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Abstract001

Despite near-perfect results in artificial eval-002
uations, the effectiveness of model editing in003
real-world applications remains unexplored. To004
bridge this gap, we propose to study model edit-005
ing in question answering (QA) by establishing006
a rigorous evaluation practice to assess the ef-007
fectiveness of editing methods in correcting008
LLMs’ errors. It consists of QAEdit, a new009
benchmark derived from popular QA datasets,010
and a standardized evaluation framework. Our011
single editing experiments indicate that current012
editing methods perform substantially worse013
than previously reported (38.5% vs. ∼96%).014
Through module analysis and controlled exper-015
iments, we demonstrate that this performance016
decline stems from issues in evaluation prac-017
tices of prior editing research. One key issue018
is the inappropriate use of teacher forcing in019
testing prevents error propagation by feeding020
ground truth tokens (inaccessible in real-world021
scenarios) as input. Furthermore, we simulate022
real-world deployment by sequential editing,023
revealing that current approaches fail drasti-024
cally with only 1000 edits. Our analysis pro-025
vides a fundamental reexamination of both the026
real-world applicability of existing model edit-027
ing methods and their evaluation practices, and028
establishes a rigorous evaluation framework029
with key insights to advance reliable and prac-030
tical model editing research1.031

1 Introduction032

Model editing (Zhang et al., 2024; Wang et al.,033

2024c) has attracted widespread attention for its034

promising vision: enabling efficient and precise up-035

dates to specific knowledge within pretrained Large036

Language Models (LLMs) without retraining from037

scratch. Recent advances report near-perfect re-038

sults on corresponding benchmarks (Meng et al.,039

2022; Wang et al., 2024b), suggesting substantial040

1Code and data released at https://anonymous.4open.
science/r/12BC.
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Figure 1: Comparison of editing and real-world (QA)
evaluation for ROME and WISE on Llama-2-7b-chat.

progress toward this goal. However, these results 041

often come from artificial, oversimplified evalu- 042

ation settings (e.g., identical prompts for editing 043

and testing; more in §4) that may fail to capture 044

real-world complexities. This disparity raises a crit- 045

ical question: Can these promising results in the 046

literature translate to practical applications? 047

To address this question, we propose to study 048

model editing in QA tasks, which provide clear 049

evaluation criteria and broad applicability. This 050

adaptation involves two key components: a real- 051

world dataset and realistic evaluation. For dataset, 052

we create QAEdit, a tailored dataset derived from 053

three widely-used QA datasets, enabling editing 054

methods to inject answers from real-world QA 055

tasks into LLMs. For evaluation, we shift from 056

traditional editing evaluation to standard QA evalu- 057

ation (Gao et al., 2024), assessing editing methods 058

through the performance of edited LLMs on their 059

previously incorrect questions. 060

Our initial study reveals that current advanced 061

editing methods achieve only a 38.5% average suc- 062

cess rate on QAEdit, significantly lower than the 063

results reported in previous studies. This raises a 064

question: Does the performance decline stem from 065

QAEdit’s real-world complexity, or from the shift 066

of editing to real-world (i.e., QA) evaluation? 067

To enable rigorous analysis, starting with single 068

editing experiments, we evaluate six representative 069

methods across three leading LLMs on QAEdit and 070

two established editing benchmarks, using both 071

evaluation frameworks. As illustrated in Figure 1, 072

switching from editing to real-world evaluation 073
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consistently leads to a significant performance de-074

cline across all datasets for each editing method,075

whether on real-world QA data or previous editing076

benchmarks. This dramatic performance gap raises077

two critical questions: What differences between078

these frameworks drive such disparity, and which079

most accurately reflects editing effectiveness?080

To answer them, we carefully examine the exper-081

imental setups for both editing and QA evaluations082

in previous work. From this, we abstract four key083

modules (input, generation strategy, output trun-084

cation, and metric) and analyze their variations085

through controlled experiments. The results ex-086

pose four critical limitations in editing evaluation:087

{❶ input module: using identical prompts for edit-088

ing and testing overlooks the variability and un-089

predictability in real-world queries; ❷ generation090

strategy: teacher forcing, which feeds the ground091

truth as input during decoding, artificially beauti-092

fies results by disregarding potential errors in the093

model’s own outputs; ❸ output truncation: using094

target answer length to truncate outputs conceals095

errors (e.g., repetition, irrelevant, or incorrect in-096

formation) that would occur with natural stopping097

criteria; ❹ metric: match ratio may inflate perfor-098

mance by rewarding partial matches of incorrect099

answers.} Among these issues, teacher forcing and100

target length truncation cause the most significant101

overestimation, as they rely on ground truth that is102

unavailable in real-world scenarios. This highlights103

that editing evaluation, reliant on such idealized104

or even unrealistic conditions, fails to accurately105

measure true editing effectiveness.106

After uncovering evaluation issues through sin-107

gle editing analysis, we now return to our initial108

question: how do editing methods perform under109

realistic conditions? In practice, editing requests110

arrive continuously, making sequential editing a111

more genuine test of real-world applicability. Un-112

der real-world evaluation, our sequential editing113

experiments show that current methods catastroph-114

ically fail to scale, with average success rates drop-115

ping to ∼10% for only 1000 samples.116

Our work, for the first time, exposes severe is-117

sues in current evaluations of model editing re-118

search and demonstrates substantial limitations of119

existing editing methods under real-world condi-120

tions. We hope this work will inspire more rigor-121

ous evaluation practices and motivate the develop-122

ment of algorithms that can truly fulfill the promise123

of model editing: to reliably and scalably update124

knowledge in LLMs for real-world applications.125

Our main contributions are as follows. 126

• We introduce QAEdit, a benchmark tailored 127

for real-world QA tasks, and establish a more 128

practical evaluation protocol. 129

• We reveal a significant gap between the perfor- 130

mance reported in literature and that observed 131

in real-world scenarios. 132

• We demonstrate that published results are in- 133

flated and identify the critical issues and under- 134

lying causes in current evaluation practices. 135

• We expose the severe scalability challenges of 136

current editing methods in practical applica- 137

tions through sequential editing experiments. 138

2 Related Works 139

2.1 Model Editing Methodologies 140

Existing model editing methods can be categorized 141

into the following four types: 142

Extension based. These methods update LLMs by 143

adding trainable parameters to encode new knowl- 144

edge, e.g., additional neurons in FFN (Dong et al., 145

2022; Huang et al., 2023) or specialized mem- 146

ory modules (Hartvigsen et al., 2023; Wang et al., 147

2024b), while preserving pretrained weights. 148

Fine-tuning Based. Fine-tuning offers a straight- 149

forward approach to update LLMs’ knowledge but 150

faces catastrophic forgetting. Recent works miti- 151

gate this by constraining parameter changes (Zhu 152

et al., 2020) or leveraging Parameter-Efficient Fine- 153

Tuning (PEFT) (Han et al., 2024) to limit modifica- 154

tion scope (Yu et al., 2024; Wang et al., 2024a). 155

Meta Learning. Employing meta-learning, KE 156

(De Cao et al., 2021), MEND (Mitchell et al., 157

2022), and MALMEN (Tan et al., 2024) train hyper- 158

networks to predict effective gradients or parameter 159

alterations for knowledge integration. 160

Locate-Then-Edit. Based on the investigation of 161

knowledge mechanisms in LLMs (Geva et al., 2021, 162

2022), KN (Dai et al., 2022), ROME (Meng et al., 163

2022), and PMET (Li et al., 2024b) utilize knowl- 164

edge attribution and causal tracing to pinpoint tar- 165

get knowledge to specific parameters, then perform 166

localized editing. Furthermore, MEMIT (Meng 167

et al., 2023) and EMMET (Gupta et al., 2024c) 168

extend this for massive editing in a batch. 169

2.2 Evaluation of Model Editing 170

Current evaluation of model editing primarily fo- 171

cuses on editing effectiveness and side effects on 172

model capabilities. 173
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"Edit Prompt" : "To whom was Grete Stern married?",
"Edit Target" : "Horacio Coppola",
"Subject" : "Grete Stern",
"Rephrased Prompt" : "Who was the spouse of Grete Stern?",
"Locality Prompt" : "When was the clock tower built in London?",
"Locality Answer" : "1859"

Figure 2: An example from QAEdit.

Effectiveness of Editing. The effectiveness of edit-174

ing is typically evaluated from four key properties175

using artificial benchmarks and simplified evalua-176

tion settings: i) reliability, success rate of editing;177

ii) generalization, adaptability of edited knowledge178

to paraphrased prompts; iii) locality, impact on ir-179

relevant knowledge; iv) portability, applicability of180

edited knowledge in factual reasoning. We refer181

readers to Yao et al. (2023) for details. In addi-182

tion to these basic metrics, domain-specific editing183

tasks have been introduced, e.g., privacy preserva-184

tion (Wu et al., 2023), bias mitigation (Chen et al.,185

2024b), and harm injection (Chen et al., 2024a).186

Side Effects of Editing. Recent research has also187

examined the potential side effects of editing on188

LLMs (Hoelscher-Obermaier et al., 2023; Li et al.,189

2024c). While locality shares similar objectives,190

its limited evaluation scope fails to capture the full191

extent of editing side effects. Recent studies (Yang192

et al., 2024a; Gu et al., 2024; Gupta et al., 2024b)193

have revealed that model editing can significantly194

compromise LLMs’ downstream tasks capabilities,195

motivating a growing research to mitigate such side196

effects (Ma et al., 2024; Fang et al., 2025).197

Discussion. Distinct from aforementioned two as-198

pects of evaluations, this paper presents the first199

comprehensive evaluation of model editing effec-200

tiveness in real-world scenarios. With similar moti-201

vations, AKEW (Wu et al., 2024) proposed a new202

task of unstructured text editing. In contrast, our203

study rethinks SOTA editing techniques on real-204

world setting, revealing their limited practical ef-205

fectiveness and uncovering the pitfalls of traditional206

editing evaluation.207

3 QAEdit208

While existing works report remarkable success of209

model editing on artificial benchmarks (Meng et al.,210

2022; Wang et al., 2024b), its efficacy in real-world211

scenarios remains unproven. Here, we propose to212

study it through QA for its fundamental, universal,213

and representative nature. Specifically, we apply214

editing methods to correct LLMs’ errors in QA215

tasks and assess the improvement by re-evaluating216

edited LLMs on a standard QA evaluation frame-217

work, lm-evaluation-harness (Gao et al., 2024).218

Method FT-M MEND ROME MEMIT GRACE WISE Avg.
Accuracy 0.611 0.333 0.585 0.552 0.012 0.216 0.385

Table 1: Accuracy of edited Llama-2-7b-chat on ques-
tions it failed before editing in QAEdit.

Since existing editing benchmarks are not de- 219

rived from or aligned with mainstream QA tasks, 220

we introduce QAEdit, a tailored benchmark to rig- 221

orously assess model editing in real-world QA. 222

Specifically, QAEdit is constructed from three 223

widely-used QA datasets with broad real-world 224

coverage: Natural Questions (Kwiatkowski et al., 225

2019), TriviaQA (Joshi et al., 2017), and SimpleQA 226

(Wei et al., 2024). Details about these datasets are 227

provided in Appendix A.1. 228

While these benchmarks provide questions and 229

answers as edit prompts and targets respectively, 230

they lack essential fields that mainstream editing 231

methods require for editing and evaluation. To ob- 232

tain required subjects for editing, we employ GPT-4 233

(gpt-4-1106-preview) to extract them directly from 234

the questions. To align with the previous editing 235

evaluation protocol, we assess: reliability using 236

original edit prompts; generalization through GPT- 237

4 paraphrased prompts; and locality using unre- 238

lated QA pairs from ZsRE locality set2. 239

As a result, QAEdit contains 19,249 samples 240

across ten categories, ensuring diverse coverage of 241

QA scenarios. Figure 2 shows a QAEdit entry with 242

all fields. Dataset construction and dataset statistics 243

are detailed in Appendix A.2. 244

As a preliminary study, we conduct single-edit 245

experiments on Llama-2-7b-chat’s failed questions 246

in QAEdit (detailed in §5). As shown in Table 1, 247

after applying SOTA editing methods, the edited 248

models achieve only 38.5% average accuracy under 249

QA evaluation, far below previously reported re- 250

sults (Meng et al., 2023; Wang et al., 2024b). This 251

raises a critical question: Is the performance degra- 252

dation attributed to the real-world complexity of 253

QAEdit, or to real-world QA evaluation? 254

4 A Tale of Two Evaluation Frameworks 255

To identify the cause of this performance gap and 256

guide further investigation, we first delve into the 257

experimental setup of both editing and real-world 258

evaluations. We abstract them into four key mod- 259

ules: input, generation strategy, output truncation, 260

and metric. This modular paradigm enables sys- 261

tematic comparison between the two evaluation 262

2We exclude portability evaluation as it concerns reasoning
rather than our focus on knowledge updating in real-world.
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Who wrote the song
“If I Were a Boy” ?

➊ context-free input

<BOS> BC Jean and Toby

➋ teacher forcing

Beyoncé Jean is Toby Gad

BC Jean and Toby Gad
Ground

Truth:

Output:

STOP

ground
truth

length

➌
✘ ✔ ✘ ✔ ✔3/5match ratio➍

Edited LLM

(a) editing evaluation framework

{Context} Who wrote the
song “If I Were a Boy” ?

➊ context-guided input

<BOS> Beyoncé is the writer

➋ autoregressive decoding

Beyoncé is the writer <|endoftext|>

BCBC Jean and Toby GadJean and Toby Gad
Ground

Truth:

Output:

STOP

naturalstopping
criteria

➌
Æ

LLM-as-
a-Judge➍ 0

Edited LLM

(b) real-world evaluation framework

Figure 3: Illustration of editing and real-world evaluation frameworks, each comprising four key modules:➊ input,
➋ generation strategy, ➌ output truncation, and ➍ metric, for measuring reliability, generalization, and locality.

Module editing real-world

Input context-free context-guided
Generation Strategy teacher forcing autoregressive decoding
Output Truncation ground truth length natural stopping criteria
Metric match ratio LLM-as-a-Judge

Table 2: Key settings of editing and real-world evalua-
tion across all four modules.

frameworks, as shown in Figure 3.263

As shown in Figure 3a, we formalize previous264

works’ evaluation pipeline (Yao et al., 2023; Wang265

et al., 2024b) as editing evaluation framework,266

which implements four modules as follows: i) in-267

put: using only question without additional context;268

ii) generation strategy: employing teacher forcing269

to feed ground truth tokens as input during gener-270

ation; iii) output truncation: truncating output to271

match the length of target answer; iv) metric: us-272

ing token-level match ratio between the target and273

generated answer as accuracy.274

We define real-world evaluation framework275

based on the standard QA evaluation protocol (Gao276

et al., 2024), which implements these modules dif-277

ferently (Figure 3b): i) input: prefixing question278

with contexts like task instructions; ii) generation279

strategy: adopting autoregressive decoding, where280

each output serves as input for subsequent genera-281

tion; iii) output truncation: using predefined stop282

tokens (e.g., “.”, “\n”, and “<|endoftext|>”) as283

signal to terminate generation; iv) metric: employ-284

ing LLMs as binary judgment based on question,285

target and generated answers3. Notably, we em-286

ploy LLM-as-a-Judge (Li et al., 2024a) instead of287

exact match as our evaluation metric, as it has be-288

come standard practice in QA evaluation and our289

human validation confirms its superior alignment290

with human judgment.291

Discussion. Table 2 details the key differences292

3Detailed prompt is provided in Appendix A.3.

between these evaluation frameworks. Editing eval- 293

uation has two types of critical limitations com- 294

pared to real-world evaluation: i) oversimplifica- 295

tion: context-free input overlooks the complexity 296

and variability of practical queries, and match ra- 297

tio rewards partial matches of incorrect answers; 298

ii) unreasonableness: teacher forcing generation 299

and corresponding truncation to the target length 300

leak ground truth information that should remain 301

inaccessible during testing. These artificial settings 302

result in a significant gap between research on edit- 303

ing and its practical applications. 304

5 Analysis on Benchmark & Evaluation 305

The preliminary analysis and theoretical compari- 306

son in §3 and §4 reveal a notable disparity between 307

editing and real-world evaluation. To rigorously 308

address the question raised in §3—whether the per- 309

formance gap stems from differences in dataset 310

or evaluation—we conduct systematic single-edit 311

experiments, where each edit is independently ap- 312

plied to the original model from scratch. 313

5.1 Experimental Setup 314

This section outlines the experimental setup used 315

in all subsequent experiments, unless stated other- 316

wise. Due to space limitations, further details are 317

provided in Appendix A.4. 318

Editing Methods. To ensure comprehensive cov- 319

erage, we employ six diverse and representative 320

editing techniques across four categories: exten- 321

sion based (GRACE, Hartvigsen et al., 2023 and 322

WISE, Wang et al., 2024b), fine-tuning based (FT- 323

M, Zhang et al., 2024), meta-learning (MEND, 324

Mitchell et al., 2022), and locate-then-edit (ROME, 325

Meng et al., 2022 and MEMIT, Meng et al., 2023). 326
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Method
ZsRE COUNTERFACT QAEdit

Reliability Generalization Reliability Generalization Reliability Generalization
Edit. Real. Edit. Real. Edit. Real. Edit. Real. Edit. Real. Edit. Real.

L
la

m
a-

2-
7b

-c
ha

t FT-M 1.000 0.562 0.950 0.470 1.000 0.867 0.503 0.426 1.000 0.611 0.966 0.560
MEND 0.967 0.288 0.949 0.244 0.997 0.478 0.425 0.183 0.942 0.333 0.900 0.328
ROME 0.964 0.741 0.811 0.656 0.996 0.836 0.452 0.420 0.955 0.585 0.744 0.411
MEMIT 0.950 0.685 0.858 0.634 0.997 0.797 0.513 0.460 0.929 0.552 0.791 0.450
GRACE 0.986 0.033 0.319 0.029 0.998 0.013 0.114 0.008 0.983 0.012 0.383 0.087
WISE 0.999 0.139 0.973 0.081 0.999 0.521 0.612 0.104 0.998 0.216 0.877 0.122

M
is

tr
al

-7
b

FT-M 1.000 0.441 0.824 0.358 1.000 0.733 0.330 0.220 1.000 0.562 0.862 0.503
MEND 0.977 0.719 0.963 0.657 0.820 0.431 0.355 0.149 0.903 0.544 0.895 0.516
ROME 0.757 0.608 0.717 0.573 0.965 0.866 0.466 0.488 0.845 0.555 0.735 0.435
MEMIT 0.868 0.707 0.842 0.670 0.962 0.887 0.539 0.583 0.850 0.563 0.788 0.485
GRACE 0.995 0.035 0.350 0.029 1.000 0.011 0.110 0.006 0.991 0.018 0.421 0.080
WISE 0.948 0.033 0.903 0.025 0.868 0.129 0.420 0.027 0.979 0.024 0.906 0.064

L
la

m
a-

3-
8b

FT-M 1.000 0.706 0.995 0.698 1.000 0.916 0.588 0.613 1.000 0.560 0.988 0.576
ROME 0.996 0.820 0.971 0.789 0.999 0.877 0.422 0.491 0.987 0.691 0.865 0.570
MEMIT 0.982 0.803 0.961 0.781 0.998 0.882 0.516 0.557 0.967 0.649 0.886 0.566
GRACE 0.999 0.036 0.261 0.032 1.000 0.008 0.008 0.005 0.999 0.018 0.366 0.103
WISE 0.859 0.091 0.825 0.075 0.807 0.212 0.508 0.075 0.910 0.121 0.876 0.138

Average 0.956 0.438 0.792 0.400 0.965 0.557 0.405 0.283 0.956 0.389 0.779 0.351
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Table 3: Comparison between editing evaluation (Edit.) and real-world evaluation (Real.). Cell background shading
indicates performance drop from Edit. to Real., with darker shades indicating greater decreases.

All methods are implemented using EasyEdit4.327

Due to the inconsistent keys implementation in328

ROME, we adopt its refined variant R-ROME329

(Gupta et al., 2024a; Yang et al., 2024b) instead.330

Edited LLMs. In line with prior research (Wang331

et al., 2024b; Fang et al., 2025), we test three lead-332

ing open-source LLMs: Llama-2-7b-chat (Tou-333

vron et al., 2023), Mistral-7b (Jiang et al., 2023),334

and Llama-3-8b (Meta, 2024). Greedy decoding335

is used for all models, aligning with prior research.336

Results for MEND with Llama-3-8b are excluded337

due to architectural incompatibility.338

Editing Datasets. We employ QAEdit along with339

two prevalent benchmarks, ZsRE (Levy et al.,340

2017) and COUNTERFACT (Meng et al., 2022),341

for a rigorous investigation. For QAEdit, we evalu-342

ate the edited LLMs using only samples that their343

unedited counterparts initially answered incorrectly.344

This yields evaluation sets of 12,715, 10,213,345

10,467 samples for Llama-2-7b-chat, Mistral-7b,346

and Llama-3-8b, respectively. For ZsRE and347

COUNTERFACT, we use their established test sets,348

each with 10,000 records.349

5.2 Results & Analysis350

The experimental results are presented in Table 3.351

Due to the minor side effects in single editing sce-352

narios, the consistently favorable locality results353

are moved to Appendix A.5.354

Benchmark Perspective: QAEdit exhibits moder-355

ately lower editing reliability compared to ZsRE356

4https://github.com/zjunlp/EasyEdit

and CounterFact, reflecting its diverse and challeng- 357

ing nature as a real-world benchmark. However, 358

this modest gap is insufficient to explain the signif- 359

icant discrepancy observed in our earlier analysis. 360

Method Perspective: i) Recent state-of-the-art 361

methods, GRACE and WISE, exhibit the most sig- 362

nificant decrease, with both reliability and gener- 363

alization dropping below 5%. This decline mainly 364

stems from their edited models generating erro- 365

neous information after producing the correct an- 366

swers, detailed in §6.3. ii) In comparison, tradi- 367

tional methods like FT-M and ROME exhibit supe- 368

rior stability and preserve a certain level of effec- 369

tiveness in real-world evaluation. 370

Evaluation Perspective: i) Performance on each 371

benchmark drops sharply from editing evaluation 372

(∼96%) to real-world evaluation (e.g., 43.8% on 373

ZsRE and 38.9% on QAEdit), indicating that edit- 374

ing evaluation substantially overestimates the 375

effectiveness of editing methods. ii) Unlike edit- 376

ing evaluation, which reports consistently near-per- 377

fect results across all methods and benchmarks, re- 378

al-world evaluation effectively distinguishes them, 379

providing valuable insights for future research. 380

6 Controlled Study of Editing Evaluation 381

This section presents controlled experiments to sys- 382

tematically investigate how different module vari- 383

ations in editing evaluation (outlined in §4) con- 384

tribute to performance overestimation. Due to re- 385

source and space limitations, we conduct experi- 386

ments on Llama-3-8b with 3,000 randomly sam- 387

5
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Input FT-M ROME MEMIT GRACE WISE

Context-free 1.000 0.985 0.965 0.998 0.908
Context-guided 0.937 0.930 0.907 0.412 0.838

Table 4: Reliability score for different input formats on
Llama-3-8b under teacher forcing generation, truncation
at ground truth length, and match ratio metric.

Generation Strategy FT-M ROME MEMIT GRACE WISE

➊ context-free, ➌ ground truth length, ➍ match ratio

Teacher forcing 1.000 0.985 0.965 0.998 0.908
Autoregressive decoding 1.000 0.967 0.929 0.996 0.765

➊ context-guided, ➌ ground truth length, ➍ match ratio

Teacher forcing 0.937 0.930 0.907 0.412 0.838
Autoregressive decoding 0.800 0.851 0.786 0.036 0.592

Table 5: Reliability of different generation strategies on
Llama-3-8b under two prompt strategies.

pled QAEdit instances, where the findings general-388

izable across other LLMs and datasets.389

6.1 Input390

This subsection empirically isolates how idealistic391

prompts may lead to overestimated results in edit-392

ing evaluation. Specifically, we compare context-393

free prompts with real-world input formats that394

include task instructions, while keeping all other395

modules identical. Detailed prompts are provided396

in Appendix A.6.397

Table 4 shows that incorporating task instruc-398

tion degrades performance across all editing meth-399

ods, with GRACE showing the most significant400

decline due to its weak generalization. This trend401

contrasts with the behavior of original Llama-3-402

8b, where task instructions usually improve results403

(Grattafiori et al., 2024). These findings reveal404

that using identical prompts for editing and test-405

ing in current editing evaluation, while yielding406

optimistic results, may fail to reflect editing ef-407

fectiveness under diverse real-world inputs.408

6.2 Generation Strategy409

Here, we examine how teacher forcing in the gen-410

eration strategy contributes to the inflated results411

in editing evaluation. We compare reliability of412

teacher forcing and autoregressive decoding under413

two distinct input formats, while keeping all other414

modules consistent.415

As depicted in Table 5, switching from teacher416

forcing to autoregressive decoding consistently417

leads to performance degradation across all meth-418

ods, with lower-performing methods exhibiting419

more substantial decline. The underlying reason420

for this phenomena is that teacher forcing prevents421

error propagation by feeding ground truth tokens as422

Truncation Strategy FT-M ROME MEMIT GRACE WISE

❶ context-free, ❷ autoregressive decoding, ❹ LLM-as-a-Judge

Ground truth length 1.000 0.954 0.886 0.992 0.700
Natural stop criteria 0.202 0.478 0.461 0.301 0.046

❶ context-guided, ❷ autoregressive decoding, ❹ LLM-as-a-Judge

Ground truth length 0.751 0.783 0.704 0.003 0.482
Natural stop criteria 0.528 0.556 0.529 0.000 0.108

Table 6: Reliability score under different answer trunca-
tion strategies on Llama-3-8b.

Meaningless Repetition
Input Prompt Who got the first Nobel Prize in physics?
Target Answer Wilhelm Conrad Röntgen

Natural Stop
Wilhelm Conrad Röntgen Wilhelm Conrad
Röntgen Wilhelm Conrad Röntgen . . .

Irrelevant Information

Input Prompt
Who was the first lady nominated member
of the Rajya Sabha?

Target Answer Mary Kom

Natural Stop
Mary Kom is the first woman boxer to
qualify for the Olympics

Incorrect Information
Input Prompt When does April Fools’ Day end at noon?
Target Answer April 1st
Natural Stop April 1st ends at noon on April 2nd

Table 7: Examples of additionally generated content
beyond ground truth length under natural stop criteria.

input, while autoregressive decoding allows errors 423

to cascade. Although teacher forcing is beneficial 424

for stabilizing LLM training, it should be avoided 425

during testing, where ground truth is unavailable. 426

Our results demonstrate that inappropriate use 427

of teacher forcing in evaluation artificially ele- 428

vates editing performance, especially for meth- 429

ods with poor real-world performance. 430

6.3 Output Truncation 431

Besides leaking ground truth tokens, teacher forc- 432

ing also implicitly controls output length by align- 433

ing with ground truth length. However, this is not 434

applicable in real-world scenarios where ground 435

truth is unavailable. In practice, during inference, 436

generation typically terminates based on predefined 437

stop tokens, e.g., “<|endoftext|>” (Gao et al., 438

2024). Here, we analyze these two truncation 439

strategies by employing GPT-4o-mini as a binary 440

judge to assess correctness (detailed in §6.4), since 441

length discrepancies between generated and target 442

answers preclude the use of match ratio metric. 443

As shown in Table 6, truncation based on natural 444

stop criteria significantly reduces editing perfor- 445

mance across all methods. To identify the under- 446

lying causes, we analyze the content truncated at 447
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Method
Llama-2-7b-chat Mistral-7b Llama-3-8b

Reliability Locality Reliability Locality Reliability Locality

Edit. Real. Edit. Real. Edit. Real. Edit. Real. Edit. Real. Edit. Real.

FT-M 0.973 0.531 0.420 0.072 0.960 0.454 0.573 0.204 0.925 0.229 0.127 0.004
MEND 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 – – – –
ROME 0.114 0.001 0.028 0.001 0.059 0.001 0.052 0.028 0.034 0.001 0.020 0.000
MEMIT 0.057 0.002 0.030 0.000 0.058 0.002 0.031 0.000 0.000 0.000 0.000 0.000
GRACE 0.370 0.015 1.000 1.000 0.416 0.018 1.000 1.000 0.368 0.022 1.000 1.000
WISE 0.802 0.195 0.676 0.184 0.735 0.060 0.214 0.003 0.526 0.072 0.743 0.104

Average 0.386 0.124 0.359 0.210 0.494 0.089 0.312 0.206 0.371 0.065 0.378 0.222

Table 8: Results of sequential editing on QAEdit under editing evaluation (Edit.) and real-world evaluation (Real.).

Metric FT-M ROME MEMIT GRACE WISE

❶ context-free, ❷ autoregressive decoding, ❸ ground truth length

Match ratio 1.000 0.967 0.929 0.996 0.765
LLM-as-a-Judge 1.000 0.954 0.886 0.992 0.700

❶ context-guided, ❷ autoregressive decoding, ❸ ground truth length

Match ratio 0.800 0.851 0.786 0.036 0.592
LLM-as-a-Judge 0.751 0.783 0.704 0.003 0.482

Table 9: Reliability score derived from different metric
judgment on Llama-3-8b.

both the ground truth length and the natural stop448

criteria. Our analysis reveals that, under natural449

stop criteria, the edited models typically generate450

content beyond the ground truth length, introducing451

meaningless repetition and irrelevant or incorrect452

information, as evidenced in Table 7.453

These findings demonstrate that irrational trun-454

cation in editing evaluation masks subsequent455

errors that emerge in real-world scenarios, re-456

sulting in overestimated performance. As shown457

in Table 6, although context-guided prompting en-458

hances generation termination, it still fails to ad-459

dress the fundamental limitations. Such pitfalls in460

current approaches, overlooked by traditional eval-461

uation, highlight the need to explore more effective462

ways to express edited knowledge.463

6.4 Metric464

As explained in §4, the match ratio metric could465

lead to inflated performance. To quantify this effect,466

we compare match ratio against LLM-as-a-Judge,467

specifically using GPT-4o-mini. Since match ratio468

requires length parity with targets, we autoregres-469

sively generate sequences to target length for both470

metircs to ensure fair comparison.471

The results presented in Table 9 reveal that the472

match ratio metric indeed overestimates the per-473

formance of edited models. Moreover, a lower474

match ratio often indicates a smaller proportion475

of fully correct answers, resulting in worse perfor-476

mance in LLM evaluation.477

7 (Sequential) Editing in the Wild 478

Although our analysis via single editing reveals 479

limitations in current editing evaluation, such iso- 480

lated editing fails to capture the continuous, large- 481

scale demands of editing in real-world scenarios. 482

Therefore, we now address our primary research 483

question: testing model editing under real-world 484

evaluation via sequential editing, a setup that better 485

reflects practical requirements. 486

7.1 Sample-wise Sequential Editing 487

Experimental Setup. Following established proto- 488

cols (Huang et al., 2023; Hartvigsen et al., 2023), 489

we evaluate editing methods with a batch size of 490

1, i.e., updating knowledge incrementally one sam- 491

ple at a time. We keep the same setup as in §5.1, 492

but limit to 1000 samples per dataset, as existing 493

methods perform significantly worse with more 494

edits. For QAEdit, the chosen samples are incor- 495

rectly answered by all pre-edit LLMs. Given the no- 496

table side effects in sequential editing (Yang et al., 497

2024a), we focus on the evaluation of reliability 498

and locality, with generalization results provided 499

in Appendix A.7. 500

Results & Analysis. The results on QAEdit are 501

shown in Table 8, with similar findings for ZsRE 502

and COUNTERFACT in Appendix A.8. i) In real– 503

world evaluation with sequential editing, all meth- 504

ods except FT-M exhibit nearly unusable perfor- 505

mance (only 9.3% average reliability), with FT-M 506

achieving a 40.5% average reliability. ii) The gap 507

between editing and real-world evaluation further 508

confirms the evaluation issues we discussed in §6. 509

iii) The notably low average locality of 21.3% 510

highlights the severe disruption to LLMs. While 511

GRACE effectively preserves unrelated knowledge 512

through external edit modules, it struggles with 513

knowledge updating. 514
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Figure 4: Impact of batch size (BS) when editing Llama-
3-8b with FT-M and MEMIT on QAEdit.

7.2 Mini-Batch Sequential Editing515

Real-world applications often batch multiple edits516

together for efficient processing of high-volume517

demands. Moreover, Pan et al. (2024) suggest in-518

creasing batch size may alleviate the side effects of519

sequential editing. Thus, this section investigates520

whether increasing the batch size could serve as a521

potential solution to the practical challenges faced522

by current editing methods.523

Experiment Setup. Following the experimental524

setup in §7.1, we evaluate three batch-capable edit-525

ing algorithms: FT-M, MEND, and MEMIT. Due526

to VRAM constraints (80GB A800), we empiri-527

cally set the maximum testable batch sizes: 80 for528

FT-M, 16 for MEND, and 1000 for MEMIT.529

Results & Analysis. Figure 4 presents the editing530

performance with varying batch sizes, evaluated531

across various-sized QAEdit subsets. Despite ex-532

perimenting with various batch sizes, all methods533

show consistently limited performance, with the534

highest score below 30% for 1000 edits. The all-535

zero performance of MEND are provided in Ap-536

pendix A.9. Notably, Figure 4 presents opposite537

trends: i) MEMIT achieves optimal performance538

only when editing all requests in a single batch,539

with performance decreasing sharply as batch size540

decreases. ii) In contrast, FT-M performs best at541

a batch size of 1 but degrades drastically as batch542

size increases. The divergence may arise from their543

distinct batch editing mechanisms: FT-M optimizes544

for aggregate batch-level loss, potentially compro-545

mising individual edit accuracy; whereas MEMIT546

estimates parametric changes individually before547

integration, facilitating effective batch edits.548

Further Analysis. To gain insights into the poor549

final performance, we also investigate how editing550

effectiveness changes during continuous editing.551

Specifically, we randomly partition 100 QAEdit552

samples into 5 batches of 20 samples each. Using553

MEMIT on Llama-3-8b, we iteratively edit each554

batch while evaluating the edited model on each555

previously edited batch separately to track dynam-556
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Figure 5: Reliability evolution of sequential editing
on Llama-3-8b, with repeated evaluation of previous
batches after each new edit batch (batch size = 20).

ics of editing effectiveness. 557

Figure 5 reveals two key insights: i) While the 558

first batch exhibits high initial reliability, its per- 559

formance declines sharply with subsequent edit- 560

ing, suggesting that new edits disrupt the knowl- 561

edge injected in earlier batches. ii) As editing 562

progresses, the effectiveness of MEMIT decreases 563

rapidly. These findings reveal the key challenges 564

of sequential editing: progressive loss of previ- 565

ously edited knowledge coupled with decreasing 566

effectiveness in editing new knowledge. 567

8 Conclusion and Future Works 568

In this paper, we present the first systematic in- 569

vestigation that exposes the gap between theoreti- 570

cal advances and practical effectiveness of model 571

editing by real-world QA evaluation. Our pro- 572

posed QAEdit benchmark and real-world evalu- 573

ation demonstrate that current model editing tech- 574

niques exhibit significant limitations in practical 575

scenarios, particularly under sequential editing. 576

Furthermore, we reveal that this significant dis- 577

crepancy from previously reported results stems 578

from unrealistic evaluation adopted in prior model 579

editing research. Through modular analysis and 580

extensive controlled experiments, we uncover fun- 581

damental issues in current editing evaluation that 582

inflate reported performance. This work establishes 583

new evaluation standards for model editing and pro- 584

vides valuable insights that will inspire the devel- 585

opment of more robust editing methods, ultimately 586

enabling reliable and efficient knowledge updates 587

in LLMs for real-world applications. 588

In future research, we aim to develop editing 589

methods that can i) generalize robustly across di- 590

verse scenarios with reliable self-termination, and 591

ii) support extensive sequential updates while main- 592

taining the capabilities of edited LLMs. 593
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Limitations594

We acknowledge following limitations of our work:595

• This work provides an existence proof of fun-596

damental issues of evaluation in model editing,597

rather than attempting an exhaustive assessment598

of all existing approaches and LLMs. Due to599

resource constraints, we focus on representative600

methods and LLMs to demonstrate the issues601

and challenges, as exhaustive testing of all ap-602

proaches is neither feasible nor necessary for603

establishing our findings.604

• Our research makes the first systematic investiga-605

tion into previously overlooked evaluation issues606

in model editing, prioritizing the identification607

and analysis of these fundamental challenges608

rather than solution development. Our work fo-609

cuses on comprehensive analysis of these issues,610

uncovering their root causes and providing in-611

sights into factors affecting editing effectiveness.612

While presenting promising directions for fu-613

ture research, developing solutions to these chal-614

lenges remains beyond our current scope.615

• Our study focuses exclusively on parameter-616

based editing methods, without investigating617

in-context learning based knowledge editing ap-618

proaches which leverage external information.619

While these approaches may achieve superior620

performance on QA tasks, our primary objective621

is not to advocate for any particular approach,622

but to critically revisit current practices in the623

field and provide insights for future development.624

We believe efficient parameter-based editing ap-625

proaches have their unique advantages and repre-626

sent a valuable direction worth pursuing, despite627

current challenges in real-world applications.628

Ethics Statement629

Data. All data used in our research are publicly630

available and do not raise any privacy concerns.631

AI Writing Assistance. We employ LLMs to632

polish our original content, focusing on correcting633

grammatical errors and enhancing clarity, rather634

than generating new content or ideas.635
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Category Example Count
Art & Culture Who wrote the song the glory of love? 5277
History & Politics Who wrote the first declaration of human rights? 4070
People & Biographies Which award did Reza Aslan receive in 2014? 2188
Geography & Environment Which is the largest saltwater lake in India? 1954
Science & Technology Which year was the actinide concept proposed? 1829
Sports & Leisure In what year did Kristin Otto retire from swimming? 1807
Health & Medicine Where are the cones in the eye located? 771
Society & Humanities Which is the ring finger for male in India? 573
Economics & Business When is the world consumer right day celebrated? 463
Others What kind of beer is St. Pauli Girl? 317

Table 10: Statistics and examples of QAEdit, encom-
passing ten categories of knowledge. The underlined
content represents the subjects identified by GPT-4.

A Appendix891

A.1 Detailed Introduction of QA Datasets892

Natural Questions (NQ) (Kwiatkowski et al.,893

2019) is a comprehensive question-answering (QA)894

dataset that contains real questions posed by users895

to the Google search, paired with high-quality,896

human-verified answers. The dataset consists of897

over 300,000 question-answer pairs, with each898

question derived from user queries on Google899

Search. These questions cover a wide variety of900

topics, ranging from fact-based inquiries to more901

complex, open-ended questions. The golden an-902

swers are sourced from Wikipedia pages, ensuring903

their accuracy and relevance. We adopt the test set904

of NQ, which contains 3610 samples, to construct905

our QAEdit benchmark.906

TriviaQA (Joshi et al., 2017) is a large-scale QA907

dataset designed specifically for evaluating mod-908

els on trivia-style question answering. It contains909

over 650,000 question-answer pairs sourced from910

trivia websites and is curated by trivia enthusiasts.911

These questions are often fact-based and test the912

model’s ability to retrieve information from large913

text corpora. We utilize 11,313 samples from the914

TriviaQA test set to construct QAEdit.915

SimpleQA (Wei et al., 2024) is a challenging916

QA benchmark specifically designed to test fact-917

seeking question-answering models. It contains918

4326 question-answer pairs curated by OpenAI,919

with an emphasis on short-form factuality. The920

questions in SimpleQA are concise, direct, and de-921

signed to probe factual knowledge. Unlike more922

general-purpose QA datasets, SimpleQA empha-923

sizes clarity and the ability of models to provide924

precise, factually accurate answers. We employ all925

samples from SimpleQA for QAEdit construction.926

A.2 Construction and Statistics of QAEdit927

In this section, we describe the detailed construc-928

tion procedures and statistics of QAEdit.929

While aforementioned QA benchmarks provide930

questions and answers as edit prompts and tar-931

gets, they lack subjects for editing, as well as 932

rephrased prompts and locality QA pairs to eval- 933

uate generalization and locality. To supplement 934

the missing fields, our construction procedures en- 935

compass the following steps: i) We employ GPT-4 936

(gpt-4-1106-preview) to extract the subjects di- 937

rectly from the edit prompts. To improve the ac- 938

curacy of extraction, we prompt the model with 939

5-shot examples to utilize its in-context learning 940

capability, which can be seen in Figure 7. ii) We uti- 941

lize GPT-4 to paraphrase the edit prompts to obtain 942

rephrased prompts. Considering that paraphrasing 943

questions is easy for GPT-4, the specific instruc- 944

tion is straightforward and is presented in Figure 8. 945

Furthermore, we manually reviewed some of the 946

rephrased results and found them to be highly ef- 947

fective. iii) Moreover, for each sample of QAEdit, 948

we randomly select a QA pair from the locality sets 949

of ZsRE (Levy et al., 2017) as locality prompt and 950

corresponding answer to assess locality. 951

As a result, our QAEdit benchmark encompasses 952

ten categories of knowledge, covering mainstream 953

topics with significant real-world impact. The sta- 954

tistical information and examples of each category 955

are presented in Table 10. 956

A.3 Prompt of LLM-as-a-Judge 957

In light of the significant advancements in LLM-as- 958

a-Judge (Li et al., 2024a), we employ GPT-4o-mini 959

to perform binary judgments based on the provided 960

questions, target answers, and generated responses. 961

Following previous work (Wei et al., 2024), our 962

complete prompt is presented in Figure 9. 963

A.4 Detailed Experimental Setup 964

A.4.1 Editing Methods 965

FT-M (Zhang et al., 2024) is an enhanced version 966

of FT-L (Zhu et al., 2020; Meng et al., 2022). FT- 967

L introduces an l∞-norm constraint into the fine- 968

tuning objective to explicitly restrict the parameter 969

changes between the original and edited models, 970

thereby mitigating side effects on unrelated knowl- 971

edge. However, FT-L deviates from the original 972

fine-tuning objective by using only the last token’s 973

prediction to maximize the probability of all tokens 974

in the target sequence. To address this issue, FT-M 975

improves upon FT-L by applying the cross-entropy 976

loss to the target answer while masking the original 977

text, which aligns more closely with the traditional 978

fine-tuning objective and enhances performance. 979

MEND (Mitchell et al., 2022) employs a hypernet- 980

work to learn low-rank decompositions of standard 981
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Method ZsRE COUNTERFACT QAEdit
Edit. Real. Edit. Real. Edit. Real.

Llama-2-7b-chat

FT-M 0.979 0.875 0.672 0.592 0.963 0.848
MEND 0.990 0.922 0.581 0.649 0.981 0.891
ROME 0.995 0.946 0.972 0.939 0.991 0.929
MEMIT 0.989 0.920 0.953 0.905 0.980 0.881
GRACE 1.000 1.000 1.000 1.000 1.000 1.000
WISE 1.000 0.999 0.830 0.958 1.000 0.999

Mistral-7b

FT-M 0.994 0.937 0.823 0.760 0.980 0.943
MEND 0.994 0.903 0.618 0.665 0.970 0.889
ROME 0.870 0.839 0.964 0.908 0.990 0.959
MEMIT 0.994 0.950 0.946 0.884 0.982 0.935
GRACE 1.000 1.000 1.000 1.000 1.000 1.000
WISE 1.000 1.000 0.840 0.967 0.999 1.000

Llama-3-8b

FT-M 0.953 0.597 0.243 0.138 0.917 0.610
ROME 0.994 0.923 0.931 0.845 0.982 0.920
MEMIT 0.988 0.889 0.918 0.828 0.967 0.881
GRACE 1.000 1.000 1.000 1.000 1.000 1.000
WISE 0.993 0.873 0.847 0.931 0.994 0.881

Table 11: Locality of single-edit experiments under edit-
ing evaluation (Edit.) and real-world evaluation (Real.)
across various methods, LLMs, and benchmarks.

fine-tuning gradients. By disentangling gradients982

into learnable rank-one matrices, it achieves ex-983

plicit control over parameter updates while main-984

taining tractable editing in LLMs.985

ROME (Meng et al., 2022) identifies knowledge-986

critical layers in Transformer MLP modules987

through causal tracing analysis. It implements pre-988

cise knowledge updates via rank-one matrix mod-989

ification on the identified layer, guided by causal990

mediation effects in model outputs.991

MEMIT (Meng et al., 2023) extends ROME by992

developing cross-layer propagation analysis and co-993

ordinated parameter updates across multiple MLP994

layers, enabling efficient batch editing of large-995

scale knowledge.996

GRACE (Hartvigsen et al., 2023) is a lifelong997

editing method that performs local corrections on998

streaming errors of deployed models. The approach999

writes new mappings into a pretrained model’s la-1000

tent space, creating a discrete local codebook of1001

edits without modifying model weights, allowing1002

for sequential editing operations.1003

WISE (Wang et al., 2024b) addresses the similar1004

challenge of sequential editing like GRACE. It em-1005

ploys a dual memory architecture comprising a1006

main memory for pretrained knowledge and a side1007

memory for edited content. The system utilizes a1008

router to direct queries between these memories.1009

A.4.2 Edited LLMs1010

Llama-2-7b-chat (Touvron et al., 2023) is a model1011

designed for conversational scenarios with 7 bil-1012

Please answer the question:
Q: Who got the first Nobel Prize in physics?
A:

Figure 6: The context-guided prompt for QA tasks.

lion parameters. It excels in generating human-like 1013

responses in real-time, offering smooth and context- 1014

aware dialogue generation. 1015

Mistral-7b (Jiang et al., 2023) is a superior pre- 1016

trained base model with 7 billion parameters, out- 1017

performing Llama-2-13b on all examined bench- 1018

marks, offering strong performance while being 1019

resource-efficient. Specifically, we employ the ver- 1020

sion of Mistral-7B-v0.1. 1021

Llama-3-8b (Meta, 2024) is a cutting-edge 8- 1022

billion-parameter model designed for diverse AI 1023

applications. It combines advanced techniques with 1024

scalability, ensuring high-quality generation for 1025

complex tasks like multi-turn dialogues, creative 1026

writing, and complex reasoning tasks. 1027

A.4.3 Editing Datasets 1028

ZsRE (Levy et al., 2017) is a popular dataset for 1029

Question Answering (QA), where each entry con- 1030

sists of a counterfactual statement derived from a 1031

factual Wikipedia page that needs to be edited. 1032

COUNTERFACT (Meng et al., 2022) is a challeng- 1033

ing dataset curated for model editing. It contains 1034

21,919 nonfactual statements, initially assigned low 1035

probabilities by models, and designed to encour- 1036

age substantial and meaningful modifications to the 1037

original factual statements. 1038

A.5 Locality Results of Single Editing 1039

The locality results of single editing experiments 1040

are presented in Table 11. The results show that for 1041

almost all baselines, their locality results are very 1042

high across two evaluation frameworks, indicating 1043

that a single edit generally has little impact on the 1044

model’s general capabilities. 1045

A.6 Detailed Practical Prompt 1046

In Section 6.1, we prefix the target question with 1047

a common QA task instruction (Gao et al., 2024) 1048

as the input prompt, as shown in Figure 6. We aim 1049

to utilize this context-guided prompt to represent 1050

and simulate various contexts that might occur in 1051

practical applications. 1052

A.7 Generalization of Sequential Editing 1053

The generalization results of sequential editing ex- 1054

periments are presented in Table 13. Compare to 1055
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Method
Llama-2-7b-chat Mistral-7b Llama-3-8b

Reliability Locality Reliability Locality Reliability Locality
Edit. Real. Edit. Real. Edit. Real. Edit. Real. Edit. Real. Edit. Real.

ZsRE
FT-M 0.935 0.517 0.583 0.036 0.925 0.465 0.813 0.187 0.879 0.013 0.117 0.001
MEND 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 – – – –
ROME 0.000 0.000 0.002 0.000 0.044 0.004 0.012 0.001 0.087 0.020 0.018 0.000
MEMIT 0.035 0.000 0.014 0.000 0.035 0.000 0.016 0.000 0.052 0.000 0.022 0.000
GRACE 0.317 0.025 1.000 1.000 0.351 0.031 1.000 1.000 0.264 0.033 1.000 1.000
WISE 0.756 0.215 1.000 1.000 0.742 0.017 0.998 0.970 0.514 0.098 1.000 1.000

COUNTERFACT

FT-M 0.931 0.592 0.225 0.041 0.827 0.538 0.222 0.049 0.782 0.080 0.029 0.003
MEND 0.000 0.000 0.000 0.006 0.000 0.000 0.000 0.000 – – – –
ROME 0.370 0.094 0.093 0.000 0.265 0.131 0.009 0.005 0.484 0.022 0.034 0.000
MEMIT 0.000 0.000 0.056 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
GRACE 0.153 0.017 0.996 1.000 0.148 0.006 0.996 1.000 0.012 0.006 0.996 1.000
WISE 0.797 0.296 0.340 0.522 0.595 0.119 0.196 0.081 0.158 0.027 0.621 0.912

Table 12: Results of sequential editing on ZsRE and COUNTERFACT under editing evaluation (Edit.) and real-world
evaluation (Real.) across various editing methods and LLMs.

Method ZsRE COUNTERFACT QAEdit
Edit. Real. Edit. Real. Edit. Real.

Llama-2-7b-chat

FT-M 0.906 0.480 0.723 0.394 0.932 0.461
MEND 0.000 0.000 0.000 0.000 0.000 0.000
ROME 0.000 0.000 0.241 0.066 0.076 0.007
MEMIT 0.035 0.000 0.000 0.000 0.057 0.002
GRACE 0.312 0.027 0.119 0.005 0.371 0.044
WISE 0.705 0.195 0.364 0.102 0.732 0.173

Mistral-7b

FT-M 0.859 0.404 0.493 0.266 0.856 0.381
MEND 0.000 0.000 0.000 0.000 0.000 0.000
ROME 0.037 0.005 0.244 0.122 0.049 0.000
MEMIT 0.035 0.000 0.000 0.000 0.058 0.002
GRACE 0.340 0.031 0.118 0.004 0.410 0.062
WISE 0.697 0.015 0.326 0.043 0.699 0.065

Llama-3-8b

FT-M 0.827 0.021 0.532 0.029 0.850 0.271
ROME 0.079 0.017 0.430 0.019 0.020 0.000
MEMIT 0.052 0.000 0.000 0.000 0.000 0.000
GRACE 0.257 0.032 0.008 0.005 0.358 0.078
WISE 0.482 0.089 0.046 0.006 0.503 0.057

Table 13: Generalization results of sequential editing
experiments under editing evaluation (Edit.) and real-
world evaluation (Real.) across various editing methods,
LLMs, and benchmarks.

Table 8, the results indicate that current editing1056

methods exhibit worse generalization than reliabil-1057

ity when dealing with sequential editing requests.1058

All methods except FT-M and WISE demonstrate1059

near-zero generalization ability under real-world1060

evaluation, which further proves that existing edit-1061

ing methods cannot effectively fulfill the practical1062

needs of continuous editing.1063

A.8 Sequential Editing on Other Datasets1064

The results of sequential editing on ZsRE and1065

COUNTERFACT are presented in Table 12. These1066

two datasets exhibit trends similar to those ob-1067

Edit Num BS 1 BS 2 BS 4 BS 8 BS 16
100 0.000 0.000 0.000 0.000 0.000
200 0.000 0.000 0.000 0.000 0.000
400 0.000 0.000 0.000 0.000 0.000
800 0.000 0.000 0.000 0.000 0.000
1000 0.000 0.000 0.000 0.000 0.000

Table 14: The reliability for sequentially editing Llama-
3-8b using MEND, illustrating the impact of different
batch sizes (BS) across varying numbers of edits.

served in QAEdit, including the poor practical ef- 1068

fectiveness of existing editing methods, the inad- 1069

equacy of simplified editing evaluations, and the 1070

dilemma of achieving editing success and preserv- 1071

ing unrelated knowledge. 1072

A.9 Mini-Batch Sequential Editing for MEND 1073

As shown in Table 14, unlike FT-M and MEMIT, 1074

which can maintain a certain level of editing per- 1075

formance under specific batch sizes (as depicted 1076

in Figure 4), MEND is completely unusable in se- 1077

quential editing scenarios, regardless of the batch 1078

size. This poor effectiveness can be attributed to the 1079

limitation of the meta-learning paradigm, wherein 1080

the hypernetwork of MEND for parameter updates 1081

is specifically trained on the original model state. 1082

Consequently, the predicted parameter modifica- 1083

tions are optimized solely for the original model 1084

and fail to effectively adapt to the evolving states 1085

of the sequentially edited model. This limitation 1086

fundamentally constrains MEND’s efficacy in se- 1087

quential editing scenarios. 1088
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Prompt for Subject Extraction

Please identify the subject in the provided prompt and respond solely with the subject, ensuring
the subject is directly drawn from the prompt itself (including the need for exact match in
case, both uppercase and lowercase).

↪→
↪→

Here are some examples for guidance:
```
{'prompt': 'Who published Journal of Clinical Microbiology?', 'subject': 'Journal of Clinical

Microbiology'}↪→
{'prompt': 'Who was mainly responsible for the design of Abney Park Chapel?', 'subject': 'Abney

Park Chapel'}↪→
{'prompt': 'Who was behind the creation of IAC Building?', 'subject': 'IAC Building'}
{'prompt': "Who is Li Jiancheng's sister?", 'subject': 'Li Jiancheng'}
{'prompt': "Who is the Haitz's law named after?", 'subject': "Haitz's law"}
```

Based on the examples, for 'prompt': 'Who got the first Nobel Prize in physics?', the 'subject'
is:↪→

Figure 7: Complete prompt used for directly extracting subject from edit prompt for QAEdit.

Prompt for Question Paraphrasing

Role and Goal: Serves as a data engineer, use your knowledge to rewrite the following question in
a different way, ensuring it conveys the same meaning and maintains a neutral tone but with
different wording. Avoid using phrases such as 'Could you tell me'. Instead, directly
rephrase it into a structured question.

↪→
↪→
↪→

Please rephrase the following question: Who got the first Nobel Prize in physics?

Figure 8: Complete prompt for paraphrasing edit question into rephrased question for generalization evaluation.
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Prompt for LLM-as-a-Judge

Your job is to look at a question, a gold target, and a predicted answer, and then assign a grade
of either ["CORRECT", "INCORRECT"].↪→

The following are examples of CORRECT predicted answers.
```
Question: What are the names of Barack Obama's children?
Gold target: Malia Obama and Sasha Obama
Predicted answer 1: sasha and malia obama
Predicted answer 2: Malia and Sasha Obama are the names of Barack Obama's children.
```
These predicted answers are all CORRECT because:

- They fully contain the important information in the gold target.
- They do not contain any information that contradicts the gold target.

The following are examples of INCORRECT predicted answers.
```
Question: What are the names of Barack Obama's children?
Gold target: Malia and Sasha
Predicted answer 1: Malia.
Predicted answer 2: Malia, Sasha, and Susan.
Predicted answer 3: Malia and Sasha, Malia and Sasha, Malia and Sasha, Malia and Sasha (repeated

answer)↪→
```
These predicted answers are all INCORRECT because:

- A factual statement in the answer contradicts the gold target or contain repeated answer.

Here is a sample. Simply reply with either CORRECT or INCORRECT.

```
Question: {question}
Gold target: {target}
Predicted answer: {predicted_answer}
```

According to the gold target, please grade the predicted answer of this question as one of:
A: CORRECT
B: INCORRECT

Just return the letters "A" or "B", with no text around it.

Figure 9: The complete prompt used to employ a LLM as a judge for providing binary assessments (correct or
incorrect) based on a given question, gold target answer, and predicted answer.
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