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Abstract001

Today, high-performance computing (HPC) systems002

play a crucial role in advancing artificial intelligence.003

Nevertheless, the estimated global data center elec-004

tricity consumption in 2022 was around 1% of the005

final global electricity demand. Therefore, as HPC006

systems advance towards Exascale computing, re-007

search is required to ensure their growth is sustain-008

able and environmentally friendly. Data from in-009

frastructure monitoring can be leveraged to predict010

downtimes, ensure these are treated in time, and011

increase the overall system’s utilization. In this pa-012

per, we compare four machine-learning approaches,013

three of them based on graph embeddings, to predict014

compute node downtimes. The experiments were015

performed with data from Marconi 100, a tier-0016

production supercomputer at CINECA in Bologna,017

Italy. Our results show that the machine learning018

models can accurately predict downtime, surpassing019

current state-of-the-art models.020

1 Introduction021

The increasing research and deployment of artifi-022

cial intelligence require massive hardware, which023

has strong implications for HPC and data center024

energy sustainability and makes efficient utilization025

of the resources even more critical [1]. Maintaining026

consistent availability of HPC resources is crucial027

to avoid negative impact on research and minimize028

the carbon footprint as well [2]. Correctly forecast-029

ing potential compute node downtimes is critical to030

this end. Predictive maintenance has been shown to031

enable the efficient planning of maintenance tasks032

to minimize operation downtimes and preserve the033

health of the entire system [3].034

Machine learning has shown great promise in pro-035

viding accurate downtime predictions in HPC and036

data center environments to realize predictive main-037

tenance. Among the works describing this approach,038

we find Pelaez et al. [4], who described how clus-039

tering was applied to perform online failure predic-040

tion. Klinkenberg et al. [5] followed a different041

approach, leveraging a supervised machine learning042

model trained on monitoring data to predict lock043

events. More recently, Borghesi et al. [6] devel-044

oped deep learning models to predict compute node045

downtimes in HPC systems.046

The fact that network architectures are governed 047

by the same organizing principles regardless of the 048

science domain and can provide a unified represen- 049

tation of heterogeneous data is a compelling reason 050

driving research at the intersection of network sci- 051

ence and machine learning [7]. 052

The approaches described above leverage sensor 053

readings or logs to predict compute node downtimes. 054

Nevertheless, such approaches miss much contextual 055

information by not being able to include additional 056

points of view, such as the kind of information being 057

monitored or the sensor placement. Such informa- 058

tion can be included through a graph representation. 059

E.g., Molan et al. [8, 9] joined sensor readings for 060

each point in time considering the sensors’ topologi- 061

cal location within a particular rack. Nevertheless, 062

such a representation provides no information on the 063

types of sensors being used. Furthermore, the graph 064

representations provide no context regarding past 065

sensor readings - something that could be relevant 066

to understanding whether we are heading to a par- 067

ticular state. To mitigate these issues, we propose 068

a different graph representation with nodes repre- 069

senting specific sensor types and associated sensors 070

and subgraphs resulting from translating time se- 071

ries into networks following specific heuristics. Such 072

graphs are then encoded into embeddings and used 073

for downstream compute node downtime prediction. 074

In this research, we develop local and global 075

machine-learning models that leverage graph em- 076

beddings summarizing domain knowledge regard- 077

ing sensor types and readings to minimize system 078

unavailability. We trained and evaluated the ma- 079

chine learning models on a subset of the publicly 080

available data from the Marconi 100 supercomputer 081

compiled by Borghesi et al. [10]. The models’ per- 082

formance was evaluated considering the AUC ROC 083

scores. Our results show that the models trained 084

with graph embeddings and sensor reading informa- 085

tion performed best. Furthermore, global models 086

exhibited a stronger performance than local ones. 087

While sensor reading data and graph embeddings 088

resulted in a stronger mean performance than using 089

sensor reading data only, the difference remained 090

consistently small across the forecasting horizons. 091

The rest of this paper is structured as follows: Sec- 092

tion 2 presents related work, Section 3 introduces 093

the dataset we worked on. Section 4 describes the 094

methodology we followed and Section 5 the exper- 095
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iments performed. Finally, Section 6 presents and096

discusses the results obtained and Section 7, we097

provides our conclusions.098

2 Related work099

The size, complexity, and heterogeneous architecture100

of contemporary HPC systems require introducing101

machine learning methodologies that support the102

work of the system administrators [11]. As char-103

acterized by Netti et al. [11], anomaly detection104

and prediction are among the applications with the105

most direct impact on the overall availability, and106

by extension, sustainability [12], of the HPC sys-107

tem. Consequently, much effort has been invested in108

building data-driven models for anomaly detection109

and, later, anomaly prediction and anticipation.110

Based on the telemetry data, various node fail-111

ure detection approaches, such as RUAD [13] or112

PROCTOR [14], have been proposed. These ap-113

proaches, based on self-supervised learning, are only114

capable of recognizing the anomalies and failures115

that are taking place. They cannot provide fail-116

ure predictions, allowing the system administrators117

to manage the system proactively, including intel-118

ligent scheduling considering anticipated hardware119

failures and preventative maintenance. While there120

has been an effort to create an anomaly anticipation121

system for HPC compute node failures, such as the122

one proposed by Borghesi et al. [15], such systems123

can anticipate the failure but provide no estimation124

about the time frame for it. Failure prediction ap-125

proaches exist for components within the compute126

node, such as the work of Devesh Tiwari et al. [16]127

or Yu Liu et al. [17] focus on component failure128

prediction (disk failure specifically). Besides not129

being holistic and only covering a part of potential130

compute node failures, these approaches also have131

limited prediction windows [18].132

The prediction model must include additional in-133

formation beyond the telemetry data to go beyond134

component failure prediction or node-level failure135

detection. The current state-of-the-art approach,136

GRAAFE [12], is based on the observation that the137

additional information about the physical layout of138

the compute nodes within a computing room aids139

in the ability to train the compute node anomaly140

prediction model. This information is encoded as a141

graph: each compute node is represented as a vertex142

connected to its nearest neighbors, and node teleme-143

try data is represented for each compute node as a144

vertex attribute. While different graph topologies145

have been tested, the optimal graph topology uncov-146

ered is a line graph representing a single compute147

rack in a compute room. Different approaches to148

anomaly detection with graphs have been applied to149

other domains and could be considered in HPC envi-150

ronments. Among them we find anomaly detection151

with graphs approaches that aim to alleviate struc- 152

tural distribution shifts and novel techniques for 153

posing the problem as a temporal graph clustering 154

problem [19, 20]. 155

3 Dataset 156

The source of our data is a collection of the Marconi 157

100 supercomputer sensory data, which was gathered 158

by Borghesi et al. and was made publicly accessible 159

at https://zenodo.org/records/7541722 [10]. More 160

specifically, we focused on a subset of the original 161

data stored in the 1.tar distribution file where in- 162

formation about sixteen computing nodes in one 163

rack of the system are available. The data is a two- 164

dimensional table, where rows represent timestamps 165

taken 15 minutes apart, ranging between March 9th 166

2020 and September 28th 2022. This means roughly 167

86 thousand rows for each compute node data. Ap- 168

proximately 9 thousand rows have missing values. 169

Columns, on the other hand, contain different sen- 170

sor measurements of the system aggregated over the 171

15 minute time interval, which include the power 172

consumption of the fans and CPUs, the tempera- 173

ture of the GPUs cores and memory, the voltage of 174

the power supply and many more. To be more pre- 175

cise, each sensor measurement is given in 4 columns, 176

which store the minimum and maximum values, the 177

average values, and the standard deviation of the 178

measurement. Two additional columns are provided, 179

one that stores the time information and the other 180

one that annotates anomalies in the data. The last 181

column has integer values, where zero means there 182

was no anomaly, and a value greater than zero sig- 183

nals there was an anomaly, which means the system 184

was unavailable then. The timestamp column has 185

date and time as values, and the remaining sensor 186

columns have numerical values. 187

Accounting for all the sensors, there are 354 188

columns, though we chose only a small subset of 189

the sensors to focus on. Our point of interest is 190

the columns with the average values of the mea- 191

surements. Furthermore, we selected some columns 192

from which to get our data. These columns include 193

ambient avg, dimm0 temp avg, fan disk power avg, 194

gpu0 core temp avg, gpu0 mem temp avg, 195

p0 io power avg, p0 mem power avg, p0 power avg, 196

ps0 input power avg, ps0 output curre avg, 197

ps0 output volta avg, fan0 0 avg and 198

p0 vdd temp avg. 199

4 Methodology 200

Data preprocessing To develop the features 201

needed for training our model, we followed a se- 202

ries of steps to preprocess the data and generate 203

new representations of the information. 204
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Figure 1. The Figure presents two signals: (i) an exam-
ple of sensory data (black), and (ii) the post-processed
signal once change detection and value replacement were
performed (red).

First, we addressed any missing values in the205

dataset by applying a forward-fill strategy, where206

the last observed value was carried forward to re-207

place any missing entries within each column. The208

forward-fill strategy was chosen under the assump-209

tion that if a sensor did not emit a value or if a210

reading was lost, the most likely value to exist if211

conditions did not change in between, it would be212

the latest sensor reading.213

Next, we utilized a change detection algorithm214

based on a relative moving average and a predefined215

threshold to identify significant changes in the data216

for each column. Once the indices indicating changes217

were identified, we replaced the values between two218

consecutive change points with the mean of that219

data segment. This process produced a simplified220

dataset with distinct segments of different values for221

each column. We exemplify such signal processing222

in Fig. 1.223

To handle segments where values varied by a non-224

significant amount, we divided the range of values225

in each column into five quantiles and then mapped226

the values according to their respective quantiles.227

This quantization made the data discrete, resulting228

in each column containing only five possible val-229

ues. The choice to perform discretization into five230

possible values was empirical weighting the number231

of states resulting from a particular number of se-232

lected bins. Consequently, there is a finite number233

of unique combinations of column values, which we234

interpreted as distinct states in the system.235

Feature engineering Four different kind of fea-236

tures were created. First, given the compute node237

states identified above, we performed a one-hot en-238

coding representation of this data. Nevertheless,239

given a one-hot encoded representation provides240

only insight into that specific state but no context241

on the preceding ones, we considered a more sophis-242

Figure 2. The Figure presents three signals and process-
ing stages. The sensor signal is preprocessed considering
change level detection and clustering into bins. The
resulting values are then mapped into natural visibility
graphs. The natural visibility graphs can be further en-
riched with information regarding the sensor they belong
to and its type.

ticated approach. Given a time series of length n, 243

natural visibility heuristics can be applied applied to 244

create a graph G = (V,E), where nodes V represent 245

time series data points and edges E represent visibil- 246

ity relationships between those nodes. Then a deep 247

learning model can be used to transform the graph G 248

into a vector representation H = fembed(G). Choos- 249

ing k=5 would encode information from each sensor 250

with the same number of columns as the one-hot 251

encoded approach while eventually conveying more 252

information. To this end, we constructed natural 253

visibility graphs for each sensor in a given state, con- 254

sidering the values of up to ten preceding states. In 255

Fig. 2 we show how a sample drawing on how sensor 256

signal was reduced into a sequence of unique values 257

and later to a visibility graph. The Graph2Vec ap- 258

proach was used to transform the graphs into vector 259

embedding representations. 260

Finally, we also created a slightly different graph 261

representation encoding information about the sen- 262

sors and joined it to the abovementioned visibility 263

graphs to the nodes representing the sensors from 264

which the sensor readings originate (see Fig. 2). 265

This way, the random walks would convey informa- 266

tion about current and past states and how these 267

relate to particular sensors and sensed aspects (e.g., 268

temperature). These graphs were then turned into 269

an embedding using the Graph2Vec approach. 270

To create natural visibility graph embeddings, we 271

employed a Graph2Vec model trained over all of 272

the visibility graphs, regardless of the sensor. The 273

embedding creation process began with generating 274

tagged random walks over a graph, which served 275

as documents for training the Graph2Vec model. 276

Once the model was trained, new random walks 277

over the graphs were conducted, and these were 278

used to perform inference and obtain a vector from 279

the previously trained model. The final embedding 280

for each graph was obtained by averaging these vec- 281
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tors, providing a robust representation of the graph’s282

structure. Since one state produced several natural283

visibility graphs (for each sensor, there was one nat-284

ural visibility graph), the resulting embeddings were285

concatenated into one vector embedding for that286

state, following the same positional convention we287

used for the one-hot encoding schema. In addition,288

we also created the state graph embeddings follow-289

ing the same procedure as with the natural visibility290

graph embeddings, with the difference being that291

instead of using the natural visibility graphs, we292

used the state graphs. Because the state graphs293

were larger we decided to perform a random walk294

of length 20 per node.295

Model training We trained two kinds of Cat-296

Boost classifiers: (i) models trained on data from297

each compute node separately (local models) and (ii)298

models trained on data from all of the nodes (global299

model). In the case of local models, there were, on300

average, 8700 available unique state instances, which301

we used to train the model, considering a 75/5/20302

split for train, validation, and testing. The splits303

were made such that the information about the time304

of each instance was preserved and that the training305

data was recorded before the validation data, and306

the validation data was recorded before the testing307

data. The global model’s process was similar to that308

of the local models. First, we took the 75% training309

data from the local models and joined them into310

one training data for the global model. The same311

was done with the validation set. When we tested312

the global model, we did so for each compute node313

separately to compare the results between the local314

models and the global model node by node.315

The CatBoost classifier was trained running for316

700 iterations with a cross-entropy loss, a learn-317

ing rate of 0.03 and an L2 regularization factor of318

0.3. The local and global models were trained for319

three forecast horizons determined by state changes.320

Considering the states changed every 165 minutes321

on average, the compute node downtimes could be322

predicted to up to 495 minutes ahead.323

Model evaluation We measured the classifiers’324

discriminative performance with the AUC ROC met-325

ric. The score was computed at a compute node326

level and then summarized to report the mean, min-327

imum (min), and maximum (max) values obtained328

across nodes for each experiment.329

5 Experiments330

We performed four experiments to understand how331

different features and graph representations affected332

the outcomes when predicting compute node down-333

times. Our focus on graph representations is rooted334

in the fact that while much sensor data could be335

encoded by providing features that capture tn-1 val-336

ues, graph representation allows the conveying of337

information regarding the sensor time series and 338

associating it to specific domain knowledge, such 339

as sensor ID and sensor types. Three forecasting 340

horizons were considered, predicting one to three 341

states ahead. We detail them below: 342

Experiment A The purpose of the first exper- 343

iment was to establish a baseline, considering the 344

one hot encoded representation of the compute node 345

states. The feature vector size was 65. 346

Experiment B The purpose of the second exper- 347

iment was to determine whether a natural visibility 348

graph representation of past sensor values provides 349

additional information that could enhance the mod- 350

els performance. The natural visibility graph rep- 351

resentation was used to encode sensor data and a 352

Graph2Vec representation to turn those graphs into 353

embeddings. A single Graph2Vec model was used 354

to learn visibility graphs from all the sensors. The 355

decision was made under the assumption that the 356

embedding model would learn best from a higher 357

number and variety of samples than would have 358

learned if exposed only to visibility graphs of a sin- 359

gle sensor. To make the results comparable against 360

Experiment A, we created embeddings for each sen- 361

sor considering a vector size 5. Therefore, the final 362

feature vector size matched the original one with a 363

size of 65. 364

Experiment C The purpose of the third exper- 365

iment was to determine whether the information 366

encoded in experiments A and B was complemen- 367

tary and, therefore, joining it would lead to better 368

results. The intuition behind the experiment was 369

that (i) the one-hot encoded representation only had 370

information about the current state but missed the 371

sensor values observed in the near past, and (ii) the 372

visibility graphs only encode the topology of a time 373

series but do not encode information regarding the 374

actual time series values. The feature vector was 375

created by concatenating the hot encoded features 376

with the natural visibility graph embeddings. The 377

feature vectors had a total length of 120 values. 378

Experiment D The purpose of the fourth ex- 379

periment was to determine whether the represen- 380

tation from Experiment C could be enriched with 381

an additional embedding representation that not 382

only considered the visibility graphs but also encode 383

information about the aspects that they measured 384

and the particular sensor that provided the sensor 385

values. To that end, we created an additional graph 386

representing the sensors, their sensing domain, and 387

the associated natural visibility graphs. This exper- 388

iment used the one-hot encoded data, the natural 389

visibility graph embeddings, and the state graph 390
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embeddings. The state graph embeddings were gen-391

erated with the Graph2Vec model and given a size392

of 15, resulting in an overall feature vector size of393

135.394

6 Results and discussion395

Table 1 shows the results obtained across the com-396

pute nodes and breaks them down by experiment397

and whether a global or local model was trained.398

The results show that local models leveraging the399

one-hot encoded state features obtained the best400

mean results. Using natural visibility graph embed-401

dings alone resulted in poor performance. Neverthe-402

less, the Graph2Vec embeddings for natural visibility403

graphs proved useful in enhancing the worst-case404

performance across the local models and n+3 global405

model. The addition of the state graph resulted406

in a marginal improvement in some cases for local407

and global models (e.g., improvement for worst case408

in global models at n+3). Nevertheless, further ex-409

perimentation is required to draw conclusions in410

which cases do such embeddings help the model411

learn better and when they negatively affect the412

overall performance.413

We have no explanation to why the graph embed-414

dings alone displayed poor performance and further415

research is required to reach a better understand-416

ing. Among possible reasons we consider the fact417

that the natural visibility graphs capture only the418

topological aspects of the time series and any in-419

formation related to their particular values is lost.420

This could be amended by adding complementary421

graph representations such as quantile graphs or422

ordinal partition graphs. Another reason could be423

the quality of the Graph2Vec emdbeddings which424

may depend on how the graph was sampled. A more425

thorough evaluation of hyperparameters is required426

to understand how the number of paths and their427

length affects the outcomes.428

7 Conclusion429

Enabling predictive maintenance at HPC and data-430

centers is critical to minimize downtimes and max-431

imize their utilization. Machine learning models432

have shown great promise accurately forecasting433

such events ahead of time. In this research we pro-434

pose a graph-based approach to predicting compute435

nodes downtime and evaluate it on public data from436

Marconi 100 - a tier-0 production supercomputer437

from CINECA. To that end, we first process the438

sensor reading data by treating missing values and439

discretizing them. We used natural visibility graphs440

to represent time series and include them into graph441

representations describing compute nodes and their442

sensors. Such graphs were converted into embed-443

Table 1. Results for the models in different experiments.
The ’time’ column indicates how many steps ahead from
the current state the model tries to predict: n+1 means
the model tries to predict the target variable of the next
state, n+ 2 means the model tries to predict the target
variable of two states ahead. The ’mean’, ’min’, and
’max’ columns provide the aggregated results computed
over the results obtained from individual computational
nodes. The results are divided into ’local’ and ’global’
according to the data used to train the model.

Exp. Time Local Global
Mean Min Max Mean Min Max

A
n+ 1 0.8059 0.6786 0.9162 0.8131 0.7325 0.8984
n+ 2 0.7997 0.7023 0.9271 0.7812 0.7215 0.8888
n+ 3 0.7653 0.6561 0.8531 0.7510 0.6861 0.8623

B
n+ 1 0.5567 0.5132 0.6371 0.5532 0.5174 0.6150
n+ 2 0.5603 0.5210 0.5987 0.5657 0.5183 0.5912
n+ 3 0.5719 0.5255 0.6399 0.5775 0.5393 0.6208

C
n+ 1 0.7951 0.6938 0.8916 0.8043 0.7207 0.8896
n+ 2 0.7864 0.7341 0.9233 0.7882 0.7064 0.8911
n+ 3 0.7480 0.6618 0.8384 0.7564 0.6898 0.8492

D
n+ 1 0.7974 0.6805 0.8945 0.8150 0.7197 0.8974
n+ 2 0.7670 0.6075 0.9112 0.7973 0.7077 0.8978
n+ 3 0.7398 0.5894 0.8239 0.7540 0.6891 0.8488

dings through Graph2Vec models and used down- 444

stream to train a classifier and predict compute node 445

downtimes. The results suggest that using graph 446

embeddings could enhance the classifier performance 447

in some cases. Nevertheless, further research is re- 448

quired to understand when such representations are 449

beneficial or detrimental to the overall models’ per- 450

formance. 451
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