TUNED MODELS

403 The main idea behind most statistical approaches to detecting machine-generated text is that humans
404 tend to choose words from further down the probability distribution than machines do. This idea
405 was presented as *probability curvature* in DetectGPT (Mitchell et al., 2023), and the approach was
406 broadly followed in DetectLLM (Su et al., 2023), Fast-DetectGPT (Bao et al., 2023), and Binoculars
407 (Hans et al., 2024).

408 Probability curvature is effective in detecting text generated by an instruction-tuned model, or a
409 sampling strategy that weights text generation towards the head of the distribution. However, the
410 probability curvature idea is not supported by DMAP plots when pure sampling is used; in the white
411 box case, Figure 2 (a) and (e), it is much weaker than previously reported and in the black box case,
412 Figure 23, it appears false. To further validate this claim, we rerun experiments on the efficacy of
413 DetectGPT, Fast-DetectGPT and Binoculars in the black box detection of language models. When
414 top- k sampling is used the detectors remain effective as previously reported, since this decoding
415 strategy impacts probability curvature as expected by the methods. However, Table 1 shows that
416 when pure sampling is used their performance is worse than a coin toss due to inversion of the
417 probability curvature. While an AUROC under 0.5 may suggest inverting classifications on either
418 side of the threshold, this is not possible here due to the zero-shot nature of these techniques: the
419 fixed directionality is dictated by the method and based on the probability curvature thesis.
420

421 Table 1 shows that base models present an acute vulnerability to current detectors based on prob-
422 ability curvature. Fortunately, typical users will use instruction-tuned models which often exhibit
423 head-bias as shown in Figure 2. However, new methods are required to prevent a determined ad-
424 versary bypassing existing detectors through the use of base models with careful prompting. In
425 addition, despite enterprise detectors most often being exposed to text from instruction-tuned mod-
426 els, the vast majority of the existing literature performs experiments on base models. Our results
427 show these two classes of models should be tested separately when researchers are designing and
428 validating future detection algorithms. Further experimental details may be found in Appendix J.
429

430 5.3 STATISTICAL SIGNATURES OF POST-TRAINING DATA IN INSTRUCTION-TUNED MODELS 431

432 This section studies the effect of instruction fine-tuning on DMAP plots. In Figure 2 we saw that two
433 instruction tuned models, ChatGPT and Mistral Instruct, systematically over-sample from the head
434

432
433
434
435
436
437

Table 1: Performance comparison across different AI text black box detection methods, language models, and datasets: XSum (Narayan et al., 2018), SQuAD (Rajpurkar et al., 2016), and WritingPrompts (Writing) (Fan et al., 2018). Results are shown for two sampling configurations: top- $k = 50$ and pure sampling (top- $k = \text{None}$). As predicted by DMAP, state-of-the-art detectors based on ‘probability curvature’ are effective when top- k sampling is used but not with pure sampled text.

438 439 440 441 442 443 444 445 446 447 448 449	439 440 441 442 443 444 445 446 447 448 449	439 440 441 442 443 444 445 446 447 448 449	XSum		SQuAD		Writing	
			$k = 50$	$k = \text{None}$	$k = 50$	$k = \text{None}$	$k = 50$	$k = \text{None}$
FAST-DETECTGPT	Llama-3.1-8B	0.702	0.200	0.739	0.208	0.915	0.289	
	Mistral-7B-v0.3	0.770	0.276	0.819	0.299	0.906	0.339	
	Qwen3-8B	0.765	0.289	0.612	0.320	0.923	0.377	
DETECTGPT	Llama-3.1-8B	0.606	0.408	0.527	0.299	0.723	0.422	
	Mistral-7B-v0.3	0.679	0.486	0.586	0.365	0.688	0.457	
	Qwen3-8B	0.635	0.445	0.463	0.380	0.724	0.479	
BINOCULARS	Llama-3.1-8B	0.825	0.325	0.849	0.365	0.942	0.410	
	Mistral-7B-v0.3	0.823	0.350	0.851	0.416	0.931	0.404	
	Qwen3-8B	0.857	0.416	0.752	0.467	0.949	0.492	

450
451
452 of the OPT-125m probability distribution, whereas the non-instruction tuned base model Mistral 7B
453 is tail-biased. This tail-biased behavior of the base model is understood and expected (see Appendix
454 C). The real question is what is causing instruction tuned models to systematically over-select from
455 tokens which OPT-125m finds likely?

456 It has previously been noted (Luo et al., 2025; Shen et al., 2024; Chhikara, 2025; Zhu et al., 2023;
457 Yang & Holtzman, 2025) that instruction-tuned models are over-confident, in the sense that when
458 answering questions they assign too much weight to answers they believe are likely correct. We
459 hypothesize this may be an explanation for what we observe in our head-biased DMAP plots that
460 place too much weight on likely tokens at the head of the distribution.

461 DMAP plots offer an indirect way to study overconfidence in models by analyzing DMAP samples
462 of both instruction-tuned model generations and data used for post-training. While it doesn’t make
463 sense to ask whether correct, human-written responses to questions are over-confident, it does make
464 sense to ask whether their DMAP plots are head-biased, and to see whether the bias in training
465 data passes over to the model. This is particularly relevant given the common practice of using
466 temperature sampled responses as fine-tuning data (Dubois et al., 2023).

467 We fine-tuned three sizes of Pythia models (Biderman et al., 2023) on the OASST2 dataset (Köpf
468 et al., 2023) with responses provided by humans, Llama 3.1 8B at temperature 1, and Llama 3.1 8B
469 at temperature 0.7. Figure 4 contains DMAP plots for texts generated by Pythia 1B with four fine-
470 tuning configurations. For experimental details, DMAP plots for the fine-tuning data and repeated
471 results on the other models, see Appendix K.

472 Our main finding is that the only head-biased model was the one fine-tuned on temperature-sampled
473 data, which was in turn the most head-biased fine-tuning data. We also see that human-written
474 instruction fine-tuned data has a dramatic tail-collapse, much larger than seen in other human-written
475 text. In addition, we see increased density in the final bin for fine-tuned models, demonstrating how
476 DMAP might be used to detect mild overfitting during SFT and inform early-stopping strategies,
477 which we leave to explore further in future work. Finally, we note that all of our instruction-tuned
478 models had a less tail-biased distribution than the original Pythia model. These initial experiments
479 point to the utility of DMAP in studying how instruction-tuning affects the distributional properties
480 of machine text produced by downstream models.

481 6 CONCLUSION 482

483 We introduced DMAP, a mathematically principled method for mapping text through language
484 models to a standardized statistical representation. DMAP addresses the fundamental contextualization
485 problem that has limited previous approaches to statistical text analysis with language models.

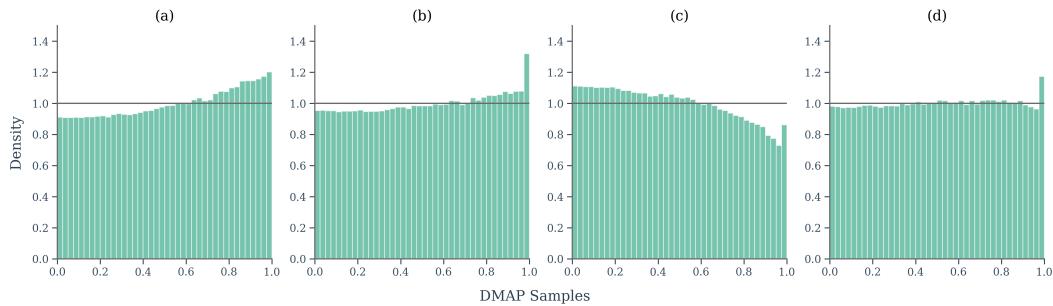


Figure 4: Using DMAP to investigate the effect of SFT post-training on synthetic data. DMAP plots generated by pure sampling with the evaluator model (OPT-125) on text generated by Pythia 1B models with (a) no fine-tuning, (b) fine-tuned on OASST2 human data (Köpf et al., 2023), (c) fine-tuned on OASST2 with responses regenerated by Llama 3.1 8B at temperature 0.7, (d) fine-tuned on OASST2 with responses regenerated by Llama 3.1 8B at temperature 1.0.

Three initial case studies demonstrate the broad utility of this tool. Through parameter validation, we demonstrate how DMAP can validate data integrity, helping to prevent natural and inevitable human errors propagating through the research ecosystem. Our re-examination of detection methods showed that the widely-accepted *probability curvature* principle fails for pure sampling from base models, challenging foundational assumptions in the field and pointing towards principles for designing more robust detection strategies. Importantly, our experiments highlight that existing detectors are critically vulnerable to adversarial attacks using base models due to inversion of the expected curvature. Finally, our analysis of instruction-tuned models reveals how statistical fingerprints of training data persist in downstream model outputs, providing new insights into the sources of overconfidence in aligned models.

Beyond these specific applications, DMAP offers several key advantages: it is computationally efficient, requiring only forward passes through models such as OPT-125m that may be run on consumer hardware; it provides intuitive visualizations that make complex distributional patterns immediately apparent; and it enables rigorous statistical testing. The method’s model-agnostic nature means it can be applied across different architectures and scales, making it a versatile tool for research and industry.

Our initial investigations point toward promising future research directions. For instance, DMAP might be used for data curation and efficient fine-tuning (Ankner et al., 2025), or to advance calibration approaches for instruction-tuned models, rather than using temperature scaling to align perplexity with pre-trained models. Alternatively, future work may calibrate DMAP distributions to match human text patterns, potentially offering more nuanced control over model confidence during frontier model training. The distinct DMAP signatures we observed across different text domains (poetry, news, technical writing) suggest the method could formalize how language model performance varies across contexts, separating inherent prediction difficulty from model-specific limitations. Perhaps most intriguingly, the dramatic differences in DMAP plots when generator and evaluator models differ point toward entirely new approaches to language model identification and forensic analysis. We are most excited for the applications we have yet to anticipate and believe that we have only scratched the surface of what we can learn through close examination of next-token probability distributions. DMAP provides a clear, principled window into that rich statistical landscape.

7 REPRODUCIBILITY STATEMENT

All datasets used are public or generated as detailed in our experimental setup in Section 5 and Appendices J and K. An anonymous GitHub link containing code and generated data will be shared with reviewers once the discussion period opens (ICLR code release Option 3). A version will be made publicly available as a tool for the community once internal approvals are completed.

540 REFERENCES
541

542 Albert Q. Jiang and others. Mistral 7B, 2023. URL <https://arxiv.org/abs/2310.06825>.

543 Zachary Ankner, Cody Blakeney, Kartik Sreenivasan, Max Marion, Matthew L Leavitt, and Man-
544 sheej Paul. Perplexed by Perplexity: Perplexity-Based Data Pruning With Small Reference
545 Models. In *The Thirteenth International Conference on Learning Representations*, 2025. URL
546 <https://openreview.net/forum?id=1GTARJhxtq>.

547

548 Guangsheng Bao, Yanbin Zhao, Zhiyang Teng, Linyi Yang, and Yue Zhang. Fast-DetectGPT: Effi-
549 cient Zero-Shot Detection of Machine-Generated Text via Conditional Probability Curvature. In
550 *The Twelfth International Conference on Learning Representations*, 2023.

551 Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O'Brien, Eric
552 Hallahan, Mohammad Aftab Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, et al.
553 Pythia: A suite for analyzing large language models across training and scaling. In *International
554 Conference on Machine Learning*, pp. 2397–2430. PMLR, 2023.

555

556 Sid Black, Leo Gao, Phil Wang, Connor Leahy, and Stella Biderman. GPT-Neo: Large Scale Au-
557 toregressive Language Modeling with Mesh-Tensorflow, March 2021. URL <https://doi.org/10.5281/zenodo.5297715>.

558

559 Prateek Chhikara. Mind the confidence gap: Overconfidence, calibration, and distractor effects in
560 large language models. *arXiv preprint arXiv:2502.11028*, 2025.

561 F. N. David and N. L. Johnson. The probability integral transformation when parameters are esti-
562 mated from the sample. *Biometrika*, 35(1/2):182–190, 1948.

563

564 Matthieu Dubois, François Yvon, and Pablo Piantanida. MOSAIC: Multiple Observers Spotting AI
565 Content. In *Findings of the Association for Computational Linguistics: ACL 2025*, pp. 24230–
566 24247, 2025.

567

568 Yann Dubois, Xuechen Li, Rohan Taori, Tianyi Zhang, Ishaan Gulrajani, Jimmy Ba, Carlos
569 Guestrin, Percy Liang, and Tatsunori Hashimoto. AlpacaFarm: A Simulation Framework for
570 Methods that Learn from Human Feedback. In *Thirty-seventh Conference on Neural Information
571 Processing Systems*, 2023. URL <https://openreview.net/forum?id=4hturzLcKX>.

572

573 Liam Dugan, Alyssa Hwang, Filip Trhlík, Andrew Zhu, Josh Magnus Ludan, Hainiu Xu, Daphne Ip-
574 polito, and Chris Callison-Burch. RAID: A Shared Benchmark for Robust Evaluation of Machine-
575 Generated Text Detectors. In *Proceedings of the 62nd Annual Meeting of the Association for
576 Computational Linguistics (Volume 1: Long Papers)*, pp. 12463–12492, 2024.

577

578 Ebtesam Almazrouei and others. The Falcon Series of Open Language Models, 2023. URL <https://arxiv.org/abs/2311.16867>.

579

580 Angela Fan, Mike Lewis, and Yann Dauphin. Hierarchical Neural Story Generation. In *Proceedings
581 of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
582 Papers)*. Association for Computational Linguistics, 2018.

583

584 Lizhe Fang, Yifei Wang, Zhaoyang Liu, Chenheng Zhang, Stefanie Jegelka, Jinyang Gao, Bolin
585 Ding, and Yisen Wang. What is wrong with perplexity for long-context language modeling?
586 *arXiv preprint arXiv:2410.23771*, 2024.

587

588 Ronald Aylmer Fisher. *Statistical methods for research workers*. Number 5 in Biological Mono-
589 graphs and Manuals. Oliver and Boyd, Edinburgh, 1928.

590

591 Sebastian Gehrmann, Hendrik Strobelt, and Alexander M Rush. GLTR: Statistical Detection and
592 Visualization of Generated Text. In *Proceedings of the 57th Annual Meeting of the Association
593 for Computational Linguistics: System Demonstrations*, pp. 111–116, 2019.

594

595 Tilmann Gneiting, Fadoua Balabdaoui, and Adrian E. Raftery. Probabilistic forecasts, calibration
596 and sharpness. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, 69(2):
597 243–268, 2007.

594 Steven Goodman. A dirty dozen: twelve p-value misconceptions. In *Seminars in hematology*,
595 volume 45, pp. 135–140. Elsevier, 2008.
596

597 Aaron Grattafiori et al. The Llama 3 Herd of Models, 2024. URL <https://arxiv.org/abs/2407.21783>.
598

599 Abhimanyu Hans, Avi Schwarzschild, Valeria Cherepanova, Hamid Kazemi, Aniruddha Saha,
600 Micah Goldblum, Jonas Geiping, and Tom Goldstein. Spotting LLMs With Binoculars: Zero-
601 Shot Detection of Machine-Generated Text. In *Proceedings of the 41st International Conference
602 on Machine Learning*, pp. 17519–17537, 2024.
603

604 Daphne Ippolito, Daniel Duckworth, and Douglas Eck. Automatic Detection of Generated Text is
605 Easiest when Humans are Fooled. In *Proceedings of the 58th Annual Meeting of the Association
606 for Computational Linguistics*, pp. 1808–1822, 2020.
607

608 Tom Kempton and Stuart Burrell. Local Normalization Distortion and the Thermodynamic Formal-
609 ism of Decoding Strategies for Large Language Models, 2025. URL <https://arxiv.org/abs/2503.21929>.
610

611 Tom Kempton, Stuart Burrell, and Connor J Cheverall. TempTest: Local Normalization Distortion
612 and the Detection of Machine-generated Text. In *International Conference on Artificial Intelli-
613 gence and Statistics*, pp. 1972–1980. PMLR, 2025.
614

615 Andreas Köpf, Yannic Kilcher, Dimitri von Rütte, Sotiris Anagnostidis, Zhi-Rui Tam, Keith Stevens,
616 Abdullah Barhoum, Nguyen Minh Duc, Oliver Stanley, Richárd Nagyfi, Shahul ES, Sameer Suri,
617 David Glushkov, Arnav Dantuluri, Andrew Maguire, Christoph Schuhmann, Huu Nguyen, and
618 Alexander Mattick. OpenAssistant conversations - democratizing large language model align-
619 ment. In *Proceedings of the 37th International Conference on Neural Information Processing
620 Systems, NIPS '23*, Red Hook, NY, USA, 2023. Curran Associates Inc.
621

622 Kalpesh Krishna, Yixiao Song, Marzena Karpinska, John Wieting, and Mohit Iyyer. Paraphrasing
623 evades detectors of ai-generated text, but retrieval is an effective defense. *Advances in Neural
624 Information Processing Systems*, 36, 2024.
625

626 Beier Luo, Shuoyuan Wang, Yixuan Li, and Hongxin Wei. Your Pre-trained LLM is Secretly an
627 Unsupervised Confidence Calibrator. *arXiv preprint arXiv:2505.16690*, 2025.
628

629 Clara Meister and Ryan Cotterell. Language model evaluation beyond perplexity. In Chengqing
630 Zong, Fei Xia, Wenjie Li, and Roberto Navigli (eds.), *Proceedings of the 59th Annual Meeting
631 of the Association for Computational Linguistics and the 11th International Joint Conference on
Natural Language Processing (Volume 1: Long Papers)*, pp. 5328–5339, Online, August 2021.
632 Association for Computational Linguistics. doi: 10.18653/v1/2021.acl-long.414. URL <https://aclanthology.org/2021.acl-long.414/>.
633

634 Niloofar Mireshghallah, Justus Mattern, Sicun Gao, Reza Shokri, and Taylor Berg-Kirkpatrick.
635 Smaller Language Models are Better Zero-shot Machine-Generated Text Detectors. In *Proceed-
636 ings of the 18th Conference of the European Chapter of the Association for Computational Lin-
637 guistics (Volume 2: Short Papers)*, pp. 278–293, 2024.
638

639 Eric Mitchell, Yoonho Lee, Alexander Khazatsky, Christopher D Manning, and Chelsea Finn. De-
640 tectGPT: Zero-Shot Machine-Generated Text Detection using Probability Curvature. In *Interna-
641 tional Conference on Machine Learning*, pp. 24950–24962. PMLR, 2023.
642

643 Shashi Narayan, Shay B Cohen, and Mirella Lapata. Don't Give Me the Details, Just the Summary!
644 Topic-Aware Convolutional Neural Networks for Extreme Summarization. In *Proceedings of
645 the 2018 Conference on Empirical Methods in Natural Language Processing*. Association for
646 Computational Linguistics, 2018.
647

648 Byung-Doh Oh and William Schuler. Transformer-Based Language Model Surprisal Predicts Hu-
649 man Reading Times Best with About Two Billion Training Tokens. In *Findings of the Association
650 for Computational Linguistics: EMNLP 2023*, pp. 1915–1921, 2023.
651

648 Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+ Questions
649 for Machine Comprehension of Text. In *Proceedings of the 2016 Conference on Empirical
650 Methods in Natural Language Processing*, pp. 2383–2392, 2016.

651

652 Vinu Sankar Sadasivan, Aounon Kumar, Sriram Balasubramanian, Wenxiao Wang, and Soheil Feizi.
653 Can AI-Generated Text be Reliably Detected?, 2025. URL <https://arxiv.org/abs/2303.11156>.

654

655 Maohao Shen, Subhro Das, Kristjan Greenewald, Prasanna Sattigeri, Gregory Wornell, and Soumya
656 Ghosh. Thermometer: towards universal calibration for large language models. In *Proceedings
657 of the 41st International Conference on Machine Learning*, pp. 44687–44711, 2024.

658

659 Jinyan Su, Terry Zhuo, Di Wang, and Preslav Nakov. DetectLLM: Leveraging Log Rank Infor-
660 mation for Zero-Shot Detection of Machine-Generated Text. In *Findings of the Association for
661 Computational Linguistics: EMNLP 2023*, pp. 12395–12412, 2023.

662

663 Yutao Sun, Zhenyu Li, Yike Zhang, Tengyu Pan, Bowen Dong, Yuyi Guo, and Jianyong Wang.
664 Efficient attention mechanisms for large language models: A survey, 2025. URL <https://arxiv.org/abs/2507.19595>.

665

666 George R Terrell and David W Scott. Oversmoothed nonparametric density estimates. *Journal of
667 the American Statistical Association*, 80(389):209–214, 1985.

668

669 Sean Trott and Pamela Rivière. Measuring and Modifying the Readability of English Texts with
670 GPT-4. In *Proceedings of the Third Workshop on Text Simplification, Accessibility and Readability
(TSAR 2024)*, pp. 126–134, 2024.

671

672 Vivek Verma, Eve Fleisig, Nicholas Tomlin, and Dan Klein. Ghostbuster: Detecting Text Ghostwrit-
673 ten by Large Language Models. In *Proceedings of the 2024 Conference of the North American
674 Chapter of the Association for Computational Linguistics: Human Language Technologies (Vol-
ume 1: Long Papers)*, pp. 1702–1717, 2024.

675

676 An Yang, Anfeng Li, Baosong Yang, et al. Qwen3 Technical Report, 2025. URL <https://arxiv.org/abs/2505.09388>.

677

678 Chenghao Yang and Ari Holtzman. How Alignment Shrinks the Generative Horizon. *arXiv preprint
679 arXiv:2506.17871*, 2025.

680

681 Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-
682 pher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. OPT: Open Pre-trained Transformer
683 Language Models. *arXiv preprint arXiv:2205.01068*, 2022.

684

685 Chiwei Zhu, Benfeng Xu, Quan Wang, Yongdong Zhang, and Zhendong Mao. On the Calibration
686 of Large Language Models and Alignment. In *The 2023 Conference on Empirical Methods in
687 Natural Language Processing*, 2023.

688

A PROOF OF PROPOSITION 3.1

690 Suppose that a text $w_1 \cdots w_T$ has been generated by pure sampling from language model p . At time
691 i , token v is selected with probability $p(v|w_1 \cdots w_{i-1})$. Token v defines an interval $[a, b]$ of length
692 $p(v|w_1 \cdots w_{i-1})$ (see the definition of DMAP, Section 3.1). The points a, b are functions of both v
693 and the context $w_1 \cdots w_{i-1}$, to keep notation clean we suppress this dependence here.

694 Then, following the DMAP algorithm, a point x_i is selected according to the uniform distribution
695 on $[a, b]$. Let \mathcal{P} denote the partition of $[0, 1]$ into intervals $[a, b]$ corresponding to different tokens v
696 given fixed context $w_1 \cdots w_{i-1}$.

697 In order to prove that the process of picking v according to $p(\cdot|w_1 \cdots w_{i-1})$ and then picking x_i
698 according to $U([a, b])$ produces points distributed according to $U([0, 1])$, it is enough to show that
699 for any interval (c, d) , $\mathbb{P}(x_i \in (c, d)) = d - c$. It is enough to prove this for intervals (c, d) which
700 are fully contained in one of the intervals in the partition \mathcal{P} , the result for larger (c, d) follows by
701 standard rules of probability.

Now, given context $w_1 \cdots w_{i-1}$, let (c, d) be a subset of some interval (a, b) in \mathcal{P} , where (a, b) is the interval corresponding to selection of some token v . Then

$$\begin{aligned}\mathbb{P}(x_i \in (c, d)) &= \mathbb{P}(x_i \in (a, b)) \cdot \frac{\mathbb{P}(x_i \in (c, d))}{\mathbb{P}(x_i \in (a, b))} \\ &= p(v|w_1 \cdots w_{i-1}) \cdot \frac{(d-c)}{(b-a)} \\ &= (b-a) \frac{(d-c)}{(b-a)} = d-c\end{aligned}$$

as required. Here we used that $x_i \in (a, b)$ exactly when the token v defining interval (a, b) was selected, which happens with probability $p(v|w_1 \cdots w_{i-1}) = b-a$.

We have shown here that, for any choice of context $w_1 \cdots w_{i-1}$, x_i will be distributed according to $U(0, 1)$. Thus we have shown that x_i is independent of $w_1 \cdots w_{i-1}$, and so the resulting sequence $x_1 \cdots x_T$ is iid.

Finally we note that no properties of the language model were assumed in the above proof. In particular, one could define $p(\cdot|w_1 \cdots w_{i-1})$ to be the next token probability distribution resulting from sampling from Llama 3.1 at temperature 0.7. In that case, our result about x_i being iid according to the uniform distribution on $[0, 1]$ continues to hold, provided the same language model decoding strategy pair is used in the generation of text and generation of DMAP plots.

Proposition 3.1 does not hold directly for entropy weighted DMAP, since entropy weighted DMAP does not produce points x_i . One can make corresponding statements about the expected integral of $\frac{x_i}{|I_i|}$ over any interval A and see that entropy weighted DMAP plots for texts generated by the evaluator model do converge to the uniform distribution, but rates of convergence do not follow so easily.

B ON THE SHAPE OF DMAP PLOTS FOR TEMPERATURE, TOP-P AND TOP- k SAMPLING

Recall that, for a language model p and context $w_1 \cdots w_{i-1}$, and for given values of τ , π and k , temperature sampling picks token p_i with probability

$$q_\tau(w_i|w_1 \cdots w_{i-1}) = \frac{p(w_i|w_1 \cdots w_{i-1})^{\frac{1}{\tau}}}{\sum_{v \in \mathcal{V}} p(v|w_1 \cdots w_{i-1})^{\frac{1}{\tau}}}.$$

top- k sampling defines the top- k set \mathcal{V}_k to be the k tokens with highest model (conditional) probability $p(\cdot|w_1 \cdots w_{i-1})$ and assigns probability

$$q_k(w_i|w_1 \cdots w_{i-1}) = \frac{p(w_i|w_1 \cdots w_{i-1})}{\sum_{v \in \mathcal{V}_k} p(v|w_1 \cdots w_{i-1})}$$

to tokens w_i in the top- k set, and zero mass outside of the top- k set.

Finally top-p (nucleus) sampling orders the tokens in \mathcal{V} by decreasing conditional probability $p(\cdot|w_1 \cdots w_{i-1})$ and defines the top-p set \mathcal{V}_π to be the first m tokens, where m is the smallest integer for which $\sum_{i=1}^m p(v_i|w_1 \cdots w_{i-1}) > \pi$. Top-p sampling then chooses token w_i with probability

$$q_\pi(w_i|w_1 \cdots w_{i-1}) = \frac{p(w_i|w_1 \cdots w_{i-1})}{\sum_{v \in \mathcal{V}_\pi} p(v|w_1 \cdots w_{i-1})}.$$

We then ask, given a long text sampled by top- k sampling, what are the limiting statistics of the size of the top- k set. The expected shape of the DMAP plot for top- k sampling is the function

$$\mathbb{P}(\text{The total mass of the top-}k\text{ set is greater than }x)$$

renormalized to have integral one. This is a decreasing function, nearly flat on $[0, 0.5]$ before smoothly decreasing towards 0.

756 Similarly, for top- p sampling, the expected shape is the function
757

$$758 \mathbb{P}(\text{The total mass of the top-}\pi\text{ set is greater than }x),$$

759 again renormalized to have mass one. This is flat on $[0, \pi]$, before decaying very rapidly. There is a
760 sharp cut off reflecting the majority of cases where the size of the top- π set is only just larger than
761 π , and a non-vanishing tail reflecting the fact that the proportion of times for which the top- π set has
762 mass close to 1 is non-zero.

763 For the shape of the DMAP plots in the case of temperature sampling, we mention only that it is a
764 smooth deformation. There is an interval close to 0 upon which the DMAP is nearly flat, but this is
765 much smaller than in the top- k case as it is a function of the mass of the most likely token, rather
766 than of the top- k most likely tokens.
767

768 C WHY ARE BLACK-BOX BASE MODELS TAIL BIASED?

769

770 The fact that our plots of texts generated by one base language model and evaluated by another base
771 language model (Figures 2 and 23) are tail-biased is partially supported by theory. In [Kempton &](#)
772 [Burrell \(2025\)](#), it was shown that for a language model P and a generation length T , pure sampling
773 from P is the unique way of maximizing the sum of entropy and per-token log-likelihood (as judged
774 by P). That is, whenever we sample from a language model Q for which the entropy is at least as
775 large as the entropy of P , the resulting plot text must have lower expected per-token log-likelihood
776 (as measured by P). This is a statement about log-likelihood, not a statement about position in the
777 probability distribution, and so doesn't directly correspond to saying the DMAP plots should be
778 tail-biased, but it gives a strong indication in that direction.
779

780 D RATES OF CONVERGENCE IN PROPOSITION 3.1

781

782 Proposition 3.1 implies that DMAP plots of texts generated by pure sampling from a language
783 model, evaluated by the same language model, should look roughly flat. One might wonder whether
784 we can make this statement more precise with a rate of convergence. The answer is positive, as
785 detailed in the following proposition.

786 **Proposition D.1.** *Given a language model P , a text $w_1 \dots w_T$ generated by P and a number of bins
787 k , let $x_1, \dots x_T$ be the set of points generated by DMAP with P as the evaluator model. Further
788 define frequencies*

$$789 f_i = \frac{\#\{j \in \{1, \dots, T\} : \frac{i-1}{k} \leq x_j < \frac{i}{k}\}}{T}$$

790 and the χ^2 statistic

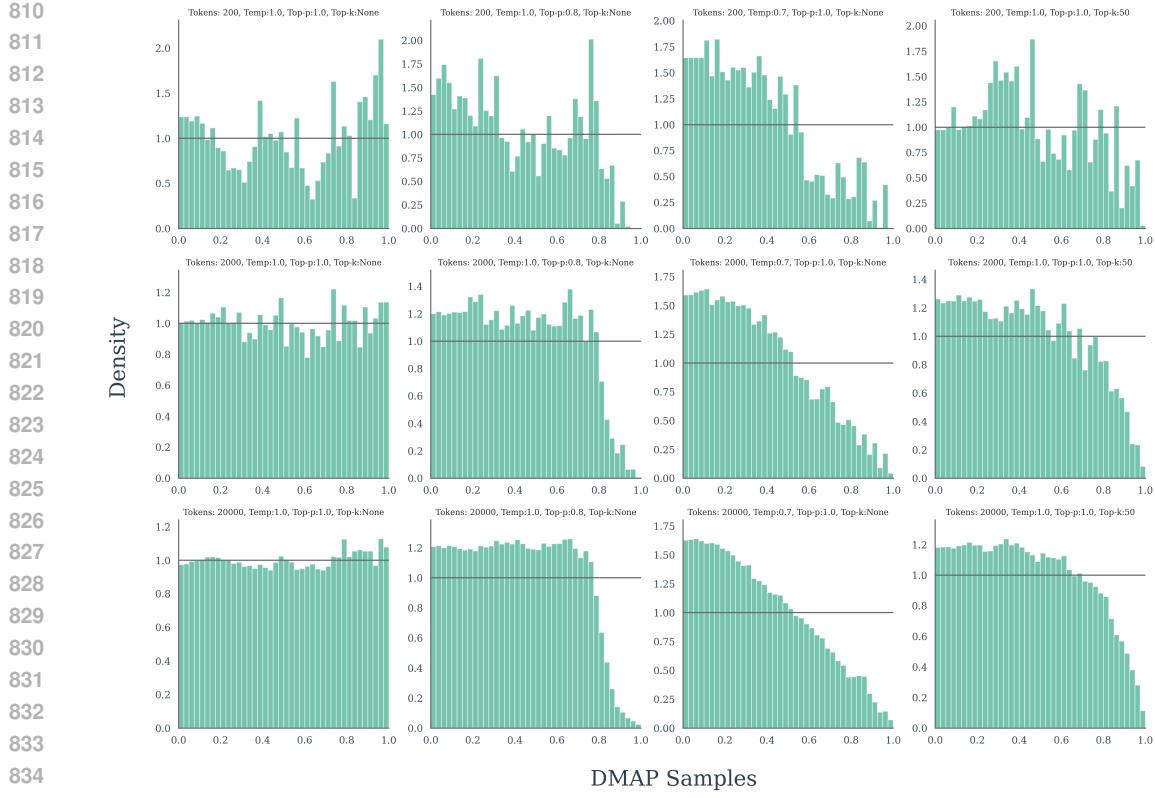
$$791 \chi^2 = Tk \sum_{i=1}^k \left(f_i - \frac{1}{k} \right)^2$$

792 as in Section 5.1. Then χ^2 is asymptotically distributed according to the χ^2_{k-1} (the χ^2 distribution
793 with $k-1$ degrees of freedom).

794 An immediate application of this is that we evaluate the plausibility of the statement ‘Text $w_1 \dots w_T$
795 was generated by pure sampling from language model P ’. To do this, we compute the χ^2 statistic
796 c arising from the text $w_1 \dots w_T$ and use standard python statistics packages to compute the probability
797 that points drawn according to the χ^2_{k-1} distribution would be larger than c . For large T ,
798 this is arbitrarily close to the probability that text generated by language model P would generate as
799 extreme a χ^2 statistic.
800

801 We mention one note of caution about the word ‘asymptotically’ in Proposition D.1. For finite T ,
802 the χ^2 statistic is not perfectly distributed according to the χ^2 statistic (indeed it is supported on a
803 finite set), and so our computations of p-values are not exact. A conservative rule of thumb is that T
804 should be at least $10k$ for reliable p-values, so one should evaluate at least 400 tokens when plotting
805 histograms with 40 bins.
806

807 Proposition D.1 is a standard result in statistics, proved by a slightly delicate application of the
808 central limit theorem.
809



836 Figure 5: Empirical convergence analysis of DMAP with 40-bin histograms. This figure illustrates
 837 the convergence of 40-bin DMAP histograms as the number of tokens, and thus DMAP samples,
 838 increases from 200 to 20,000. At extremely low sample sizes we see high variability and noise,
 839 while the strong characteristic shapes we expect emerge as the number of tokens increases. We
 840 recommend choosing the number of bins as a function of the number of tokens being evaluated, for
 841 example using the Terrell-Scott rule, so as to mitigate this noise.

842

843 One should be cautious in interpreting p-values, as they are famously prone to misinterpretation.
 844 Many articles can be found explaining these misconceptions, see for example [Goodman \(2008\)](#).
 845

846

E EFFICIENCY AND EMPIRICAL CONVERGENCE RATES

848

849 This section provides a discussion on algorithmic efficiency and empirical results on the convergence
 850 of DMAP as the number of tokens, and therefore DMAP samples, grows. This latter evidence is to
 851 supplement the theoretical analysis of convergence in Proposition D.1. Figure 5 shows DMAP plots
 852 for 200, 2000, and 20,000 tokens. We see that for extremely small token sizes there is significant
 853 noise, while this quickly stabilizes. By 2000 tokens, we see identifiable patterns emerging, and by
 854 20,000 the noise is fairly negligible with strong characteristic patterns present. If you are working
 855 with extremely smalls amount of data with DMAP, you may reduce the impact of the noise by
 856 reducing the number of bins in your histogram. Even at 200 tokens this approach allows us to
 857 identify recover information about decoding strategies, see Figure 6.

858

859 The runtime efficiency and speed of DMAP is dominated by the underlying language model. For
 860 vanilla transformers, we therefore have quadratic time and memory complexity, though this could
 861 be improved if considering language models based on alternative attention mechanisms ([Sun et al.,](#)
 862 [2025](#)).

863

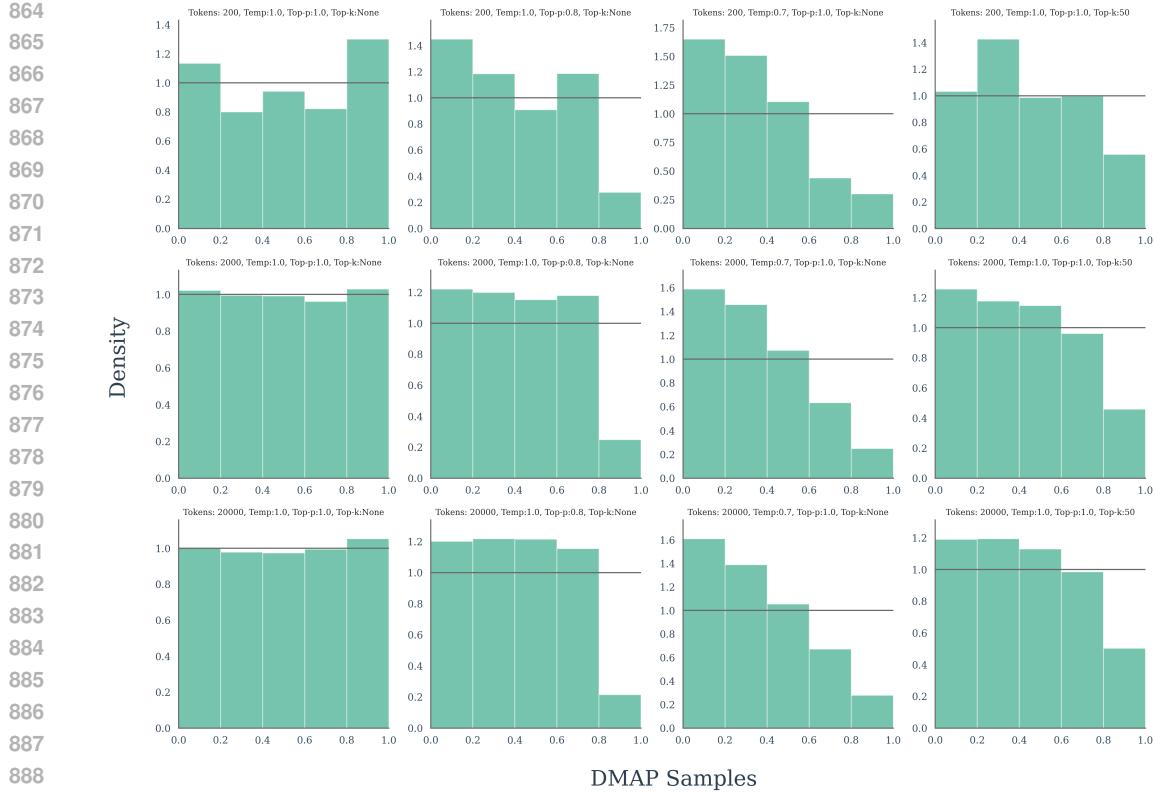


Figure 6: Empirical convergence analysis of DMAP with 5-bin histograms. This figure shows that noise due to extremely small sample sizes may be mitigated by using fewer bins. In this regime, we still see approximate versions of the characteristic patterns present in the top row of Figure 2, in contrast to the noisy estimates found in the first row of Figure 5.

F ENTROPY WEIGHTING

In Section 3.2 we introduced entropy weighting as a way of suppressing the effect of tokens selected at times where the next-token conditional probability distribution was very low. The argument here was that there are often situations where the next token is known with extremely high likelihood (say probability 0.995). In such situations, the points plotted by DMAP tend to have distribution close to the uniform distribution irrespective of the method of text generation.

To illustrate this point, we consider DMAP plots of texts generated by Mistral-7B-v0.3 and evaluated by Llama-3.1-8B. The full entropy weighted DMAP plot is present as the first plot on the second row of Figure 8. In Figure 7 we separate out points by the entropy of the next token probability distribution, plotting the low entropy case in (a), the medium entropy case in (b), and the high entropy case in (c). As predicted, low entropy case DMAP plot is extremely flat, since very little information is uncovered from these points. This illustrates our reasons for giving lower weight to points of entropy below 2. In this example, tokens where the entropy is below 0.5 make up 7474 of the 77321 tokens evaluated, just under ten percent. In contrast, (b) and (c) contain noticeable peaks.

G PROMPT SENSITIVITY ANALYSIS

This section includes experiments investigating the sensitivity of DMAP to the inclusion or exclusion of the prompt. In addition, with testing the sensitivity of DMAP to the first few tokens for which there is no or small amounts of context to shape the conditional distribution.

First, we repeated a large scale white box and black box experiment, to compare the efficacy of DMAP with and without access to the prompt. The results are shown in Figure 8 (without access

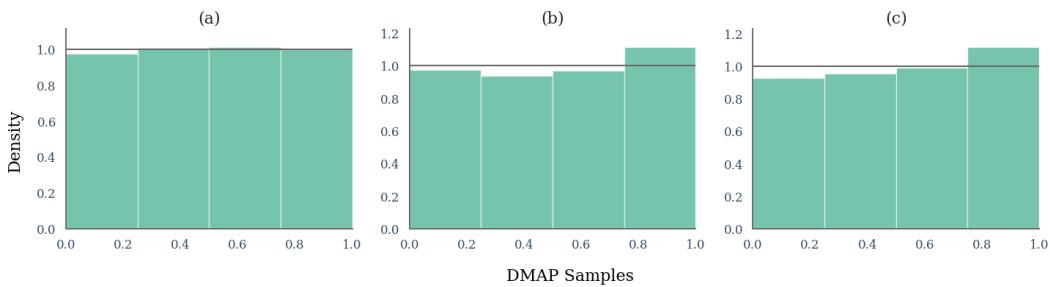


Figure 7: DMAP plots of text generated by Mistral and evaluated by Llama. Plot (a) shows only those tokens for which the entropy of the next token probability distribution is below 0.5, (b) shows entropy in the range (0.5,1), and (c) shows points where the entropy is greater than 2. We see that the plot (a) of low entropy tokens looks flat even though we are in the tail-biased case of pure sampling from a base model with different models used for generation and detection.

to the prompt) and Figure 9 (with access to the prompt). These plots show that in realistic settings where one may wish to apply DMAP, the utility is equal with or without access to the prompt. However, note that without access to the prompt, despite the characteristic shapes being strongly present, there is a slight increase in the noisiness or irregularity in the plot. This is expected, since the reduced context will cause increased variance in the conditional distributions, particularly for tokens near the start of the text.

To explore sensitivity to the initial tokens further, for both settings including and excluding the prompt, we conducted an additional 32 experiments. Here, we also consider an *initial cutoff*. For an initial cutoff of N , we use the first N tokens to compute conditional probabilities for tokens $N + 1, \dots$ but do not plot the corresponding N DMAP samples. This is intended to remove noise associated with the early tokens with insufficient context. We consider four core configurations i) include prompt and initial cutoff = 30, ii) include prompt and initial cutoff = 0, iii) exclude prompt and initial cutoff = 30, and iv) exclude prompt and initial cutoff = 0. Figure 10 analyses these four configurations for texts of length 300 tokens, while Figure 11 considers texts of length 50 tokens. These results show that at realistic token counts both the prompt and initial cutoff have only a minor effect. However, at very small token counts, DMAP is affected by the prompt. This is to be expected, since the prompt is a significant proportion of the total tokens in this case and therefore the statistical effect is larger. This gives a further reason to caution against using DMAP on extremely small samples of data.

H RELATIONSHIP TO PROBABILITY INTEGRAL TRANSFORM

One way to view DMAP is that it builds on the classical probability integral transform (PIT) (Fisher, 1928; David & Johnson, 1948; Gneiting et al., 2007), as discussed in the related work section. However, a key difference between DMAP and PIT is that DMAP dynamically orders tokens by sorting the logits prior to generating a sample on the unit interval. As such, it also encodes *rank* information as studied in works such as Su et al. (2023). For completeness, in figure 12 we perform this extension of PIT to categorical variables where our dynamic token ordering is replaced with a random token ordering. We have been unable to extract useful information from these plots.

I ANALYSIS OF ADVERSARIAL PARAPHRASING

DMAP is a general tool for the statistical analysis of text, and not itself a specialized detector of machine-generated text. That said, we have seen throughout this paper that it can highlight important differences between machine and human generated text, for example, see Figure 2.

Paraphrasing is a well-known and important technique that has been shown to be an effective adversarial attack against common machine-generated text detectors (Sadasivan et al., 2025). In this appendix, we ask what the impact is of paraphrasing on DMAP visualizations. In particular, do paraphrasing attacks make DMAP visualizations of synthetic data look more like that of human

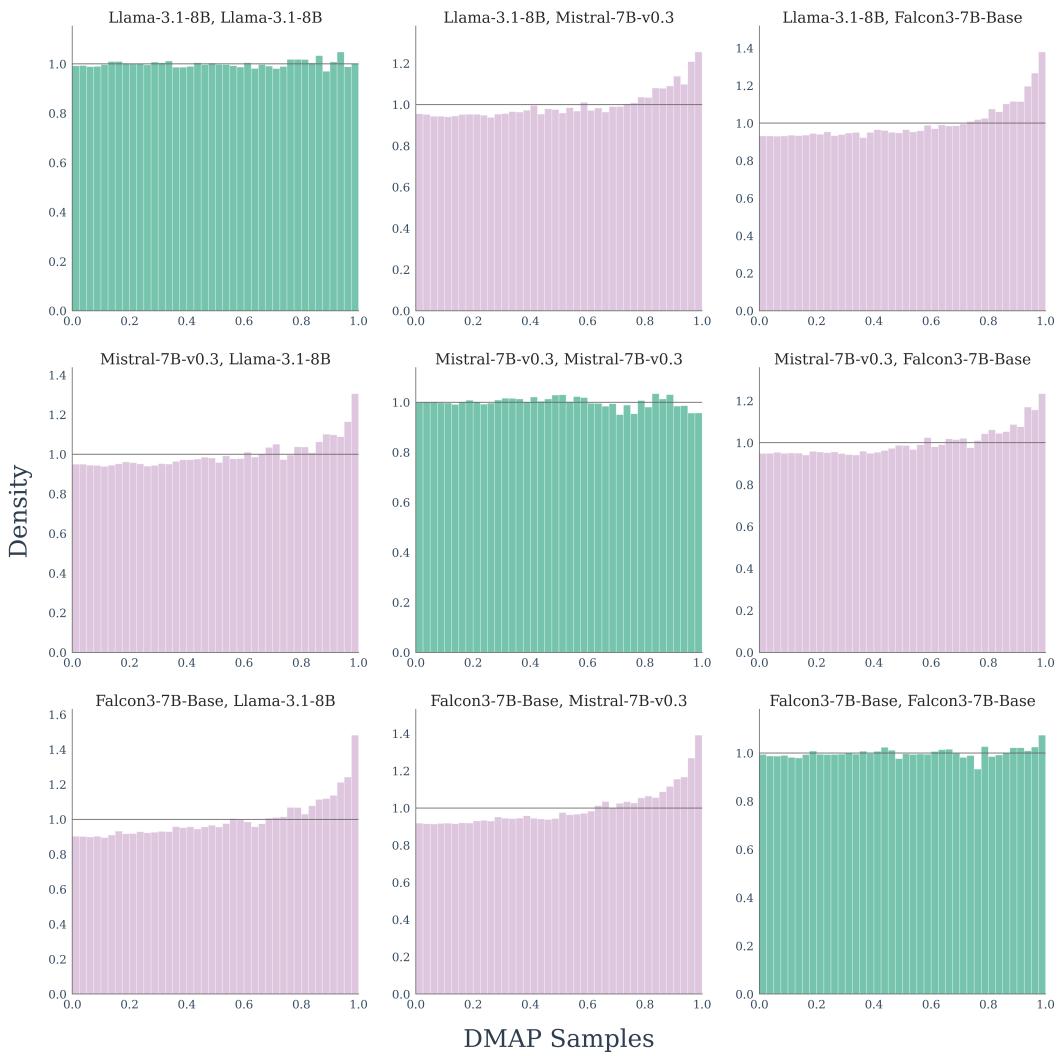
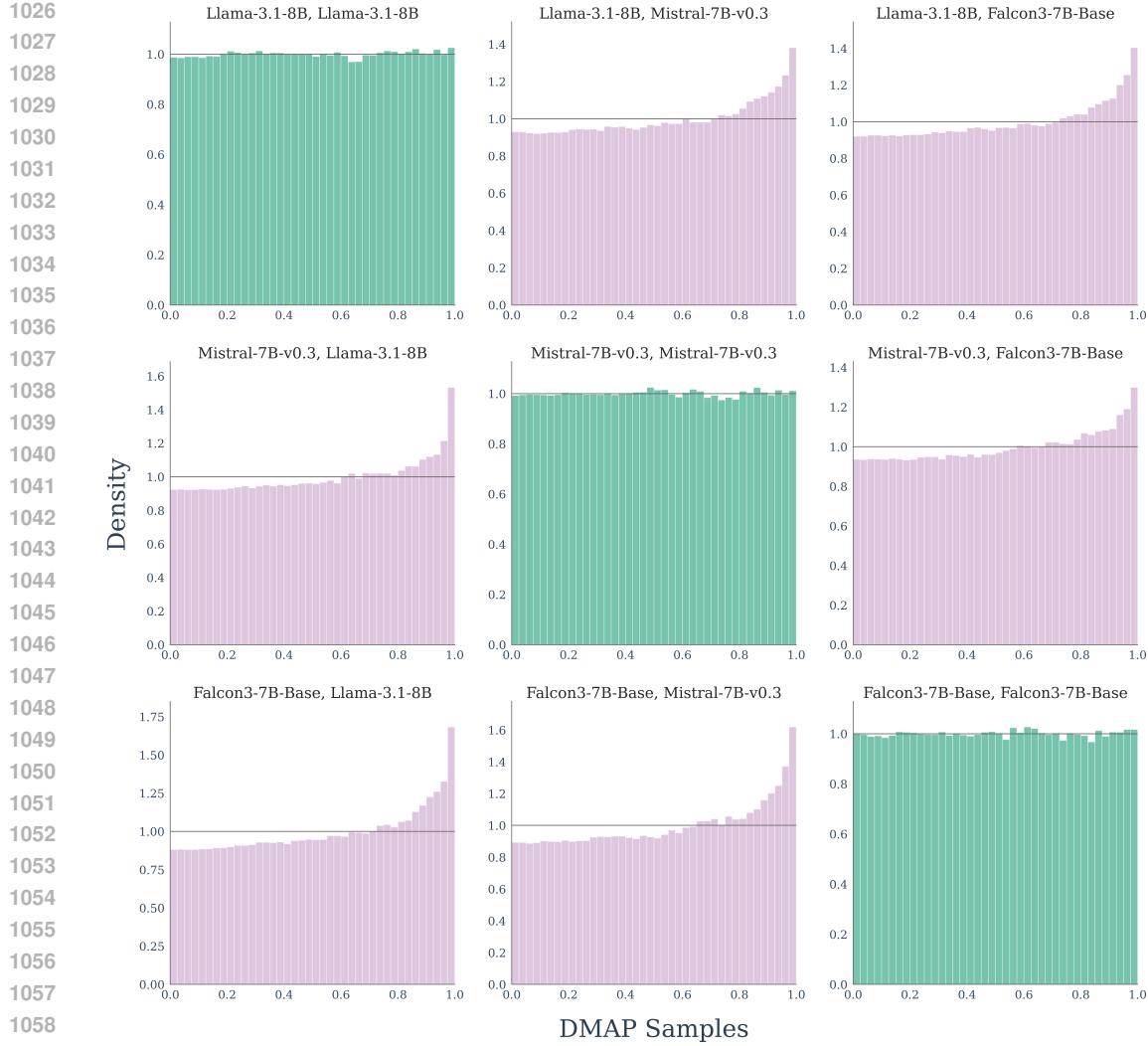


Figure 8: White and black box experiments excluding the prompt with texts of length 300. For these plots, the prompt was excluded. White and black box evaluation. Plots are labeled: (Generator Model, Evaluator Model). Plots on the main diagonal (green) correspond to the white box setting, while off-diagonal plots (pink) correspond to the black box setting. Observe that in the black box setting we see plots with heavy tails.

data, analogous to their impact on common machine-generated text detectors? To answer this, we performed experiments using DIPPER (Krishna et al., 2024), a popular model used to evaluate robustness to adversarial paraphrasing attacks, for example, see (Sadasivan et al., 2025; Kempton et al., 2025). Our experiments show that DMAP visualizations are robust to paraphrasing attacks with DIPPER (Krishna et al., 2024). In particular, we see that paraphrased machine-generated text and human text are clearly distinct, see Figures 13, 14 and 15.

In addition, these figures also show that DMAP identifies subtle shifts between synthetic data and paraphrased synthetic data, shedding some new light on how paraphrasing attacks alter the distribution of text. Collectively, these results are strong evidence that an effective text detector may be built on top of DMAP that is far more robust to paraphrasing attacks than existing approaches. In addition, these results prompt the use of DMAP to explore the whole array of paraphrasing attacks in the literature to obtain a deeper understanding of their underlying statistical mechanisms.



1060 Figure 9: White and black box experiments including the prompt with texts of length 300. For these
 1061 plots, the prompt was used in computation of next token probabilities of later tokens, but DMAP
 1062 samples were not generated for tokens in the prompt. White and black box evaluation. Plots are
 1063 labeled: (Generator Model, Evaluator Model). Plots on the main diagonal (green) correspond to the
 1064 white box setting, while off-diagonal plots (pink) correspond to the black box setting. Observe that
 1065 in the black box setting we see plots with heavy tails.

J EXPERIMENTAL SETUP FOR SECTION 5.2

1069 We follow a setup similar to, for example, [Mitchell et al. \(2023\)](#) or [Kempton et al. \(2025\)](#). In par-
 1070 ticular, given a large language model and sample of human text from XSum ([Narayan et al., 2018](#)),
 1071 SQuAD ([Rajpurkar et al., 2016](#)), or WritingPrompts (Writing) ([Fan et al., 2018](#)), we construct 150
 1072 tokens of synthetic text using the first 30 tokens as context. We then perform zero-shot classifica-
 1073 tion on the balanced dataset of real and synthetic data. For Fast-DetectGPT ([Bao et al., 2023](#)) and De-
 1074 tectGPT ([Mitchell et al., 2023](#)) we use GPT-Neo 2.7b ([Black et al., 2021](#)), which Fast-DetectGPT
 1075 report as being empirically superior for black box detection with their method. For Binoculars we
 1076 use the recommended combination of Falcon 7b for the observer model and Falcon 7b Instruct for
 1077 the performer model ([Ebtesam Almazrouei and others, 2023](#)). The generation models we use are
 1078 Llama-3.1 8B ([Grattafiori et al., 2024](#)), Mistral-7B-v0.3 ([Albert Q. Jiang and others, 2023](#)), and
 1079 Qwen3-8B ([Yang et al., 2025](#)). For each method, we report AUROC as the evaluation score as in
 ([Mitchell et al., 2023; Bao et al., 2023; Kempton et al., 2025](#)).

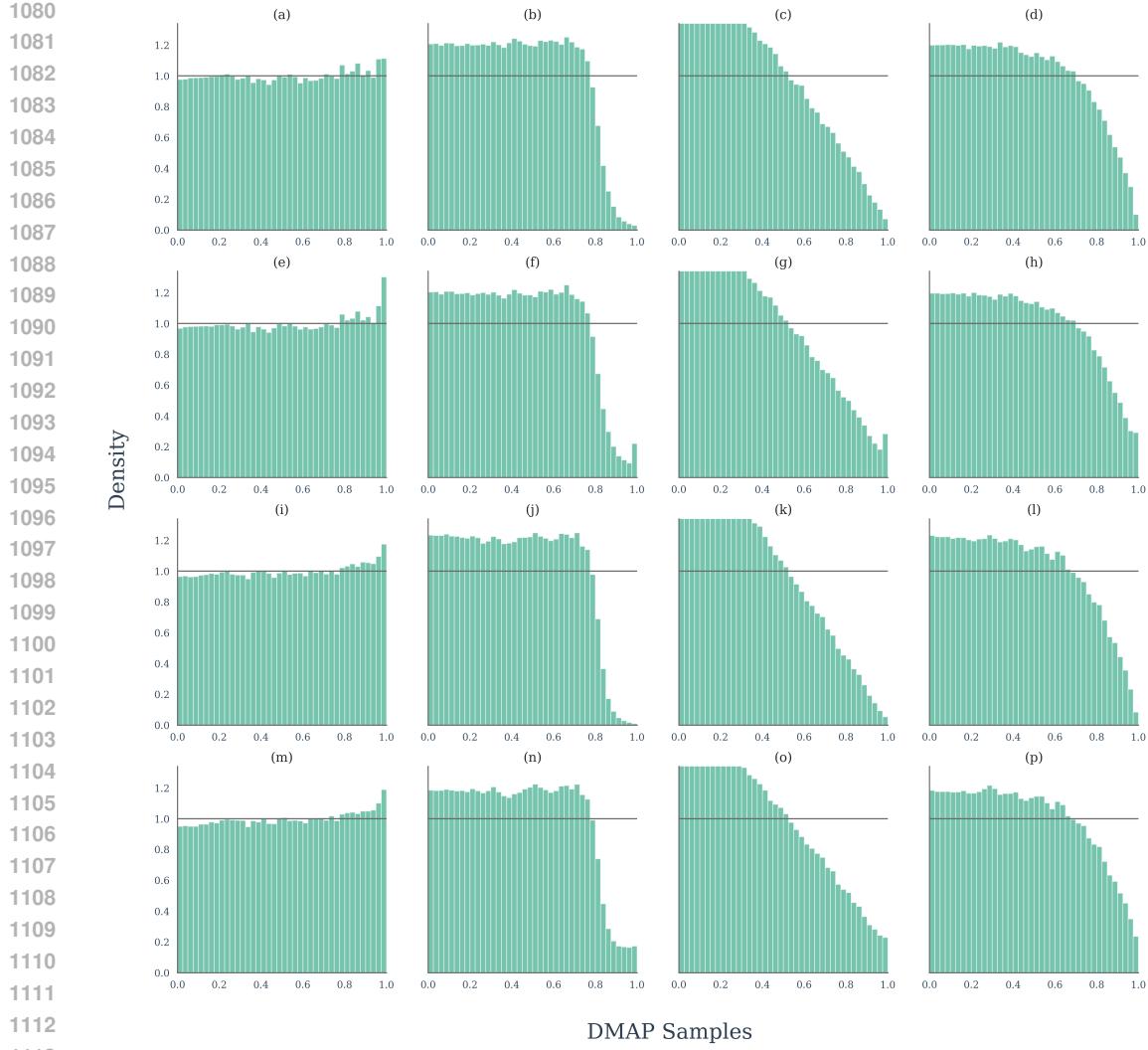
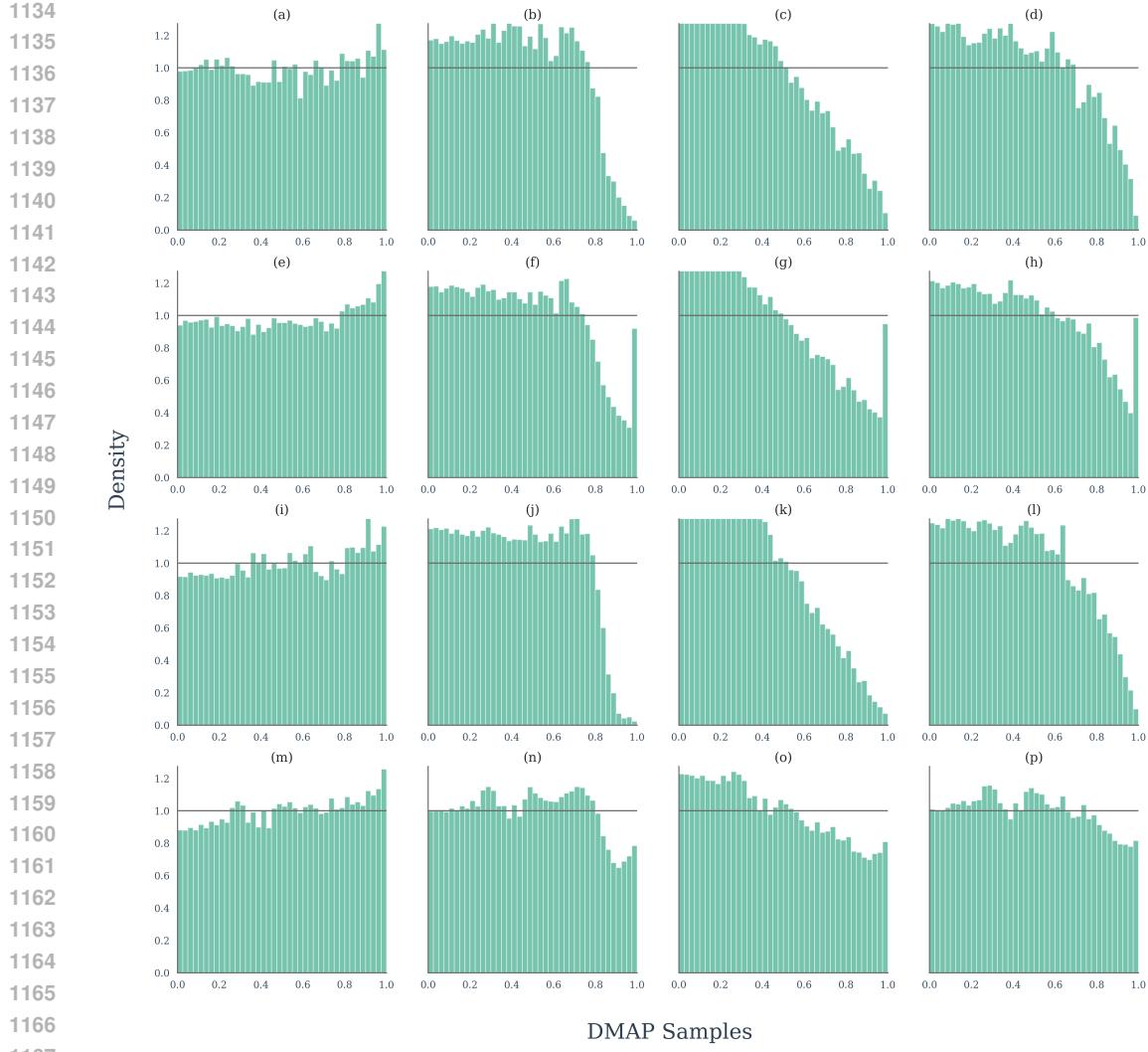


Figure 10: Prompt sensitivity analysis with texts of length 300 tokens. Each column corresponds to a generation strategy. From left to right columns, we have pure, top- $p = 0.8$, temperature $\tau = 0.8$, and top- $k = 50$ sampling. (a)-(d) include the prompt and set initial cutoff = 30. (e)-(h) include the prompt and set initial cutoff = 0. (i)-(l) exclude the prompt and set initial cutoff = 30. (m)-(p) include the prompt and set initial cutoff = 0. The second and fourth rows show setting initial cutoff = 0 increased variability and results in tail heavy DMAP plots. Comparing the first and third rows shows excluding the prompt causes a slight increase in noise. In contrast to Figure 11, overall we see stable characteristic curves and low sensitivity to both the prompt inclusion and initial cutoff in this setting where the sample size is realistic. This is to be expected, since the prompt is a small proportion of the total tokens in this case.

K EXPERIMENTAL SETUP FOR SECTION 5.3

We conduct our experiments on three sizes of Pythia models (70m, 410m, 1B) fine-tuned with one of three instruction fine-tuning datasets: one including only human-written text and two with responses that have been partially regenerated with an external language model.

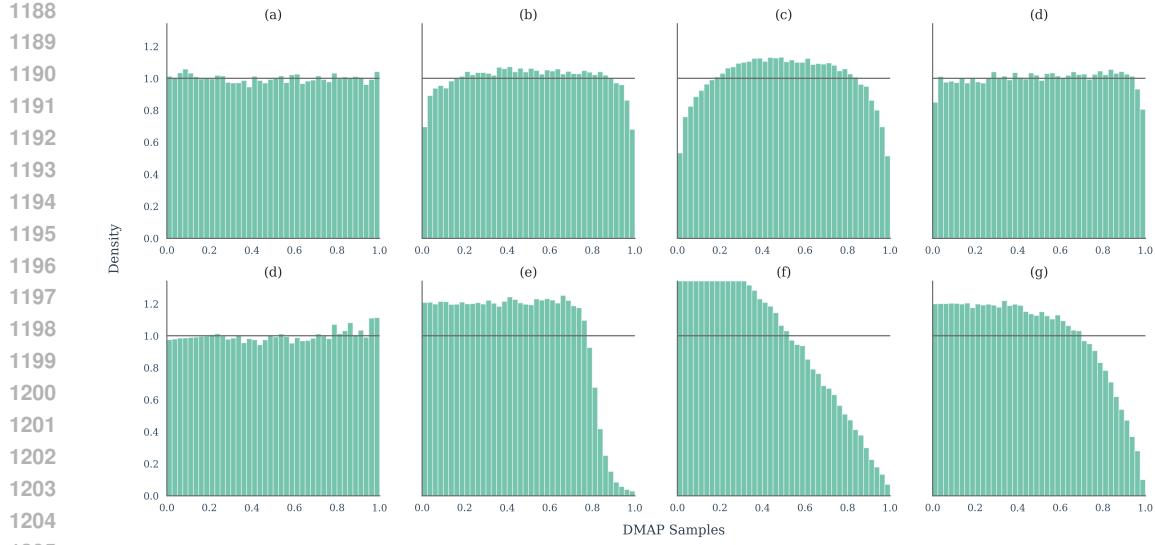
Fine-Tuning. The instruction fine-tuning datasets are the following: (1) OASST2 (Köpf et al. (2023)), a human-written instruction tuning dataset, (2) OASST2 with responses regenerated with a Llama 3.1 8B model with generation temperature 0.7, and (3) The same as (2) but with generation temperature 1.0. OASST2 is a tree-structured multi-turn dataset with various conversation paths, but



1168 Figure 11: Prompt sensitivity analysis with texts of length 50 tokens. Each column corresponds to
 1169 a generation strategy. From left to right columns, we have pure, top- $p = 0.8$, temperature $\tau = 0.8$,
 1170 and top- $k = 50$ sampling. (a)-(d) include the prompt and set initial cutoff = 30. (e)-(h) include
 1171 the prompt and set initial cutoff = 0. (i)-(l) exclude the prompt and set initial cutoff = 30. (m)-(p)
 1172 include the prompt and set initial cutoff = 0. All four rows show setting significantly increased
 1173 variability and noise compared to the setting with 300 tokens per text (Figure 10). Compared to Figure 10,
 1174 we increased sensitivity to both the prompt inclusion and initial cutoff in this setting where the sample
 1175 sizes are very small. This is to be expected, since the prompt is a significant proportion of the total
 1176 tokens in this case.

1177 for our fine-tuning purposes we extract only the first prompt-response pair, as we only evaluate the
 1178 response to a single query. Although this means we are using a portion of the text in the dataset, we
 1179 continue to refer to it as OASST2 throughout this work. The data is split into a train and validation
 1180 set following the original splitting of OASST2 on the Huggingface-hosted dataset ². Because the
 1181 responses in fine-tuning datasets (2) and (3) are generated using a non-instruction-tuned base model,
 1182 we keep the first 20 tokens of the human response text as part of the response generation prompt.
 1183 For the creation of the DMAP plots, we only consider the tokens beyond this point.

1184
 1185 ²<https://huggingface.co/datasets/OpenAssistant/oasst2>
 1186
 1187



1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Figure 12: Comparison of DMAP with Probability Integral Transform. Each column corresponds to a generation strategy. From left to right columns, we have pure, top- $p = 0.8$, temperature $\tau = 0.8$, and top- $k = 50$ sampling. Top row (a)-(d) shows PIT with uniformly random token order. Bottom row (e)-(h) shows standard DMAP for comparison. In this scenario, we see plots for PIT with uniform do not effectively differentiate decoding strategies.

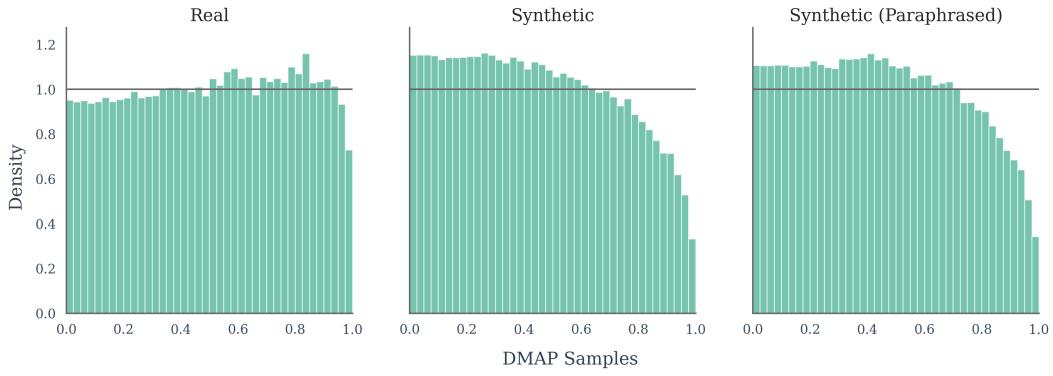


Figure 13: DMAP Analysis of Paraphrasing Attacks. These plots show DMAP visualizations for text generated by real, synthetic, and paraphrased synthetic data. The dataset used was SQuAD (Rajpurkar et al., 2016). Synthetic data was generated using Llama-3.1-8B completions. Paraphrased data was created using the model DIPPER developed for adversarial paraphrasing attacks on machine-generated text detectors (Krishna et al., 2024). These plots show that paraphrased machine-generated text and human text are clearly distinct in DMAP visualizations. In addition, DMAP sheds light on subtle changes in the distribution between standard synthetic and paraphrased text, where we see a slight flattening of the distribution.

For the fine-tuning step, the prompt-response pairs are formatted to be separated with a line break without any additional role tags or special tokens, so as to ensure a naturalistic output and to allow for exact comparison between fine-tuned and non-fine-tuned models.

Evaluation. We use OPT-125 as the evaluator model throughout, creating DMAP plots for the validation split of the respective datasets. In each case, the evaluated models are prompted in the same way as with the creation of the training data, with only the newly-generated tokens contributing to the creation of the DMAP plot.

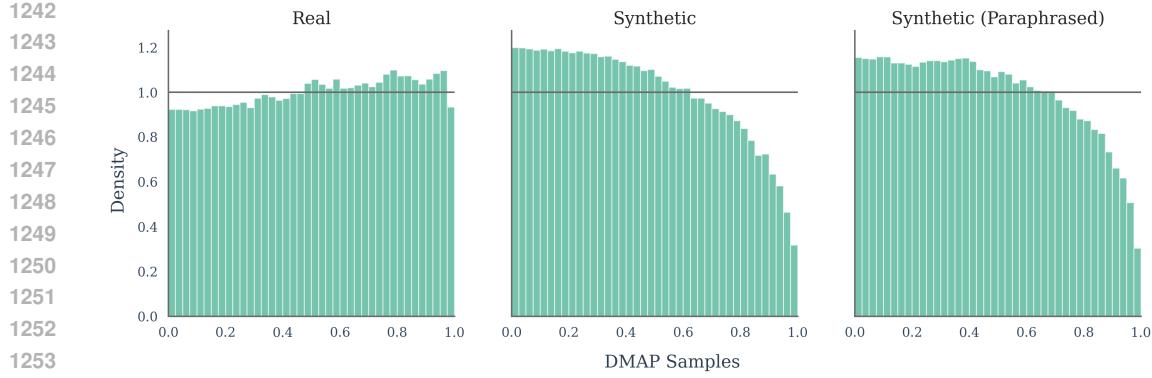


Figure 14: DMAP Analysis of Paraphrasing Attacks. These plots show DMAP visualizations for text generated by real, synthetic, and paraphrased synthetic data. The dataset used was Reddit Writing (Fan et al., 2018). Synthetic data was generated using Llama-3.1-8B completions. Paraphrased data was created using the model DIPPER developed for adversarial paraphrasing attacks on machine-generated text detectors (Krishna et al., 2024). These plots show that paraphrased machine-generated text and human text are clearly distinct in DMAP visualizations. In addition, DMAP sheds light on subtle changes in the distribution between standard synthetic and paraphrased text, where we see a slight flattening of the distribution.

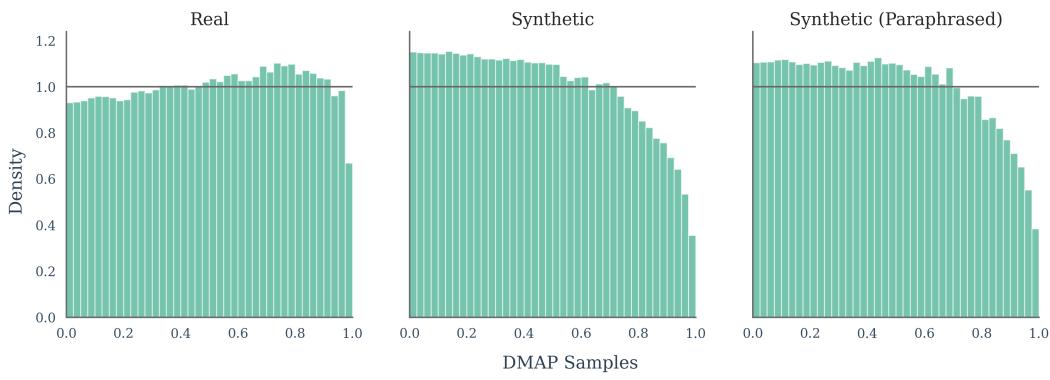


Figure 15: DMAP Analysis of Paraphrasing Attacks. These plots show DMAP visualizations for text generated by real, synthetic, and paraphrased synthetic data. The dataset used was XSum (Narayan et al., 2018). Synthetic data was generated using Llama-3.1-8B completions. Paraphrased data was created using the model DIPPER developed for adversarial paraphrasing attacks on machine-generated text detectors (Krishna et al., 2024). These plots show that paraphrased machine-generated text and human text are clearly distinct in DMAP visualizations. In addition, DMAP sheds light on subtle changes in the distribution between standard synthetic and paraphrased text, where we see a slight flattening of the distribution.

K.1 RESULTS

We first visualize the DMAP distribution for each of our three fine-tuning datasets in Figure 16, each of which exhibit a relatively typical shape for the respective data sources: human-generated, synthetic pure-sampled and synthetic temperature-sampled at temperature 0.7.

We observe next the extent to which fine-tuning on these datasets affects the DMAP plots. We present the results for a single model (Pythia 1B) in Figure 4, with the remaining experiment for Pythia 410m set here in the appendix (Figure 17) showing the same visual pattern.

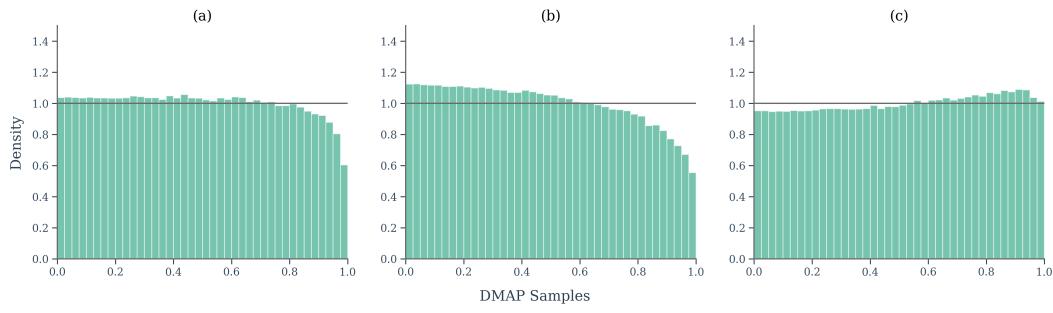


Figure 16: DMAP plots created using OPT-125 for the three fine-tuning datasets: a) OASST2 human-written prompt-response pairs, b) OASST2 with responses regenerated by Llama 3.1 8B at temperature 0.7. and c) OASST2 with responses regenerated by Llama 3.1 8B at temperature 1.0

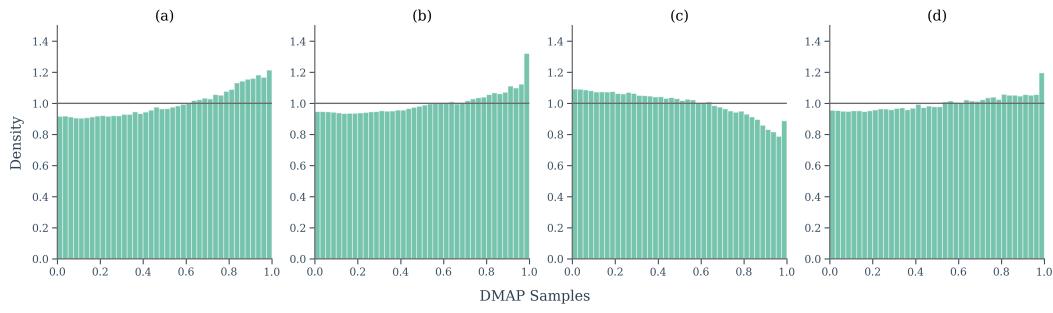


Figure 17: DMAP plots generated by pure sampling from Pythia 1b models with (a) no fine-tuning, (b) fine-tuned on OASST2 human data, (c) fine-tuned on OASST2 with responses regenerated by Llama 3.1 8B at temperature 0.7, (d) fine-tuned on OASST2 with responses regenerated by Llama 3.1 8B at temperature 1.0

L OBSERVATIONS ON DETECTOR DESIGN

L.1 USING DIFFERENT DETECTOR AND GENERATOR MODELS CAN BE USEFUL

Methods based on probability curvature seem to work best when the generating and detecting models are the same (although [Hans et al. \(2024\)](#) and [Dubois et al. \(2025\)](#) use more than one model in detection). Comparing the distributions of human-written text (Figure 18), pure-sampled text where generator and detector models are the same (Figure 2) and pure-sampled text with different generator and detector models (Figure 23), one sees that human-written text looks most different from machine text when a different detector model is used. Perhaps an alternative conclusion to be drawn from Table 1 is that a variant Fast-DetectGPT can remain an effective detector of pure-sampled text, but DMAP should be first used to calibrate whether machine generated text is head-biased or tail-biased.

L.2 HUMAN-WRITTEN TEXT HAS A MORE SUBTLE DISTRIBUTION THAN CURRENTLY EXPLOITED

Detectors based on probability curvature exploit the fact that human-written text is tail-biased. In Figure 18 we see that, while this is true, it is also true that they contain tokens from the very tail of the language model probability distribution less often (tail-collapse). This is particularly important as the tail of the probability distribution is where log-likelihood values are at their most extreme. Detectors using log-likelihood or log-rank to distinguish between human and machine generated text would presumably be more effective if they discounted this bottom five percent of the probability distribution where human-written text is under-represented.

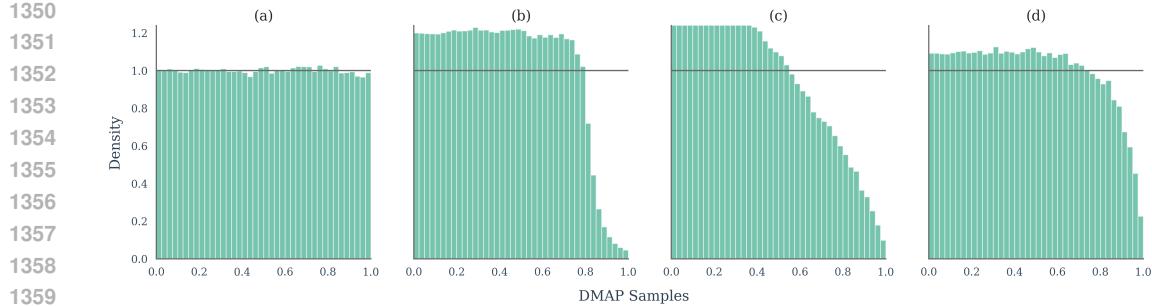


Figure 18: Illustrative DMAP histograms. The first row shows plots of XSum data (Narayan et al., 2018) generated by OPT-6.7b, evaluated by OPT-6.7b. The generation strategies (left to right) are (a) pure sampling, (b) top- p = 0.8 sampling, (c) temperature τ = 0.8 sampling, and (d) top- k = 50.

L.3 INSTRUCTION TUNED MODELS ARE EASIER TO DETECT THAN BASE MODELS

It was noted that in Ippolito et al. (2020) that it is easiest for a machine to detect machine generated text when decoding strategies such as top- p , top- k and temperature have been used. Figures 2 and 18 would support this conclusion, the distributional differences between human and machine text are clearly much greater when top- p , top- k or temperature sampling have been used.

M FURTHER QUESTIONS

1. In Shen et al. (2024) the authors attempt to curb the overconfidence of instruction fine-tuned language models by using temperature scaling with temperature larger than 1 in order to bring the perplexity in line with pre-trained language models. Does DMAP give any insight to this process? What would happen if, instead of trying to bring perplexity in line with the pre-trained language model, one tried to bring the DMAP plots in line with human text? DMAP plots are a much better tool for checking calibration with a pre-trained language model than the currently used likelihood of top token.
2. In Figure 18 we show DMAP plots for different examples of human-written text. These plots are not perfectly flat, and are slightly different in different settings (e.g. poetry vs news). Do these plots effectively describe the underperformance of the evaluator model in different settings in a way that separates the underperformance of the language model at next token prediction from the inherent difficulty of next-token prediction (which varies by setting)? Can one formalise this and extract useful metrics?
3. Figure 9 shows texts generated by Llama, Mistral and Falcon, evaluated by Llama, Mistral and Falcon. In each case, the shape of the DMAP plot is very different depending on whether the evaluator and generator models are the same. Can these ideas form the basis for a new approach to language model identification?

N FURTHER PLOTS

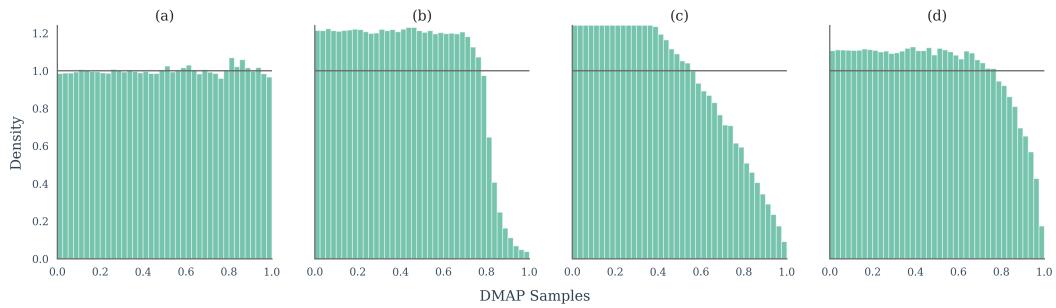
N.1 SYNTHETIC TEXT

In this section we include illustrative plots with larger evaluation models. We see similar phenomena as in Figure 2.

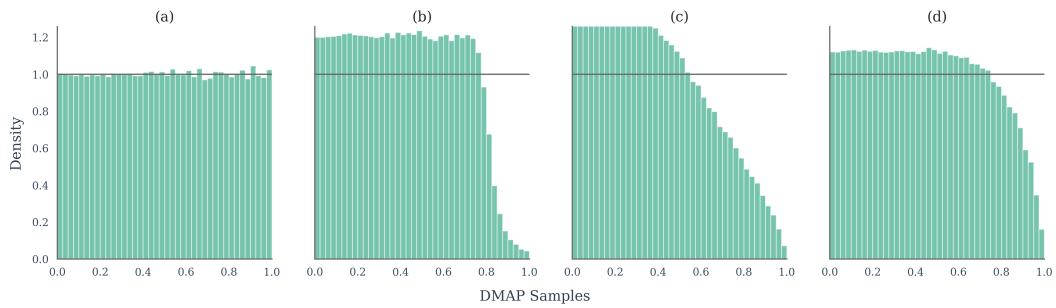
N.2 HUMAN-WRITTEN TEXT

We plot human-written text in Figure 18, evaluated by OPT-125m. We use the RAID dataset across four different categories: scientific abstracts, books, news and poetry.

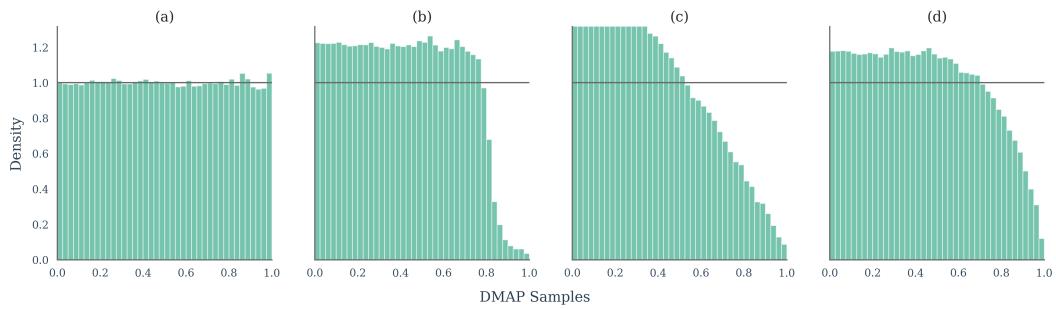
We see differences in these plots, corresponding to the differing competence of OPT-125m in these areas.



1415 Figure 19: Illustrative DMAP histograms. The first row shows plots of XSum data (Narayan et al.,
1416 2018) generated by OPT-2.7b, evaluated by OPT-2.7b. The generation strategies (left to right) are
1417 (a) pure sampling, (b) top- p = 0.8 sampling, (c) temperature τ = 0.8 sampling, and (d) top- k = 50.



1429 Figure 20: Illustrative DMAP histograms. The first row shows plots of XSum data (Narayan et al.,
1430 2018) generated by OPT-1.3b, evaluated by OPT-1.3b. The generation strategies (left to right) are
1431 (a) pure sampling, (b) top- p = 0.8 sampling, (c) temperature τ = 0.8 sampling, and (d) top- k = 50.



1443 Figure 21: Illustrative DMAP histograms. The first row shows plots of XSum data (Narayan et al.,
1444 2018) generated by OPT-350m, evaluated by OPT-350m. The generation strategies (left to right) are
1445 (a) pure sampling, (b) top- p = 0.8 sampling, (c) temperature τ = 0.8 sampling, and (d) top- k = 50.

1448 N.3 BLACK BOX BASE LANGUAGE MODELS

1449 In Figure 8 we plotted pure generated text from base language models Llama 3.1 8B, Mistral 7B and
1450 Qwen3 8B, evaluated by each other. In Figure 23 we see the same texts evaluated by OPT-125m.
1451 The images here further support the claim in the main text that pure-sampled text looks flat when
1452 the generator and evaluator models are the same, and looks heavy tailed when another base model
1453 is used for evaluation.

1454 O LLM USAGE

1455 LLMs were used to polish written text in the preparation of this manuscript.

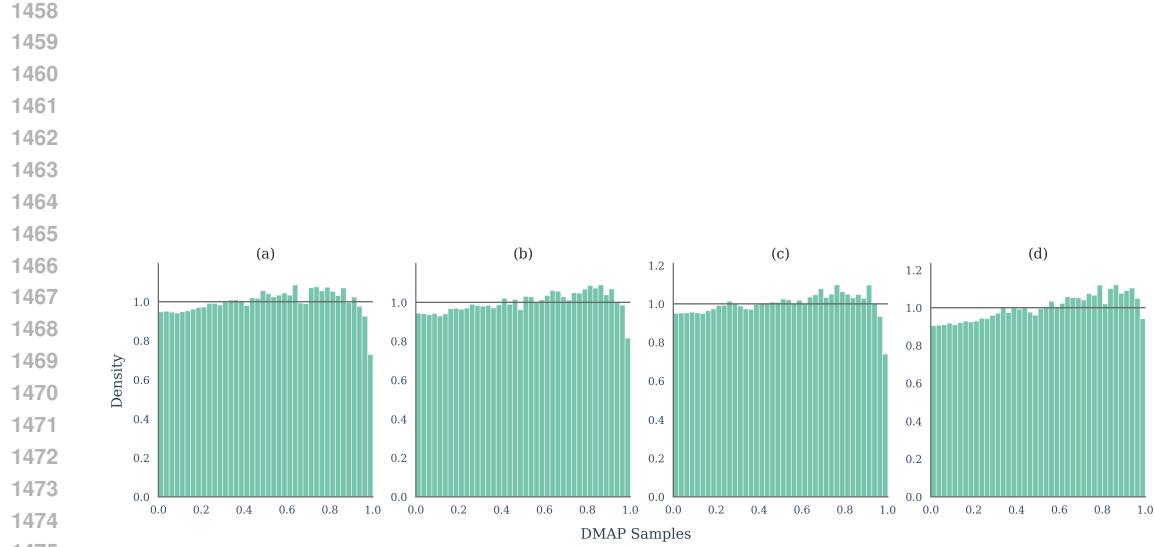


Figure 22: Human-written text in four categories: abstracts (a), books (b), news (c), and poetry (d).

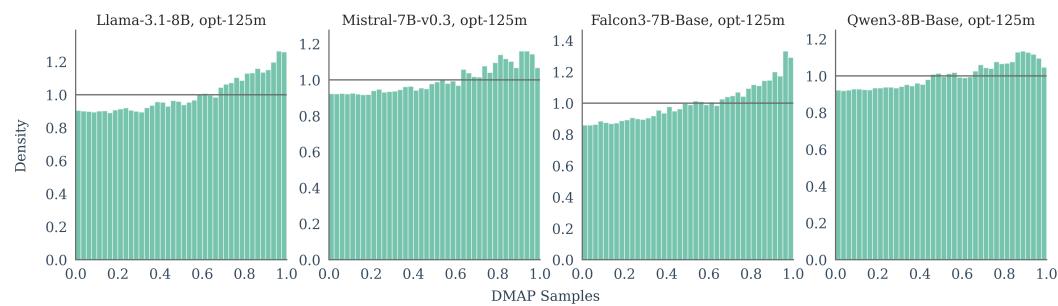


Figure 23: Llama 3.1 8B, Mistral 7B, Falcon 7B and Qwen3 8B generated XSum data, evaluated by OPT-125m.