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Abstract

We study the problem of computing Chamfer distance in the fully dynamic setting,
where two sets of points A,B ⊂ Rd, each of size up to n, dynamically evolve
through point insertions or deletions and the goal is to efficiently maintain an ap-
proximation to distCH(A,B) =

∑
a∈A minb∈B dist(a, b), where dist is a distance

measure. Chamfer distance is a widely used dissimilarity metric for point clouds,
with many practical applications that require repeated evaluation on dynamically
changing datasets, e.g., when used as a loss function in machine learning. In this
paper, we present the first dynamic algorithm for maintaining an approximation
of the Chamfer distance under the ℓp norm for p ∈ {1, 2}. Our algorithm reduces
to approximate nearest neighbor (ANN) search with little overhead. Plugging in
standard ANN bounds, we obtain (1+ϵ)-approximation in Õ(ϵ−d) update time and
O(1/ϵ)-approximation in Õ(dnϵ2ϵ−4) update time. We evaluate our method on
real-world datasets and demonstrate that it performs competitively against natural
baselines.

1 Introduction

We consider the problem of computing the Chamfer distance, a popular dissimarlity metric between
point clouds. Given two sets of points A,B ⊂ Rd, each of size up to n, the Chamfer distance of A
from B with respect to a distance measure dist : Rd × Rd → R≥0 is defined as

distCH(A,B) =
∑
a∈A

min
b∈B

dist(a, b).

The Chamfer distance is typically defined with respect to distance measures such as Manhattan and
Euclidean metrics. It has found a wide range of applications in various domains, including machine
learning [KSKW15, WCL+19], computer vision [AS03, LJG05, FSG17, JSQJ18], and geometric
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computing [HSS+24]. Due to its strong empirical performance, the Chamfer distance is often used
as a computationally efficient alternative to the more demanding Earth-Mover’s distance (EMD)
[KSKW15, AM19].

In many practical applications, the Chamfer distance is repeatedly calculated on evolving datasets. A
notable example is cloud completion and up-scaling, where the models aim to reconstruct missing
regions or enhance the resolution of 3D point clouds. In such tasks, the Chamfer distance is
commonly used as a loss function during training and it must be evaluated continously as the model’s
predictions evolve [LYH+23, LLZ+24, WPZ+21]. Two other mainstream use cases include (1)
object reconstruction from video sequences, where the objective is to represent objects as point
clouds based on observations from a moving camera [RLT+20, TMPF22, HHT+23]; and (2) medical
imaging, where it is used to track anatomical structures (such as heart motion on ultrasound images)
over time [VHK94, HB91, MDJT14].

Motivated by these applications, we pose the following fundamental question: Can the Chamfer
distance be maintained under dynamically evolving point sets? More concretely, consider two
input sets A an B that undergo point insertions or deletions, referred to as updates. The goal is to
design a dynamic algorithm that efficiently supports these updates while maintaining an estimate
that approximates the Chamfer distance up to a small relative error. A naive solution to handle
such updates is to recompute the Chamfer distance from scratch after each update. However, this is
computationally prohibitive: the best-known static algorithms require either (1) O(n2 · d) time for
exact computation or (2) O(nd log nϵ−2) [BIJ+23], for a (1+ ϵ)-approximation when the underlying
metric is an ℓp norm for p ∈ {1, 2}. In summary, even for low-dimensional datasets, these off-the-
shelf static algorithms cannot go beyond the linear time barrier for handling updates.

In this paper, we obtain the first dynamic algorithm for maintaining an estimate to the Chamfer
distance under the ℓp norm for p ∈ {1, 2}, which significantly outperforms the linear-time update
barrier. Our problem reduces to nearest neighbour (NN) oracles: given parameters α > 0, τ ≥ 1,
there is a data structure that maintains a dynamic point-set B ⊂ Rd and supports in τ time the
following opertions (i) insert/delete a point in B and (ii) given a point x, return an (1 + Θ(α))-
approximate nearest neighbour of x in B. We call such a data structure an (1 + Θ(α))-approximate
NN oracle with time parameter τ . Plugging in known bounds for NN oracles, our algorithm achieves
constant (or even (1 + ϵ)) approximation and supports very fast updates across different parameter
regimes. The guarantees of our algorithmic reduction are summarized in the theorem below.

Theorem 1.1. Let A,B be two sets of points from Rd, with |A|, |B| ≤ n, and let ϵ ∈ (0, 1) α > 0,
and τ ≥ 1 be parameters. Assume that there is a (1 + Θ(α))-approximate NN oracle with time
parameter τ . Then there is a dynamic algorithm that supports insertions and deletions of points to
A and B in Õ(τ) worst-case time per update, and when queried, with high probability, it returns a
(1+α+ ϵ)-approximation to distCH(A,B) in Õ((d+ τ)ϵ−2 max{1, α2}) time, when the underlying
metric is the Manhattan (ℓ1) metric.

The state-of-the-art trade-offs for (1 + Θ(α))-approximate NN oracles differ between low and high
dimensions; (a) for low dimensions, the trade-off is α = ϵ with query/update time τ = Õ(ϵ−d)

[AMN+98], while (b) for high dimensions, we have α = O(1/ϵ) with τ = Õ(dnϵ2) [AR15].
Substituting these bounds in Theorem 1.1, we obtain dynamic algorithms for the Chamfer distance
achieving (1+ϵ)-approximation in Õ(ϵ−d) update time and an O(1/ϵ)-approximation in Õ(dnϵ2ϵ−4)
update time. 2 Moreover, using known embeddings from ℓ2 into ℓ1, Theorem 1.1 readily extends to
the setting when the underlying metric is Euclidean (ℓ2) (see Appendix A for details).

Our dynamic algorithms maintain an estimate to the Chamfer distance distCH(A,B) with provable
approximation ratios. It is natural to ask whether it is possible to maintain the underlying assignment
g : A→ B that attains these approximation ratios, i.e.,

∑
a∈A dist(a, g(a)) ≤ (1+ϵ) ·distCH(A,B).

Since reporting the assignment itself takes Θ(n) time, reporting the changes in the assignment due to
an update, also known as recourse, would be desirable. Unfortunately, it turns out that any dynamic
algorithm that maintains an α-approximate assignment between A and B must have at least Ω(n)
recourse, and thus also Ω(n) update time (see Lemma B.1). In fact, for any constant δ > 0, [BIJ+23]

2The stated bounds on the update time are in fact stronger in that they achieve a better dependency on the
dimension d. This is because Theorem 1.1 presents only a simplified version of our main result; the precise
trade-offs are given in Theorem 3.1.
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show that even in the static setting, reporting a (1 + ϵ)-approximate assignment requires Ω(n2−δ)
time under the hitting set conjecture [Wil18].

Experiments. We implement our algorithm and validate its performance over four real datasets
covering both high and low dimensions, as well as their noisy versions with injected outlier points. In
all datasets, our algorithm achieves less than 10% error using only hundreds of samples, even against
injected outliers, in time up to magnitudes better than a naive dynamic algorithm. We also discover
that a simple uniform sampling baseline is competitive for these real datasets, but its performance
degrade significantly when outliers are present, where our algorithm has a clear advantage.

1.1 Technical Contribution

We employ an importance sampling framework to estimate distCH(A,B), and our main contribu-
tion is a dynamic data structure that maintains an importance sampler. This importance sampling
framework was introduced in [BIJ+23] in a static setting, where the key idea is to compute a coarse
O(log n)-approximate assignment ĝ from A to B, and then sample with probability proportional to
the distance dist(a, ĝ(a)). A standard importance sampling argument shows that an average of Õ(1)
samples suffices for (1 + ϵ)-approximation to distCH(A,B).

However, it is difficult to explicitly maintain the approximate assignment ĝ in the dynamic setting,
since the recourse/change of ĝ can already be very significant per update (let alone the running
time). To resolve this issue, our dynamic sampler obtains these sampling guarantees with an implicit
representation of distance estimates ˆdista : a ∈ A such that ˆdista is an O(log2 n) approximation to
minb∈B dist(a, b) for a ∈ A in Õ(d) update time. This sampler only generates a sample â ∈ A, and
the final estimator for the importance sampling is computed through O(log2 n · ϵ−2 max{1, α2}) =
Õ(ϵ−2 max{1, α2}) queries to a (1 + Θ(α))-approximate nearest neighbor oracle. This eventually
leads to a (1 + α+ ϵ)-approximation to distCH(A,B),

Our dynamic sampler (similarly to the static algorithm of [BIJ+23]) relies on a family of partitions
of the input plane Rd into a series of nested cells that exponentially decrease in size on lower levels
(also known as randomly-shifted quadtree in the literature). For each a ∈ A, we say that a is matched
in some cell of our decomposition if it is the smallest cell that contains a and any point of B. The
size of this unique sub-cell serves as an approximation to minb∈B dist(a, b). Our goal is to implicitly
maintain some information about the unique matching cell for all a ∈ A.

Importantly, we cannot afford to explicitly maintain the matching cell for each point a ∈ A as it could
change for Ω(n) points of A due to a single update in B. Instead, for each cell we maintain how many
points of A happen to be matched to B inside that sub-cell. This allows us to implement a sampler
that, instead of explicitly sampling a point of A, samples a cell in our nested decomposition based on
its size and the number of points of A matched in it. Once a cell is sampled, our goal is to sample a
uniformly random point of A matched in that cell. To achieve this, every cell maintains a dynamic
sampler which allows it to sample one of its sub-cells in our family of partitions with probability
proportional to the number of points of A in that sub-cell. Repeating this sub-cell sampling process
through the Õ(1) levels of the algorithm finds a cell that contains a single point of A, which we then
return.

1.2 Related Work

In the static setting, [BIJ+23, FI25] present a near-optimal algorithm for estimating the Chamfer
distance, running in Õ(nd · ϵ−2) time. For comparison, our dynamic algorithm handles point updates
in near-optimal time proportional to Õ(d), up to the cost of invoking the nearest neighbour oracle.

Perhaps the closest problem to the dynamic Chamfer distance is the dynamic maintenance of the
Earth Mover distance (EMD), for which Chamfer distance is often used as a proxy in practical appli-
cations [KSKW15, AM19]. For d = 2, dynamic EMD is known to admit an algorithm that achieves
O(1/ϵ) approximation in O(n1/ϵ) update time [GKP+25]. In contrast, our dynamic algorithm for
the Chamfer distance extends to any dimensions, and can even achieve an improved approximation
ratio of (1 + ϵ) in low dimensions. Similar to our negative result on the recourse, [GKP+25] show
that maintaining a mapping to the dynamic EMD problem that achieves an approximation ratio better
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than 2 requires at least Ω(n) time, even for 1 dimensional point sets. This highlights the difficulty of
dynamically maintaining mappings underlying different proximity measures between point clouds.

Recently, there has been a growing interest in designing dynamic algorithms for fundamental
problems in machine learning, thus contributing towards the grand vision of building a library
of efficient data structures for key machine learning primitives. Notable progress has been
made on several fronts, including dynamic algorithms for various clustering objectives such
as k-center [CGS18, GHL+21, BEF+23, CFG+24, BHMS23, LHG+24, CLSW24], k-median/k-
means [CHP+19a, HK20, BCLP23], facility location [GHL18, CHP+19b, BGJ+24], correlation
clustering [CLMP24], as well as dynamic matrix multiplication for structured matrices arising in
machine learning applications [AvdBM25].

2 Preliminaries

Definition 2.1 (Chamfer distance). Given two point-sets A,B ⊂ Rd with max{|A|, |B|} ≤ n, the
Chamfer distance is defined as distCH(A,B) :=

∑
a∈A minb∈B dist(a, b). For α ≥ 1, we say that a

value µ̃ is an α approximation to distCH(A,B) if µ̃ ≤ distCH(A,B) ≤ µ̃ · α.

We will refer to minb∈B dist(a, b) as distCH(a,B). We will use the following dynamic nearest-
neighbor data structure as a subroutine in our algorithm.

Definition 2.2 (Dynamic nearest-neighbor data structure). Given α > 0 and a dynamic point set
B ⊂ Rd, |B| ≤ n, a (1 + α)-approximate dynamic nearest neighbor data structure with update time
and query time τ(α) with respect to the ℓ1 norm is a data structure which can be maintained in τ(α)
update time as B undergoes insertions and deletions, and when queried for point a ∈ Rd, it returns a
value µ̃a such that µ̃a ≤ minb∈B ∥a− b∥1 ≤ (1 + α) · µ̃a with (1− 1/poly(n)) probability in τ(α)
time.

Throughout this paper, we assume that the input points are contained in [U ]d for some U = poly(n),
which is a power of 2. Furthermore, we assume that during all updates to the input sequence, the
aspect-ratio of the input points maxa∈A,b∈B ∥a− b∥1/mina∈A,b∈B ∥a− b∥1 is upper bounded by
ϕ = poly(n) = 2L, for some integer L ≥ 0.

Lemma 2.3 (Dynamic Weighted Sampler). There exists a dynamic algorithm that maintains a
weighted set of elements A = {a1, . . . , an} with corresponding weights W = {w(a1), . . . , w(an)}
undergoing insertions and deletions. Upon query, the algorithm returns an element of A such that
ai ∈ A is returned with probability w(ai)/

∑
j∈[n] w(aj). Both updates and queries are supported

in O(log n) worst-case update and query time.

Data structures similar to that of Lemma 2.3 have appeared before in literature, but for sake of
completeness we include an implementation in Appendix B.4.

2.1 Dynamic Quad-Tree

Our algorithm relies on the dynamic quad-tree data structure [dBHTT07]. The quad-tree is constructed
as follows. We first choose a random vector described by z ∈ [0, U ]d. We then shift all input points
with the vector described by z, hence after the shift they will be contained in [0, 2 · U ]d. With a slight
overload of notation, we will refer to the shifted points as A and B.

Consider a series of O(log n) grids drawn on the input space, where the i-th grid has side length
U · 21−i. The quad-tree is then a rooted tree T , where each node v ∈ T is associated with some cell
Cv of these grids with side length L(v). The root r of T corresponds to the smallest cell among all
the grids which contains all input points. Any node v of the tree T such that Cv contains more than
one point of the input has child nodes in T corresponding to its non-empty sub-cells on the next level
of the grid decomposition with side length L(v)/2. The leaves of T correspond to the largest cells of
the decomposition containing a single point of the input. As the aspect ratio of the input is assumed
to be ϕ = poly(n), the tree consists of O(log ϕ) = L layers. As each input point may appear once in
any of the cells of all these layers, T has at most O(n · log n) nodes.

[dBHTT07] has shown how to maintain this representation of the input in O(d · log n) worst-case
update time such that all nodes of the tree store the number of input points in their respective cell and
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the leaves explicitly store the single input point stored in their cell. For our application, we further
impose that every cell is aware of the number of input points in its cell from A and B separately.

3 Dynamic Algorithm

We start by describing an algorithm that achieves slightly worse guarantees than described in
Theorem 1.1. Namely, this algorithm will maintain the estimate of the Chamfer distance between two
sets with a constant probability. Formally, we will first prove the following result.

Theorem 3.1. Let A,B be two sets in space Rd, with |A|, |B| ≤ n, α > 0 and ϵ ∈ (0, 1) parameters,
and let τ(α) be the update and query times of a (1 + α)-approximate dynamic nearest-neighbor data
structure. There exists a dynamic data structure which can be maintained in O(d · log n+ log2 n+
τ(Θ(α)) worst-case update time as A and B undergoes point insertions and deletions and can be
queried to return a (1 + α+ ϵ)-approximation to distCH(A,B) between A and B w.r.t. ℓ1-norm in
O(log2 n · ϵ−2 max{α2, 1} · (d log2 n+ τ(Θ(α)))) time with 3/4 probability.

In Section 3.4, we show how to boost the above result to obtain our main result, i.e. Theorem 1.1,
which on query returns a (1+α+ϵ)-approximation to distCH(A,B) with probability (1−1/ poly(n)).
In the following sections, we describe our dynamic algorithm on a high level. For sake of complete-
ness, we include pseudo-codes of our algorithm in Appendix C.

3.1 Algorithm description

We say that a point a ∈ A ∪B belongs to a node v of level i of quad-tree T if a ∈ Cv. We say that
point a ∈ A is matched at v if v is the lowest level node of T such that both a and any point of B
belong to it (where we assume that the root has the highest level as it corresponds to the largest cell
containing all the input points). Note that every point of A ∪B may belong to L = O(log n) nodes
of T , but all points of A are matched at exactly one node of T . For each a ∈ A denote this unique
node by va.

3.1.1 Handling an Update

We augment the dynamic tree structure of Section 2.1 with the following information being stored at
each node v ∈ T : number of points γA(v) from A belonging to v, number of points γB(v) from B
belonging to v, and the number of matched points γ(v) from A at v. Note that γB(v) and γA(v) can
be maintained using the algorithm of [dBHTT07].

We also maintain a dynamic sampler NODE-SAMPLER(v) corresponding to each node v of T , and a
global sampler TREE-SAMPLER(T ) for the whole T . The sampler NODE-SAMPLER(v) is for the set
{u ∈ T : u is a child of v ∧ Cu ∩B = ∅} w.r.t. weights γA(u). The sampler TREE-SAMPLER(T ) is
for the set of all nodes v of T with γ(v) > 0 w.r.t. weights wT (v) = L(v) · γ(v).
For sake of simplicity of the presentation, assume that at all times B ̸= ∅. We will now describe
how the algorithm updates γ values for all v ∈ T after each update. Assume point x is deleted from
or inserted into A ∪ B. Through iterating along the path starting from the leaf of T containing x
and ending at the root r, the algorithm finds the path of nodes v1, . . . , vk of T whose cell does not
contain a point of B \ x (ordered from the leaf). Let v′ be the ancestor of vk in T . We distinguish
between four cases.

1. Insertion of x into A: set γ(v′) = γ(v′) + 1.
2. Deletion of x from A: set γ(v′) = γ(v′)− 1.
3. Insertion of x into B: set γ(v′) := γ(v′) − γA(vk), γ(v1) = γA(v1) and γ(vi) :=

γA(vi)− γA(vi−1) for k ≥ i > 1.
4. Deletion of x from B: set γ(v′) := γ(v′) +

∑
i∈[k] γ(vi) and γ(vi) = 0 for i ∈ [k].

The correctness of our algorithm in maintaining γ(v), v ∈ T is proven by Claim 3.3.

3.1.2 Answering Queries

The queries are answered using importance sampling based on a sampling process for points in A.
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Sampling points in A. To sample a single point from A, we first sample a node v from T using
TREE-SAMPLER(T ). Then, we sample a child u of v using NODE-SAMPLER(v). After this, we
recursively call NODE-SAMPLER(u), until we reach a leaf of T , when we finally return the unique
point a ∈ A contained in it.

Claim 3.5 shows that this sampling process returns point a ∈ A with probability L(va)/
∑

v∈T γ(v) ·
L(v), where we recall that va stands for the unique cell a is matched in. Claim 3.4 shows that
L(va) ∼ distCH(a,B) within poly(log n) factors.

Estimating the Chamfer distance. Using our sampler, estimating distCH(A,B) turns into a
standard application of importance sampling. Function NN(a,B, α) refers to any procedure for
finding a (1 + α)-approximation to the nearest neighbor of a in set B.

Specifically, we estimate distCH(A,B) through taking m = 240 · L · log nmax{α2, 1} · ϵ−2 =
O(log2 n ·max{α2, 1}·ϵ−2) samples S from A through the after-mentioned sampling procedure. For
each a ∈ S, we then query the nearest neighbor data structure to generate a (1+α/4)-approximation
to distCH(a,B). Refer to these values as NN(a,B, α/4) for a ∈ S.

We assign a weight of NN(a,B, α/4) ·
∑

v∈T γ(v) ·L(v)/L(va) to each a ∈ S. This implies that the
weight of each sample is a (1+α/4)-approximation of distCH(A,B) in expectation. We then finally
return the average of these weights (shifted by 1/(1 + ϵ/2) to fit our definition of approximation).

3.2 Correctness Analysis

This section is devoted to an overview of the proof of Lemma 3.2, which establishes the correctness
of our algorithm.

Lemma 3.2. On query, the algorithm returns a (1 + ϵ+ α)-approximation to distCH(A,B) with
7/8 probability.

We start with examining the variables γ(v), corresponding to the number of points from A matched
at node v.

Claim 3.3. The value of γ(v) for all v ∈ T is maintained correctly after an update.

Proof. When an update occurs to a ∈ A, the only γ value changes is γ(va). The algorithm greedily
finds va and updates γ(va) accordingly.

When an update occurs to b ∈ B, the algorithm finds all nodes of T that contain only b from B,
v1, . . . , vk (ordered from the leaf upwards) and v′ the node with the smallest cell containing b and an
other point of B. Observe that only v1, . . . , vk and v′ may have its γ value updated.

In the case of a deletion, all points of A matched in v1, . . . , vk should be matched in v′ after an
update, and the algorithm updates γ values accordingly. In case of an insertions, every point of A in
Cv′ should be matched in the smallest cell among Cv1 , . . . , Cvk they are contained in (if there is such
a cell). The algorithm similarly updates γ values accordingly.

The following claim allows us to estimate distCH(a,B) with value L(va). The proof is deferred to
Appendix B.2. Our proof is similar to a lemma of [BIJ+23], however our lower bound on L(va) with
respect to distCH(a,B) is slightly weaker due to the limitations of the dynamic model.

Claim 3.4. The following statements hold with respect to the random shift of the quad-tree (see
Section 2.1).

(i) With 1− 1/poly(n) probability L(va) ≥ distCH(a,B)
logn·3 holds for all a ∈ A.

(ii) E[L(va)] ≤ 2 · L · distCH(a,B)) holds for all a ∈ A, where L denotes the height of T .

From Claim 3.4 we have that L(va) ∼ distCH(a,B). Hence, the following claim shows that the
sampling process of the algorithm samples a ∈ A with probability roughly proportional to its
contribution to distCH(A,B). Its proof is deferred to Appendix B.3.

Claim 3.5. The algorithm samples a ∈ A with probability L(va)/
∑

v∈T L(v) · γ(v).
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Table 1: Specifications of datasets and experiment parameters.
dataset dimension d |A| |B| window size sample size

Text Embedding 300 ~1.9k ~1.2k 100 150
ShapeNet 3 ~2k ~2k 100 150
Fashion-MNIST 784 60k 10k 500 200
SIFT 128 1000k 10k 500 300

The remaining proofs follow the standard analysis for importance sampling. Our main goal is to
bound the variance of a single random variable defined by the weight assigned to each of the m
samples of A the algorithm draws on query. The proof is deferred to Appendix B.5
Claim 3.6. Let X stand for the random variable defined by NN(a,B, α/4)·

∑
v∈V γ(v)·L(v)/L(va)

when the algorithm samples point a ∈ A. Then, with high (1− 1/poly(n)) probability Var[X] ≤
CH(A,B)2 · log n · L · 12α2.

We are now ready to finally prove Lemma 3.2, which is a standard application of importance sampling.
Given random variable X with expectation E[X] and variance E[X]2 ·ϕ, the average of O(ϕ/ϵ2) i.i.d.
samples of X is a (1 + ϵ)-approximation to E[X] with > 1/2 probability by Chebyshev’s inequality.

In our case, E[X] is (1+α/4)-approximate to distCH(A,B) and ϕ = O(α2ϵ−2 log2 n) by Claim 3.6.
Hence, we conclude the main lemma of this section Lemma 3.2. We defer the proof to Appendix B.6

3.3 Running time

Lemma 3.7. The algorithm of Section 3.1 has O(d · log n + log2 n + τ(Θ(α)) and O(log2 n ·
ϵ−2 max{1, α2}(d log2 n+ τ(Θ(α)))) worst-case update and query times, respectively.

Proof. Note that updating the quad tree itself (and the corresponding γA, γB values) takes O(d · log n)
time using algorithms from literature [dBHTT07]. Observe that insertions and deletions both to A
and B require the algorithm to identify the set of vertices of T the affected point falls in and simply
to adjust the γ value on a subset of these nodes. Hence, this requires at most O(d · L) = O(d · log n)
time.

The algorithm also needs to update its internal global TREE-SAMPLER(T ) and NODE-SAMPLERs
for all v ∈ T . Observe that the total number of updates these samplers undergo is proportional to the
number of nodes of T which change their γv(A) or γv values, that is O(log n). By Lemma 2.3 this
takes O(log2 n) time as each sampler contains at most |A| ≤ n elements. In addition, the algorithm
needs to maintain its dynamic nearest-neighbor data structure.

On query the algorithm needs to sample m = O(log2 n·max{1, α2}·ϵ−2) samples, for each of which
it queries the nearest neighbor data structure. Each query requires first a call to TREE-SAMPLER(T ),
then a walk from the sampled node to a leaf at each step of which a NODE-SAMPLER is queried.
Hence, this takes O(d log2 n ·m) = O(d log4 n ·max{1, α2} · ϵ−2) time.

3.4 Boosting for a High-Probability Guarantee After Every Update

We show to derive Theorem 1.1 from Theorem 3.1. To this end, while maintaining the internal data
structures of Theorem 3.1, on query output the median result of O(log n) queries to the baseline
algorithm. This will result in the same update time, but an O(log n) blowup in query time.

In terms of correctness, consider the log n outputs the algorithm produces. Each of them is an
(1 + α+ ϵ)-approximation to distCH(A,B) with 3/4 > 1/2 probability. By a standard application
of Chernoff bound with high (1− 1/ poly(n)) probability more than half of these query results will
be (1 + α+ ϵ)-approximation, hence so is their median value.

4 Experiments

We implement our dynamic algorithm and validate its performance on various datasets. Observe
that handling update of A is straightforward (by simply querying an NN oracle on B), whereas
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Figure 1: Relative error curves for datasets without outliers. These experiments are independently
run for 5 times, and we report the average (the dot), max and min values (the shaded area) after every
w
5 to w

3 updates (depending on the dataset) where w is the window size.

allowing updates on B is more challenging. Hence, to simplify the exposition (but still keeping
the key challenge), we focus on the default setting where B is dynamic and A is a static set. For
completeness, we also include the case that both A and B are dynamic in Appendix E, and the results
are similar as in the default setting.

Baselines. Our first baseline is a naive exact algorithm, which we call “Benchmark”, where for
each update of B, it re-computes dist(a,B) in O(d|B|) time for each a whose current dist(a,B)
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Figure 2: Relative error curves for datasets with outliers, with the same setup as in Figure 1.

value may be affected by the update. This serves as a benchmark for the approximation ratio. The
second baseline, called “Uniform”, replaces our important sampling with a uniform sampling (while
keeping the other steps the same).

Datasets and Experiment Setup. We employ four real datasets covering both high and low
dimensions in the experiment: Text Embedding [KSKW15], ShapeNet [CFG+15], Fashion-
MNIST [XRV17], and SIFT [JDS11]. Each dataset consists of a larger set which we use as A,
and a smaller set which we use as B. The ShapeNet dataset consists of 3D point clouds and is widely
used to measure the similarity between different shapes. The Fashion-MNIST and SIFT datasets were
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Figure 3: Average running time per window update for all algorithms on datasets without outliers.

also known to be used as benchmarks for approximate nearest neighbor search. Similar choice of us-
ing ANN benchmark datasets was also made in a previous work, to evaluate the performance of static
algorithm for Chamfer distance [BIJ+23]. Furthermore, to evaluate the robustness of the algorithms,
we inject an outlier point into each dataset: we compute the geometric mean c := 1

|A|
∑

a∈A a, pick
an arbitrary a∗ ∈ A, and generate an outlier as ã = 0.1 · |A| · (a∗ − c) + c. Intuitively, this “moves”
a∗ along the direction of a∗ − c by a large distance. Finally, since these datasets do not contain
information of dynamic update, we employ a sliding window (on B) to simulate the insertions and
deletions. The detailed specification of the dataset and the experiment parameters can be found in
Table 1.

Implementation Details. Recall that our algorithm (and the Uniform baseline) consists of a
sampling step and then a second step to build the estimator that makes use of a nearest neighbor
query structure. Since the window size for each dataset is relatively small, we choose to use the
exact nearest neighbor algorithm, which does not introduce additional errors and allows for a more
accurate evaluation. For the 3D ShapeNet dataset, we implement nearest neighbor queries with
KD-trees, which can efficiently perform exact search in low-dimensional spaces. All algorithms are
implemented in C++ and compiled with Apple Clang version 15.0.0 at -O3 optimization level. All
the experiments are run on a MacBook Air 15.3 with an Apple M3 chip (8 cores, 2.22 GHz), 16GB
RAM, and macOS 14.4.1 (23E224).

Experiment Results. Our main experiment evaluates both the error of the estimated Chamfer
distance and the running time of the algorithms, over the sliding windows. We depict the relative
error curve in Figure 1 and Figure 2.

Here, the relative error for an estimate Ê over the accurate Chamfer distance E is defined as |E−Ê|
E .

Overall, our algorithm achieves less than 10% error using only hundreds of samples. Compared with
Uniform baseline, our algorithm achieves comparable error and variance for datasets without outliers,
and shows clear advantage when the dataset has the outlier. This showcases the robustness of our
algorithm. We observe that our algorithm performs slightly worse than Uniform in the SIFT dataset
(without outliers), but this is because the distance {dist(a,B) : a ∈ A} is very uniform (see Figure 4
in Appendix D), hence uniform sampling is already the “optimal” sampling strategy.

We report the average running time per sliding window update in Figure 3. Our algorithm is
magnitudes more efficient than the Benchmark on larger datasets. It incurs a slightly higher time cost
than Uniform which is expected since Uniform does not need to maintain any additional structure to
generate a sample. The results for datasets with outliers are similar to that in Figure 3 and can be
found in Figure 5 (Appendix D).
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A Our Algorithms for the ℓ2 Norm

[Mat13] has shown the following useful lemma (which we state in the dynamic setting):

Lemma A.1. There is a dynamic algorithm which for n points A ⊂ Rd undergoing insertions and
deletions in O(d/ϵ2) worst-case update time maintains A ⊂ RO(d/ϵ2) such that ∥A′

i − A′
j∥1 ≤

∥Ai −Aj∥2 ≤ ∥A′
i −A′

j∥1 · (1 + ϵ) for all i, j ∈ [n] with high (1− 1/poly(n)) probability.

That is, we may embed the input points into the O(d/ϵ2) space such that ℓ1 distances between the
embedded points roughly correspond to ℓ2 distances between the input points. Substituting the
embedded point set into Theorem 1.1, and using the state of the art dynamic nearest neighbor data
structures of [AMN+98, AR15], we obtain the following algorithms for the ℓ2 norm.

• For d = O(1) and 0 < ϵ < 1, there exists an algorithm which, with high probability,
maintains a (1 + ϵ)-approximation to the Chamfer distance between A,B ⊂ Rd, |A|, |B| ≤
n with respect to the ℓ2 norm, as A and B undergo point insertions and deletions, in
Õ(ϵ−O(d/ϵ2)) worst-case update time.

• There exists a dynamic algorithm which maintains an O(ϵ−1)-approximation for 0 < ϵ < 1
to the Chamfer distance between A,B ⊂ Rd, |A|, |B| ≤ n with respect to the ℓ2 norm, as
A and B undergo point insertions and deletions, in Õ(d · nϵ2 · ϵ−6) worst-case update time.

B Deferred Proofs

B.1 Linear Recourse for Maintaining Assignments

Lemma B.1. Any dynamic algorithm that maintains an α-approximate assignment between A and
B must have at least Ω(n) recourse, and thus also Ω(n) update time.

Proof. Consider an instance where points of A are in close proximity to each other, and B contains
two points, one at distance 1 from A and the other at distance Ω(α). Any α-approximate assignment
of this instance must assign the majority of points in A to the closer point in B. If the closer point of
B is removed from the input, then any assignment must assign all points of A to the single remaining
point in B, leading to the claimed recourse. In fact, for any constant δ > 0, [BIJ+23] show that even
in the static setting, reporting a (1 + ϵ)-approximate mapping still requires Ω(n2−δ) time under the
hitting set conjecture [Wil18].

B.2 Proof of Claim 3.4

We will first prove some useful properties of the underlying quad-tree data structure, which are based
on the random shift of the points introduced at initialization. Our proof is analogous to a similar
separation lemma of [BIJ+23], and we include it here for sake of completeness.

Namely, let x, y ∈ A ∪B and v be some node of T . Then, with respect to the random shift defined
by z ∈ [0, U ]d, we have:

1. Pr[y /∈ Cv|x ∈ Cv] ≤ ∥x−y∥1

L(v)

2. Pr[y ∈ Cv|x ∈ Cv] ≤ exp(−∥x−y∥1

L(v) )

The random shift introduced at the initialization of our algorithm can be described as follows: the
algorithm draws a uniform random point z with coordinates z1, . . . zd in [U ]d. Then the algorithm
defines sets A := {a+ z|a ∈ A} and B = {b+ z|b ∈ B}.
Fix some cell Cv = [v1, v1 + L(v)]× · · · × [vd, vd + L(v)] (we disregard the case where a shifted
point falls exactly on the grid, as it occurs with 0 probability). If point x ∈ A ∪B with coordinates
x1, . . . , xd falls in cell Cv , we know that zi ∈ [xi− vi, xi− vi+L(v)] for all i ∈ [d]. If we condition
on this event, then we know that zi is uniformly distributed on this interval.
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Fix some y ∈ A ∪ B with coordinates y1, . . . , yd. Conditioning on the event that x ∈ Cv, the
event y /∈ Cv is for all i ∈ [d] if zi ∈ [xi − vi, xi − vi + L(v)], /∈ [yi − vi, yi − vi + L(v)] that is
|xi − yi| > L(v) or zi ∈ [xi − vi, yi − vi] or zi ∈ [yi − vi + L(v), xi − vi + L(v)] (depending on
which of xi, yi is larger) which happens with probability at most |xi − yi|/L(v). Hence, by union
bounding over these events:

Pr[y /∈ Cv|x ∈ Cv] ≤
d∑

i=1

|xi − yi|
L(v)

=
∥x− y∥1
L(v)

Now observe that the above argument holds for all coordinates of z independently. This implies:

Pr[y ∈ Cv|x ∈ Cv] ≤
d∏

i=1

(1− |xi − yi|
L(v)

) ≤ exp(−∥x− y∥1
L(v)

)

We are now ready to prove the claim. Fix some a ∈ A. If L(va) < distCH(a,B) · 1/(4 · log n), that
implies that for some U/2i0 ≤ distCH(a,B)/(3 · log n) there exists a b ∈ B such that both a and b
belong to the same cell in the tree T with side length U/2i0 . Let Ci0a , . . . , Cka be the cells of T with
side length at most U/2i0 that a belongs to. Recall that this means k ≤ L. By property (ii), we know
that for all b ∈ B:

∑
i∈{i0,...,k}

Pr[b ∈ Cia|a ∈ Cia] ≤
∑

{i0,...,k}

exp

(
−∥a− b∥1

2i

)

≤ L · exp
(
−∥a− b∥1

2i

)
≤ L · exp

(
−distCH(a,B)

2i

)
≤ L · exp(−3 · log n)
≤ 1/n3

By union bounding over all b ∈ B and a ∈ A, and observing that these inequalities hold regardless
which cells a falls on in specific levels of the tree, we get that the first item holds with high
1− 1/ poly(n) probability for all a ∈ A.

To prove point (ii), fix some a ∈ A and b = argminb∈B∥a−b∥1. Let Ci0a , . . . , C0a be the cells of T with
size lengths at least distCH(a,B) containing a where Cia has side length U/2i. If L(va) ≥ U/2i−1

then b /∈ Cia. Hence, by property (i) we have that Pr[L(va) ≥ U/2i−1] ≤ Pr[b /∈ Cia|a ∈ Cia] ≤
2i · ∥a− b∥1/U . Note that L(va) ≤ L(C0a) by definition. Hence, summing over the L levels of the
tree we get:

E[L(va)] ≤
∑

{i0,...,0}

Pr[L(va) ≥
U

2i−1
] · L(Cia)

≤
∑

{i0,...,0}

Pr[b /∈ Cia|a ∈ Cii ] ·
U

2i−1

≤
∑

{i0,...,0}

2i · ∥a− b∥1
U

· U

2i−1

≤
∑

{i0,...,0}

2 · ∥a− b∥1

≤ 2 · L · distCH(a,B)

Note that the second inequality holds as it does not matter which cells a falls on different levels of
the tree for the set of preceding inequalities.
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B.3 Proof of Claim 3.5

Fix a point a ∈ A, and let X be the event when a is sampled in Algorithm 2. Let va, v2, ..., vl be the
path on tree starting at va ending at the leaf vl containing a (hence γA(vl) = 1). First, denote by Y
the event when TREE-SAMPLER(T ) returns node va, and by Xi the event that NODE-SAMPLER(v)
in line 4 of Algorithm 3 choose the node vi on level i of T , for 1 < i ≤ l. By definition, we have that
Pr[Y ] = L(va)·γ(va)∑

v∈T L(v)·γ(v) . Further,

Pr[X2|Y ] =
w(v2)∑

u:u∈C(v1) w(u)
=

γA(v2)

γ(va)
,

by definition of w(·). Similarly, for 3 ≤ i ≤ l

Pr[Xi|Xi−1] =
w(vi)∑

u:u∈C(vi−1)
w(u)

=
γA(vi)

γA(vi−1)

Finally, we have that

Pr[X] = Pr[Y ∩X2 ∩ ... ∩Xl]

= Pr[Y ] · γA(v2)
γ(v)

·
l∏

i=3

γA(vi)

γA(vi−1)

= Pr[Y ] · γA(vl)
γ(va)

=
L(va)∑

v∈T L(v) · γ(v)
.

B.4 Proof of Lemma 2.3

The data structure maintains a balanced binary tree of the elements of A, where each leaf corresponds
to some element. In addition, each node of the binary search tree keeps track of the sum of the
weights of the elements corresponding to the leaves in its sub-tree.

On query, the data-structure draws a random real value x in [0,
∑n

i=1 wi]. Starting from the root of
the search tree, it completes a walk to a leaf. When deciding between child nodes v and u (from left
to right) with leaf weight sums wv, wu in a step of the walk, it chooses v if x ≤ wv . Once reaching a
leaf, it returns the element assigned to it.

Observe that if the ordering of the leafs from left to right is a1, . . . an, then this process chooses
element ai if x >

∑
j<i wi and x ≤

∑
j≤i wi, that is with probability wi/

∑
j∈[n] wj . As the tree

will have depth at most O(log n), the query takes O(log n) time. The maintenance of a balanced
binary tree of n elements in O(log n) is folklore.

B.5 Proof Claim 3.6

First, note that when we decide to query the distance of some a ∈ A from B, we use a (α + ϵ/4)-
approximate nearest neighbor data structure, which might be randomized. Hence, instead of returning
distCH(a,B), we obtain some Za · distCH(a,B), where Za is a random variable taking real values
in [1, 1 + α/4 + ϵ/4]. Note that this implies that E[Z2

a ] ≤ (1 + α/4 + ϵ/4)2 ≤ 2α2. Also, note that
the randomization of Za|a ∈ A is independent from the randomization of the rest of the algorithm
(i.e. the randomness used for sampling elements of A and that ofH). Furthermore, the randomness
we use to sample a ∈ A is independent of the randomness of the quad-tree (that is of L(va) and γ(v)
values).
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Var[X] ≤ E[X2]

=
∑
a∈A

E
[

L(va)∑
v∈T L(v) · γ(v)

(
∑

v∈T γ(v) · L(v))2

L(va)2

]
· E[Z2

a ] · distCH(a,B)2

=
∑
a∈A

E
[∑

v∈T γ(v) · L(v) · distCH(a,B)

L(va)

]
· E[Z2

a ] · distCH(a,B)

≤ E[
∑
v∈T

γ(v) · L(v)] ·
∑
a∈A

log n · distCH(a,B) · 6α2

≤ log2 n · L · distCH(A,B)2 · 12α2

The second inequality holds due to Claim 3.4, part (i), with high (1− 1/poly(n)) probability. The
last inequality follows from the same claim, part (ii).

B.6 Proof of Lemma 3.2

On query, the algorithm returns the value of random variable µ̃/(m · (1 + ϵ/2)). First, in order for
this to be a (1 + α+ ϵ)-approximation to distCH(A,B), by definition it must hold that

µ̃

m · (1 + ϵ/2)
≤ distCH(A,B) ≤ µ̃

m · (1 + ϵ/2)
· (1 + α+ ϵ). (1)

Let X be a random variable described by Claim 3.6, that is a random variable taking value
NN(a,B, α/4) ·

∑
v∈T γ(v) ·L(v)/L(va) with probability L(va)/

∑
v∈T γ(v) ·L(v). By the defini-

tion of the nearest neighbor oracle we have that distCH(A,B)/(1 + α/4) ≤ E[X] ≤ distCH(A,B).

Since µ̃/α is the average of m i.i.d. copies of X , then Var[µ̃/m] ≤ Var[X]/m and hence

Var[µ̃/m] ≤ Var[X] · ϵ
2 · log2 n
240 · α2

≤ distCH(A,B)2 · ϵ2

20 ·max{α2, 1}
(2)

with high probability by Claim 3.6. Now, by a simple application of Chebyshev’s inequality we have

Pr

[∣∣∣∣ µ̃m − E
[
µ̃

m

]∣∣∣∣ > 4 ·

√
Var

[
µ̃

m

]]
≤ 1

16
.

Since by linearity of expectation it holds that distCH(A,B)/(1 + α/4) ≤ E[ µ̃m ] ≤ distCH(A,B),
we have

Pr

[
µ̃

m
> distCH(A,B) + 4 ·

√
Var

[
µ̃

m

]]
+ Pr

[
µ̃

m
<

distCH(A,B)

1 + α/4
− 4 ·

√
Var

[
µ̃

m

]]
≤ 1

16
.

Plugging in (2), we obtain

Pr

[
µ̃

m
> distCH(A,B) +

ϵ · distCH(A,B)√
5 ·max{α, 1}

]
+ Pr

[
µ̃

m
<

distCH(A,B)

1 + α/4
− ϵ · distCH(A,B)√

5 ·max{α, 1}

]
≤ 1

16
.

For all α > 0 and 0 < ϵ < 1 this implies that:

Pr

[
µ̃

m · (1 + ϵ/2)
> distCH(A,B)

]
+ Pr

[
µ̃

m · (1 + ϵ/2)
< distCH(A,B) · (1 + α+ ϵ)

]
≤ 1

16
.

Therefore, the output of the query is a (1+α+ ϵ)-approximation to distCH(A,B) with 15/16 > 3/4
probability.
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C Pseudo-code of Our Algorithm

In this section, we give pseudo-codes for the dynamic algorithm described in Section 3.

The updates to γA(v) and γB(v) in the last line of each algorithm can be done using standard results
from literature (see e.g. [dBHTT07]). The following pseudo-code shows how the algorithm updates
γ values after point x is inserted into/deleted from A ∪B.

Algorithm 1 UPDATE POINT(x)

1: v1 ← leaf containing x
2: Π← path (v1, v2, . . . , r) from v1 to root r in T
3: v1, . . . , vk ← v ∈ Π|Cv ∩ (B \ x) = ∅
4: v′ ← ancestor of vk in T
5: if Insertion into A then
6: γ(v′)← γ(v′) + 1
7: end if
8: if Deletion from A then
9: γ(v′)← γ(v′)− 1

10: end if
11: if Insertion into B then
12: γ(v′)← γ(v′)− γA(vk)
13: γ(v1)← γA(v1)
14: γ(vi)← γA(vi)− γA(vi−1) for k ≥ i > 1
15: end if
16: if Deletion from B then
17: γ(v′)← γ(v′) +

∑
i∈[k] γ(vi)

18: γ(vi)← 0 for i ∈ [k]
19: end if

The algorithm also updates the global sampler NODE-SAMPLER(T ) and affected TREE-
SAMPLER(v)s such that after an update:

• TREE-SAMPLER(T ) contains all nodes v ∈ T with weight w(v) = L(v) · γ(v) (if non-
negative),

• NODE-SAMPLER(v) for all v ∈ T contains all children u of v with weight γA(u) if
Cu ∩B = ∅.

Note that
∑

v∈T γ(v) = |A| ≤ n hence TREE-SAMPLER(T ) contains at most n elements at all times.
Similarly, for any v ∈ T for the set of child nodes U of T it holds that

∑
u∈U γA(u) ≤ |A| = n

hence all NODE-SAMPLER(v) also contain at most n elements (and hence updates and answers
queries in O(log n) time by Lemma 2.3).

The following pseudo-codes describes how queries are handled by the algorithm of Section 3.1.2.
For a single query, we invoke Algorithm 4.

Algorithm 2 SAMPLER(A) procedure

1: Sample vertex v of T using TREE-SAMPLER(T )
2: Return SAMPLER-FIND(v)

Algorithm 3 SAMPLER-FIND(v) procedure

1: if v is a leaf of quad-tree T then
2: return a contained in v
3: else
4: Sample child u of v using NODE-SAMPLER(v)
5: SAMPLER-FIND(u)
6: end if
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Algorithm 4 QUERY-CHAMFER(A,B, ϵ, α) procedure

1: µ̃ = 0

2: m = 120·L·lognmax{α2,1}
ϵ2 ▷ m = O( log

2 n·max{α2,1}
ϵ2 )

3: for i = 1 to m do
4: a← SAMPLER(A)

5: xa ← NN(a,B, α/4) ·
∑

v∈T γ(v)·L(v)

L(va)

6: µ̃ = µ̃+ xa

7: end for
8: Return µ̃

m·(1+ϵ/2)

D Missing Figures in Section 4

In this section we give the missing Figures 4 and 5.

Figure 4: The value dist(a,B)/
∑

a′∈A dist(a′, B) over all points a ∈ A for SIFT dataset, which
are the “ideal” probabilities for importance sampling.

Figure 5: Average running time per window update for all algorithms on datasets with outliers.

E Additional Experiments

Table 2: Experiment parameters when both A and B are dynamic.
dataset window size sample size

Text Embedding 1.5k 100
ShapeNet 1.5k 100
Fashion-MNIST 3.5k 100
SIFT 50k 500

To evaluate the case when both A and B are dynamic, we simulate the dynamic updates via a sliding
window, similar to the default setting where only B is dynamic. However, the main difference is
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Figure 6: Relative error curves when both A and B are dynamic, with the same setup as in Figure 1.

that the window not only consists of insertions of points in B, but also those in A. Specifically, we
insert alternatively between A and B in proportion to their dataset sizes (e.g., for MNIST dataset,
|A| : |B| = 6 : 1, we perform six insertions from A followed by one from B). Experiment parameters
for this case are summarized in Table 2. We depict the relative error curve in Figure 6 and report the
average running time per sliding window update in Figure 7.
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Figure 7: Average running time per window update for all algorithms when both A and B are
dynamic.
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example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: All experiments were conducted on the same machine, with its specifications
clearly stated in the paper
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).
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9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research adheres fully to the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: The paper does not explicitly discuss societal impacts, but the nature of the
work does not suggest any apparent negative societal implications.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.
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• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We added references to the datasets we use. We do not use any external library
in the code.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Yes, the code is provided as supplementary material and is well documented.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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