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ABSTRACT

Large Language Models (LLMs) are a powerful tool for statistical text analysis,
with derived sequences of next-token probability distributions offering a wealth of
information. Extracting this signal typically relies on metrics such as perplexity,
which do not adequately account for context; how one should interpret a given
next-token probability is dependent on the number of reasonable choices encoded
by the shape of the conditional distribution. In this work, we present DMAP, a
mathematically grounded method that maps a text, via a language model, to a set
of samples in the unit interval that jointly encode rank and probability informa-
tion. This representation enables efficient, model-agnostic analysis and supports
a range of applications. We illustrate its utility through three case studies: (i) val-
idation of generation parameters to ensure data integrity, (ii) examining the role
of probability curvature in machine-generated text detection, and (iii) a forensic
analysis revealing statistical fingerprints left in downstream models that have been
subject to post-training on synthetic data. Our results demonstrate that DMAP of-
fers a unified statistical view of text that is simple to compute on consumer hard-
ware, widely applicable, and provides a foundation for further research into text
analysis with LLMs.

1 INTRODUCTION

A language model p provides a wealth of information about a text w = (w; - - - wr) through the
sequence of next-token probability distributions p(-|wy - - - w;—1). We ask how to use this informa-
tion to learn something about the text w or the language model p. To date, most efforts that use a
language model to report statistical properties of a text use metrics that measure how unexpected
each token is under p. A standard such metric is the average log-likelihood of each observed token,
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while a related but coarser variant, log-rank, replaces p(w;|w; ---w;—1) with the ordinal rank
r(w;|wy - - - w;—1) of the observed token in the descending list of next token probabilities. Perplexity
is the exponential of the negative average per-token log probability.

Log-likelihood, log-rank and perplexity have been widely used in the training, evaluation, and de-
tection of language models. For example, a body of work seeks to use perplexity to predict the
readability of texts (Trott & Riviere, 2024), and to use the strength of the correlation between per-
plexity and human reading time as a measure of the quality of a language model (Oh & Schuler,
2023). However, in some settings these metrics are problematic (Meister & Cotterell, 2021; Fang
et al., 2024), and often require contextualization to be useful. The crux of the contextualization
problem is that the way one should interpret a token w; being the third most likely, or having model
probability 0.1, depends on the number of reasonable token choices. These differences, encoded by
the shape of the conditional distributions, are prone to persist over long passages of text. For exam-
ple, a factual essay about chemistry would likely have higher log-likelihood and lower log-rank, on
average, than a piece of creative writing due to stylistic norms.

Recently, a body of work initiated by DetectGPT (Mitchell et al., 2023) has tried to use a language
model p to address the contextualization problem and extract more nuanced information from next
token probability distributions in the context of machine-generated text detection (Bao et al., 2023;
Su et al., 2023; Hans et al., 2024). Inspired by these ideas, we introduce a distribution map, DMAP,
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Figure 1: The DMAP algorithm. Given a text w, this diagram illustrates how DMAP generates a
collection of samples in [0, 1]. These may be analyzed quantitatively or, more commonly, qualita-
tively by plotting the density. Our experiments demonstrate these visualizations identify decoding
parameters (top-p, top-k, temperature), yield insights into black box machine-generated text detec-
tion algorithms based on probability curvature, and reveal statistical fingerprints left by performing
supervised fine-tuning (SFT) on synthetic data.

which statistically rigorous and lends itself better to visualization. In essence, DMAP is a recipe
for mapping a text w onto a density function f : [0,1] — R that encodes information from
both the rank and perplexity of the token in a principled way. As we shall see, this addresses
the contextualization problem and provides a simple yet surprisingly powerful mathematical lens
through which to measure and compare texts.

Contributions

1. Introduce the DMAP algorithm. We introduce DMAP, a simple method to represent a
text w through a language model p as a set of samples in [0, 1] that jointly encode rank
and probability information. DMAP is open-sourced', computationally efficient, and can
be applied effectively on consumer hardware with small models such as OPT-125m (Zhang
et al., 2022).

2. Demonstrate applications of DMAP.

(a) Validate generation parameters. Detecting incorrect or inconsistent generation set-
tings in published data, such as top-k, top-p, temperature, or the language model itself.

(b) Design machine-generated text detectors. Using DMAP, we identify design weak-
nesses of existing zero-shot detectors based on probability curvature and propose al-
ternative principles for detector design.

(c) Reveal statistical signatures of post-training data in instruction-tuned models.
We investigate overconfidence in instruction-tuned models using DMAP and reveal
alignment between downstream generated text distributions and fine-tuning datasets,
even without access to internal model probabilities.

We expect that the strengths of DMAP in statistical rigor and convenient visualization will see it
find many applications beyond these.

2 RELATED WORK

Text Visualization. GLTR (Gehrmann et al., 2019) introduced a tool to color-code text according
to token rank. This is an effective visualization, but inherits the issues of rank as a crude measure of
where a token sits in the probability distribution. Our DMAP framework extends this visualization
paradigm by providing a continuous, mathematically grounded representation that preserves both
rank and probability information while enabling statistical inference.

Machine-Generated Text Detection. Several key approaches have emerged to address the so-
cially pertinent problem of detecting synthetically generated text. DetectGPT (Mitchell et al., 2023)
pioneered the use of probability curvature, measuring how perturbing a text affects its likelihood
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under a language model. This approach was refined by DetectLLM (Su et al., 2023), who adapted
DetectGPT to use rank information, rather than exact probabilities. FastDetectGPT (Bao et al., 2023)
addressed efficiency issues related to perturbation and the contextualization problem by normaliz-
ing probability distributions at each step. More recently, Binoculars (Hans et al., 2024) proposed
a promising cross-model approach using probability ratios, though the theoretical justification for
their normalization scheme remains unclear. Unlike these approaches, DMAP does not directly
address the text detection problem. Instead, it provides a unified statistical framework that maps
probability information to a standardized representation, enabling broader text analysis applications
such as informing the design of future detectors.

Model Calibration and Overconfidence. Recent work has identified systematic overconfidence
in instruction-tuned language models. Luo et al. (2025) demonstrated that alignment procedures
can degrade calibration, while Shen et al. (2024) proposed temperature scaling methods for post-
hoc calibration. Chhikara (2025) investigated the relationship between alignment objectives and
confidence estimation, and Zhu et al. (2023) analyzed calibration across different model scales.
Yang & Holtzman (2025) explored how alignment training affects uncertainty quantification. DMAP
contributes to this literature by providing a tool to visualize and quantify distributional changes
induced by post-training procedures, revealing statistical fingerprints that persist in downstream
model behavior.

The key distinction of DMAP is its ability to map arbitrary probability distributions to a standardized
unit interval representation, enabling both intuitive visualization and rigorous statistical analysis
while addressing the fundamental contextualization challenges that limit existing approaches based
on surprisal metrics.

3 DMAP: A DISTRIBUTION MAP FOR TEXT

3.1 DEFINING DMAP

Let p be a language model, which we call the evaluator model, and let w = wy - - - wr be a text with
tokens w; belonging to a vocabulary V. For each sequence position ¢ € {1,---,T'}, the candidate
tokens v € V' can be ranked by their probability p(v | wy ---w;—1), and we refer to this rank as
r(v | wy -+ w;—1). We construct a sequence of points x1 - - -z € [0,1]7 referred to as a DMAP
sample as follows.

Giveni € {1,---,T} and the true text token w;, define two subsets of V: a set of tokens v which
have a strictly higher rank than the rank of w; (more probable tokens than w;), and a set of tokens
that has higher or equal rank to w;. Formally, we define these as

Vi={v eV ir@wuw wi_1) <r(wjw - wi—1)}

and
‘/ib — {U c V : T(U|w1 .. 'wi—l) S T(wi|w1 .. 'wi—l)}'

Now, define two points a; and b; by summing the probabilities of the tokens in these sets, where

a; = Z p(v|w1"'wi—1),
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and
bi= Y pvfws - wi1).

veVvy
Then, define the interval I; C [0,1] by I; := [a;, b;]. If w; is judged by the language model p to
be the most likely token to follow w; - - - w;_1, the interval I; will be [0, p(w;|w; - - - w;_1)]. More
generally, I; is the interval of length p(w;|wy - - - w;_1) whose left end point a; is the total mass of
the set of tokens judged more likely by the language model.

Finally, for each 4, let z; = D(w;|w - - - w;—1) be chosen by sampling from the uniform distribution
U(a;, b;) on I;, yielding the desired sequence x; - - - x. In practice, to visualize the resulting set of
samples x; we split the unit interval [0, 1] into k equally-sized bins and plot the resulting histogram.
For the plots in this article we use & = 40. Other quantitative and qualitative measures of the set x;
may be informative and we leave this for future work.



Proposition 3.1. When generating a text wy - - - wp by pure sampling from language model p, the
corresponding sequence x1 - - - x7 obtained by applying DMAP to wy - - - wr with evaluator model
p will be independent and identically distributed (i.i.d.) according to the uniform measure on [0, 1].

Proof. See Appendix A. O

This proposition is particularly useful in Section 5.1, since the i.i.d. structure of the sequence
x1 - - -2 allows one to use off the shelf results about convergence rates. In particular, it allows
one to compute the chi-squared statistic of the distribution of the set of points {x1, - - , 7}, uncov-
ering errors in the process of text generation with a high degree of confidence.

We can also use DMAP to visualize texts using an evaluator language model modified by a decoding
strategy such as top-k, top-p or temperature sampling. For example, to see how w; - - - wp looks to
language model p at temperature 7 with top-p = 7, one simply needs to replace the next token
probabilities p(v|wy - - - w;_1) with the probabilities g(v|wy - - - w;_1) resulting from sampling from
p with the appropriate decoding strategy. Proposition 3.1 continues to apply; see Appendix A.

3.2 DEFINING ENTROPY-WEIGHTED DMAP

There are two practical issues with the definition of DMAP in Section 3.1. First, there is randomness
in the selection of x; from I; that introduces noise and makes DMAP non-deterministic. Second,
if the language model p has high certainty about the choice of next token, then a choice of x;
contains little useful information and we should assign less weight to this choice of x;. We present
an alternative version of DMAP that mitigates these shortcomings by removing this randomness and
weighting the outcome of each token by the entropy of the next token probability distribution. A
version of Proposition 3.1 continues to hold, see Appendix A.

Given a language model p and a text w; - - - wp, generate the sequence of intervals I - - - I as with
DMAP. Also, compute hq - - - hp where

hi == — Zp(v|w1 crwi—p) log p(v|wy -+ wi—q)
veV
is the entropy of the probability distribution p(-|wy - - - w;_1). Let h} := max{h;, A} and return the
function D(w) : [0, 1] — R given by

. . Y B
D(w) = D(wy -~ wr,p) := ZTihl"
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where x, is the characteristic function equal to 1 on I; and 0 elsewhere, and |I;] is the length of
interval I;. This gives that y,/|I;| is the function of integral 1 taking value O outside of I; and
constant value on I;. Thus, D is a step function of integral one supported on [0, 1]. Finally, we may
make an entropy-weighted DMAP plot by splitting the unit interval into, for example, £ = 40 bins
and averaging the value of D over each bin. Since the entropy is potentially very large, in practice
we recommend clipping it at A = 2 for stability.

b

The entropy h; can be viewed as the expected information obtained by revealing the next token w;.
Therefore, entropy weighting places more weight on the times when the choice of next token is
more uncertain, and so we have more to learn. This amplifies the differences between our output
distribution and the uniform distribution at [0, 1], by reducing the weight associated with times 4
where the next token is known with extremely high probability, making DMAP a more sensitive
tool. Hereafter, we use entropy-weighted DMAP unless otherwise specified.

3.3 INTERPRETING DMAP VISUALIZATIONS

DMAP samples may be analyzed quantitatively, as in the x? tests of Section 5.1, or qualitatively
via simple histograms. These visualizations reveal whether certain portions of the model next-token
probability distribution are systematically over- or underrepresented in the text. Three particularly
common behaviors that we observe are: Head Bias (e.g. Figure 2 (c)) - tokens viewed as likely by
the evaluator model are over-represented in the text. Tail Bias (e.g. Figure 2 (f)) - tokens viewed as
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Figure 2: Illustrative DMAP histograms. The first row shows plots of XSum data (Narayan et al.,
2018) generated by OPT-125m, evaluated by OPT-125m. The generation strategies (left to right)
are (a) pure sampling, (b) top-p = 0.8 sampling, (c) temperature 7 = 0.8 sampling, and (d) top-
k = 50. The second row shows various different types of text evaluated by DMAP: (e) a news
dataset of human text from RAID, (f) text generated by Mistral 7B (Albert Q. Jiang and others, 2023)
using pure sampling (top-p=1), (g) text generated by Mistral 7B Instruct, and (h) text generated by
ChatGPT from the Ghostbusters dataset (Verma et al., 2024). OTP-125m was used as the scoring
model to generate DMAP samples. See Appendix I for examples with larger evaluation models.

unlikely by the evaluator model are over-represented in the text. Text generated by one base model
and evaluated by another base model with a similar entropy will typically display this behavior. Tail
Collapse (e.g. Figure 2 (e)) - a small portion at the bottom of the evaluator model distribution is
strongly under-represented in the text. Often seen in human-written text, this is consistent with the
folklore intuition that model distributions place too much weight on tokens which are not realistic,
an oft-cited motivation for top-p (nucleus) sampling.

4 JLLUSTRATIVE VISUALIZATIONS FROM DMAP

This section takes a first look at some histogram plots from D. We take text from different sources,
both human and machine, and evaluate them using OPT-125m as recommended by Mireshghallah
et al. (2024). This evaluator demonstrates DMAP can be run effectively on consumer hardware in a
few minutes. Throughout, we run DMAP over 300 texts each of around 300 tokens.

The top row of Figure 2 considers the case where the language model used to generate the texts is
also used to generate the DMAP plot. We consider pure sampling (a), where token w; is selected at
time ¢ according to its model likelihood p(w;|wy - - - w;—1), along with top-p (nucleus) (b), tempera-
ture (c), and top-k (d) sampling. See Appendix B for an explanation of these decoding strategies. As
predicted in Proposition 3.1, the DMAP plot from pure-sampled text with the same generator and
evaluator language models is close to the uniform distribution. Temperature, top-p and top-k sam-
pling are methods for increasing the probability of sampling from the head of the model distribution,
corresponding to the left side of a DMAP histogram. They each produce head-biased DMAP plots
with a highly characteristic shape. In particular, the plot for top-p sampling is flat on [0, 7] before
rapidly dropping off, and the plot for top-k sampling is flat on roughly the first half of the interval
before smoothly dropping off. These shapes can be explained in terms of the statistics of the space
of conditional probability distributions; see Appendix B.

In the bottom row of Figure 2 we produce DMAP plots for text generated in various ways. Two
things can be seen in the distribution of human-written text (e). The distribution generally shows
that human-written tokens are somewhat surprising to OPT-125m. However, there is a sharp drop
off on the very right hand side of the distribution, reflecting the fact that the bottom five percent
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Figure 3: Quantitative validation of decoding parameters. (a) shows a DMAP plot for the black-box
case of Llama 3.1 8B generated text evaluated by Mistral 7B. (b) shows a DMAP plot for the white-
box case of Llama 3.1 8B generated text evaluated by Llama 3.1 8B. (c) plots the log;¢ p-values
resulting from our x2 uniformity test. This demonstrates how quantitative evidence can be extracted
from DMAP samples to investigate hypothesis about possible generated strategies. For example, (c)
tells us that after evaluating 10000 tokens of Llama generated text with Mistral-7B as the evaluation
model, the probability that Mistral would produce text with such an extreme x? distribution is less
than 10~ 1%, We can conclude that it is not plausible that the text under review was generated by pure
sampling from Mistral 7B.

of the OPT-125m distribution places too much weight on tokens which are not representative of
human writing. This drop-off is much less pronounced when using more modern language models
as detectors. Several other phenomena are easy to observe. Text generated by Mistral 7B (a base
model) and evaluated by OPT-125m (f) is tail-biased. This means, on average, Mistral 7B generated
text is surprising to OPT-125m. This phenomena should be expected when evaluating base models,
see Section C, and is repeated when Mistral (Albert Q. Jiang and others, 2023), Falcon (Ebtesam
Almazrouei and others, 2023) and Llama 3.1 8B (Grattafiori et al., 2024) look at the text generated
by one another, see Figure 13. In contrast to text generated by base models, text generated by
instruction-tuned models Mistral-Instruct (g) and ChatGPT (h) is head-biased; on average these
models are much more likely to pick tokens that are unsurprising to OPT. One might speculate that
something in the post-training regime has profoundly altered the language model distribution. We
study this question in more detail in Section 5.3.

5 APPLICATIONS
This section contains three example applications of DMAP, though we anticipate further use cases.

5.1 VALIDATING GENERATION PARAMETERS

Research claims in natural language processing are often sensitive to the precise decoding param-
eters used to generate text, see Section 5.2. Therefore, when generating text, or using publicly
available samples, it is crucial to be able to validate the reported language model and generation
hyperparameters such as top-p, top-k, or temperature.

For example, using DMAP, we discovered a major data-error affecting most of the top papers in
zero-shot machine-generated text detection (Mitchell et al., 2023; Su et al., 2023; Bao et al., 2023;
Hans et al., 2024; Dugan et al., 2024). At the time of their writing, HuggingFace enabled top-k by
default with £ = 50, making it very easy for researchers to innocently and accidentally leave top-k
enabled while reporting that experiments were run on texts generated with pure sampling. Further
works such as Dubois et al. (2025) use texts generated by other papers where the error was present.
In this section, we present how DMAP may be used as a qualitative or quantitative tool to help
researchers validate their data to prevent such occurrences.

Qualitative Validation. DMAP is an easy method for visually checking the integrity of machine-
generated text for open-weight models. When text is claimed to be generated by pure sampling,
Proposition 3.1 proves that the DMAP samples should be approximately uniformly distributed. Text



generated by a given decoding strategy is clearly identified from the DMAP plots, see Figure 2.
Alternatively, to test a specific combination of decoding parameters, we could test whether a uniform
distribution is recovered when modifying DMAP to use the probability measure ¢ arising from
sampling from p with the specified decoding strategy.

Quantitative Validation. To go beyond a visual check, we have the following method for deter-
mining the consistency of the data with a reported generation method. Firstly, DMAP is applied to
generate points x; - - - 7, adapted for the parameter settings, for example, by multiplying logits by
1/7 for temperature sampling at temperature 7. Next, the unit interval is divided into k equal-sized
bins, and frequencies f; - - - fi computed, where
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We follow the Terrell-Scott rule (Terrell & Scott, 1985) for choosing the number of bins, letting
k = (2T)%. Then, compute the x? statistic
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We then compute the probability that text generated by the reported generation method would have
such an extreme 2 statistic. This p-value determines the consistency of the text with the reported
generation method, see Figure 3 and Appendix D for further details, and Goodman (2008) for guid-
ance on the interpretation of p-values for this test.
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5.2 DESIGNING METHODS TO DETECT MACHINE-GENERATED TEXT

This section describes how to use DMAP to gain insight into differences between human- and
machine-generated text, and what conclusions can be drawn on the performance of current detec-
tors and the design of future detectors. This is pertinent since, as discussed in Section 5.1, there
are data errors in a substantial portion of the research on the detection of machine-generated text.
Consequently, we discover that the principles underlying the design of many Al text detectors are
not universally true, the primary being the probability curvature thesis. Other observations for the
interested reader are provided in Appendix G.

5.2.1 PROBABILITY CURVATURE FOR BASE AND INSTRUCTION-TUNED MODELS

The main idea behind most statistical approaches to detecting machine-generated text is that humans
tend to choose words from further down the probability distribution than machines do. This idea
was presented as probability curvature in DetectGPT (Mitchell et al., 2023), and the approach was
broadly followed in DetectLL.M (Su et al., 2023), Fast-DetectGPT (Bao et al., 2023), and Binoculars
(Hans et al., 2024).

Probability curvature is effective in detecting text generated by an instruction-tuned model, or a
sampling strategy that weights text generation towards the head of the distribution. However, the
probability curvature idea is not supported by DMAP plots when pure sampling is used; in the white
box case, Figure 2 (a) and (e), it is much weaker than previously reported and in the black box case,
Figure 12, it appears false. To further validate this claim, we rerun experiments on the efficacy of
DetectGPT, Fast-DetectGPT and Binoculars in the black box detection of language models. When
top-k sampling is used the detectors remain effective as previously reported, since this decoding
strategy impacts probability curvature as expected by the methods. However, Table 1 shows that
when pure sampling is used their performance is worse than a coin toss due to inversion of the
probability curvature. While an AUROC under 0.5 may suggest inverting classifications on either
side of the threshold, this is not possible here due to the zero-shot nature of these techniques: the
fixed directionality is dictated by the method and based on the probability curvature thesis.

Table 1 shows that base models present an acute vulnerability to current detectors based on prob-
ability curvature. Fortunately, typical users will use instruction-tuned models which often exhibit
head-bias as shown in Figure 2. However, new methods are required to prevent a determined ad-
versary bypassing existing detectors through the use of base models with careful prompting. In



Table 1: Performance comparison across different Al text black box detection methods, language
models, and datasets: XSum (Narayan et al., 2018), SQuAD (Rajpurkar et al., 2016), and Writ-
ingPrompts (Writing) (Fan et al., 2018). Results are shown for two sampling configurations: top-
k = 50 and pure sampling (top-k = None). As predicted by DMAP, state-of-the-art detectors based
on ‘probability curvature’ are effective when top-k sampling is used but not with pure sampled text.

XSum SQuAD Writing
k=50 k=None k=50 k=None k=50 k= None

Llama-3.1-8B 0.702 0.200 0.739 0.208 0.915 0.289
FAST-DETECTGPT Mistral-7B-v0.3 0.770 0.276 0.819 0.299 0.906 0.339

Method Model

Qwen3-8B 0.765 0.289 0.612 0.320 0.923 0.377
Llama-3.1-8B  0.606 0.408 0.527 0.299 0.723 0.422
DETECTGPT Mistral-7B-v0.3  0.679 0.486 0.586 0.365 0.688 0.457
Qwen3-8B 0.635 0.445 0.463 0.380 0.724 0.479
Llama-3.1-8B  0.825 0.325 0.849 0.365 0.942 0.410
BINOCULARS Mistral-7B-v0.3  0.823 0.350 0.851 0.416 0.931 0.404
Qwen3-8B 0.857 0.416 0.752 0.467 0.949 0.492

addition, despite enterprise detectors most often being exposed to text from instruction-tuned mod-
els, the vast majority of the existing literature performs experiments on base models. Our results
show these two classes of models should be tested separately when researchers are designing and
validating future detection algorithms. Further experimental details may be found in Appendix E.

5.3 STATISTICAL SIGNATURES OF POST-TRAINING DATA IN INSTRUCTION-TUNED MODELS

This section studies the effect of instruction fine-tuning on DMAP plots. In Figure 2 we saw that two
instruction tuned models, ChatGPT and Mistral Instruct, systematically over-sample from the head
of the OPT-125m probability distribution, whereas the non-instruction tuned base model Mistral 7B
is tail-biased. This tail-biased behavior of the base model is understood and expected (see Appendix
C). The real question is what is causing instruction tuned models to systematically over-select from
tokens which OPT-125m finds likely?

It has previously been noted (Luo et al., 2025; Shen et al., 2024; Chhikara, 2025; Zhu et al., 2023;
Yang & Holtzman, 2025) that instruction-tuned models are over-confident, in the sense that when
answering questions they assign too much weight to answers they believe are likely correct. We
hypothesize this may be an explanation for what we observe in our head-biased DMAP plots that
place too much weight on likely tokens at the head of the distribution.

DMAP plots offer an indirect way to study overconfidence in models by analyzing DMAP samples
of both instruction-tuned model generations and data used for post-training. While it doesn’t make
sense to ask whether correct, human-written responses to questions are over-confident, it does make
sense to ask whether their DMAP plots are head-biased, and to see whether the bias in training
data passes over to the model. This is particularly relevant given the common practice of using
temperature sampled responses as fine-tuning data (Dubois et al., 2023).

We fine-tuned three sizes of Pythia models (Biderman et al., 2023) on the OASST?2 dataset (Kopf
et al., 2023) with responses provided by humans, Llama 3.1 8B at temperature 1, and Llama 3.1 8B
at temperature 0.7. Figure 4 contains DMAP plots for texts generated by Pythia 1B with four fine-
tuning configurations. For experimental details, DMAP plots for the fine-tuning data and repeated
results on the other models, see Appendix F.

Our main finding is that the only head-biased model was the one fine-tuned on temperature-sampled
data, which was in turn the most head-biased fine-tuning data. We also see that human-written
instruction fine-tuned data has a dramatic tail-collapse, much larger than seen in other human-written
text. In addition, we see increased density in the final bin for fine-tuned models, demonstrating how
DMAP might be used to detect mild overfitting during SFT and inform early-stopping strategies,
which we leave to explore further in future work. Finally, we note that all of our instruction-tuned
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Figure 4: Using DMAP to investigate the effect of SFT post-training on synthetic data. DMAP plots
generated by pure sampling with the evaluator model (OPT-125) on text generated by Pythia 1B
models with (a) no fine-tuning, (b) fine-tuned on OASST2 human data (Kopf et al., 2023), (c) fine-
tuned on OASST?2 with responses regenerated by Llama 3.1 8B at temperature 0.7, (d) fine-tuned on
OASST?2 with responses regenerated by Llama 3.1 8B at temperature 1.0.

models had a less tail-biased distribution than the original Pythia model. These initial experiments
point to the utility of DMAP in studying how instruction-tuning affects the distributional properties
of machine text produced by downstream models.

6 CONCLUSION

We introduced DMAP, a mathematically principled method for mapping text through language mod-
els to a standardized statistical representation. DMAP addresses the fundamental contextualiza-
tion problem that has limited previous approaches to statistical text analysis with language models.
Three initial case studies demonstrate the broad utility of this tool. Through parameter validation,
we demonstrate how DMAP can validate data integrity, helping to prevent natural and inevitable
human errors propagating through the research ecosystem. Our re-examination of detection meth-
ods showed that the widely-accepted probability curvature principle fails for pure sampling from
base models, challenging foundational assumptions in the field and pointing towards principles for
designing more robust detection strategies. Importantly, our experiments highlight that existing
detectors are critically vulnerable to adversarial attacks using base models due to inversion of the
expected curvature. Finally, our analysis of instruction-tuned models reveals how statistical finger-
prints of training data persist in downstream model outputs, providing new insights into the sources
of overconfidence in aligned models.

Beyond these specific applications, DMAP offers several key advantages: it is computationally effi-
cient, requiring only forward passes through models such as OPT-125m that may be run on consumer
hardware; it provides intuitive visualizations that make complex distributional patterns immediately
apparent; and it enables rigorous statistical testing. The method’s model-agnostic nature means it
can be applied across different architectures and scales, making it a versatile tool for research and
industry.

Our initial investigations point toward promising future research directions. For instance, DMAP
might used for data curation and efficient fine-tuning (Ankner et al., 2025), or to advance calibra-
tion approaches for instruction-tuned models, rather than using temperature scaling to align per-
plexity with pre-trained models. Alternatively, future work may calibrate DMAP distributions to
match human text patterns, potentially offering more nuanced control over model confidence dur-
ing frontier model training. The distinct DMAP signatures we observed across different text do-
mains (poetry, news, technical writing) suggest the method could formalize how language model
performance varies across contexts, separating inherent prediction difficulty from model-specific
limitations. Perhaps most intriguingly, the dramatic differences in DMAP plots when generator and
evaluator models differ point toward entirely new approaches to language model identification and
forensic analysis. We are most excited for the applications we have yet to anticipate and believe
that we have only scratched the surface of what we can learn through close examination of next-
token probability distributions. DMAP provides a clear, principled window into that rich statistical
landscape.



7 REPRODUCIBILITY STATEMENT

All datasets used are public or generated as detailed in our experimental setup in Section 5 and
Appendices E and F. An anonymous GitHub link containing code and generated data will be shared
with reviewers once the discussion period opens (ICLR code release Option 3). A version will be
made publicly available as a tool for the community once internal approvals are completed.
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A PROOF OF PROPOSITION 3.1

Suppose that a text w; - - - wp has been generated by pure sampling from language model p. At time
i, token v is selected with probability p(v|w; - - - w;—1). Token v defines an interval [a, b] of length
p(v|wy -+ - w;_1) (see the definition of DMAP, Section 3.1). The points a, b are functions of both v
and the context wy - - - w;_1, to keep notation clean we suppress this dependence here.

Then, following the DMAP algorithm, a point x; is selected according to the uniform distribution
on [a, b]. Let P denote the partition of [0, 1) into intervals [a, b) corresponding to different tokens v
given fixed context wy - - - w;_1.

In order to prove that the process of picking v according to p(-|wy - - -w;—1) and then picking x;
according to U ([a, b]) produces points distributed according to U ([0, 1]), it is enough to show that
for any interval (c,d), P(z; € (¢,d)) = d — c. It is enough to prove this for intervals (c, d) which
are fully contained in one of the intervals in the partition P, the result for larger (¢, d) follows by
standard rules of probability.

Now, given context wy - - - w;_1, let (¢, d) be a subset of some interval (a,b) in P, where (a,b) is
the interval corresponding to selection of some token v. Then

P(x; € (¢,d))

P(e: € (e,d) = Pl € (@) 50y
- e =
B 7a(d—c): .
= )(b_a> d

as required. Here we used that x; € (a,b) exactly when the token v defining interval (a,b) was
selected, which happens with probability p(v|wy - - - w;—1) = b — a.
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We have shown here that, for any choice of context w; - - - w;_1, x; will be distributed according to
U(0,1). Thus we have shown that x; is independent of w; - - - w;_1, and so the resulting sequence
xq - o s iid.

Finally we note that no properties of the language model were assumed in the above proof. In par-
ticular, one could define p(-|w; - - - w;_1) to be the next token probability distribution resulting from
sampling from Llama 3.1 at temperature 0.7. In that case, our result about z; being iid according
to the uniform distribution on [0, 1] continues to hold, provided the same language model decoding
strategy pair is used in the generation of text and generation of DMAP plots.

Proposition 3.1 does not hold directly for entropy weighted DMAP, since entropy weighted DMAP
does not produce points ;. One can make corresponding statements about the expected integral
of f]—l‘ over any interval A and see that entropy weighted DMAP plots for texts generated by the

evaluator model do converge to the uniform distribution, but rates of convergence do not follow so
easily.

B ON THE SHAPE OF DMAP PLOTS FOR TEMPERATURE, TOP-P AND TOP-k
SAMPLING

Recall that, for a language model p and context w; - - - w;_1, and for given values of 7, 7 and k,
temperature sampling picks token p; with probability

1
-

p(wi|w1 : "wi—l)
.
ZUEV p(v|w1 e wi—1)7

top-k sampling defines the top-k set Vj;, to be the k tokens with highest model (conditional) proba-
bility p(-|wy - - - w;—_1) and assigns probability

¢r (wilwy -+ wi—q) =

P(wi|w1 e wi—l)

vEVS p(vjwy - w;_1)

Qk(wi|w1 e 'wi—l) = Z

to tokens w; in the top-k set, and zero mass outside of the top-k set.

Finally top-p (nucleus) sampling orders the tokens in )V by decreasing conditional probability
p(-|wy - - - w;—1) and defines the top-p set V;; to be the first m tokens, where m is the smallest integer
for which >~ | p(v;|wy - - - w;_1) > w. Top-p sampling then chooses token w; with probability

p(wz‘|’w1 : "wi—l)
eV, p(v|wy -+ w;_1)

qﬂ(wi|w1 : "wi—l) = Z

We then ask, given a long text sampled by top-k sampling, what are the limiting statistics of the size
of the top-k set. The expected shape of the DMAP plot for top-k sampling is the function

P(The total mass of the top-k set is greater than x)

renormalized to have integral one. This is a decreasing function, nearly flat on [0,0.5] before
smoothly decreasing towards 0.

Similarly, for top-p sampling, the expected shape is the function
IP(The total mass of the top-7 set is greater than ),

again renormalized to have mass one. This is flat on [0, 7], before decaying very rapidly. There is a
sharp cut off reflecting the majority of cases where the size of the top-7 set is only just larger than
7, and a non-vanishing tail reflecting the fact that the proportion of times for which the top-7 set has
mass close to 1 is non-zero.

For the shape of the DMAP plots in the case of temperature sampling, we mention only that it is a
smooth deformation. There is an interval close to 0 upon which the DMAP is nearly flat, but this is
much smaller than in the top-k case as it is a function of the mass of the most likely token, rather
than of the top-k most likely tokens.
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C WHY ARE BLACK-BOX BASE MODELS TAIL BIASED?

The fact that our plots of texts generated by one base language model and evaluated by another base
language model (Figures 2 and 12) are tail-biased is partially supported by theory. In Kempton &
Burrell (2025), it was shown that for a language model P and a generation length 7, pure sampling
from P is the unique way of maximizing the sum of entropy and per-token log-likelihood (as judged
by P). That is, whenever we sample from a language model @) for which the entropy is at least as
large as the entropy of P, the resulting plot text must have lower expected per-token log-likelihood
(as measured by P). This is a statement about log-likelihood, not a statement about position in the
probability distribution, and so doesn’t directly correspond to saying the DMAP plots should be
tail-biased, but it gives a strong indication in that direction.

D RATES OF CONVERGENCE IN PROPOSITION 3.1

Proposition 3.1 implies that DMAP plots of texts generated by pure sampling from a language
model, evaluated by the same language model, should look roughly flat. One might wonder whether
we can make this statement more precise with a rate of convergence. The answer is positive, as
detailed in the following proposition.

Proposition D.1. Given a language model P, a text w1 - - - wp generated by P and a number of bins
k, let 1, - - xp be the set of points generated by DMAP with P as the evaluator model. Further
define frequencies '
_ el TR < < )
T

) k 1 2
X :Tk;@-—k)

as in Section 5.1. Then x? is asymptotically distributed according to the Xi—1 (the x? distribution
with k — 1 degrees of freedom).

bl

fi

and the x? statistic

An immediate application of this is that we evaluate the plausibility of the statement ‘Text w; - - - wp
was generated by pure sampling from language model P’. To do this, we compute the Y2 statistic
c arising from the text w; - - - wr and use standard python statistics packages to compute the prob-
ability that points drawn according to the x7_, distribution would be larger than c. For large 7T,
this is arbitrarily close to the probability that text generated by language model P would generate as
extreme a 2 statistic.

We mention one note of caution about the word ‘asymptotically’ in Proposition D.1. For finite 7',
the x? statistic is not perfectly distributed according to the y? statistic (indeed it is supported on a
finite set), and so our computations of p-values are not exact. A conservative rule of thumb is that 7’
should be at least 10k for reliable p-values, so one should evaluate at least 400 tokens when plotting
histograms with 40 bins.

Proposition D.1 is a standard result in statistics, proved by a slightly delicate application of the
central limit theorem.

One should be cautious in interpreting p-values, as they are famously prone to misinterpretation.
Many articles can be found explaining these misconceptions, see for example Goodman (2008).

E EXPERIMENTAL SETUP FOR SECTION 5.2

We follow a similar setup to, for example, Mitchell et al. (2023) or Kempton et al. (2025). In par-
ticular, given a large language model and sample of human text from XSum (Narayan et al., 2018),
SQuAD (Rajpurkar et al., 2016), or WritingPrompts (Writing) (Fan et al., 2018), we construct 150
tokens of synthetic text using the first 30 tokens as context. We then perform zero-shot classification
on the balanced dataset of real and synthetic data. For Fast-DetectGPT (Bao et al., 2023) and De-
tectGPT (Mitchell et al., 2023) we use GPT-Neo 2.7b (Black et al., 2021), which Fast-DetectGPT
report as being empirically superior for black box detection with their method. For Binoculars we
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use the recommended combination of Falcon 7b for the observer model and Falcon 7b Instruct for
the performer model (Ebtesam Almazrouei and others, 2023). The generation models we use are
Llama-3.1 8B (Grattafiori et al., 2024), Mistral-7B-v0.3 (Albert Q. Jiang and others, 2023), and
Qwen3-8B (Yang et al., 2025). For each method, we report AUROC as the evalulation score as in
(Mitchell et al., 2023; Bao et al., 2023; Kempton et al., 2025).

F EXPERIMENTAL SETUP FOR SECTION 5.3

We conduct our experiments on three sizes of Pythia models (70m, 410m, 1B) fine-tuned with one of
three instruction fine-tuning datasets: one including only human-written text and two with responses
that have been partially regenerated with an external language model.

Fine-Tuning. The instruction fine-tuning datasets are the following: (1) OASST2 (Kopf et al.
(2023)), a human-written instruction tuning dataset, (2) OASST?2 with responses regenerated with a
Llama 3.1 8B model with generation temperature 0.7, and (3) The same as (2) but with generation
temperature 1.0. OASST? is a tree-structured multi-turn dataset with various conversation paths, but
for our fine-tuning purposes we extract only the first prompt-response pair, as we only evaluate the
response to a single query. Although this means we are using a portion of the text in the dataset, we
continue to refer to it as OASST?2 throughout this work. The data is split into a train and validation
set following the original splitting of OASST2 on the Huggingface-hosted dataset 2. Because the
responses in fine-tuning datasets (2) and (3) are generated using a non-instruction-tuned base model,
we keep the first 20 tokens of the human response text as part of the response generation prompt.
For the creation of the DMAP plots, we only consider the tokens beyond this point.

For the fine-tuning step, the prompt-response pairs are formatted to be separated with a line break
without any additional role tags or special tokens, so as to ensure a naturalistic output and to allow
for exact comparison between fine-tuned and non-fine-tuned models.

Evaluation. We use OPT-125 as the evaluator model throughout, creating DMAP plots for the val-
idation split of the respective datasets. In each case, the evaluated models are prompted in the same
way as with the creation of the the training data, with only the newly-generated tokens contributing
to the creation of the DMAP plot.

F.1 RESULTS

We first visualize the DMAP distribution for each of our three fine-tuning datasets in Figure 5,
each of which exhibit a relatively typical shape for the respective data sources: human-generated,
synthetic pure-sampled and synthetic temperature-sampled at temperature 0.7.

(a) (b) (c)
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Density

0.6 0.6 0.6 4
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DMAP Samples

Figure 5: DMAP plots created using OPT-125 for the three fine-tuning datasets: a) OASST2 human-
written prompt-response pairs, b) OASST2 with responses regenerated by Llama 3.1 8B at temper-
ature 0.7. and ¢) OASST2 with responses regenerated by Llamma 3.1 8B at temperature 1.0

https://huggingface.co/datasets/OpenAssistant/oasst?2
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We observe next the extent to which fine-tuning on these datasets affects the DMAP plots We present
the results for a single model (Pythia 1B) in Figure 4, with the remaining experiment for Pythia 410m
set here in the appendix (Figure 6) showing the same visual pattern.

(a) (b) (c) (d)
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Figure 6: DMAP plots generated by pure sampling from Pythia 1b models with (a) no fine-tuning,
(b) fine-tuned on OASST2 human data, (c) fine-tuned on OASST2 with responses regenerated by
Llama 3.1 8B at temperature 0.7, (d) fine-tuned on OASST2 with responses regenerated by Llama
3.1 8B at temperature 1.0

G OBSERVATIONS ON DETECTOR DESIGN

G.1 USING DIFFERENT DETECTOR AND GENERATOR MODELS CAN BE USEFUL

Methods based on probability curvature seem to work best when the generating and detecting models
are the same (although Hans et al. (2024) and Dubois et al. (2025) use more than one model in
detection). Comparing the distributions of human-written text (Figure 7), pure-sampled text where
generator and detector models are the same (Figure 2) and pure-sampled text with different generator
and detector models (Figure 12), one sees that human-written text looks most different from machine
text when a different detector model is used. Perhaps an alternative conclusion to be drawn from
Table 1 is that a variant Fast-DetectGPT can remain an effective detector of pure-sampled text, but
DMAP should be first used to calibrate whether machine generated text is head-biased or tail-biased.

G.2 HUMAN-WRITTEN TEXT HAS A MORE SUBTLE DISTRIBUTION THAN CURRENTLY
EXPLOITED

Detectors based on probability curvature exploit the fact that human-written text is tail-biased. In
Figure 7 we see that, while this is true, it is also true that they contain tokens from the very tail of
the language model probability distribution less often (tail-collapse). This is particularly important
as the tail of the probability distribution is where log-likelihood values are at their most extreme.
Detectors using log-likelihood or log-rank to distinguish between human and machine generated text
would presumably be more effective if they discounted this bottom five percent of the probability
distribution where human-written text is under-represented.

G.3 INSTRUCTION TUNED MODELS ARE EASIER TO DETECT THAN BASE MODELS

It was noted that in Ippolito et al. (2020) that it is easiest for a machine to detect machine generated
text when decoding strategies such as top-p, top-k and temperature have been used. Figures 2 and
7 would support this conclusion, the distributional differences between human and machine text are
clearly much greater when top-p, top-k or temperature sampling have been used.

H FURTHER QUESTIONS
1. In Shen et al. (2024) the authors attempt to curb the overconfidence of instruction fine-tuned

language models by using temperature scaling with temperature larger than 1 in order to
bring the perplexity in line with pre-trained language models. Does DMAP give any insight
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to this process? What would happen if, instead of trying to bring perplexity in line with the
pre-trained language model, one tried to bring the DMAP plots in line with human text?
DMAP plots are a much better tool for checking calibration with a pre-trained language
model than the currently used likelihood of top token.

. In Figure 7 we show DMAP plots for different examples of human-written text. These

plots are not perfectly flat, and are slightly different in different settings (e.g. poetry vs
news). Do these plots effectively describe the underperformance of the evaluator model in
different settings in a way that separates the underperformance of the language model at
next token prediction from the inherent difficulty of next-token prediction (which varies by
setting)? Can one formalise this and extract useful metrics?

. Figure 13 shows texts generated by Llama, Mistral and Falcon, evaluated by Llama, Mistral

and Falcon. In each case, the shape of the DMAP plot is very different depending on
whether the evaluator and generator models are the same. Can these ideas form the basis
for a new approach to language model identification?

I FURTHER PLOTS

I.1

SYNTHETIC TEXT

In this section we include illustrative plots with larger evaluation models. We see similar phenomena
as in Figure 2.

0.0
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.0 0.2 0.4 0.6 0.8 1.0 0.1
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Figure 7: Illustrative DMAP histograms. The first row shows plots of XSum data (Narayan et al.,
2018) generated by OPT-6.7b, evaluated by OPT-6.7b. The generation strategies (left to right) are
(a) pure sampling, (b) top-p = 0.8 sampling, (c) temperature 7 = 0.8 sampling, and (d) top-k = 50.
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Figure 8: Illustrative DMAP histograms. The first row shows plots of XSum data (Narayan et al.,
2018) generated by OPT-2.7b, evaluated by OPT-2.7b. The generation strategies (left to right) are
(a) pure sampling, (b) top-p = 0.8 sampling, (c) temperature 7 = 0.8 sampling, and (d) top-k = 50.

1.2 HUMAN-WRITTEN TEXT

We plot human-written text in Figure 7, evaluated by OPT-125m. We use the RAID dataset across
four different categories: scientific abstracts, books, news and poetry.
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Figure 9: Illustrative DMAP histograms. The first row shows plots of XSum data (Narayan et al.,
2018) generated by OPT-1.3b, evaluated by OPT-1.3b. The generation strategies (left to right) are
(a) pure sampling, (b) top-p = 0.8 sampling, (c) temperature 7 = 0.8 sampling, and (d) top-k = 50.
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Figure 10: Illustrative DMAP histograms. The first row shows plots of XSum data (Narayan et al.,
2018) generated by OPT-350m, evaluated by OPT-350m. The generation strategies (left to right) are
(a) pure sampling, (b) top-p = 0.8 sampling, (c) temperature 7 = 0.8 sampling, and (d) top-k = 50.
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Figure 11: Human-written text in four categories: abstracts (a), books (b), news (c), and poetry (d).

We see differences in these plots, corresponding to the differing competence of OPT-125m in these
areas.

1.3 BLACK BOX BASE LANGUAGE MODELS

In Figure 13 we plot pure generated text from base language models Llama 3.1 8B, Mistral 7B and
Qwen3 8B, evaluated by each other. In Figure 12 we see the same texts evaluated by OPT-125m.
The images here further support the claim in the main text that pure-sampled text looks flat when
the generator and evaluator models are the same, and looks heavy tailed when another base model
is used for evaluation.
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Figure 12: Llama 3.1 8B, Mistral 7B, Falcon 7b and Qwen3 8B generated XSum data, evaluated by
OPT-125m.
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Figure 13: White and black box evaluation. Plots are labeled: (Generator Model, Evaluator Model).

J LLM USAGE

LLMs were used to polish written text in the preparation of this manuscript.
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