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Abstract

Today, high-performance computing (HPC) systems
play a crucial role in advancing artificial intelligence.
Nevertheless, the estimated global data center elec-
tricity consumption in 2022 was around 1% of the
final global electricity demand. Therefore, as HPC
systems advance towards Exascale computing, re-
search is required to ensure their growth is sustain-
able and environmentally friendly. Data from in-
frastructure monitoring can be leveraged to predict
downtimes, ensure these are treated in time, and
increase the overall system’s utilization. In this pa-
per, we compare four machine-learning approaches,
three of them based on graph embeddings, to predict
compute node downtimes. The experiments were
performed with data from Marconi 100, a tier-0
production supercomputer at CINECA in Bologna,
Italy. Our results show that the machine learning
models can accurately predict downtime, matching
current state-of-the-art models.

1 Introduction

The increasing research and deployment of artifi-
cial intelligence require massive hardware, which
has strong implications for HPC and data center
energy sustainability and makes efficient utilization
of the resources even more critical [1]. Maintaining
consistent availability of HPC resources is crucial
to avoid negative impact on research and minimize
the carbon footprint as well [2]. Correctly forecast-
ing potential compute node downtimes is critical to
this end. Predictive maintenance has been shown to
enable the efficient planning of maintenance tasks
to minimize operation downtimes and preserve the
health of the entire system [3].

Machine learning has shown great promise in pro-
viding accurate downtime predictions in HPC and
data center environments to realize predictive main-
tenance. Among the works describing this approach,
we find Pelaez et al. [4], who described how clus-
tering was applied to perform online failure predic-
tion. Klinkenberg et al. [5] followed a different
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joze.rozanec@ijs.si

approach, leveraging a supervised machine learning
model trained on monitoring data to predict lock
events. More recently, Borghesi et al. [6] devel-
oped deep learning models to predict compute node
downtimes in HPC systems.

The fact that network architectures are governed
by the same organizing principles regardless of the
science domain and can provide a unified represen-
tation of heterogeneous data is a compelling reason
driving research at the intersection of network sci-
ence and machine learning [7].

The approaches described above leverage sensor
readings or logs to predict compute node downtimes.
Nevertheless, such approaches miss much contextual
information by not being able to include additional
points of view, such as the kind of information being
monitored or the sensor placement. Such informa-
tion can be included through a graph representation.
E.g., Molan et al. [8, 9] joined sensor readings for
each point in time considering the sensors’ topologi-
cal location within a particular rack. Nevertheless,
such a representation provides no information on the
types of sensors being used. Furthermore, the graph
representations provide no context regarding past
sensor readings - something that could be relevant
to understanding whether we are heading to a par-
ticular state. To mitigate these issues, we propose
a different graph representation with nodes repre-
senting specific sensor types and associated sensors
and subgraphs resulting from translating time se-
ries into networks following specific heuristics. Such
graphs are then encoded into embeddings and used
for downstream compute node downtime prediction.

This work follows up research from Krumpak,
Rožanec et al.[10] and focuses on understanding the
information captured by Graph2Vec embeddings
when considering time series data represented as
Natural Visibility Graphs or enriched with contex-
tual information regarding the sensor data (sen-
sor ID and sensor type) and how these affect the
predictive outcomes. We develop local and global
machine-learning models that leverage graph em-
beddings summarizing domain knowledge regard-
ing sensor types and readings to minimize system
unavailability. We trained and evaluated the ma-
chine learning models on a subset of the publicly
available data from the Marconi 100 supercomputer
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compiled by Borghesi et al. [11]. The models’ per-
formance was evaluated considering the AUC ROC
scores. Our results show that the models trained
with graph embeddings and sensor reading informa-
tion performed best. Furthermore, global models
exhibited a stronger performance than local ones.
While sensor reading data and graph embeddings
resulted in a stronger mean performance than using
sensor reading data only, the difference remained
consistently small across the forecasting horizons.

The rest of this paper is structured as follows: Sec-
tion 2 presents related work, Section 3 introduces
the dataset we worked on. Section 4 describes our
methodology and Section 5 the experiments per-
formed. Finally, Section 6 presents and discusses
the results obtained, and Section 7 provides our
conclusions.

2 Related work

The size, complexity, and heterogeneous architecture
of contemporary HPC systems require introducing
machine learning methodologies that support the
work of the system administrators [12]. As char-
acterized by Netti et al. [12], anomaly detection
and prediction are among the applications with the
most direct impact on the overall availability, and
by extension, sustainability [13], of the HPC sys-
tem. Consequently, much effort has been invested
in building data-driven models for anomaly detec-
tion and, later, anomaly prediction and anticipation.
Various lines of research have been proposed. Con-
sidering the kind of data used to predict compute
node failures, we could distinguish approaches that
focus on log data and approaches that focus on sen-
sor data. Among the ones focused on log data, Li et
al. [14] explored how alerts containing a timestamp,
a verbosity level, and a textual message describing
the error could be leveraged to predict node failures.
The authors achieved production-ready results, and
their system has been deployed at Alibaba, reaching
an AUC ROC score between 0.91 and 0.92 and lead
times of 48 hours. In a similar line of research, Al-
harthi et al. [15] explored how sentiment analysis on
log messages could be used to predict compute node
issues. Furthermore, [16] explored a self-supervised
approach to predict forthcoming log events, their
location, and the expected lead time to failure.
Among the approaches that aim to predict node

failures from telemetry data, we find RUAD [17] or
PROCTOR [18] that leverage self-supervised learn-
ing and are only capable of recognizing the anomalies
and failures that are taking place. They cannot pro-
vide failure predictions, allowing the system adminis-
trators to manage the system proactively, including
intelligent scheduling considering anticipated hard-
ware failures and preventative maintenance. While
there has been an effort to create an anomaly antici-

pation system for HPC compute node failures, such
as the one proposed by Borghesi et al. [19], such
systems can anticipate the failure but provide no
estimation about the time frame for it. Failure pre-
diction approaches exist for components within the
compute node, such as the work of Devesh Tiwari
et al. [20] or Yu Liu et al. [21] focus on component
failure prediction (disk failure specifically). Besides
not being holistic and only covering a part of po-
tential compute node failures, these approaches also
have limited prediction windows [22].

The prediction model must include additional in-
formation beyond the telemetry data to go beyond
component failure prediction or node-level failure de-
tection. One such approach is GRAAFE [13], which
is based on the observation that the additional in-
formation about the physical layout of the compute
nodes within a computing room aids in the ability to
train the compute node anomaly prediction model.
This information is encoded as a graph: each com-
pute node is represented as a vertex connected to
its nearest neighbors, and node telemetry data is
represented for each compute node as a vertex at-
tribute. While different graph topologies have been
tested, the optimal graph topology uncovered is a
line graph representing a single compute rack in a
compute room. Different approaches to anomaly
detection with graphs have been applied to other
domains and could be considered in HPC environ-
ments. Among them, we find anomaly detection
with graph approaches that aim to alleviate struc-
tural distribution shifts and novel techniques for
posing the problem as a temporal graph clustering
problem [23, 24].

3 Dataset

The source of our data is a collection of the Marconi
100 supercomputer sensory data, which was gathered
by Borghesi et al. and was made publicly accessible
at https://zenodo.org/records/7541722 [11]. More
specifically, we focused on a subset of the original
data stored in the 1.tar distribution file where in-
formation about sixteen computing nodes in one
rack of the system are available. The data is a two-
dimensional table, where rows represent timestamps
taken 15 minutes apart, ranging between March 9th

2020 and September 28th 2022. This means roughly
86 thousand rows for each compute node data. Ap-
proximately 9 thousand rows have missing values.
Columns, on the other hand, contain different sen-
sor measurements of the system aggregated over the
15 minute time interval, which include the power
consumption of the fans and CPUs, the tempera-
ture of the GPUs cores and memory, the voltage of
the power supply and many more. To be more pre-
cise, each sensor measurement is given in 4 columns,
which store the minimum and maximum values, the
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average values, and the standard deviation of the
measurement. Two additional columns are provided,
one that stores the time information and the other
one that annotates anomalies in the data. The last
column has integer values, where zero means there
was no anomaly, and a value greater than zero sig-
nals there was an anomaly, which means the system
was unavailable then. The timestamp column has
date and time as values, and the remaining sensor
columns have numerical values.
Accounting for all the sensors, there are 354

columns, though we chose only a small subset of
the sensors to focus on. Our point of interest is
the columns with the average values of the mea-
surements. Furthermore, we selected some columns
from which to get our data. These columns include
ambient avg, dimm0 temp avg, fan disk power avg,
gpu0 core temp avg, gpu0 mem temp avg,
p0 io power avg, p0 mem power avg, p0 power avg,
ps0 input power avg, ps0 output curre avg,
ps0 output volta avg, fan0 0 avg and
p0 vdd temp avg.

4 Methodology

Data preprocessing To develop the features
needed for training our model, we followed a se-
ries of steps to preprocess the data and generate
new representations of the information.
First, we addressed any missing values in the

dataset by applying a forward-fill strategy, where
the last observed value was carried forward to re-
place any missing entries within each column. The
forward-fill strategy was chosen under the assump-
tion that if a sensor did not emit a value or if a
reading was lost, the most likely value to exist if
conditions did not change in between, it would be
the latest sensor reading.
Next, we utilized a change detection algorithm

based on a relative moving average and a predefined
threshold to identify significant changes in the data
for each column. Once the indices indicating changes
were identified, we replaced the values between two
consecutive change points with the mean of that
data segment. This process produced a simplified
dataset with distinct segments of different values for
each column. We exemplify such signal processing
in Fig. 1.

To handle segments where values varied by a non-
significant amount, we divided the range of values
in each column into five quantiles and then mapped
the values according to their respective quantiles.
This quantization made the data discrete, resulting
in each column containing only five possible val-
ues. The choice to perform discretization into five
possible values was empirical weighting the number
of states resulting from a particular number of se-
lected bins. Consequently, there is a finite number
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Figure 1. The Figure presents two signals: (i) an exam-
ple of sensory data (black), and (ii) the post-processed
signal once change detection and value replacement were
performed (red).

of unique combinations of column values, which we
interpreted as distinct states in the system.

Feature engineering Four different kind of fea-
tures were created. First, given the compute node
states identified above, we performed a one-hot en-
coding representation of this data. Nevertheless,
given a one-hot encoded representation provides only
insight into that specific state but no context on the
preceding ones, we considered a more sophisticated
approach. Given a time series of length n, natural
visibility heuristics can be applied to create a graph
G = (V,E), where nodes V represent time series
data points and edges E represent visibility relation-
ships between those nodes. Then a deep learning
model can be used to transform the graph G into
a vector representation H = fembed(G). Choosing
k=5 would encode information from each sensor
with the same number of columns as the one-hot
encoded approach while eventually conveying more
information. To this end, we constructed natural
visibility graphs for each sensor in a given state, con-
sidering the values of up to ten preceding states. In
Fig. 2 we show how a sample drawing on how sensor
signal was reduced into a sequence of unique values
and later to a visibility graph. The Graph2Vec ap-
proach was used to transform the graphs into vector
embedding representations.

Finally, we also created a slightly different graph
representation encoding information about the sen-
sors and joined it to the abovementioned visibility
graphs to the nodes representing the sensors from
which the sensor readings originate (see Fig. 2).
This way, the random walks would convey informa-
tion about current and past states and how these
relate to particular sensors and sensed aspects (e.g.,
temperature). These graphs were then turned into
an embedding using the Graph2Vec approach.

To create natural visibility graph embeddings, we
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Figure 2. The Figure presents three signals and process-
ing stages. The sensor signal is preprocessed considering
change level detection and clustering into bins. The
resulting values are then mapped into natural visibility
graphs. The natural visibility graphs can be further en-
riched with information regarding the sensor they belong
to and its type.

employed a Graph2Vec model trained over all of
the visibility graphs, regardless of the sensor. The
embedding creation process began with generating
tagged random walks over a graph, which served
as documents for training the Graph2Vec model.
Once the model was trained, new random walks
over the graphs were conducted, and these were
used to perform inference and obtain a vector from
the previously trained model. The final embedding
for each graph was obtained by averaging these vec-
tors, providing a robust representation of the graph’s
structure. Since one state produced several natural
visibility graphs (for each sensor, there was one nat-
ural visibility graph), the resulting embeddings were
concatenated into one vector embedding for that
state, following the same positional convention we
used for the one-hot encoding schema. In addition,
we also created the state graph embeddings follow-
ing the same procedure as with the natural visibility
graph embeddings, with the difference being that
instead of using the natural visibility graphs, we
used the state graphs. Because the state graphs
were larger we decided to perform a random walk
of length 20 per node.

Model training We trained two kinds of Cat-
Boost classifiers: (i) models trained on data from
each compute node separately (local models) and (ii)
models trained on data from all of the nodes (global
model). In the case of local models, there were, on
average, 8700 available unique state instances, which
we used to train the model, considering a 75/5/20
split for train, validation, and testing. The splits
were made such that the information about the time
of each instance was preserved and that the training
data was recorded before the validation data, and
the validation data was recorded before the testing
data. The global model’s process was similar to that
of the local models. First, we took the 75% training
data from the local models and joined them into

one training data for the global model. The same
was done with the validation set. When we tested
the global model, we did so for each compute node
separately to compare the results between the local
models and the global model node by node.
The CatBoost classifier was trained running for

250 iterations with a cross-entropy loss, a learn-
ing rate of 0.1 and an L2 regularization factor of
0.3. The local and global models were trained for
three forecast horizons determined by state changes.
Considering the states changed every 165 minutes
on average, the compute node downtimes could be
predicted to up to 495 minutes ahead.
Model evaluation We measured the classifiers’

discriminative performance with the AUC ROC met-
ric. The score was computed at a compute node
level and then summarized to report the mean, min-
imum (min), and maximum (max) values obtained
across nodes for each experiment.

5 Experiments

We performed four experiments to understand how
different features and graph representations affected
the outcomes when predicting compute node down-
times. Our focus on graph representations is rooted
in the fact that while much sensor data could be
encoded by providing features that capture tn-1 val-
ues, graph representation allows the conveying of
information regarding the sensor time series and
associating it to specific domain knowledge, such
as sensor ID and sensor types. Three forecasting
horizons were considered, predicting one to three
states ahead. We detail them below:

Experiment A The purpose of the first exper-
iment was to establish a baseline, considering the
one-hot encoded representation of the compute node
states. The feature vector size was 65.

Experiment B The purpose of the second exper-
iment was to determine whether a natural visibility
graph representation of past sensor values provides
additional information that could enhance the mod-
els performance. The natural visibility graph rep-
resentation was used to encode sensor data and a
Graph2Vec representation to turn those graphs into
embeddings. A single Graph2Vec model was used
to learn visibility graphs from all the sensors. The
decision was made under the assumption that the
embedding model would learn best from a higher
number and variety of samples than would have
learned if exposed only to visibility graphs of a sin-
gle sensor. To make the results comparable against
Experiment A, we created embeddings for each sen-
sor considering a vector size 5. Therefore, the final
feature vector size matched the original one with a
size of 65.
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Experiment C The purpose of the third exper-
iment was to determine whether the information
encoded in experiments A and B was complemen-
tary and, therefore, joining it would lead to better
results. The intuition behind the experiment was
that (i) the one-hot encoded representation only had
information about the current state but missed the
sensor values observed in the near past, and (ii) the
visibility graphs only encode the topology of a time
series but do not encode information regarding the
actual time series values. The feature vector was
created by concatenating the hot encoded features
with the natural visibility graph embeddings. The
feature vectors had a total length of 120 values.

Experiment D The purpose of the fourth ex-
periment was to determine whether the represen-
tation from Experiment C could be enriched with
an additional embedding representation that not
only considered the visibility graphs but also encode
information about the aspects that they measured
and the particular sensor that provided the sensor
values. To that end, we created an additional graph
representing the sensors, their sensing domain, and
the associated natural visibility graphs. This exper-
iment used the one-hot encoded data, the natural
visibility graph embeddings, and the state graph
embeddings. The state graph embeddings were gen-
erated with the Graph2Vec model and given a size
of 15, resulting in an overall feature vector size of
135.

6 Results and discussion

Table 1 shows the results obtained across the com-
pute nodes and breaks them down by experiment
and whether a global or local model was trained.
The results show that local models leveraging the
one-hot encoded state features obtained the best
mean results in most cases. We found these results
deferred from the ones obtained at [10], achieving
slightly worse results, and we could not pinpoint the
exact cause of such a difference between executions.
Using natural visibility graph embeddings alone re-
sulted in poor performance. The addition of the
state graph resulted in a marginal improvement in
some cases. Nevertheless, further experimentation
is required to draw conclusions in which cases do
such embeddings help the model learn better and
when they negatively affect the overall performance.

We have no explanation to why the graph embed-
dings alone displayed poor performance and further
research is required to reach a better understand-
ing. Among possible reasons we consider the fact
that the natural visibility graphs capture only the
topological aspects of the time series and any in-
formation related to their particular values is lost.
This could be amended by adding complementary

Table 1. Results for the models in different experiments.
The ’time’ column indicates how many steps ahead from
the current state the model tries to predict: n+1 means
the model tries to predict the target variable of the next
state, n+ 2 means the model tries to predict the target
variable of two states ahead. The ’mean’, ’min’, and
’max’ columns provide the aggregated results computed
over the results obtained from individual computational
nodes. The results are divided into ’local’ and ’global’
according to the data used to train the model.

Exp. Time Local Global
Mean Min Max Mean Min Max

A
n+ 1 0.8085 0.7375 0.8831 0.7997 0.7270 0.8918
n+ 2 0.7844 0.7321 0.9193 0.7872 0.7056 0.9112
n+ 3 0.7533 0.6780 0.8531 0.7555 0.6937 0.8672

B
n+ 1 0.5414 0.5029 0.5908 0.5538 0.5081 0.6041
n+ 2 0.5499 0.5119 0.5989 0.5726 0.5424 0.6183
n+ 3 0.5599 0.5034 0.6138 0.5751 0.5283 0.6166

C
n+ 1 0.8070 0.7088 0.8857 0.7874 0.7037 0.8809
n+ 2 0.7707 0.6246 0.9144 0.7661 0.6953 0.9013
n+ 3 0.7281 0.6141 0.8211 0.7466 0.6757 0.8480

D
n+ 1 0.7766 0.6284 0.8565 0.8086 0.7234 0.8866
n+ 2 0.7484 0.6008 0.9097 0.7915 0.7163 0.9024
n+ 3 0.7174 0.6608 0.8390 0.7566 0.6758 0.8674

graph representations such as quantile graphs or
ordinal partition graphs. Another reason could be
the quality of the Graph2Vec embeddings, which
may depend on how the graph was sampled. A more
thorough evaluation of hyperparameters is required
to understand how the number of paths and length
affect the outcomes.

7 Conclusion

Enabling predictive maintenance at HPC and data-
centers is critical to minimize downtimes and max-
imize their utilization. Machine learning models
have shown great promise accurately forecasting
such events ahead of time. In this research we pro-
pose a graph-based approach to predicting compute
nodes downtime and evaluate it on public data from
Marconi 100 - a tier-0 production supercomputer
from CINECA. To that end, we first process the
sensor reading data by treating missing values and
discretizing them. We used natural visibility graphs
to represent time series and include them into graph
representations describing compute nodes and their
sensors. Such graphs were converted into embed-
dings through Graph2Vec models and used down-
stream to train a classifier and predict compute node
downtimes. The results suggest that using graph
embeddings could enhance the classifier performance
in some cases. Nevertheless, further research is re-
quired to understand when such representations are
beneficial or detrimental to the overall models’ per-
formance.
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