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Abstract

The rapid growth of Large Language Mod-001
els (LLMs) and Vison-and-Language Models002
(VLMs) has highlighted the importance of in-003
terpreting their inner workings. Arguably, the004
biggest question in interpretability is why an005
LLM can solve a number of tasks or whether006
they obtain the semantics other than the statis-007
tical co-occurrence (Semantics-Statistics dis-008
entanglement, or S2 disentanglement). Al-009
though previous works disentangled the sev-010
eral semantic aspects, uniform interpretation011
poses two challenges; First, previous works are012
only weakly tied to how an LLM works; In-013
Context Learning (ICL). Second, most prob-014
lems are In-Distribution (ID), where the se-015
mantics and statistics (e.g., a prompt format)016
are inseparable. Here we propose the Rep-017
resentational Shift Theory (RST), stating that018
an ICL example causes the cascading shift in019
the representation for the S2 disentanglement.020
To benchmark RST, we formalize the Out-of-021
Distribution (OoD) generalization under RST022
and propose two hypotheses for the ICL perfor-023
mance of VLMs not trained with multi-image024
or multi-turn resources (OoD ICL). Our first025
hypothesis is that OoD ICL can contribute to026
the performance when the ID performance is027
poor. Our second hypothesis is that the counter-028
factual textual ICL example works better than029
the first approach when the textual modality is030
predominant. We obtained the supporting evi-031
dence in six visual question-answering datasets032
for the first hypothesis and in a hateful memes033
challenge dataset for the second hypothesis. In034
conclusion, our work marks a crucial step to-035
wards understanding the role of ICL over the036
S2 disentanglement, a central question of inter-037
pretability.038

1 Introduction039

Upon the explosive usage of the Large Language040

Model (LLM) in Natural Language Processing041

(NLP; Zhao et al. (2023)), interpreting its inner042

workings is critical for reliable and evidence-based 043

decision-making. Arguably, the most fundamental 044

interpretability question is why an LLM works; i.e., 045

whether an LLM acquires the semantics (Abdou 046

et al., 2021; Gurnee and Tegmark, 2024; Godey, 047

2024; Vafa et al., 2024) or is a parrot repeating sta- 048

tistically plausible responses (Zečević et al., 2023; 049

Bender et al., 2021). Previous works tackle this 050

Semantics-Statistics disentanglement (S2 disentan- 051

glement) for various aspects (e.g., color or geolo- 052

cation) from an LLM’s latent space. Building a 053

unified framework for S2 disentanglement in gen- 054

eral, however, is still outrageous. 055

To build a unified interpretability framework for 056

LLMs, In-Context Learning (ICL; Brown et al. 057

(2020)), a gradient-free reasoning capability emerg- 058

ing in LLMs, is critical. A major finding in inter- 059

pretability for ICL is the concept of meta-gradient 060

(von Oswald et al., 2023; Dai et al., 2023a); LLMs 061

can learn to optimize its own latent space in the ab- 062

sence of the gradient information. Despite the rich 063

literature on theoretical and empirical justification, 064

the relevance of the meta-gradient to S2 disentan- 065

glement is elusive; i.e., why that interpretation is 066

valid is still unclear. Here we propose Representa- 067

tional Shift Theory (RST) for interpreting how an 068

ICL example affects the latent space, leading to S2 069

disentanglement. 070

To study S2 disentanglement, the Out-of- 071

Distribution (OoD) generalization (Farquhar and 072

Gal, 2022) provides valuable insights. OoD is a dis- 073

tinction of the data distribution between the static 074

training set and the diverse test set. An LLM re- 075

quired to generalize to OoD input performs the 076

explicit S2 disentanglement; infer the same seman- 077

tics facing the different distribution (i.e., statistics). 078

Therefore, we tackle the OoD generalization with 079

RST to show its effectiveness on S2 disentangle- 080

ment. 081

More specifically, we focus on OoD generaliza- 082

tion in the vision-and-language (VL) problems due 083

1



to the growing needs in real-world applications.084

Due to the resource shortage with the multi-image085

multi-turn conversations, many VL models such as086

LLaVA (Liu et al., 2023b) are solely trained with087

single-image single-turn resources. This means088

that ICL is an OoD generalization (OoD ICL) to089

these models, making it ineffective. Improving090

OoD ICL reduces the need for labor-intensive data091

collection and resource-consuming training. Using092

RST as a guiding principle, we address this chal-093

lenging problem.094

Our contribution could be summarized as follows:095

1. As an extension of the meta-gradient, we pro-096

pose RST to describe how an ICL example af-097

fects the LLM output. RST states that an ICL098

example first shifts the representation of the099

zero-shot input, and this shift triggers another100

shift of the output. We introduce a semantic101

term and a statistic term in RST as the first102

formalism of S2 disentanglement in general.103

We further show how OoD ICL can be framed104

into the S2 disentanglement. In short, we for-105

malize OoD ICL as the amplification of the106

semantic term under the fixed statistic term1.107

2. We hypothesize that adding an OoD ICL108

image-text pair (Multi-image Multi-turn OoD,109

or MM OoD) could improve the performance110

when the zero-shot input does not provide111

strong semantics. We confirm this hypoth-112

esis in six diverse Visual Question Answering113

(VQA) datasets.114

3. We also hypothesize that counterfactual115

prompting for curating the text-only OoD116

ICL example (Single-image Multi-turn OoD,117

or SM OoD) contributes to the performance118

when the original input is biased toward a spe-119

cific label and the text is dominant over the im-120

age. To validate this, we apply counterfactual121

prompting and instruct the model to curate a122

negative example before the decision-making.123

We observe its effectiveness in a hateful meme124

challenge dataset.125

2 Related Work126

First, we review previous work on Semantics-127

Statistics Disentanglement (S2 Disentanglement),128

1such as the effect of a two-dimensional image tensor in
OoD, whereas the model is solely trained with the tensor with
a single dimension

a central question in this study. Second, we sum- 129

marize the impact of In-Context Learning (ICL) 130

and the interpretability studies focusing on ICL 131

to understand its significant role on S2 Disentan- 132

glement. Finally, we introduce the previous Out- 133

of-Distribution (OoD) benchmarks and efforts to 134

position ourselves in OoD studies. 135

2.1 Towards S2 Disentanglement 136

In parallel to the wide application of LLMs to 137

NLP (Zhao et al., 2023) and the relevant multi- 138

modal fields (Zhang et al., 2024), centric to the 139

interpretability is S2 Disentanglement. Typically, 140

a single work focuses on one or a few aspects of 141

semantics. For example, Abdou et al. (2021) ex- 142

tracted the subjective aspects of color disentangled 143

from the light spectrum in LLMs’ representations. 144

Gurnee and Tegmark (2024) showed the robust- 145

ness of the representation of the geolocation and 146

time, and Godey (2024) analyzed this geography 147

under the scaling law (Kaplan et al., 2020). Vafa 148

et al. (2024) analyzed the world model in LLM for 149

spatial information. We aim at a theory spanning 150

multiple aspects of semantics. 151

2.2 ICL 152

After the initial introduction by Brown et al. (2020), 153

massive efforts have been spent on improving the 154

LLMs’ ICL capabilities, which we categorize into 155

three groups. The first group focuses on task 156

instruction, such as Chain-of-Thought reasoning 157

(Madaan et al., 2023). The second group optimizes 158

the ICL example(s) choice, typically from the train- 159

ing data. Since this process is cost-consuming 160

given the large volume of data, most studies adopt 161

a simple algorithm such as BM25 (Robertson et al., 162

1996). Another type of selection method utilizes 163

models with strength in semantics-oriented tasks 164

(e.g., image aesthetics2), such as CLIP (Radford 165

et al., 2021). The last group curates the ICL ex- 166

amples, mostly by LLMs. A subgroup of example 167

curation with a strong theoretical backbone is coun- 168

terfactual prompting (Wang et al., 2024). Based 169

on the given task’s data generation process, this ap- 170

proach generates examples with desired properties, 171

such as the least modification of the original exam- 172

ple for label flipping. To validate our theory, we 173

use a standard set of methods for the experiments. 174

Specifically, we use CLIP-based image-text pair 175

selection for Experiment I. For Experiment II, we 176

2https://laion.ai/blog/laion-aesthetics/
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use counterfactual prompting as the main method-177

ology and BM25-based text-guided ICL example178

selection as a text-oriented baseline.179

Interpreting how ICL works is another hot topic.180

Various interpretations have been proposed to ob-181

tain theoretical and empirical grounding behind182

ICL. Typically, the interpretation studies hire a spe-183

cific algorithm to interpret the dynamics of LLM’s184

representations: for example, Bayesian inference185

(Xie et al., 2022), contrastive learning (Ren and186

Liu, 2023), multi-state RNN (Oren et al., 2024),187

and gradient descent (von Oswald et al., 2023; Dai188

et al., 2023a), among many others (Han et al., 2023;189

Wang et al., 2023; Li et al., 2023). These studies190

covered extensive theoretical aspects, including the191

common finding of meta-gradient; LLMs could192

learn how to optimize its own representation. How-193

ever, how each theory contributes to S2 disentan-194

glement is unclear. We tackle this problem with an195

extension of the meta-gradient.196

Another line of interpretability studies isolated crit-197

ical mechanisms or data structures for ICL, such as198

the induction head (Olsson et al., 2022; Cho et al.,199

2025), the function vectors (Todd et al., 2024), and200

the parallel structure (Chen et al., 2024a). Instead201

of focusing on the detailed mechanisms, our study202

provides a macroscopic analysis of the entire latent203

space. The potential connection to this line of work204

is in the Appendix E.1.3.205

2.3 OoD Generalization206

An Out-of-Distribution (OoD) problem is defined207

as a distinction of the distributional shift from the208

static training dataset to more diverse test inputs209

(Farquhar and Gal, 2022). OoD generalization is210

the task where the models need to address the OoD211

problems (Hendrycks and Gimpel, 2017). Since212

this topic is diverse, hereafter we limit our scope to213

NLP and VL domains unless stated otherwise.214

Most efforts on these domains have been spent on215

domain adaptation (Ramponi and Plank, 2020) and216

label shift (Zhang et al., 2021; Wu et al., 2021).217

Both approaches hold out some categories Xtest218

of the resource(s), and test the performance of219

the model trained solely with the other categories220

Xtrain; The former uses multiple datasets of simi-221

lar topics, and the latter splits the multi-class clas-222

sification labels. Although these studies provide223

valuable insights, the distinction between seman-224

tics and statistics is elusive; i.e., how to define the225

distributional difference among multiple datasets226

or multiple labels is opaque.227

In parallel to the efforts on extending the con- 228

text length (Huang et al., 2024) and the explosive 229

growth of multimodal LLMs centered on VL ca- 230

pabilities (Zhang et al., 2024), several works ad- 231

dressed OoD problems in a single-image conversa- 232

tion and a multi-turn conversation separately. For 233

example, Dai et al. (2023b); Gao et al. (2024) pro- 234

posed solutions for detecting OoD in a multimodal 235

conversation. Lang et al. (2024) introduced the 236

information-theoretic approach for multi-turn con- 237

versation intention detection. Ye et al. (2022) pro- 238

posed two novel OoD categories, the multi-label 239

OoD and the label shift under the specific context. 240

Here, we extend the application to a multi-image, 241

multi-turn conversation, marking a crucial step to- 242

ward generalization to the real world. 243

3 Preliminaries 244

3.1 Meta-Gradient 245

Central to the optimization of traditional machine 246

learning is the gradient descent, where the learning 247

objective is explicitly given to the model, forming 248

the gradient ∆H over the representation H of an 249

input in hidden space. A line of works (von Os- 250

wald et al., 2023; Dai et al., 2023a) suggests that 251

the LLMs perform another form of gradient descent 252

in ICL. To summarize, they use their own attention 253

weights W to form a meta-gradient ∆W , multi- 254

plied by H to form the updated representation H ′. 255

In a typical zero-shot setting, the only information 256

composing the meta-gradient is task instruction, so 257

the representation of the instruction Hinst is up- 258

dated by this meta-gradient ∆Winst/zsl to form the 259

representation of a zero-shot input Hzsl. In ICL, 260

the example is inserted between the instruction and 261

the zero-shot input, so the gradient consists of 1) 262

the gradient between the instruction and ICL exam- 263

ple ∆Winst/icl and 2) the gradient between an ICL 264

example and a zero-shot input ∆Wicl/zsl, together 265

forming the ICL example’s representation Hicl. In 266

summary, the meta-gradient in zero-shot and ICL 267

settings are summarized as: 268

Hzsl = (W −∆Winst/zsl)Hinst

Hicl = {W − (∆Winst/icl +∆Wicl/zsl)Hinst}
(1) 269

Note that most meta-gradient studies use linear 270

variants (e.g., Zhuoran et al. (2021)) of Transformer 271

(Vaswani et al., 2017). In contrast, we assume 272

that the concept is solid for the original model for 273

brevity. We empirically validate this assumption. 274
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3.2 Unembedding275

Another important concept in interpretability stud-276

ies (e.g., nostalgebraist (2020); Belrose et al.277

(2023)) is that the representation could be linearly278

projected, or unembedded, with a weight Wemb to279

the LLM’s output Y .280

Y = WembH (2)281

Combined with the meta-gradient, we propose a282

novel theory explaining how ICL works.283

3.3 Mixed Effect Model284

In Section A.2, we assume that the effect of statis-285

tics is static over the various inputs, while that of286

the semantics is diverse. The mixed effect model287

(Singmann and Kellen, 2019) provides the analyti-288

cal framework for this dual effect. Specifically, in289

observation i, the effect of a variable X over the290

target variable yi is expected to be identical across291

all the observations (fixed effect), and another vari-292

able Z affects individual observation differently293

(random effect). In a multiplicative case (Eq. 1), a294

mixed effect model could be formalized as:295

yi = (WX +WZiZi)X (3)296

For example, when analyzing the effect of a new297

teaching method on student performance across298

different schools, the teaching method may have299

a fixed effect since such a method generally aims300

for equal educational opportunities. In contrast,301

a variable representing each school should have302

a random effect when each school has a different303

educational policy. Note that various nonlinear304

expressions of the mixed effect are proposed (e.g.,305

Hajjem et al. (2014); Sigrist (2023)), but we limit306

the scope to the linear model for brevity.307

4 Methodology308

In this section, we outline our methodology for ex-309

ploring how LLMs disentangle semantic content310

from statistical properties of input data. We de-311

fine key terms, describe our approach with illustra-312

tive examples, and introduce our hypotheses about313

generalization. An overview of our methodology314

is depicted in Fig. 1. For illustrative purposes,315

we use two VQA examples: 1) Banana Mustache316

(Agrawal et al., 2015) example, in which a woman317

holds two bananas in front of her mouth, resem-318

bling the mustache, and 2) Tomato Nose example3,319

3reprinted from Freepik.com

in which the tomato is placed between a man’s eyes 320

and his mouth, representing the nose. Note that the 321

second example is not in the actual datasets we 322

used. 323

4.1 Definitions 324

• Semantics: Meaningful content in the input, 325

such as objects and relationships in images or 326

text. In the Banana Mustache case, a banana 327

placed between a woman’s nose and mouth 328

resembles a mustache. 329

• Statistics: Non-semantic properties like the 330

number of images or dialogue turns, which 331

may influence model performance due to 332

learned patterns but do not convey meaning. 333

• S2 Disentanglement: Extracting and utiliz- 334

ing semantic information regardless of sta- 335

tistical format. Successful disentanglement 336

occurs when a model focuses on semantics to 337

interpret inputs presented in formats different 338

from the training data. 339

• Representational Shift: Changes in the 340

model’s internal representations (e.g., hidden 341

states) caused by ICL examples. This shift re- 342

flects how ICL examples affect the processing 343

of zero-shot inputs, leading to differences in 344

output and capturing the influence of seman- 345

tics on the model’s reasoning. 346

• In-Distribution (ID) and Out-of- 347

Distribution (OoD): ID refers to data 348

formatted like the training data (e.g., single- 349

image, single-turn dialogues). OoD refers to 350

data with different formats (e.g., multi-image, 351

multi-turn dialogues), challenging the model’s 352

generalization. 353

• Out-of-Distribution In-Context Learning 354

(OoD ICL): Providing in-context examples in 355

formats not seen during training to assess the 356

model’s ability to leverage semantic cues in 357

unfamiliar statistical contexts. 358

4.2 Representational Shift Theory 359

Representational Shift Theory (RST) posits that 360

providing ICL examples can affect the internal rep- 361

resentations of LLMs, leading to shifts in both in- 362

put and output representations (Fig. 1 (A)). Specifi- 363

cally, an ICL example influences the representation 364

of a zero-shot input (input shift) and subsequently 365
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Q. What is the mustache made of?

(Wrong
Answer)

Q. What is the 
nose made of?
A. Tomato.

A. Banana.

[inst]
Answer the question.

Hinst Hzsl

ICL
Zero-Shot

Hicl Input Shift

Representation
of Tomato Nose

Wemb

ΔWinst/zsl

ΔWinst/icl

Wemb

LLaVA
ΔWicl/zsl

Yicl Yzsl Output Shift

“Tomato Nose” “Banana Mustache”
(A)

CFP
(B) (C)

Q. What is the
nose made of?
A. Tomato.

[inst]
Answer the
question.

Q. What is
the mustache
made of?

Training
Data

CLIP

Never seen this
format, but a fruit
is a face part!

[inst]
Is this meme

hateful?

Hateful is a strong
word. Calling a
person funny may
be hateful?

Propose another
caption for this image.

Caption:
This is funny.

This is cool.
Compared with
that caption,
is the original

caption hateful?

The two are
not too
different.
Therefore, no.

?

[inst]
...

Q. What is the
mustache made of?

Figure 1: Methodological Overview with Banana Mustache test input and Tomato Nose ICL example. (A)
Representational Shift Theory. Both in a zero-shot setting (black line) and in ICL (red line), an instruction (question)
is first provided with LLaVA to compose the representation Hinst. Next, in a zero-shot setting, the test input forms
the meta-gradient ∆Winst/zsl, resulting in the test-input representation Hzsl. Finally, the unembedding weight
Wemb converts Hzsl to the output Yzsl. In contrast, in ICL, an example is inserted between the instruction and
the test input to emphasize the semantic components (analogy of fruits and facial parts) to form the meta-gradient
∆Winst/icl and ∆Wicl/zsl, and then the representation Hicl and the output Yicl. We argue that the difference of
test-input representation Hicl −Hzsl (input shift) and that of output representation Yicl − Yzsl (output shift) are
the core of ICL. (B) Hypothesis I and S2 disentanglement in Experiment I. We hypothesize that semantically rich
yet statistically unfamiliar ICL example contributes to the performance when the zero-shot performance is poor
(left). To validate this hypothesis, we tested LLaVA’s OoD ICL (right) performance by adding an ICL example
most similar to the test input based on CLIP embedding (semantically rich) to the LLaVA variants not trained with
multi-image datasets. When the model successfully performs S2 disentanglement, it extracts the semantic analogy
despite the unseen format (statistics). (C) Overview of Hypothesis II and Experiment II. When LLaVA is textually
biased towards the hateful label (top), we hypothesize that enhancing text-to-text interaction facilitates the unbiased
decision (bottom), and test this hypothesis with counterfactual prompting (instructing the model to propose a caption
to compare with the original caption).

affects the model’s output (output shift). By analyz-366

ing these shifts, we can understand how semantic367

content influences the model’s reasoning.368

4.2.1 Representational Shift369

Our methodology focuses on analyzing how LLMs370

process and interpret inputs that require semantics-371

statistics (S2) disentanglement, particularly in OoD372

settings (Fig. 1 (A)). We introduce the concept of373

Representational Shift to measure internal changes374

within the model influenced by semantically rich375

examples. Consider the Banana Mustache exam-376

ple, where the question is "What is the mustache377

made of?" and the correct answer is "Banana.".378

Without additional context, the model may strug-379

gle with this analogy. Introducing a semantically380

similar Tomato Nose example–a pair of the Tomato381

Nose image and the question "What is the nose382

made of?" (answer: "Tomato")–provides a similar383

scenario. This illustrative example demonstrates384

how providing analogous semantic content can po-385

tentially cause a representational shift, enhancing386

the model’s ability to interpret the original input387

correctly. We measure changes in the latent space– 388

specifically the hidden states4–with and without the 389

ICL example. In practice, we analyze the distance 390

between representations using a cosine similarity 391

metric. This approach allows us to observe how se- 392

mantic content in ICL examples causes representa- 393

tional shifts that improve the model’s performance. 394

Mathematical formulations of RST are provided in 395

Appendix A. 396

4.2.2 S2 Disentanglement 397

Our S2 Disentanglement framework aims to sep- 398

arate the effects of semantic content from statis- 399

tical patterns in ICL examples. We assume that 400

semantics and statistics are independent, allow- 401

ing us to analyze their individual contribution to 402

representational shift. By presenting the model 403

with semantically rich examples in formats statisti- 404

cally different from the training data, we evaluate 405

whether the model can extract and apply semantic 406

information despite unfamiliar formats. Success is 407

4https://huggingface.co/docs/transformers/
en/main_classes/output#transformers.modeling_
outputs.BaseModelOutput
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demonstrated when the model, given semantically408

analogous OoD ICL examples, correctly answers409

questions it previously struggled with, indicating410

effective S2 disentanglement. The formalization of411

S2 Disentanglement is detailed in Appendix A.2.412

4.3 Hypotheses on Generalization413

We propose two hypotheses to improve generaliza-414

tion through representational shift:415

1. Hypothesis I: Multi-image Multi-turn416

OoD (MM OoD): When the zero-shot (In-417

Distribution, ID) input lacks sufficient se-418

mantic information for the LLM (i.e., poor419

zero-shot performance), providing semanti-420

cally rich MM OoD ICL examples can help421

improve performance (Fig. 1 (B)). This sce-422

nario is effective when the model needs more423

contextual semantic cues to make accurate424

predictions. In Experiment I, supposing a425

model trained solely with the single-image426

datasets (e.g., the images and captions of fruits427

or human faces) struggles with understanding428

a VQA task like Banana Mustache (Fig. 1429

(A), left), we provide a semantically rich OoD430

ICL example, such as Tomato Nose, to see if431

it can cause the meaningful representational432

shift, leading to better performance (Fig. 1433

(A), right).434

2. Hypothesis II: Single-image Multi-turn435

OoD (SM OoD): When textual semantics are436

more informative than image semantics, en-437

hancing the textual content through SM OoD438

ICL examples can improve performance (Fig.439

1 (C)). This approach is beneficial when the440

model over-relies on statistical patterns or ex-441

hibits label bias. For example, the LLMs442

instruction-tuned not to miss any hateful lan-443

guages may fail to recognize a banana mus-444

tache meme as a neutral analogy (Fig. 1 (C),445

top). In Experiment II, by asking the model446

to propose a neutral caption for the Banana447

Mustache image (e.g., "This is cool"), we en-448

courage it to utilize the text-to-text compar-449

ison for the hateful meme detection (Fig. 1450

(C), bottom).451

By testing these hypotheses, we aim to demonstrate452

that representational shift, facilitated by semanti-453

cally rich OoD ICL examples, can help LLMs focus454

on semantic content over statistical patterns.455

5 Experiments 456

We conducted two experiments to test our method- 457

ology’s effectiveness: Experiment I for MM OoD 458

and Experiment II for SM OoD. We used two vari- 459

ants of LLaVA (Liu et al., 2023b) (LLaVA-Llama2 460

(Touvron et al., 2023) and LLaVA-1.5 (Liu et al., 461

2023a)) in both experiments for two reasons: (1) 462

their reported state-of-the-art performance on lin- 463

guistic tasks indicates high capacity for the seman- 464

tic term, and (2) they are not trained with multi- 465

image resources or ICL settings, allowing OoD 466

analysis. We used models with 13 billion param- 467

eters to balance linguistic capability and memory 468

constraints. We also conducted a preliminary ex- 469

periment with InternVL (Chen et al., 2024b) for 470

analysis in an ID setting (Appendix D.8). We fo- 471

cused on ICL with a single example since we did 472

not observe any significant benefit from concate- 473

nating multiple examples in initial explorations. 474

5.1 Experiment I: Enhancing Performance 475

with Semantically Rich MM OoD ICL 476

Examples 477

Our objective in Experiment I was to test Hypoth- 478

esis I by investigating whether incorporating se- 479

mantically rich MM OoD ICL examples can im- 480

prove model performance on VQA tasks initially 481

hindered by weak semantics. 482

5.1.1 Experimental Setup 483

First, we evaluated the zero-shot (ID) and one-shot 484

(MM OoD) performance of LLaVA models on six 485

VQA datasets: VQA v2.0 (Goyal et al., 2017), 486

GQA (Hudson and Manning, 2019), VizWiz (Gu- 487

rari et al., 2018), TextVQA (Singh et al., 2019), 488

MMBench (Liu et al., 2023c), and MM-Vet (Yu 489

et al., 2023). The one-shot example was extracted 490

from the training dataset based on similarity to 491

the test input in CLIP embedding (Radford et al., 492

2021). We used accuracy as the performance met- 493

ric following the official evaluation codes. More 494

details are provided in Appendix C. To analyze the 495

representational shift, we hypothesize that the ef- 496

fect of the the semantics is dynamic (varies across 497

samples), while that of statistical biases is rela- 498

tively static: shared within a dataset (e.g., a prompt 499

format) or shared across datasets (e.g., the num- 500

ber of images). Since this potential mixture of 501

the static and dynamic effects fits with the mixed 502

effect model framework (Section 3.3), we imple- 503

mented a linear mixed effect model consisting of a 504
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random effect of Hzsl and a fixed effect of the vari-505

ables representing a dataset (out of six datasets we506

used) and a LLaVA variant (LLaVA-1.5 or LLaVA-507

Llama2) to predict the shifted representation Ĥicl.508

The formal definition of the mixed effect model is509

provided in Appendix B.1, and the discussion on510

model choice is in Appendix D.3.511

5.1.2 Results512

Fig. 2 shows the performance of LLaVA-Llama2.513

MM OoD ICL improved performance on datasets514

where the zero-shot performance was poor (e.g.,515

VizWiz, TextVQA), supporting Hypothesis I. Con-516

versely, MM OoD slightly degraded performance517

on datasets where the ID performance was already518

high (MMBench and MM-Vet).519

Figure 2: Performance summary of LLaVA-Llama2.
zsl and icl represent zero-shot learning and in-context
learning (ICL). ICL results in better performance for
four datasets where the zero-shot performance is poor.

The mixed effect model showed higher explana-520

tory power (R2 = 0.59 ± 0.02) compared to the521

random-effect-only baseline (R2 = 0.43 ± 0.01),522

suggesting that both the input shift and the fixed523

effects of dataset and model contribute to the out-524

put shift. The moderate explanatory power of our525

model validates the relevance of the input shift and526

output shift presupposed in RST.527

Table 1: Regression Coefficient*100 of the mixed effect
model’s prediction with the dummy variables represent-
ing the datasets and the models. The prediction shows
a much higher coefficient than the dummy variables,
validating our models. For dataset variables, only two
variables with the highest coefficient are shown. The
full result is in Table 6.

(Intercept) mmbench model Input Shift

9.2± 2.1 2.81± 0.7 −0.39± 0.4 70.33± 5.9

5.2 Experiment II: Reducing Label Bias with 528

SM OoD ICL Examples 529

In Experiment II, we aimed to test Hypothesis 530

II by investigating whether single-image, multi- 531

turn OoD ICL examples can reduce label bias by 532

encouraging the model to rely more on textual and 533

visual information. 534

5.2.1 Counterfactual Prompting (CFP) 535

Most LLMs have safety limitations based on in- 536

struction tuning (Bianchi et al., 2023), which pre- 537

vent them from generating hateful examples. To cir- 538

cumvent this while adhering to ethical guidelines, 539

we employed CounterFactual Prompting (CFP). In 540

our method, the model first generates text that fits 541

with a given image to compose a benign meme. 542

This generated meme serves as an ICL example to 543

classify the test input as hateful or benign. Figure 4 544

shows a representative prompt. 545

5.2.2 Experimental Setup 546

We used the Hateful Memes Challenge dataset 547

(Kiela et al., 2020), which is suitable for this ex- 548

periment due to its small size, the dominance of 549

textual modality, and inherent biases (Aggarwal 550

et al., 2024; Zhang et al., 2023). We compared 551

the performance of MM OoD and SM OoD ICL 552

examples. For MM OoD, we extracted the ICL 553

example based solely on textual modality using 554

the BM25 algorithm (Robertson et al., 1996). We 555

used LLaVA-Llama2 for its strong linguistic per- 556

formance. 557

5.2.3 Results 558

As shown in Table 2, SM OoD ICL using CFP im- 559

proved the model’s F1 score on the Hateful Memes 560

Challenge dataset compared to the zero-shot base- 561

line, supporting Hypothesis II. In contrast, MM 562

OoD ICL slightly decreased performance, suggest- 563

ing that enhancing textual semantics through SM 564

OoD is more effective in this context. 565

Table 2: Hateful memes detection performance. ZSL,
MM OoD, and CFP represent Zero-Shot Learning,
MM OoD, and Counterfactual Prompting, respectively.
CFP’s performance is better than ID while MM OoD
dropped the performance, supporting Hypothesis I.

setting ZSL ICL CFP

f1*100 61.4± 0.5 58.5± 0.9 62.2± 0.3

Figure 3 displays the cosine similarity matrix of 566

the input shift. For ID and MM OoD, the hateful 567
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and benign inputs have relatively high similarity,568

indicating that the model’s representations for dif-569

ferent labels are not well-separated. In the SM OoD570

case, the cross-label similarity drops significantly,571

suggesting that SM OoD ICL helps the model bet-572

ter distinguish between hateful and benign content573

by pulling apart their representations.574

ZSL,Benign

ZSL,Hateful

ICL,Benign

ICL,Hateful

CFP,Benign

CFP,Hateful

ZSL,Benign

ZSL,Hateful

ICL,Benign

ICL,Hateful

CFP,Benign

CFP,Hateful

0.2

0.3

0.4

0.5

1.000 0.275 0.193 0.181 0.301 0.173

0.275 1.000 0.197 0.190 0.148 0.336

0.193 0.197 1.000 0.321 0.157 0.127

0.181 0.190 0.321 1.000 0.136 0.152

0.301 0.148 0.157 0.136 1.000 0.154

0.173 0.336 0.127 0.152 0.154 1.000

Figure 3: Representational shift across the learning type.
Each entry is the similarity of the input between two
conditions. For example, the left-top value 0.173 is the
similarity of the input between hateful samples of a CFP
setting and benign samples of a ZSL setting. While the
hateful samples and the benign samples are similar for
ZSL and ICL settings, CFP hateful samples and benign
samples are less similar.

6 Discussion575

In this paper, we proposed RST, a novel inter-576

pretability theory for ICL. RST states that the con-577

ditioning by an ICL example triggers two represen-578

tational shifts, input shift and output shift. In light579

of RST, we formalized S2 disentanglement as the580

optimization by two meta-gradient terms, and OoD581

generalization as an amplification of the dynamic582

semantic term over the constant statistics term. We583

further proposed two hypotheses for OoD general-584

ization; First, even if the model is not trained with585

multi-image multi-turn datasets, an ICL image-text586

example can improve the performance when the587

test input’s semantics is poor to the model (MM588

OoD; Hypothesis I). Second, curating a text-only589

ICL example can be a better solution when the tex-590

tual modality is superior to the image modality (SM591

OoD; Hypothesis II). We validated Hypothesis I by592

performance improvement in four VQA datasets 593

out of six, in which ID performance is poor. For 594

Hypothesis II, We showed the supporting evidence 595

in hateful meme detection; performance gain by 596

counterfactual prompting while MM OoD does not 597

work. We also showed the supporting evidence of 598

the cascading representational shifts for each prob- 599

lem. More discussion is in Appendix E. 600

Although RST provides valuable insights into the 601

role of ICL over S2 disentanglement, we acknowl- 602

edge that fully decomposing input information into 603

distinct statistical and semantic components is chal- 604

lenging. For instance, typos in the dataset intro- 605

duce noise that is non-statistical yet semantically 606

insignificant. Nevertheless, we believe that analyz- 607

ing data across various datasets can help mitigate 608

the impact of such random noise. In addition, se- 609

mantics and statistics may interact in the real world. 610

For example, certain semantic content may only be 611

understandable within specific statistical patterns. 612

A complicated mathematical concept, for instance, 613

might be best comprehended through equations. 614

We acknowledge this interplay and will consider it 615

in future work. 616

In this paper, we focused on VLMs due to the lack 617

of interpretability studies despite their widespread 618

use. However, we believe our theory can bene- 619

fit LLMs solving text-only tasks. For example, a 620

recent work suggested that LLMs recognize un- 621

seen image-like text generation tasks only when 622

they have seen such text formats (Falkenstein et al., 623

2024). If our Hypothesis I (adding meaningful in- 624

formation works when the existing input is semanti- 625

cally poor) holds for this task, enhancing semantics 626

(e.g., by concatenating textual description of the ex- 627

ample) can improve performance even if the model 628

is not trained on such tasks. 629

7 Conclusion 630

RST provides an analytical framework for studying 631

the role of ICL over S2 disentanglement, a central 632

problem of interpretability. Based on RST, we for- 633

malized S2 disentanglement in OoD generalization 634

and showed that our hypothesis-driven approach 635

can contribute to the performance gain in various 636

problems. We believe our work will be the corner- 637

stone for the study of why ICL works on real-world 638

problems–our answer at this moment is "Because 639

the semantic information triggers the stream of rep- 640

resentational shift.". 641
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8 Limitations642

While our study provides valuable insights into S2643

disentanglement, there are several limitations and644

future research directions that warrant further in-645

vestigation.646

We limited our evaluation to one-shot ICL because647

few-shot ICL introduces additional complexities to648

our analysis, such as the fixed or random effects649

of varying the number of images. However, we650

acknowledge that applicability to few-shot ICL is651

critical, and we plan to tackle this challenge in fu-652

ture work.653

Although RST can be used to analyze arbitrary654

problems, the largest limitation for the time being655

is its generalizability; to foresee the performance656

improvement in another problem, we need another657

hypothesis tailored to that problem. Towards the658

automatic formulation of the novel hypothesis, we659

believe the flexibility of semantic and statistic terms660

(Eq. 7) is the key. This study is also limited linguis-661

tically; we only used English datasets.662

From a theoretical point of view, we have an intu-663

itive leap from the existing works on meta-gradient;664

a nonlinearity. Despite previous works on secretly665

linear nature of a nonlinear Transformer (Razzhi-666

gaev et al., 2024) and our empirical findings sup-667

porting RST, applying the concept developed on a668

linear variant to the nonlinear one might hinder the669

precise evaluation. Recently, Ren and Liu (2023)670

proposed a theory for the nonlinear Transformer671

variants with the help of contrastive learning (Le-672

Khac et al., 2020). Unifying RST with their ap-673

proach might provide a robust theoretical ground-674

ing.675

In addition, whether the input shift causes the676

output shift is still elusive. An approach is to677

hire a mechanistic interpretability method, such678

as path patching (Hanna et al., 2023; Goldowsky-679

Dill et al., 2023). Training phase mechanisms such680

as grokking or double descent (Davies et al., 2022)681

should also provide an explanation for the why682

question.683
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A Formalization of Representational1126

Shift Theory1127

A.1 Representational Shift1128

We formalize Representational Shift Theory (RST)1129

by analyzing the difference between the zero-shot1130

input-output pair {Hzsl, Yzsl} and that of ICL1131

{Hicl, Yicl}. Assuming that the effect of the in-1132

struction over an ICL example and over a zero-shot1133

input is identical, i.e., ∆Winst/zsl ≃ ∆Winst/icl,1134

we obtain the input shift:1135

Hicl −Hzsl ≃ −∆Wicl/zslHinst (4)1136

Applying this to the output, we observe an output 1137

shift: 1138

Yicl − Yzsl = −Wemb∆Wicl/zslHinst (5) 1139

Equations 4 and 5 represent the basic concept of 1140

RST. Note that the LLM’s final output is a sequence 1141

of words, but we use the representation of the last 1142

decoder layer as the output for analysis. To intu- 1143

itively analyze the multi-dimensional representa- 1144

tion, we use a distance metric DX/Y ∝ X − Y : 1145

DYicl/Yzsl
= WRSTDHicl/Hzsl

where WRST = −HT
instWemb

(6) 1146

In practice, we use cosine similarity as the distance 1147

metric. This formalization allows us to analyze the 1148

effect of ICL by comparing the distances between 1149

representations and outputs. 1150

A.2 S2 Disentanglement 1151

To disentangle semantics from statistics, we as- 1152

sume that the two concepts are independent. In 1153

RST, this implies that the weight updates due to se- 1154

mantics ∆W sem and due to statistics ∆W stat are 1155

discernible. We suggest that the semantic distance 1156

Dsem and the statistical distance Dstat are also sep- 1157

arable, as indicated by the relevance of represen- 1158

tational shift and the distance metric (Equation 6). 1159

We formalize the disentanglement as: 1160

∆Wicl/zsl = ∆W sem
icl/zsl +∆W stat

icl/zsl

DHicl/Hzsl
= Dsem

Hicl/Hzsl
+Dstat

Hicl/Hzsl

(7) 1161

This separation allows us to analyze how semantics 1162

and statistics individually contribute to the repre- 1163

sentational shift. 1164

A.3 OoD Generalization as S2 1165

Disentanglement 1166

An OoD input forces an LLM to generalize the 1167

same semantics under a significant distributional 1168

difference in statistics. Since the statistical differ- 1169

ence (e.g., format difference) is consistent across 1170

all test inputs, its effect on the representational shift 1171

is constant (fixed effect). In contrast, the semantic 1172

term’s effect varies across samples (random effect). 1173

Under this assumption, we formalize OoD general- 1174

ization as a mixed effect: 1175

DYicl/Yzsl
= WRST (D

sem
Wicl/Wzsl

+W stat) (8) 1176

13

https://arxiv.org/abs/2311.16502
https://arxiv.org/abs/2311.16502
https://arxiv.org/abs/2311.16502
https://arxiv.org/abs/2311.16502
https://arxiv.org/abs/2311.16502
https://arxiv.org/abs/2401.13601
https://arxiv.org/abs/2401.13601
https://arxiv.org/abs/2401.13601
https://arxiv.org/abs/2401.13601
https://arxiv.org/abs/2401.13601
https://doi.org/10.18653/v1/2023.findings-emnlp.440
https://doi.org/10.18653/v1/2023.findings-emnlp.440
https://doi.org/10.18653/v1/2023.findings-emnlp.440
https://doi.org/10.18653/v1/2023.findings-emnlp.440
https://doi.org/10.18653/v1/2023.findings-emnlp.440
https://arxiv.org/abs/2303.18223
https://arxiv.org/abs/2303.18223
https://arxiv.org/abs/2303.18223
https://doi.org/10.1109/WACV48630.2021.00357
https://doi.org/10.1109/WACV48630.2021.00357
https://doi.org/10.1109/WACV48630.2021.00357


A.3.1 Hypothesis I: MM OoD1177

Our first hypothesis is that MM OoD ICL examples1178

are effective when the zero-shot input does not1179

provide enough semantics to the model (i.e., poor1180

zero-shot performance):1181

Dsem
Wicl/Wzsl

= W sem
icl −W sem

zsl

DYicl/Yzsl
= WRST (W

sem
icl +W stat)

where W sem
zsl ≪ W sem

icl

(9)1182

One scenario is the lack of regularization in the1183

attention matrix. If semantically similar ICL ex-1184

amples amplify the relevant context, our approach1185

can alleviate irrelevant context, improving perfor-1186

mance.1187

A.3.2 Hypothesis II: SM OoD1188

When textual semantics W sem(T ) are more infor-1189

mative than image semantics W sem(I), enhancing1190

the textual term through SM OoD ICL examples1191

can be beneficial:1192

W sem
icl = W sem

icl (T ) +W sem
icl (I)

DYicl/Yzsl
= WRST (W

sem
icl (T ) +W stat)

where ∆W sem
icl/zsl(T ) + ∆W sem

icl/zsl(I)

(10)1193

For brevity, we assume the independence of seman-1194

tics over the two modalities. This scenario is ef-1195

fective in addressing label bias (Reif and Schwartz,1196

2024), where the model’s prediction may be bi-1197

ased toward certain labels due to over-reliance on1198

statistical patterns.1199

B Other Formalization1200

B.1 Mixed Effect Model1201

In Experiment I, we implemented a linear mixed1202

effect model to analyze the mixed effect of the input1203

shift and confounding variables over the output1204

shift. The model predicts the shifted representation1205

Ĥicl as:1206

Ĥicl = (Wr +WfI)Hzsl +W0 (11)1207

Here, Wr represents the random effect, Wf repre-1208

sents the fixed effect, I is the embedding of fixed1209

components (dataset and model), and W0 is a bias1210

term. The baseline model includes only the random1211

effect:1212

Ĥicl = WrandomHzsl +W0 (12)1213

By comparing the performance of these models,1214

we assessed the contributions of the random and1215

fixed effects.1216

B.2 Representational Analysis 1217

In Experiment II, to visualize label bias, we esti- 1218

mated the input shift weight WRST for different 1219

conditions (ID, MM OoD, SM OoD) and labels 1220

(benign, hateful). We computed the cosine sim- 1221

ilarity between weights to analyze how different 1222

approaches affect the model’s internal representa- 1223

tions: 1224

sim(W zsl
0 ,W zsl

0 ) · · · sim(W zsl
0 ,W cfp

1 )
...

. . .
...

sim(W cfp
1 ,W zsl

0 ) · · · sim(W cfp
1 ,W cfp

1 )


(13) 1225

Lower cross-label similarity indicates that the 1226

model better distinguishes between classes, reduc- 1227

ing label bias. Note that we do not explicitly con- 1228

sider layer normalization in our formulation (Sec- 1229

tion 3.2 and A.1), our cosine similarity-based anal- 1230

ysis implicitly accounts for normalization, focusing 1231

on direction rather than absolute values. 1232

C Implementation Details 1233

Experiments are conducted on a single NVIDIA 1234

A100 80GB GPU with Linux OS. Unless stated 1235

otherwise, all codes are written in Python 3.9. Sta- 1236

tistical arguments are based on a t-test and boot- 1237

strapping with 1,000 resamples. We run the models 1238

once with a random seed of 1987. Eq. 11 and Eq. 1239

12 are implemented on a PyTorch backend5 and 1240

trained to maximize the cosine similarity of the out- 1241

put shift with Pytorch Metric Learning package6’s 1242

SelfSupervisedLoss under the AdamW optimizer 1243

(Loshchilov and Hutter, 2019). We extract 1,000 1244

samples from each dataset and hold out 20% as 1245

a test set. The performance of this mixed effect 1246

model is evaluated using the marginal/conditional 1247

R2 (Nakagawa and Schielzeth, 2013). To maintain 1248

the experiment’s integrity while utilizing a wide 1249

range of statistical tools, the R language’s lmer 1250

package is called from the Python environment via 1251

rpy27 module. 1252

Fig. 4 illustrates a representative CFP prompt for 1253

Experiment II. 1254

5https://pytorch.org/
6https://kevinmusgrave.github.io/pytorch-metric-

learning/
7https://rpy2.github.io/doc.html
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System:
You are a helpful language and vision assistant.
User:
<image in dataset>
Give me one caption that fits with this image.
Assistant:
{generated caption}
User:
In comparison with that caption, is the following
caption hateful or non-hateful? Answer with a sin-
gle word.
{caption in dataset}
Assistant:
{answer}

Figure 4: The representative counterfactual prompt. The
system prompt is truncated for illustrative purposes. The
curly brackets indicate the placeholders. Please see our
code for the full version.

Table 3: Distribution of response lengths for correct vs.
incorrect predictions made by LLaVA-Llama2 for the
GQA dataset. Note the high occurrence of single-word
responses in correct predictions.

Prediction Response Length

Single Words More Than Two

Correct 40 1,064
Incorrect 10,208 1,262

D Additional Results1255

D.1 Qualitative Analysis1256

For a better understanding of the quantitative re-1257

sults, we performed a qualitative analysis. Here1258

we show the results for GQA and TextVQA, using1259

ground-truth labels (whether the model’s answer is1260

correct or incorrect) to alleviate the subjectivity.1261

D.1.1 LLaVA-Llama21262

First, we show a representative example of the1263

LLaVA-Llama2’s response where it gives an in-1264

correct answer in a ZSL setting, and it turns to the1265

correct one when the ICL example is given (Fig.1266

5). In this example, the cause of the difference is1267

the gain of task-following ability (Pan et al., 2023);1268

The zero-shot response does not follow an instruc-1269

tion to answer in a single word (Fig. 5 (a)). In1270

contrast, the ICL example allowed the model to1271

follow this instruction (Fig. 5 (b)). Additionally,1272

most LLaVA-Llama2’s correct predictions in the1273

OoD ICL settings are single words.1274

These results suggest that adding a simple map-1275

ping, instead of the ICL example, from the ZSL1276

response to a single word may be sufficient for1277

(A) Incorrect ZSL response
by LLaVA–Llama2.

User:

Are there drapes to
the right of the bed?
Answer the question
using a single word
or phrase.
Assistant:
yes, there are drapes
to the right of the bed

(B) Correct ICL response by
LLaVA–Llama2

User:

Do you see sheets on
the bed?
Answer the question
using a single word
or phrase.
Assistant:
no
User:

Are there drapes to
the right of the bed?
Answer the question
using a single word
or phrase.
Assistant:
yes

Figure 5: A representative LLaVA-Llama2’s response
from the GQA dataset. (a) LLaVA-Llama2 does not
follow a part of the instruction where it is required to an-
swer the question in a single word. (b) LLaVA-Llama2
responded in a single word with an ICL example.

the performance gain. We test this hypothesis in 1278

Appendix D.2. 1279

D.1.2 LLaVA-1.5 1280

Second, we show two sets of LLaVA-1.5’s re- 1281

sponses for which ICL allows the model to answer 1282

the question correctly (Fig. 6) or the one for which 1283

it forces the model to answer incorrectly (Fig. 7). 1284

In the ICL example of Fig. 6, we can see the anal- 1285

ogy between the two presented images (one penny 1286

is the value of the copper coin), potentially utilized 1287

by the model to make a correct prediction. In con- 1288

trast, we observe the wrong label (pine and belt) 1289

in the ICL example of Fig. 7, which the model 1290

may refer to in making the incorrect prediction. 1291

Hypothesizing that the token-to-token interaction 1292

may result in these complex behaviors, we propose 1293

a Transformer-based algorithm for switching the 1294

strategy between ZSL and ICL in Appendix D.2. 1295

D.2 On-the-Fly ZSL / ICL Switching 1296

Since the OoD ICL does not work in every dataset 1297

or in every question-answer pair, performing OoD 1298

ICL on-the-fly, or using it without prior ID evalua- 1299
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(A) Incorrect ZSL response
by LLaVA–1.5.

User:

How much is the
copper colored coin
worth?
Reference OCR to-
ken: [...], ONE, 2aH
Answer the question
using a single word
or phrase.
Assistant:
1

(B) Correct ICL response by
LLaVA–1.5.

User:

Provide a one-
sentence caption for
the provided image.
Reference OCR to-
ken: L
Assistant:
A copper coin featur-
ing the words ONE
PENNY sits on top of
a white surface.
User:

How much is the
copper colored coin
worth?
Reference OCR to-
ken: [...], ONE, 2aH
Answer the question
using a single word
or phrase.
Assistant:
1 penny

Figure 6: A representative LLaVA-1.5’s response for
which OoD ICL impacts the performance positively
from the TextVQA dataset. (a) LLaVA-1.5 answered the
monetary value question without its unit (just 1, without
penny), potentially due to the missing OCR token for
the unit. (b) LLaVA-1.5 answered correctly, potentially
because the ICL example attributed one penny to the
value of the copper coin.

tion, is critical for real-world applications. Recent1300

studies suggest that a Transformer’s output can be1301

approximated well before completing the response1302

generation (Pal et al., 2023), using early-layer la-1303

tent spaces (Din et al., 2024) or specific neuron1304

activations (Neo et al., 2024). Building on these1305

insights, we propose an algorithm for switching the1306

strategy (ZSL or OoD ICL).1307

Specifically, given the test-input representation1308

Hzsl, two auxiliary models {fzsl, ficl} predict the1309

probabilities of generating the correct answer in a1310

ZSL or an OoD ICL setting, respectively. Next, the1311

algorithm decides whether the LLaVA model L(X)1312

should use the ICL prompt Xicl (a set of an instruc-1313

tion, an ICL example, and a test input), or keep1314

the zero-shot prompt Xzsl (an instruction and a test1315

input). Altogether, our algorithm for generating its1316

(A) Correct ZSL response by
LLaVA–1.5.

User:

What kind of beer is
this?
Reference OCR to-
ken: NINK, [...],
ALE
Answer the question
using a single word
or phrase.
Assistant:
ale

(B) Incorrect ICL response by
LLaVA–1.5.

User:

Provide a one-
sentence caption for
the provided image.
Reference OCR to-
ken: NDCRAFTED,
[...], PINE, BELT,
PALE, ALE, [...]
Assistant:
a aluminum can of
southern star pine
belt ale
User:

What kind of beer is
this?
Reference OCR to-
ken: NINK, [...],
ALE
Answer the question
using a single word
or phrase.
Assistant:
pine belt

Figure 7: A representative LLaVA-1.5’s response for
which OoD ICL impacts the performance negatively
from the TextVQA dataset. (Left) LLaVA-1.5 answered
the correct object tag (ale). (Right) LLaVA-1.5 an-
swered incorrectly, potentially caused by the wrong
label (pine and belt) presented in the ICL example.

output Yalg is summarized as: 1317

Yalg =

{
L(Xicl) if ficl(Hzsl) > fzsl(Hzsl)

L(Xzsl) otherwise
(14) 1318

Since we do not use the shifted representation 1319

Hicl, we can use our algorithm on-the-fly, without 1320

prior ID evaluation. 1321

Empirically, we tested this algorithm with GQA 1322

and TextVQA datasets that allow a locally repro- 1323

ducible binary evaluation (about whether the an- 1324

swer is correct or incorrect). For the LLaVA model 1325

L, we used both LLaVA-Llama2 and LLaVA-1.5. 1326

For an auxiliary model f , we use a single linear 1327

layer for LLaVA-Llama2, assuming that the en- 1328

hanced task-following ability observed in quali- 1329

tative analysis (Appendix D.1) can be achieved 1330
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Table 4: Accuracy of the on-the-fly context selection.
Bold indicates the best performance in each row. In
the LLaVA-Llama2 case, the performance is bounded
by the OoD ICL accuracy since ZSL performance is
extremely low. In the LLaVA-1.5 case, it outperforms
both ZSL and ICL, suggesting its efficiency when the
performance of the two strategies is comparable.

Model Dataset ZSL OoD ICL Eq. 14

LLaVA–Llama2
TextVQA 0.9 4.7 2.2
GQA 0.0 9.0 6.5

LLaVA-1.5
TextVQA 61.6 57.0 63.8
GQA 65.7 56.0 68.2

with a simple approach. To account for more com-1331

plex findings for LLaVA-1.5, we use a single-layer1332

Transformer as f for this variant. We trained auxil-1333

iary models with 70% of the GQA and TextVQA1334

test sets, and tested with the remaining 30%. We1335

used binary cross-entropy8 with an Adam (Kingma1336

and Ba, 2015) optimizer to learn the mapping be-1337

tween the zero-shot representation Hzsl and the1338

ground-truth label (correct or incorrect). For1339

LLaVA-Llama2, to handle the scarcity of the cor-1340

rect label, we weighted correct label ten times91341

higher than the incorrect label.1342

We show the results in Fig. 4. In a LLaVA-Llama21343

case, since the ZSL performance is extremely low,1344

the algorithm’s performance is bounded by the ICL1345

performance. However, we obtained the 1.3− 6.51346

point gain in absolute accuracy over ZSL. For1347

LLaVA-1.5, the algorithm outperformed both ZSL1348

and ICL. These results suggest that this on-the-fly1349

approach can provide 1) a moderate performance1350

gain when the ZSL performance is quite low 2)1351

effectively switch the strategy between ZSL and1352

ICL when their performances are comparable. We1353

leave the design of algorithms for more challenging1354

settings (e.g., an unsupervised learning approach in1355

the absence of ground-truth labels) to future work.1356

D.3 Mixed Effect of Semantics and Statistics:1357

An Arbitrary Argument?1358

Although we believe that our assumptions for using1359

a mixed effect model (Section 3.3 and Appendix1360

B.1) in Experiment I is logically sound, we ac-1361

8https://docs.pytorch.org/docs/stable/
generated/torch.nn.BCELoss.html

9Aside from 1 : 10, We also tested 1 : 1,1 : 2,1 : 5,1 : 20,
and 1 : 10 works the best. We also did some preliminary
experiments on Focal Loss (Lin et al., 2017), but did not see a
significant performance gain in the preliminary experiments.

Table 5: Weight means and standard deviations
(×10 000) for random vs. random+fixed settings.

Weight Type Mean ± Std (×104)

Random Random + Fixed

Slope 1.88± 0.09 110.23± 2.75
Bias −6.33± 0.38 −508.79± 27.07

knowledge that this model choice may be arbitrary. 1362

For example, we can also model the random effect 1363

of a statistical pattern–For example, the potentially 1364

negative impact of an OCR tag present in the ICL 1365

example (Fig. 7) may be considered as such. One 1366

hypothesis is that the random effect of the seman- 1367

tics impacts the prediction positively, while the 1368

fixed effect of the statistical pattern works nega- 1369

tively. To test this idea, we analyzed the weights of 1370

the mixed effect model (Eq. 11) and the random- 1371

effect-only baseline (Eq. 12). We show the result 1372

in Table 5. Compared with the baseline, we can see 1373

that the mixed effect model has a larger slope term 1374

and a smaller bias term in average. We take this as 1375

evidence supporting our hypothesis. 1376

D.4 Impact of CLIP 1377

Solely based on the CLIP-based ICL selection, we 1378

cannot rule out the possibility that any OoD ICL 1379

example can affect the performance. To test this, 1380

we randomly sampled ICL examples from the train- 1381

ing dataset and performed qualitative analysis on 1382

the samples where ICL improved the performance. 1383

In all samples we observed, the randomly sampled 1384

ICL example does not improve the performance, 1385

suggesting the significance of the semantically rich 1386

ICL example. We show a representative sample in 1387

Fig. 8. All samples will be available online by the 1388

publication. 1389

Note that the method-to-method comparison 1390

(e.g., between CLIP and VLM-based similarity 1391

search (Li et al., 2024b)) is challenging for our 1392

case for potential circular reasoning10. An idea is 1393

to use task-specific criteria to define semantic rich- 1394

ness. We leave further methodological exploration 1395

for future work. 1396

D.5 Full Result for Table 1 1397

The full result for Table 1 is shown in Table 6. 1398

10Since method A results in better accuracy than method B,
A’s example is semantically richer than B’s, because A results
in [...]
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User:

Provide a one-
sentence caption for
the provided image.
Reference OCR to-
ken: LERIE, HOT
Assistant:
A bottle with a blue
top with LERIE writ-
ten on it.
User:

How much is the
copper colored coin
worth?
Reference OCR to-
ken: [...], ONE, 2aH
Answer the question
using a single word
or phrase.
Assistant:
1

Figure 8: A representative LLaVA-1.5’s response when
the ICL example is randomly sampled from the training
dataset. Seemingly irrelevant image-text ICL example
does not affect the model’s response.

Table 6: Full list of regression coefficients of the mixed
effect model’s prediction with the dummy variables rep-
resenting the datasets and the models in Experiment I.
The prediction shows a much higher coefficient than the
dummy variables, validating our models.

variable coef*100

(Intercept) 9.2± 2.1

mm-vet −0.75± 0.7
mmbench 2.81± 0.7
textvqa 2.1± 0.6
vizwiz 0.16± 0.7
vqav2 −0.12± 0.6

model −0.39± 0.4

Input Shift 70.33± 5.9

D.6 LLaVA-1.51399

We show LLaVA-1.5’s performance (Fig. 9).1400

LLaVA-1.5 outperforms LLaVA-Llama2 in all1401

cases, reflecting the authors’ additional training1402

efforts (Liu et al., 2023a).1403

Figure 9: The performance summary of LLaVA-1.5.
OoD ICL dropped the performance, suggesting the rich
semantics in the test input.

D.7 High-Level Analysis on Mixed Effect 1404

In addition to fine-grained analysis in Table 1, we 1405

analyzed the dataset-level mixed effect. In this 1406

analysis, the effects are represented as a coefficient 1407

of the corresponding one-hot encodings. Specif- 1408

ically, we modeled the accuracy of each dataset 1409

as a sum of the effect of a variable representing 1410

the presence/absence of an OoD ICL example and 1411

that of the variable representing the models and 1412

datasets. The result suggests that the model vari- 1413

able drives the explanatory power at this level, con- 1414

sistent with the performance summary (Fig. 2), 1415

which shows the drastic improvement of LLaVA- 1416

1.5 over LLaVA-Llama2.

Table 7: Regression coefficients of the variables repre-
senting model (LLaVA 1.5 or LLaVA-Llama2), dataset,
and presence/absence of ICL examples. all represents
the result of an all-variable model. R2 values are multi-
plied by 100 for brevity. The result only with the model
variable is similar to the all-variable model, consistent
with the performance summary (Fig. 2).

Variable R2*100

Fixed Random Fixed Random

model model 22.6± 3.0 52.0± 8.8
dataset ICL 0.3± 0.1 0.5± 0.2
model ICL 33.5± 2.4 33.6± 2.5
dataset model 0.2± 0.1 49.5± 2.7
all all 23.7± 4.4 53.7± 8.8

1417

D.8 Preliminary ID Analysis: InternVL 1418

To test if the findings about LLaVA is transferred 1419

to an ID setting, we also use InternVL (1-2 billion) 1420
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for its limited 11 yet tested multi-image capabilities1421

by multi-image datasets like MMMU (Yue et al.,1422

2024).1423

In the case of InternVL, MM OoD generally1424

dropped the performance, potentially because of its1425

high performance and multi-image resource short-1426

age (Fig. 10). To see whether the task difficulty

0
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mmvettextvqa

vizwiz

1b-icl
1b-zsl
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vizwiz

2b-icl
2b-zsl

Figure 10: Performance summary of InternVL. MM
OoD dropped the performance for all the datasets, po-
tentially reflecting that the baseline performance is mod-
erate to high for all the datasets.

1427
(i.e., semantic poorness to the model) affects this1428

trend, we see the performance by the number of1429

reasoning steps provided by the GQA dataset eval-1430

uation, typically seen as the difficulty metric. Di-1431

vided by this subcategory, ICL performs slightly1432

better when the number of steps is larger (Table1433

8). Together with LLaVA results, these results sug-1434

gest that the performance boost may serve as a task1435

difficulty indicator.1436

11https://github.com/OpenGVLab/InternVL/issues/419

Table 8: Impact of multi-image ICL in GQA for In-
ternVL 1b. N steps indicate the number of inference
steps. The numbers with an error represent accuracy(%)
in the corresponding setting. ICL boosted the perfor-
mance when the number of steps was above six, imply-
ing that the ICL positively affects the performance when
the task is challenging.

N Steps N Samples ZSL ICL

1–5 12,153 59.7± 0.15 52.5± 0.31
6–9 65 83.5± 0.24 84.6± 0.27

E Additional Discussion 1437

E.1 Our Contribution in Relation to Related 1438

Work 1439

E.1.1 Meta-Gradient 1440

Previous efforts on building interpretability theo- 1441

ries for ICL have validated the concept of meta- 1442

gradient, attention weight used as a form of gra- 1443

dient (von Oswald et al., 2023; Dai et al., 2023a). 1444

Meta-gradient backbones RST, which provides an 1445

analytical framework for S2 disentanglement. To- 1446

wards S2 disentanglement, interpretability studies 1447

disentangled a few aspects of the semantics. In- 1448

spired by these works, RST provides a unifying 1449

framework for S2 disentanglement. 1450

E.1.2 OoD 1451

Various OoD problems have been explored, such 1452

as multi-turn OoD (Ye et al., 2022). We extend the 1453

scope to the multi-image multi-turn setting. 1454

E.1.3 Potential Mechanism 1455

Although our theory provided the general frame- 1456

work for ICL analysis, its detailed mechanism is 1457

elusive. For example, linguistic patterns inher- 1458

ent in ICL examples may contribute to OoD ICL. 1459

For example, the model may learn parallel struc- 1460

tures, or the repetitive occurence of specific tokens, 1461

such as [Image token] → [Textual context] → 1462

[Image token] → [Test input]. 1463

Likewise, the model’s capability of learning such 1464

a token sequence is a promising candidate for the 1465

mechanism underlying the representational shift. 1466

One of the famous mechanisms is an induction 1467

head, with which the model performs token com- 1468

pletion. In ICL for labeled datasets, the induction 1469

head may utilize the label to perform a simple com- 1470

pletion like [ICL exampleA] → [Label Y 1] → 1471

[Test input B, which is similar to A] → 1472
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[Completed Label Y 1]. This is less likely in un-1473

labeled datasets (e.g., MM-Vet) but is a promising1474

area of research.1475

Also, our results support the presence of function1476

vectors in that the latent space right after present-1477

ing an ICL example influences model behavior. As1478

with preceding studies, we plan to explore which1479

attention heads cause the representational shift in1480

future work.1481

E.2 Other Applications1482

Although RST provides valuable insights into the1483

role of ICL over S2 disentanglement, our future1484

work should include the analysis of other OoD1485

problems (e.g., multi-turn OoD in general) and ID1486

problems where semantics and statistics are poten-1487

tially more entangled (e.g., MMMU (Yue et al.,1488

2024)). In that case, we can also extend the subject1489

to the large variety of LLMs, including the ones1490

trained with multi-image datasets such as LLaVA-1491

Next (Li et al., 2024a).1492

F Other Considerations1493

F.1 Potential Risks1494

A hateful meme is a highly sensitive research topic.1495

Therefore, all the hateful meme research involves1496

risks and uncertainty to some extent. For example,1497

the attackers may read a publication about a hateful1498

meme detector to create a new meme that the de-1499

tector may not be able to detect. More broadly, all1500

LLM-related papers can be maliciously used when1501

they are in the wrong hands (e.g., to improve an1502

LLM trained on the dark web). To overcome these1503

issues, an iterative update of the methodology with1504

safety measures is a must.1505

F.2 Ethical Considerations1506

The hateful memes challenge dataset (Kiela et al.,1507

2020, 2021) contains sensitive content. Therefore,1508

we refrained from showing actual hateful memes1509

so that this paper does not negatively impact any1510

targeted group. We refer the users to the original1511

publication for the considerations taken in dataset1512

curation.1513

F.3 AI Assistant Usage1514

We used GitHub Copilot for efficient coding and1515

ChatGPT for linguistic improvements.1516

F.4 License and Usage of Scientific Artifacts1517

We declare that all scientific artifacts used in this1518

study do not prohibit the use of artifacts for aca-1519

demic research. 1520

F.5 Documentation of Artifacts 1521

Experiment I uses the test split of six VQA datasets. 1522

GQA contains 10% of 22, 669, 678 questions over 1523

113, 018 images. TextVQA contains 5, 734 text- 1524

image pairs. VizWiz contains 8, 000 visual ques- 1525

tions. VQAv2 contains 447, 793 questions for 1526

81, 434 images. MMBench contains 1, 784 ques- 1527

tions. MM-Vet contains 218 questions. 1528

Experiment II is performed on test-seen split of a 1529

hateful meme challenge dataset with 1, 000 text- 1530

image pairs (510 benign samples and 490 hateful 1531

samples). 1532

20


	Introduction
	Related Work
	Towards S2 Disentanglement
	ICL
	OoD Generalization

	Preliminaries
	Meta-Gradient
	Unembedding
	Mixed Effect Model

	Methodology
	Definitions
	Representational Shift Theory
	Representational Shift
	S2 Disentanglement

	Hypotheses on Generalization

	Experiments
	Experiment I: Enhancing Performance with Semantically Rich MM OoD ICL Examples
	Experimental Setup
	Results

	Experiment II: Reducing Label Bias with SM OoD ICL Examples
	Counterfactual Prompting (CFP)
	Experimental Setup
	Results


	Discussion
	Conclusion
	Limitations
	Formalization of Representational Shift Theory
	Representational Shift
	S2 Disentanglement
	OoD Generalization as S2 Disentanglement
	Hypothesis I: MM OoD
	Hypothesis II: SM OoD


	Other Formalization
	Mixed Effect Model
	Representational Analysis

	Implementation Details
	Additional Results
	Qualitative Analysis
	LLaVA-Llama2
	LLaVA-1.5

	On-the-Fly ZSL / ICL Switching
	Mixed Effect of Semantics and Statistics: An Arbitrary Argument?
	Impact of CLIP
	Full Result for Table 1
	LLaVA-1.5
	High-Level Analysis on Mixed Effect
	Preliminary ID Analysis: InternVL

	Additional Discussion
	Our Contribution in Relation to Related Work
	Meta-Gradient
	OoD
	Potential Mechanism

	Other Applications

	Other Considerations
	Potential Risks
	Ethical Considerations
	AI Assistant Usage
	License and Usage of Scientific Artifacts
	Documentation of Artifacts


