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Abstract001

Hallucination occurs when large language mod-002
els exhibit behavior that deviates from the003
boundaries of their knowledge during response004
generation. To address this critical issue, pre-005
vious learning-based methods attempt to fine-006
tune models but are limited by off-policy sam-007
pling and coarse-grained feedback. In this008
paper, we present R

¯
einforcement L

¯
earning009

f
¯
or H

¯
allucination (RLFH), an on-policy self-010

alignment approach that enables LLMs to ac-011
tively explore their knowledge boundaries and012
self-correct generation behavior through fine-013
grained feedback signals. RLFH introduces a014
self-assessment framework where the policy015
serves as its own judge. Through this frame-016
work, responses are automatically decomposed017
into atomic facts and their truthfulness and018
informativeness are assessed against external019
knowledge sources. The resulting fine-grained020
feedback at the statement level are then con-021
verted into token-level dense reward signals.022
This enables online reinforcement learning to023
achieve precise and timely optimization with-024
out human intervention. Comprehensive eval-025
uations on HotpotQA, SQuADv2, and Biogra-026
phy benchmarks validate RLFH’s effectiveness027
in hallucination mitigation.028

1 Introduction029

Large language models (LLMs) have demonstrated030

capabilities in generating fluent and plausible re-031

sponses. However, these models occasionally fab-032

ricate facts in their responses, referred to as hal-033

lucination. The crux of hallucination is the mis-034

alignment between models’ generation and their035

internal knowledge (Xu et al., 2024). This mis-036

alignment manifests in various ways. For instance,037

as shown in Figure 1, the response of LLMs about038

"Turing" contains erroneous factual information,039

such as stating that he was born in 1911 and was040

American. More broadly, these hallucinations can041

be categorized into several types: (1) misleading042

responses, when the model inaccurately answers 043

questions within its knowledge boundary; (2) reck- 044

less attempts, when the model responds to queries 045

beyond its knowledge; and (3) evasive ignorance, 046

when the model refrains from providing answers de- 047

spite possessing the knowledge. Unfortunately, due 048

to the opaque nature of model knowledge, we can 049

only observe erroneous model responses or their 050

refusal to respond, without accurately determining 051

whether they have experienced hallucinations. 052

Recent studies have attempted to mitigate hal- 053

lucination in large language models via learning- 054

based and editing-based approaches. Learning- 055

based methods first detect the model’s knowledge 056

boundaries and then finetune it with carefully cu- 057

rated feedback data. However, these methods 058

face several challenges. First, due to off-policy 059

data sampling (Zhang et al., 2024; Wan et al., 060

2024; Lin et al., 2024), they experience distribu- 061

tion shifts, resulting in suboptimal models (Tang 062

et al., 2024). Second, coarse-grained instance- 063

level feedback (Sun et al., 2022; Tian et al., 2023; 064

Kang et al., 2024) fails to precisely pinpoint the 065

hallucinations, as a single response may contain 066

both correct and incorrect facts. Finally, given our 067

limited understanding of how models learn and 068

express knowledge, existing knowledge detection 069

techniques (Zhang et al., 2023a; Cheng et al., 2024; 070

Yang et al., 2023) may produce inconsistent re- 071

sults, thus failing to accurately reflect the model’s 072

knowledge boundaries. In contrast, editing-based 073

methods (Gou et al., 2023; Manakul et al., 2023) 074

first generate content and then edit it based on ex- 075

ternal knowledge. These methods face two funda- 076

mental limitations: they rely heavily on external 077

knowledge sources which are inherently limited 078

in scope, and more importantly, they only correct 079

output content without addressing the underlying 080

issue of how models utilize their internal knowl- 081

edge. In general, hallucination mitigation requires 082

fine-grained feedback tailored to the online model, 083
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Alan Turning was born in 1911 and died in 1954 in 
New York. He is an American computer scientist and 
logician and the father of artificial intelligence.

Alan Turning is a computer scientist, who was born 
in 1992 in London.

Alan Turning was born in 1911 and died in 1954 in New York. 
He is an American computer scientist and logician and the 
father of artificial intelligence.

Alan Turning was born in 1911 and died in 1954 in New York. 
He is an American computer scientist and logician and the 
father of artificial intelligence.

[1] Alan Turing (23 June 1912 – 7 June 1954) was an English 
mathematician, computer scientist and cryptanalyst.

Model Generation

Reference

Coarse-grained Feedback On-Policy Fine-grained Self-Feedback

[2] Alan Turing is widely considered to be the father of 
theoretical computer science and artificial intelligence.

Knowledge Detection

When is the birthday of Turning and when did Turning died?

Offline Sampling

(a) Conventional learning-based hallucination mitigating approaches (b) Our proposed reinforcement learning for hallucination framework

Figure 1: The figure illustrates the hallucinatory case and several hallucination mitigation methodologies. The
factual information within the text is underlined. False content is highlighted in red, whereas accurate facts are
indicated in blue. Statements with uncertain veracity are marked in orange.

which enables the model to effectively explore its084

knowledge boundaries and form reliable behavior.085

In this paper, we present R
¯

einforcement086

L
¯

earning f
¯
or H

¯
allucination (RLFH), an on-policy087

self-alignment approach that uses fine-grained feed-088

back for hallucination mitigation. Our approach089

enables LLMs themselves to explore their own090

knowledge boundaries through fine-grained, on-091

policy feedback. With this direct feedback about092

their internal knowledge state, LLMs learn to bal-093

ance knowledge usage and thus reduce hallucina-094

tion. Specifically, RLFH guides LLMs to first095

generate initial responses and then conduct a self-096

verification process. The responses are decom-097

posed into atomic facts and then undergo self-098

assessment against external knowledge sources.099

During assessment, the current model determines100

whether an atomic fact aligns with the facts de-101

scribed in the ground-truth document and assesses102

the informativeness of the fact. The resulting103

statement-level assessments are converted into104

token-level dense reward signals. These precise,105

real-time rewards enable RLFH to directly optimize106

on-policy behavior through online reinforcement107

learning. By having the policy serve as its own108

judge, we construct a self-driven fact assessment109

framework that enables timely and low-cost reward110

signal collection for on-policy optimization with-111

out human intervention.112

The main contributions are as follows:113

1) We propose RLFH, an on-policy self-114

alignment framework that enables LLMs to115

actively explore their own knowledge bound-116

aries and self-correct generation behavior 117

through fine-grained feedback signals. 118

2) We design a self-assessment framework where 119

the policy serves as its own judge, automati- 120

cally decomposing responses into atomic facts 121

and evaluating their truthfulness and infor- 122

mativeness. This framework generates fine- 123

grained knowledge feedback in real-time and 124

provides token-level dense reward signals for 125

online reinforcement learning. 126

3) Comprehensive evaluations on HotpotQA, 127

SQuADv2, and Biography present significant 128

improvements of RLFH over both base mod- 129

els and existing hallucination mitigation ap- 130

proaches, showing the method’s effectiveness. 131

2 Related Works 132

2.1 Hallucination Mitigation 133

Prior research (Zhang et al., 2023c; Ye et al., 2023; 134

Tonmoy et al., 2024) has been dedicated to ad- 135

dressing the hallucination of LLMs. Some stud- 136

ies focus on reducing errors (Wang, 2019; Parikh 137

et al., 2020) and supplementing missing knowl- 138

edge (Ji et al., 2023) during data curation. Other 139

works mitigate hallucination in either pre- or post- 140

generation by retrieving external knowledge (Peng 141

et al., 2023; Li et al., 2023b; Gou et al., 2023) or 142

exploiting self-consistency (Manakul et al., 2023; 143

Shi et al., 2023; Lee et al., 2023). Recent studies 144

focus on investigating the essence of the halluci- 145

nation (Yu et al., 2024; Jiang et al., 2024) and re- 146

sort to improving the model’s factuality during the 147
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alignment stage. These works focus on resolving148

the inconsistency between the model’s generation149

and its internalized knowledge (Xu et al., 2024)150

through knowledge detection and coarse-grained151

feedback. Typically, these works attempt to de-152

lineate the boundary of model knowledge through153

explicit prompting (Zhang et al., 2023a; Yang et al.,154

2023; Cheng et al., 2024; Wan et al., 2024), self155

eliciting (Chen et al., 2024a; Lin et al., 2024),156

self-evaluation (Zhang et al., 2024) or probing the157

model’s internal states (Liang et al., 2024). Based158

on such knowledge boundary detection, the data159

is meticulously crafted to align with the model’s160

knowledge scope. Subsequently, the model is fine-161

tuned with coarse-grained feedback, which inspects162

the truthfulness of the response as a whole (Sun163

et al., 2022; Tian et al., 2023; Kang et al., 2024;164

Huang and Chen, 2024; Gao et al., 2024).165

2.2 Reinforcement Learning from Human166

Feedback167

Reinforcement Learning from Human Feedback168

(Stiennon et al., 2020; Ouyang et al., 2022) has169

emerged as a noteworthy approach for LLM align-170

ment. Given the instability of reinforcement learn-171

ing, some research (Lu et al., 2022; Rafailov et al.,172

2023; Dong et al., 2023) has attempted to learn pref-173

erences directly from labeled data. In addition to174

sparse rewards, some works have explored design-175

ing more instructive rewards. One line of works176

(Wu et al., 2023; Lightman et al., 2023; Chen et al.,177

2024b; Cao et al., 2024) is dedicated to the acqui-178

sition of dense rewards. Another line of works179

(Ramé et al., 2023; Eisenstein et al., 2023; Coste180

et al., 2024; Ramé et al., 2024) concentrates on181

ensemble multiple reward models. Finally, few182

studies (Wu et al., 2023; Tian et al., 2023; Liang183

et al., 2024) have explicitly targeted truthfulness.184

3 Reinforcement Learning for185

Hallucination186

Given the train prompt set X = {x1, x2, ..., x|X |},187

the policy model π being optimized, and the refer-188

ence document set D = {d1, d2, ..., d|D|}, this sec-189

tion demonstrates the procedure of our approach,190

shown in Figure 2. Here’s a detailed breakdown191

of each step: 1) Response Generation: Given the192

prompt xi, the policy model π generates a corre-193

sponding response yi. This step involves the model194

using its current policy to produce an output based195

on the input prompt. 2) Fine-grained Feedback196

from Policy as Judge (§3.1): The policy π, acting 197

as its own judge, evaluates the generated response 198

yi through atomic fact decomposition and verifica- 199

tion against the reference document set D, provid- 200

ing fine-grained feedback E at the statement level. 201

3) On-Policy Optimization with Token-level Re- 202

ward (§3.2): The detailed feedback E is translated 203

into token-level rewards r. These rewards are then 204

used to update the policy model π using online re- 205

inforcement learning algorithm, ensuring that the 206

model learns to reduce hallucinations effectively. 207

3.1 Fine-grained Feedback from Policy as the 208

Judge 209

Given the prompt xi and its corresponding re- 210

sponse yi, RLFH enables the policy π to conduct 211

self-assessment, providing fine-grained feedback 212

on truthfulness and informativeness at the state- 213

ment level. Specifically, the policy π first de- 214

composes the response yi into atomic statements 215

Ei =
{
e1, e2, ..., e|Ei|

}
, where each statement ej 216

represents an atomic fact in the response. Subse- 217

quently, acting as its own judge, the policy verifies 218

each atomic statement ei against the reference doc- 219

ument to provide fine-grained feedback. 220

3.1.1 Statement Extraction 221

Given a query x and its corresponding output y, 222

we leverage the current policy model π to partition 223

responses and extract atomic factual statements in 224

a hierarchical manner. Specifically, π initially di- 225

vides the response into sentences {si}Mi=1 and then 226

extracts all valid factual statements {eij}Ni
j=1 from 227

each sentence si. There are two reasons for this 228

hierarchical approach: (1) Splitting the response 229

into sentences before extracting statements consis- 230

tently yields finer granularity; (2) Extracting state- 231

ments sentence-by-sentence facilitates the conver- 232

sion from language-form annotation to token-level 233

dense reward. After performing extraction, we fur- 234

ther filter out sentences without valid statements to 235

mitigate potential noise. 236

3.1.2 Factual Verification 237

The policy model π evaluates the truthfulness of 238

the extracted factual statements by comparing them 239

with external knowledge sources. For each state- 240

ment e, we retrieve relevant supporting contexts 241

{ci}Li=1 ⊂ D from the reference document set D. 242

With these supporting contexts, the policy model π 243

conducts statement verification as a reading com- 244
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Response

Convert into 

dense reward

Question

Self-Steering the policy based on reward 𝑟

𝑟
Policy Policy as the judge

Online weight synchronization Self-Judge

Figure 2: A diagram illustrating the steps of our algorithm: (1) Sampling response from tuning model, (2) Policy
acting as a judge model performing self-assessment to collect fine-grained knowledge feedback, and (3) Converting
the language-form feedback into token-level dense reward for reinforcement learning.

prehension task, represented as:245

ktruth = π(e, {ci}Li=1) (1)246

Specifically, the policy model π classifies each247

statement into the following labels: 1) Correct: cor-248

rect statement supported by evidence; 2) Hedged249

Correct: accurate statement with uncertainty; 3)250

Vague: statement with uncertain truthfulness; 4)251

Hedged Wrong: false statement with uncertainty; 5)252

Wrong: statement contradicted by evidence. We in-253

troduce the "Vague" category to handle statements254

whose truthfulness cannot be verified based on ref-255

erence documents due to limited supporting mate-256

rials or unclear evidence.257

3.1.3 Informativeness Assessment258

In addition to correctness, the policy model π fur-259

ther evaluates the informativeness of the statements.260

We assess each statement’s informativeness on a261

five-point scale, ranging from providing crucial262

information (+5) to containing minimal relevant263

details (+1). Unlike the individual statement verifi-264

cation process, assessing informativeness requires265

considering the original query x and response y.266

This is because informativeness evaluation requires267

considering the overall context and content compre-268

hensiveness, rather than just individual statements’269

truthfulness. This process can be denoted as:270

kiinfo = π (x, y, ei) (2)271

The introduction of informativeness prevents the272

trivial hack that the model either rejects the ma-273

jority of responses or produces only brief answers,274

both of which are undesirable outcomes.275

3.2 On-Policy Optimization with Token-level276

Reward277

Given the fine-grained, statement-level feedback278

from the policy-as-judge framework, we trace the279

atomic facts’ assessment back to the original re- 280

sponse y and construct token-level dense reward 281

signals r for direct optimization. Finally, we adopt 282

online reinforcement algorithm with these token- 283

level reward signals to mitigate hallucination in the 284

model’s generation behavior. 285

3.2.1 Dense Reward Conversion 286

We represent the informativeness and truthfulness 287

of the response y through the dense reward con- 288

version presented in Figure 3. Due to the mutually 289

exclusive nature (Xu et al., 2024) of these two ob- 290

jectives, the model should learn a appropriate strat- 291

egy for utilizing its internal knowledge to balance 292

the pursuits of truthfulness and informativeness. 293

Truthfulness For each extracted statement, we 294

assign a truthfulness reward computed as follows: 295

rtruth = αf(ktruth)|g(kinfo)| (3) 296

where f and g represent manually designed func- 297

tions that transform the labels k into scalar values. 298

In principle, f gives a positive reward to the correct 299

statement and a negative reward to the unverifiable 300

or false statement. Due to the hallucination snow- 301

ball effect (Zhang et al., 2023b), where critical 302

errors can lead to magnified hallucinations, g is 303

included to diversify the importance of different 304

statements. The absolute value function applied to 305

g preserves the sign of function f ’s output. The 306

coefficient α balances between the truthfulness re- 307

ward and the helpfulness reward. 308

The reward rtruth is mapped back to the token 309

sequence of the response y using the hierarchical 310

structure constructed in the aforementioned anno- 311

tations. Specifically, we first use the Longest Com- 312

mon Subsequence algorithm to locate each state- 313

ment eij within its originating sentence si. Sub- 314

sequently, each sentence si is mapped back to the 315

model’s response y through the Longest Common 316
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Substring Matching

Sentence 2

Sentence 1

Documents

Statement 1

Gerhard Fischer is 
graduated from Dresden 
University, who is a person 
of American origin known 
for his contributions in 
the invention.

Truth: -2

Truth: -0.2 Info: +1.2 

Truth: +1.2 Info: +1 

Statement 3

Statement 2

Response
S1

S2

S3

Extract Truthfulness Helpfulness

Dense Reward Conversion

Figure 3: A schematic representation of fine-grained feedback and token-level reward strategy methodology is
presented. Initially, the statements are extracted in a hierarchical fashion. Subsequently, the veracity and utility of
each statement are assessed. Ultimately, the structured feedback is mapped back into a dense reward via the Longest
Common Subsequence (LCS) algorithm.

Substring algorithm. Finally, the reward rtruth is as-317

signed to the token in the response corresponding318

to the statement’s last character position.319

Informativeness For each sentence, we assign320

an informativeness reward based on the statements321

it encompasses as follows:322

rinfo = β log

(
µ+ max

(
ϵ,

N∑
i

g
(
kiinfo

)))
(4)323

In this equation, N denotes the total number of324

statements within a sentence, while ϵ and µ form325

the minimum reward threshold serving to penalize326

non-informative statements. As indicated by the327

equation, the reward increases with the number328

of statements in a sentence and their respective329

informativeness. However, the rate of growth of the330

reward decreases rapidly. Conversely, the penalty331

for producing non-informative statements escalates332

swiftly. We apply the same mapping method as333

used for the truthfulness reward to trace the reward334

value back to the response token sequence.335

3.2.2 Online Reinforcement Learning336

Given the reward function, the policy model π is337

optimized through online reinforcement learning338

to maximize the reward expectation:339

argmax
π

Ex∼X ,y∼π

[
T∑
i=1

r (yt, (x, y1:t))

]
(5)340

Specifically, we first sample the prompt x and cor-341

responding response y. Subsequently, the policy342

model π itself serves as the judge to provide fine-343

grained feedback through the assessment frame-344

work. This feedback is then converted into token-345

level dense reward r = [r1, r2, ..., rT ], where T346

denotes the total length of the response y. Finally,347

we employ this reward r to update the policy model 348

π by the Proximal Policy Optimization (Schulman 349

et al., 2017) algorithm. 350

4 Experiment 351

4.1 Settings 352

Datasets We employ three distinct datasets for 353

our experiments. Following the approach in (Min 354

et al., 2023), we filter out prompts lacking corre- 355

sponding wiki pages for both training and evalu- 356

ation. Additionally, we sample 10,000 questions 357

from HotpotQA (Yang et al., 2018) and use the 358

English Wikipedia from 04/01/2023 as the retrieval 359

corpus for training. We filter questions in Hot- 360

potQA with less than 5 words and sample 256 361

questions for evaluation. We deduplicate questions 362

in SQuADv2 (Rajpurkar et al., 2016) based on 363

their reference wiki pages, retaining 191 questions 364

for out-of-distribution QA evaluation. Biography 365

dataset is identical to the one used in FactScore 366

(Min et al., 2023) for evaluating out-of-distribution 367

performance on different forms of text. 368

Baselines We compare RLFH with two differ- 369

ent types of baselines: 1) hallucination mitiga- 370

tion methods based on the same initialized model 371

Llama3.1-8B-Instruct, including decoding by con- 372

trasting layers (DOLA) (Chuang et al., 2023), 373

inference-time intervention (ITI) (Li et al., 2023a), 374

and factuality finetuning (FACT) (Tian et al., 375

2023) based on DPO (Rafailov et al., 2024) and 376

SFT; 2) advanced aligned models of comparable 377

size, including Llama3.1-8B-Instruct (Grattafiori 378

et al., 2024), Qwen2.5B-7B-Instruct (Qwen et al., 379

2025), DeepSeekV2-Lite-Chat (DeepSeek-AI, 380

2024), Falcon3-10B-Instruct (Team, 2024), and 381

Yi-1.5-9B-Chat (AI et al., 2025). 382
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Model Avg. HotpotQA SQuADv2 Biography

Score #Cor. #Inc. %Res. Score #Cor. #Inc. %Res. Score #Cor. #Inc. %Res. Score
Open-source Models

DeepSeekV2-Lite 0.618 15.4 9.22 0.96 0.642 23.6 7.09 0.98 0.754 28.0 32.4 0.96 0.458
Falcon3-10B 0.593 5.14 3.06 0.90 0.608 11.1 2.18 0.96 0.813 13.5 22.6 1.00 0.357
Ministral-8B 0.591 7.36 3.81 0.96 0.633 15.7 4.26 0.82 0.761 22.7 37.3 1.00 0.378
Yi-1.5-9B 0.536 12.7 12.0 1.00 0.533 28.9 10.0 1.00 0.734 29.4 56.9 1.00 0.340
Qwen2.5-7B 0.638 9.13 4.80 0.93 0.634 21.1 4.82 0.97 0.813 20.9 23.1 0.73 0.467
Llama-3.1-8B 0.639 4.57 2.44 0.99 0.652 22.8 6.02 0.98 0.777 17.6 12.5 0.84 0.487

Baselines based on Llama3.1-8B-Instruct

DOLA 0.546 6.61 6.00 0.90 0.524 22.6 8.61 0.97 0.713 15.6 20.4 0.84 0.399
ITI 0.646 4.48 1.91 0.99 0.649 19.2 5.03 0.98 0.776 19.1 16.1 0.90 0.512
FACTDPO 0.645 4.90 2.18 0.99 0.652 22.6 6.31 0.99 0.778 18.1 12.3 0.85 0.506
FACTSFT 0.653 2.49 1.31 1.00 0.635 17.2 4.60 1.00 0.783 5.7 4.0 0.99 0.541

RLFH on Different Models

RLFHQwen2.5-7B 0.668 7.30 3.66 0.90 0.651 17.3 3.55 0.96 0.830 17.5 15.5 0.59 0.523
RLFHLlama3.1-8B 0.686 6.23 2.10 1.00 0.714 21.2 5.32 1.00 0.786 17.3 11.0 0.79 0.558

Table 1: Experiment results on HotpotQA, SQuADv2, and Biography.

Evaluation We employ the FactScore (Min et al.,383

2023) pipeline implemented with Qwen2.5-72B-384

Instruct1 (Qwen et al., 2025) to evaluate the truth-385

fulness and helpfulness of each generated response.386

Following previous works (Tian et al., 2023; Lin387

et al., 2024), we adopted FactScore without length388

penalty, which represents the average accuracy of389

statements in the response. For each dataset, we390

report the number of correct and relevant facts391

(#Cor.), the number of inaccurate facts (#Inc.), the392

ratio of responded questions (%Res.), and the com-393

puted FactScore metrics (Score).394
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m
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origin
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Figure 4: Distribution of statement accuracy versus
count per response for Qwen2.5-7B-Instruct, comparing
the base model and RLFH-tuned model.

1Discussion about the metric is provided in Appendix D.

Implementation Our training implementations 395

are developed based on OpenRLHF (Hu et al., 396

2024). The base model utilized including 397

Qwen2.5B-7B-Instruct and Llama3.1-8B-Instruct. 398

Detailed prompts for preforming the annotation 399

pipeline are shown in Appendix A. The hyperpa- 400

rameter settings are provided in Appendix B. 401

4.2 Main Results 402

Table 5 presents the performance comparison be- 403

tween RLFH and all baselines on three datasets 404

based on FactScore evaluation pipeline. 405

Our method significantly mitigates hallucina- 406

tion. The results show that our method achieves 407

the highest FactScore across all datasets. Given that 408

FactScore is a well-established metric for assessing 409

the factuality with external knowledge support, this 410

consistent improvement in FactScore substantiates 411

the effectiveness of our method. 412

The improvement is generalizable to out-of- 413

distribution prompts. Notably, despite only be- 414

ing trained on the HotpotQA dataset, our algorithm 415

demonstrated improved accuracy on two out-of- 416

distribution datasets with different task settings. 417

This indicates that our method enables effective 418

knowledge utilization as a generalizable capability 419

across different tasks. This generalizability sug- 420

gests that RLFH improves the model’s fundamental 421

ability to assess and utilize its knowledge, rather 422

than merely optimizing for specific dataset patterns. 423

The aligned model is generally more conserva- 424

tive but provides more accurate information 425
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(c) Distribution of wrong statements.

Figure 5: Distribution of statements per response across different truthfulness categories, comparing base Qwen2.5-
7B-Instruct and its RLFH-tuned version. The distributions are normalized due to the filtering of rejected responses.
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Figure 6: Response frequency distribution difference
across statement accuracy for Qwen2.5-7B-Instruct,
comparing the base model and RLFH-tuned model.

within its capacity. As shown in Table 5, our426

trained model shows a decreased response ratio427

and a higher FactScore. This observation aligns428

with expectations, as improving truthfulness of-429

ten requires trading off helpfulness manifested by430

the reduced number of statements in the responses.431

Figure 4 presents the joint distribution of accuracy432

and the number of statements shifts to the lower433

right direction, indicating that the model generates434

responses more conservatively while increasing the435

reliability of the information provided.436

4.3 Detailed Results437

We conducted a detailed analysis on 5,000 Hot-438

potQA questions held out from training, evaluated439

using our annotation pipeline with Qwen2.5-72B-440

Instruct serving as the judge model.441

Our method increases the ratio of high-accuracy442

responses. As shown in Figure 6, our method de-443

creases the proportion of low-accuracy responses444

and increases high-accuracy ones. In particular, we445

observe a substantial increase in responses with446

accuracy exceeding 0.7, indicating that the model447

response is more reliable after training. This im-448

provement is attributable to RLFH’s reward design,449

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Informativeness

0.00

0.02

0.04

0.06

0.08

Pr
ob

ab
ili

ty
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origin
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Figure 7: Frequency distribution of responses across
different levels of average statement informativeness,
comparing base and RLFH-tuned models.

which generally penalizes responses with low ac- 450

curacy while rewarding those with high accuracy. 451

Our algorithm suppresses errors and unverifi- 452

able content. The distribution shifts shown in 453

Figures 5b and 5c indicate that RLFH effectively 454

reduces both erroneous and unverifiable statements 455

in model responses. Meanwhile, as shown in Fig- 456

ure 5c, the distribution of correct statements shows 457

a trend towards generating a moderate number of 458

statements. This trend is expected, as increasing 459

the number of statements raises the risk of errors, 460

while fewer statements limit information coverage. 461

Our approach augments the average informa- 462

tiveness of statements in responses. As shown 463

in Figure 7, the response frequency distribution 464

shifts towards higher informativeness, indicating 465

that the model’s responses generally provide more 466

crucial information after training. This proves that 467

our model does not simply reduce information im- 468

portance to minimize error probability. Notably, we 469

also observe a slight increase in the frequency of re- 470

sponses with low average informativeness. This is 471

reasonable since, the model tends to express more 472

cautious responses or refuse to respond after tuning, 473

which can be rated as less informative. 474
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Model Avg. HotpotQA SQuADv2 Biography

Score #Cor. #Inc. %Res. Score #Cor. #Inc. %Res. Score #Cor. #Inc. %Res. Score

RLFH Based On Qwen2.5-Instruct-7B Different Granularity Levels

Qwen2.5-7B 0.638 9.13 4.80 0.926 0.634 21.09 4.82 0.974 0.813 20.91 23.13 0.731 0.467
Qwen2.5-7BResponse 0.651 8.09 4.31 0.910 0.639 20.09 4.20 0.984 0.819 20.24 19.96 0.654 0.493
Qwen2.5-7BSentence 0.655 7.88 4.18 0.910 0.637 18.87 3.86 0.974 0.821 19.68 18.43 0.637 0.506
Qwen2.5-7BStatement 0.668 7.30 3.66 0.902 0.651 17.29 3.55 0.963 0.830 17.54 15.52 0.593 0.523

RLFH Based On Llama3.1-8B-Instruct Different Granularity Levels

Llama3.1-8B 0.639 4.57 2.44 0.988 0.653 22.75 6.02 0.984 0.777 17.65 12.54 0.841 0.487
Llama3.1-8BResponse 0.647 3.61 1.39 0.996 0.668 17.71 4.61 0.990 0.758 15.88 9.29 0.879 0.516
Llama3.1-8BSentence 0.669 5.27 2.22 1.000 0.698 21.63 5.29 0.990 0.789 17.06 10.82 0.923 0.520
Llama3.1-8BStatement 0.686 6.23 2.10 1.000 0.714 21.23 5.32 0.995 0.786 17.30 10.98 0.791 0.558

Table 2: Results of baseline and RLHF-trained models using different granularity reward signals.

Model Avg. HotpotQA SQuADv2 Biography

Score #Cor. #Inc. %Res. Score #Cor. #Inc. %Res. Score #Cor. #Inc. %Res. Score

RLFH Based on Qwen2.5-Instruct-7B with Different Judge Models

Qwen2.5-7B 0.638 9.13 4.80 0.926 0.634 21.09 4.82 0.974 0.813 20.91 23.13 0.731 0.467
Qwen2.5-7BDeepSeekV2-Lite 0.643 9.50 5.15 0.926 0.634 21.64 5.08 0.979 0.802 20.68 20.71 0.714 0.493
Qwen2.5-7BLlama3.1-8B 0.666 9.77 4.69 0.906 0.653 21.93 4.51 0.979 0.814 20.75 17.73 0.659 0.530
Qwen2.5-7BQwen2.5-7B 0.668 8.31 3.99 0.906 0.655 19.71 4.24 0.979 0.825 19.09 16.92 0.604 0.523
Qwen2.5-7BOn-Policy 0.668 7.30 3.66 0.902 0.651 17.29 3.55 0.963 0.830 17.54 15.52 0.593 0.523

RLFH Based on Llama3.1-8B-Instruct with Different Judge Models

Llama3.1-8B 0.639 4.57 2.44 0.988 0.653 22.75 6.02 0.984 0.777 17.65 12.54 0.841 0.487
Llama3.1-8BDeepSeekV2-Lite 0.663 2.50 1.05 1.000 0.707 10.51 2.53 1.000 0.762 5.70 2.59 0.973 0.520
Llama3.1-8BQwen2.5-7B 0.679 2.88 1.13 0.996 0.684 10.37 2.47 0.990 0.782 6.78 2.81 0.956 0.571
Llama3.1-8BLlama3.1-8B 0.675 3.35 2.09 0.996 0.677 18.20 4.69 0.995 0.773 15.06 8.94 0.830 0.575
Llama3.1-8BOn-Policy 0.686 6.23 2.10 1.000 0.714 21.23 5.32 0.995 0.786 17.30 11.00 0.791 0.558

Table 3: Results of RLFH with different base models and judge models.

4.4 Impact of Reward Granularity475

In this section, we conduct ablation experiments476

to investigate the impact of reward signal granu-477

larity. Specifically, we evaluate paragraph-level,478

sentence-level, and statement-level reward. The479

statement-level reward is our default setting de-480

scribed in previous sections. For the sentence-481

level reward, feedback is incorporated at the end482

token of each sentence. For the response-level483

reward, all feedback is aggregated into a single484

value for the entire response. As shown in Table485

2, statement-level rewards consistently achieve the486

highest FactScore, improving the average score487

from 0.638 to 0.668 for Qwen2.5-7B and from488

0.639 to 0.686 for Llama3.1-8B. This result under-489

lines the importance of fine-grained feedback for490

developing more reliable models.491

4.5 Impact of Judge Model492

In this section, we explore the impact of different493

judge models in providing feedback signals. Specif-494

ically, we compare two settings: on-policy setting495

where the policy model itself serves as the judge496

versus different fixed external judge models. As497

shown in Table 3, for Qwen2.5-7B, the on-policy 498

setting achieves the highest average score (0.668) 499

along with fixed Qwen2.5-7B judge. For Llama3.1- 500

8B, the on-policy approach notably outperforms all 501

fixed judge models, achieving the highest average 502

score of 0.686. The results validate the benefits of 503

our on-policy setting, which not only achieves su- 504

perior performance but also eliminates the need for 505

an additional reward model in the training process. 506

5 Conclusion 507

In this work, we introduce an on-policy self- 508

alignment approach that enables LLMs to explore 509

their knowledge and self-correct hallucination be- 510

havior. Our approach features a self-assessment 511

framework where the policy serves as its own 512

judge, automatically providing fine-grained feed- 513

back through atomic fact verification and gener- 514

ating token-level dense rewards for online rein- 515

forcement learning. Comprehensive evaluations 516

demonstrate that our approach effectively mitigates 517

hallucination. Our work represents a step towards 518

more reliable and self-aware language models. 519
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Limitations520

Despite the promising results, our work has sev-521

eral limitations that warrant future investigation:522

(1) Our work primarily addresses factual knowl-523

edge, while the broader challenge of generalized524

hallucination across diverse domains remains to be525

explored. (2) Current evaluation benchmarks are526

limited in scope and may not fully capture the com-527

plex nature of hallucination, suggesting the need528

for more comprehensive evaluation frameworks.529

(3) Although our self-alignment approach reduces530

the need for manual verification, the potential er-531

rors in automated fact-checking may still affect the532

optimal performance of the proposed method.533

Broader Impacts534

Our research addresses a fundamental challenge535

in AI development by promoting truthful behavior536

in large language models through self-alignment,537

contributing to the development of more reliable538

AI systems. By reducing hallucination in LLMs,539

our approach helps mitigate the spread of misin-540

formation and enhances the models’ utility in real-541

world applications, particularly as these models542

become increasingly integrated into society. How-543

ever, we acknowledge potential risks in relying544

solely on self-alignment mechanisms. The com-545

plete removal of human oversight in favor of AI546

self-verification could lead to inner alignment is-547

sues, where the model’s learned behavior might548

deviate from intended objectives while appearing549

externally aligned. A critical concern is that models550

might generate incorrect responses while simulta-551

neously validating their own errors, creating a sce-552

nario where human verification becomes difficult553

or impossible. This self-reinforcing cycle could po-554

tentially lead to the propagation of misinformation555

and failure of alignment objectives. We believe556

addressing these challenges requires deeper inves-557

tigation into the interplay between self-alignment558

mechanisms and human oversight in ensuring reli-559

able model behavior.560
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A Prompt for AI Feedback1024

Following Section 3.1, we design prompts for1025

extraction, verification, and assessment tasks, as1026

shown in Table 8, 9, and 10, respectively.1027

B Hyperparameters 1028

We perform RLFH training with two different 1029

models: Qwen-2.5-7B-Instruct and Llama-3.1-8B- 1030

Instruct. We adopt different hyperparameter set- 1031

tings for the two models according to their own 1032

characteristics. For all experiments, we keep the 1033

same hyperparameter settings. 1034

Table 4: Hyperparameter Settings for Different Models

Hyperparameter Qwen-2.5-7B Llama-3.1-8B
Actor Learning Rate 3e-7 5e-7
Critic Learning Rate 9e-6 9e-6
KL Coefficient 1e-2 5e-2
Train Batch Size 128 128
Rollout Batch Size 128 128
Episode 1 1
Advantage Estimator GAE GAE
GAE λ 0.95 0.95
Truthfulness Weight α 1 1
Informativeness Weight β 1.2 1.2
Informativeness ϵ -0.9 -0.9
Informativeness µ 1.0 1.0
Verification Map Function f
Correct 0.45 0.2
Hedged correct 0.35 0.1
Vague -1.0 -1.8
Hedged wrong -1.5 -2.0
Wrong -1.7 -2.2
Informative Map Function G
5 1.25 1.2
4 1.0 1.0
3 0.75 0.8
2 0.1 0.6
1 -0.2 -0.1

C Computation Resource 1035

While our PPO-based implementation requires ad- 1036

ditional resources compared to FACT’s DPO ap- 1037

proach (Tian et al., 2023), including an additional 1038

value model and inference engines, the overall com- 1039

putational cost remains comparable for several rea- 1040

sons. First, FACT requires multiple response sam- 1041

ples per prompt, whereas our method needs only 1042

one. Additionally, FACT relies on the FactScore 1043

pipeline (Min et al., 2023) typically run by a larger 1044

annotation model (Qwen2.5-72B in our experi- 1045

ments), while our method utilizes the model being 1046

trained (Qwen2.5-7B or Llama3.1-8B in our exper- 1047

iments) for self-assessment, significantly reducing 1048

annotation costs. In our experiments, each training 1049

run typically takes less than 1.5 hours using two 1050

8-GPU nodes. Alternatively, training on a single 8- 1051

GPU node requires approximately 3 hours per run. 1052

Compared to traditional RLHF, our self-alignment 1053

approach eliminates the need for a separate reward 1054
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model, resulting in reduced computational require-1055

ments. Furthermore, while our implementation1056

is based on PPO, more computationally efficient1057

online reinforcement learning algorithms such as1058

RLOO (Ahmadian et al., 2024), REINFORCE++1059

(Hu, 2025) or GRPO (Shao et al., 2024) could be1060

adopted. These alternatives, which operate without1061

a value model, would enable even more lightweight1062

implementations of our approach.1063

D Factuality Metrics Validation1064

Following FactScore (Min et al., 2023), we vali-1065

date the effectiveness of our hallucination evalu-1066

ation. We conduct correlation analysis between1067

Qwen2.5-72B-derived FactScore and human anno-1068

tations across responses from three different mod-1069

els (InstructGPT, ChatGPT, and PerplexityAI). The1070

validation results, as shown in Table 5, demonstrate1071

strong alignment between our automated evaluation1072

and human judgments. Specifically, the Pearson1073

correlation coefficients (COEF) between Qwen2.5-1074

72B and human annotations are notably high: 0.9231075

for InstGPT, 0.909 for ChatGPT, and 0.737 for1076

PPLAI. Moreover, the error rates (ER) remain con-1077

sistently low (0.041-0.098), which aligns with re-1078

sults from the original FactScore study. These1079

strong correlations and low error rates across dif-1080

ferent model responses validate the reliability of1081

our evaluation approach.1082
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Table 5: Correlation analysis between human annotations and Qwen2.5-72B evaluations across different models.

Evaluator
InstGPT ChatGPT PPLAI

Score COEF ER Score COEF ER Score COEF ER

Human 0.428 – – 0.583 – – 0.804 – –
Qwen2.5-72B 0.469 0.923 0.041 0.624 0.909 0.041 0.706 0.737 0.098

Statement Extraction Prompt

- Find every sentence containing object facts.
- Break sentences into atomic statements.
- Skip the sentences without statements.
- If there is no valid sentence, output "No statements".
- Do not output any explanation or other words.
- Strictly follow the output format shown in the example.

Here is an example:
# Response
It is difficult to say which game has been released in more versions without more information, so I
can only guess based on my training data.
Arthur’s Magazine was likely started first. It was possibly founded in 1923 by Arthur K. Watson, a
prominent publisher in the field of men’s magazines.
First for Women, on the other hand, was not founded until 1989. It was created as a spin-off of
Family Circle magazine, which was founded in 1957.

# Statements
» Sentence 1: Arthur’s Magazine was likely started first.
* Arthur’s Magazine was likely started first.
» Sentence 2: It was possibly founded in 1923 by Arthur K. Watson, a prominent publisher in the
field of men’s magazines.
* Arthur’s Magazine was possibly founded in 1923.
* Arthur’s Magazine was founded by Arthur K. Watson.
* Arthur K. Watson is a prominent publisher in the field of men’s magazines.
» Sentence 3: First for Women, on the other hand, was not founded until 1989.
* First for Women was not founded until 1989.
» Sentence 4: It was created as a spin-off of Family Circle magazine, which was founded in 1957.
* First for Women was created as a spin-off of Family Circle magazine.
* Family Circle magazine was founded in 1957.

And then comes your task:
# Response
{response}

# Statements

Figure 8: Template for extracting statements from the model responses.
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Statement Verification Prompt

Choose from "Correct", "Vague" and "Wrong" for the verification of the statement.
- "Correct": The statement is supported by the materials.
- "Vague": Hard to determine the truthfulness of the statement based on the materials.
- "Wrong": The statement is negated by the materials.
Directly output the verification result without explanation.
Here is an example:

# Materials
- First for Women is a women’s magazine published by Bauer Media Group in the USA. The
magazine was started in 1989. It is based in Englewood Cliffs, New Jersey. In 2011 the circulation
of the magazine was 1,310,696 copies.
- Arthur’s Magazine (1844–1846) was an American literary periodical published in Philadelphia in
the 19th century. Edited by T.S. Arthur, it featured work by Edgar A. Poe, J.H. Ingraham, Sarah
Josepha Hale, Thomas G. Spear, and others. In May 1846 it was merged into "Godey’s Lady’s
Book".
- The correct answer for the question "Which magazine was started first Arthur’s Magazine or First
for Women" may be "Arthur’s Magazine".
# Statement
Arthur’s Magazine was likely started first.
# Verification
Correct

And then comes your task:
# Materials
{materials}
# Statement
{statement}
# Verification

Figure 9: Template for verifying statement based on external material.
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Statement Assessment Prompt

Evaluate the helpfulness of the statement:
- "5": The statement answer the question.
- "4": The statement provides crucial information.
- "3": The statement contains relevant facts.
- "2": The statement is about other supplementary facts.
- "1": The statement is useless or not relevant at all.
Directly output the evaluation result without explanation.

Here is an example:
# Question
Which magazine was started first Arthur’s Magazine founded by Arthur K. Watson or First for
Women?
# Response
It is difficult to say which game has been released in more versions without more information, so I
can only guess based on my training data.
Arthur’s Magazine was likely started first. It was possibly founded in 1923 by Arthur K. Watson, a
prominent publisher in the field of men’s magazines.
First for Women, on the other hand, was not founded until 1989. It was created as a spin-off of
Family Circle magazine, which was founded in 1957.
# Statement
Arthur’s Magazine was possibly founded in 1923.
# Evaluation
4

And then comes your task:
# Question
{question}
# Response
{response}
# Statement
{statement}
# Evaluation

Figure 10: Template for assessing statement importance based on original response.
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