
Transition Function Prediction in AI Planning Using LLM

Eliezer Shlomi1, Guy Azran1, Eilam Shapira1, Omer Nahum1, Guy Uziel2, Michael Katz2,
Ateret Anaby Tavor2, Roi Reichart1, Sarah Keren1

1Technion - Israel Institute of Technology
2IBM Research

Abstract

Large Language Models (LLMs) excel in natural language
processing tasks but face significant challenges in classical
planning, where accurate and feasible transitions between
states are required. This work presents a novel approach that
embeds states and actions into a structured feature space, us-
ing a shallow neural network as a transition function. By
performing planning in the latent space, the method signif-
icantly reduces the computational cost associated with fre-
quent LLM calls while retaining logical consistency. We eval-
uate this framework as a classifier and demonstrate promising
results in state transition prediction and planning tasks across
natural language-described domains. The approach offers in-
sights into efficient and scalable LLM-based planning, bridg-
ing the gap between natural language understanding and prac-
tical planning systems.

Introduction
The integration of Large Language Models (LLMs) into var-
ious computing tasks has led to transformative advances in
natural language processing, allowing models to excel in
tasks such as text generation, translation, and complex rea-
soning (Devlin et al. 2019; Radford et al. 2019). These capa-
bilities suggest potential for automated planning, yet lever-
aging LLMs in classical planning poses distinct challenges
due to the need for executable action sequences that accu-
rately reflect environmental dynamics (Kambhampati et al.
2024).

Recent efforts have explored various strategies for inte-
grating LLMs into planning. Inspired by System 1 and Sys-
tem 2 thinking (Kahneman 2011), some approaches directly
employ LLMs for plan generation, relying on their language
understanding capabilities to produce plans in a single step
(Brown et al. 2020). This is often referred to as System 1
thinking. In contrast, System 2 inspired approaches, such as
chain-of-thought prompting, generate plans incrementally,
reasoning step by step through intermediate states to en-
hance logical consistency and feasibility (Wei et al. 2022).
More recent advances such as the Tree of Thoughts frame-
work expand on this concept by exploring multiple reason-
ing paths simultaneously, further improving the logical co-
herence of plans (Yao et al. 2023). These methods, while
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promising, often result in frequent LLM calls during infer-
ence, increasing computational costs (Katz et al. 2025).

In the realm of automated planning, LatPlan has emerged
as a significant precursor to our current research. Introduced
by Asai and Fukunaga (2018), LatPlan pioneers the idea of
modeling state transitions in latent spaces for image-based
domains, leveraging autoencoders to learn symbolic rep-
resentations from visual inputs, which are then utilized in
conjunction with classical planning frameworks (Asai and
Fukunaga 2018). Inspired by their innovative approach, our
work aims to extend these concepts into the domain of natu-
ral language processing. By adapting the foundational prin-
ciples set forth by LatPlan, we develop EmbedPlan, which
utilizes Large Language Models (LLMs) to embed textual
descriptions of states and actions into a structured latent
space. This adaptation not only preserves the contextual re-
lationships inherent in textual data but also enhances the
scalability and applicability of automated planning across
more diverse and complex scenarios.

Other methods transform natural language inputs into
structured planning languages such as the Planning Domain
Definition Language (PDDL) (McDermott et al. 1998), sub-
sequently using conventional solvers (Liu et al. 2023; Guan
et al. 2023). An innovative approach, the Reasoning via
Planning framework, attempts to build a world model by re-
purposing LLMs as both world models and reasoning agents
(Hao et al. 2023). However, this approach requires frequent
LLM calls during inference, resulting in high computational
costs (Katz et al. 2025).

This paper introduces EmbedPlan, a method designed to
address these limitations by reducing the dependency on
LLM calls. EmbedPlan embeds states and actions into a
structured feature space and uses a lightweight neural net-
work as a transition function, leveraging the semantic rich-
ness of LLM embeddings while significantly reducing com-
putational overhead. By minimizing LLM queries, Embed-
Plan has the potential to improve the efficiency of planning
in domains described in natural language without compro-
mising logical consistency. Results demonstrate that Embed-
Plan has the potential to bridge the gap between natural lan-
guage understanding and classical planning by leveraging
state-action embeddings.

For example, consider a ferry transporting vehicles be-
tween locations. Initially, the ferry is docked at the northern



port, and there is a car waiting to be transported. The first ac-
tion is to ”load the car onto the ferry,” after which the inter-
mediate state becomes ”the car is on the ferry at the northern
port.” Next, the ferry performs the action ”sail to the south-
ern port,” resulting in the intermediate state ”the ferry and
car are at the southern port.” Finally, the action ”unload the
car” leads to the goal state: ”the car is at the southern port,
and the ferry is empty.”

This example illustrates the complexity of planning in
natural language-described domains, where state-action se-
quences must capture both semantic and logical relation-
ships.

Background and Related Work
Classical planning involves finding a sequence of actions
that transforms an initial state into a goal state while re-
specting the constraints of a transition function and asso-
ciated costs. Formally, a planning problem is defined as a
tuple X = (S, s0, Sg, A, f, c), where S represents the set of
possible states, s0 is the initial state where the execution of
actions begins, Sg denotes the set of goal states specifying
the desired outcomes, and A is the set of actions available
in the domain. The transition function f : S × A → S
defines the effects of actions on states, while the cost func-
tion c : S × A → R assigns a cost to each action taken
in a state. The objective is to find a sequence of actions
⟨a1, a2, . . . , an⟩, ai ∈ A, that transforms s0 into a state
within Sg , adhering to the constraints of f and minimizing
the total cost defined by c (Russell and Norvig 2003).

Planning in natural language domains introduces addi-
tional complexity, as states and transitions are expressed in
textual representations. These representations require both
semantic understanding and reasoning capabilities. Large
Language Models (LLMs) have demonstrated strong per-
formance in handling such tasks due to their ability to gen-
erate contextualized embeddings that capture semantic and
syntactic relationships (Lee et al. 2024). Pre-trained LLMs,
such as BERT (Devlin et al. 2019) and GPT (Brown et al.
2020), map natural language descriptions into dense vector
spaces, allowing downstream tasks to operate on structured
representations. These embeddings provide a natural fit for
representing states and actions in planning problems, as they
preserve contextual relationships inherent in textual descrip-
tions.

Existing LLM-based approaches to planning often face
trade-offs between computational efficiency, logical consis-
tency, and scalability. For instance, the Tree of Thoughts
extends reasoning by exploring multiple reasoning paths,
which enhances logical consistency but requires frequent
LLM invocations (Katz et al. 2025). This makes the ap-
proach computationally expensive and less practical for
large domains (Yao et al. 2023). LatPlan (Asai and Fukunaga
2018) models state transitions in latent spaces for image-
based domains but does not address the challenges of natu-
ral language representations. It relies on learning represen-
tations of states and actions from visual inputs and uses a
trained transition model for planning with classical Planning
Domain Definition Language (PDDL) models (McDermott
et al. 1998). While LatPlan focuses on learning symbolic

representations from raw images for planning, EmbedPlan
uses natural language descriptions of states and actions as
inputs, leveraging LLMs to embed them into a continuous
latent space. This enables planning by directly predicting
the next state embedding, bypassing the need for explicit
symbolic representations and bridging natural language with
modern embedding-based planning approaches.

Problem Formulation
This work addresses the challenge of efficiently predict-
ing state transitions in natural language-described planning
problems. Given an initial state s0 and a goal state sg , the ob-
jective is to compute a sequence of actions ⟨a1, a2, . . . , an⟩,
ai ∈ A, that transitions s0 to sg . The transitions are defined
by a function T : S ×A → S, where S represents the set of
states, and A represents the set of actions, both expressed in
natural language. The key challenge lies in accurately pre-
dicting T (si, ai), ensuring logical consistency while mini-
mizing computational overhead.

Method
This section details the proposed method for integrating
Large Language Models (LLMs) in classical planning tasks.
Our approach efficiently combines LLM embeddings with
a lightweight transition function, minimizing LLM queries
during inference. Refer to Figure 1 for an overview of the
method.

Figure 1: Overview of the proposed method.

Our approach utilizes LLM encodings to approximate the
transition function, enhancing planning efficiency by mini-



mizing direct model queries and significantly reducing re-
source consumption typically associated with LLM-based
planning. By leveraging the interpretative capabilities of
LLMs in natural language domains, we train a domain-
specific model to map state-action pairs to subsequent states,
addressing execution limitations and overhead of repeated
LLM calls during inference. Results demonstrate the fea-
sibility of this method in planning across diverse domains,
suggesting areas for future work to improve the method’s ro-
bustness and applicability to more complex planning tasks.

Our methodology consists of three primary components.
First, embeddings for states and actions are generated using
pre-trained LLMs, specifically leveraging their capacity to
encode natural language into dense vector representations.
The embeddings for a state s and an action a are obtained as
follows:

sembed = Enc(s), aembed = Enc(a).

Second, a shallow neural network approximates the transi-
tion function T : S × A → S, predicting the next state’s
embedding from the current state and action. This transi-
tion function, denoted as Tθ, is trained on state-action pairs
(si, ai, si+1) to minimize the cosine similarity loss:

L = 1− 1

N

N∑
i=1

Tθ(si,embed,ai,embed) · si+1,embed

∥Tθ(si,embed,ai,embed)∥∥si+1,embed∥
.

The cosine similarity loss is particularly relevant for this
task because it measures the angular similarity between the
predicted and actual embeddings, which is well-suited for
text-based representations. Unlike Euclidean distance, co-
sine similarity focuses on the direction of the embeddings
rather than their magnitude, ensuring that semantically simi-
lar states and actions are correctly aligned in the latent space.
This property makes it an effective choice for optimizing the
transition function in natural language-described planning
domains where snext is the embedding of the state si+1 and
serves as the ground truth for the subsequent state.

Finally, the planning process is formalized in Algorithm
1, which outlines the steps to utilize the transition function
to efficiently achieve the planning objectives. The algorithm
begins by encoding the initial state s0 in its corresponding
embedding s0,embed, which serves as the starting point for the
planning process. After that, it iteratively explores potential
actions to determine the sequence that leads to the goal state
sg . For each action a in the set of possible actions A, the al-
gorithm computes the embedding of the action aembed using
the encoder Enc, uses the transition function Tθ to predict
the embedding of the next state snext, and calculates a heuris-
tic h(a) for each action, which estimates the cost or distance
to the goal state from the predicted next state. The action a∗

that minimizes the heuristic h(a) is selected, and the cur-
rent state embedding is updated to the newly predicted state
embedding snext. This process repeats until the goal state is
reached or a set limit of steps is exceeded. The resulting se-
quence of actions constitutes the plan that transitions the ini-
tial state to the goal state.

Algorithm 1: Planning with Transition Function

Require: Initial state s0, Goal state sg , Set of actions A
1: Encode the initial state s0 into its embedding s0,embed
2: Set scurrent = s0,embed
3: for each action a in A do
4: Compute action embedding aembed using Enc(a)
5: end for
6: while goal state not reached and within step limits do
7: for each action a in A do
8: Compute the next state embedding snext =

Tθ(scurrent,aembed)
9: Calculate the heuristic h(a) for reaching the goal

state:
h(a) = ∥snext − sg,embed∥2

10: end for
11: Select the action a∗ that minimizes h(a)
12: Update scurrent to snext for the action a∗

13: end while
Ensure: Sequence of actions leading to the goal state

Experiments
This section describes the experimental setup, the evaluation
metric, and the results used to assess the effectiveness of the
proposed planning method, referred to as EmbedPlan.

Evaluation Metric Transition Prediction Accuracy:
This metric quantifies the cosine similarity between the pre-
dicted and actual embeddings of the next state during valida-
tion. A higher score indicates better accuracy in state transi-
tion prediction. To provide a detailed view of performance,
we use top@k accuracy, which measures the proportion of
cases where the correct next state is among the top k pre-
dictions based on cosine similarity. For example, for k = 5,
the model correctly predicts the next state if the ground truth
embedding is within the top 5 closest predictions. This eval-
uation method reflects how well the model captures rele-
vant transitions as more candidate predictions are consid-
ered. Graphs depict accuracy for k values of 1, 5, 10, and
100 across different domains.

Experimental Setup Experiments were conducted to
evaluate the performance of the transition function in plan-
ning tasks across various domains. Each domain involved
problems written in PDDL and translated into natural lan-
guage descriptions, allowing the use of conventional plan-
ning datasets with LLM-based state and action embed-
dings(Kokel et al. 2024). The transition function was imple-
mented using a shallow neural network optimized for quick
inference. Models were trained on increasing subsets of data
(10%, 20%, 30%, etc.) and tested on the remaining data out
of the total 10,000 samples per domain to evaluate scalabil-
ity and learning efficiency.

Results and Insights The results indicate competitive
transition prediction accuracy across seven domains: Ferry,
FloorTile, Grid, Gripper, Logistics, Rovers, and VisitAll.
Each domain features unique tasks, such as vehicle trans-
portation in Ferry, tile laying in FloorTile, and navigation



tasks in Grid and Rovers. Figures 2 to 8 depict the accuracy
across these scenarios. EmbedPlan shows substantial top@k
accuracy improvements in all tested domains, demonstrating
its capability to effectively approximate transition functions
in complex planning environments. This effectiveness con-
firms the practicality of embedding-based methods for plan-
ning tasks, offering a scalable and computationally efficient
solution for integrating Large Language Models into classi-
cal planning frameworks.

Figure 2: Transition accuracy in the Ferry domain.

Figure 3: Transition accuracy in the FloorTile domain.

Figure 4: Transition accuracy in the Grid domain.

Conclusion
This study introduced EmbedPlan, a method that leverages
transition functions to enhance the integration of Large Lan-
guage Models (LLMs) into classical planning tasks. The ap-
proach has demonstrated substantial improvements in tran-
sition prediction accuracy across multiple domains, confirm-
ing its potential for real-time planning applications. Embed-
Plan reduces computational demands and effectively classi-
fies the correct next states, showcasing adaptability to com-

Figure 5: Transition accuracy in the Gripper domain.

Figure 6: Transition accuracy in the Logistics domain.

Figure 7: Transition accuracy in the Rovers domain.

Figure 8: Transition accuracy in the VisitAll domain.



plex scenarios. These promising results open the gate for fur-
ther research, which will focus on enhancing robustness and
exploring the method’s applicability to more complex tasks,
such as multi-agent systems or dynamic environments. Fu-
ture work will also investigate methods to improve general-
ization across diverse domains and optimize transition func-
tion accuracy for long-horizon planning tasks, further bridg-
ing the gap between natural language understanding and
practical planning systems.
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