
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

YOSO: YOU-ONLY-SAMPLE-ONCE VIA COMPRESSED
SENSING FOR GRAPH NEURAL NETWORK TRAINING

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph Neural Networks (GNNs) have become essential tools for analyzing struc-
tured data across various domains. In GNNs, sampling is critical for reducing
training latency by limiting the number of nodes processed during training, es-
pecially for large-scale applications. However, as the demand for better pre-
diction performance increases, existing sampling algorithms become more com-
plex, introducing significant overhead in the training process. To address this
issue, we introduce YOSO (You-Only-Sample-Once), an algorithm designed to
achieve highly efficient training while preserving prediction accuracy in down-
stream tasks. YOSO proposes a compressed sensing-based sampling and recon-
struction framework, where nodes are sampled once at the input layer, followed by
a lossless reconstruction at the output layer during each epoch. This approach not
only avoids costly computations, such as orthonormal basis, but also guarantees
high-probability accuracy retention, equivalent to full node participation. Exper-
imental results on both node classification and link prediction tasks demonstrate
the effectiveness and efficiency of YOSO, reducing GNN training by an average
of around 75% compared to state-of-the-art methods, while maintaining accuracy
on par with top-performing baselines.

1 INTRODUCTION

Graph Neural Networks (GNNs) (Kipf & Welling, 2016; Hamilton et al., 2017; Veličković et al.,
2017; Chen et al., 2018; Chiang et al., 2019; Zou et al., 2019) have become pivotal in modeling
structured data across various domains, such as social network analysis (Guo & Wang, 2020), pro-
tein interactions (Réau et al., 2023), and transportation systems (Liu et al., 2021a). As graphs rapidly
grow, long training time in GNNs becomes a crucial factor impeding the wide utilization of GNNs.
To mitigate the issue, various sampling strategies such as node-wise (Hamilton et al., 2017; Chen
et al., 2017), layer-wise (Chen et al., 2018; Zou et al., 2019; Huang et al., 2018), and subgraph-based
methods (Chiang et al., 2019; Zeng et al., 2019) have been developed. These techniques facilitate
mini-batch training, which reduces the amount of memory required to sustain the training process
and potentially speeds up convergence. However, with the increasing complexity of sampling algo-
rithms, GNNs have struggled to maintain training efficiency in large-scale applications (Gong et al.,
2023) and large graph datasets (e.g., OGB (Hu et al., 2020) and IGB (Khatua et al., 2023)).

Theoretically, the challenge in sampling stems from the biases and variances introduced when al-
tering the data distribution during training (Huang et al., 2018). Unlike the inherently unbiased and
variance-free GCN (Kipf & Welling, 2016; Huang et al., 2018) that utilize all training nodes, easily
computable sampling methods struggle to accurately estimate both graph structure and features or
embeddings (Jin et al., 2020), potentially degrading the learning outcomes. To achieve more precise
estimates, such as ensuring unbiasedness and variance reduction, subsequent methods have become
increasingly complex, focusing predominantly on reducing variance to improve accuracy but often
at the expense of increased computational demands. However, this contradicts the initial goal of
sampling–to reduce computational load–and highlights a significant gap in current research: finding
a method that achieves both high accuracy and efficiency. This gap is represented by the difference
between the target goal (i.e., the seven-pointed red star) and other sampling schemes in Figure 1(a).

To reveal the large overhead introduced by sampling in GNN training, we conduct empirical evalu-
ations for state-of-the-art (SOTA) sampling schemes with Reddit dataset (Hamilton et al., 2017)(de-
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(a) Total training time v.s. model accuracy (b) Total training time breakdown on Reddit

Figure 1: Total training time (with breakdown) and model accuracy for different sampling schemes,
including GS (GraphSage (Hamilton et al., 2017)), VG (VR-GCN (Chen et al., 2017)), FG (Fast-
GCN (Chen et al., 2018)), AG (AS-GCN (Huang et al., 2018)), LA (LADIES (Zou et al., 2019)), CG
(Cluster-GCN (Chiang et al., 2019)) and two versions of GraphSAINT (Zeng et al., 2019): S EG
(EDGE) and S RW (Random Walk), on Reddit dataset (Hamilton et al., 2017). The seven-pointed
red star marks the contribution of this paper.

tailed setup and environments consistent with Section 6.1). As shown in Figure 1(b), we break down
the total training time into three non-overlapping components: (1) Sampling, (2) Mem2GPU: refers
to transferring mini-batches from memory to GPU memory, and (3) Computation: all processes on
GPU–forward/backward propagation and parameter updates etc. Our results indicate that sampling
can account for 35.7% to 64% of the total training time across various sampling algorithms, making
it a significant overhead when considering both training efficiency and model accuracy. For instance,
as a layer-wise sampling method, AS-GCN (Huang et al., 2018) spends 55.6% of the total training
time (i.e., 3376.5 seconds) on sampling but only achieves suboptimal accuracy (0.964, which is
0.03 below the best-performing method, as shown in Figure 1(a)). In contrast, subgraph-based sam-
pling methods, although achieving the highest model accuracy at 0.967, incur the most significant
overhead, with sampling accounting for up to 64% of the total training time. Node-wise sampling
methods fall between these two paradigms in terms of overall performance. For example, VR-GCN
spends 685.72 seconds on sampling and achieves a Micro-F1 score of 0.962.

To address these inefficiencies and the identified research gap, we propose a novel approach, YOSO
(You-Only-Sample-Once), which innovatively applies compressed sensing (Candes & Tao, 2006)
(CS) to GNN sampling. YOSO reimagines the feature or embedding matrix as multi-channel signals,
utilizing adapted compressed sensing techniques to reduce the amount of computation involved in
the training by transferring the feature matrix to another domain with high sparsity. This approach
enables training with only a fraction M of nodes from a graph with N nodes (where M ≪ N ), and
reconstructs the training effect as if all N nodes were used. The nearly lossless reconstruction feature
of YOSO guarantees that model performance closely aligns with zero bias and variance. Moreover,
the sampling process in YOSO is designed to occur only once at the beginning of the training. This
involves determining the sampling set and sampling matrix based on the specific characteristics of
the graph. Subsequently, the reconstruction process takes place after each forward propagation.
This is done by utilizing the loss generated from the reconstructed embedding matrix to guide the
backward propagation. This innovative approach not only streamlines the entire training process
by eliminating the need for continuous resampling but also ensures that every step of learning is
informed by an optimally reconstructed data state, significantly enhancing both the efficiency and
efficacy of the model training. We summarize our contributions below.

• We proposed a novel approach named YOSO that significantly reduces GNN training time while
maintaining strong prediction accuracy across various downstream tasks by performing only-once
sampling for the entire training process.

• YOSO eliminates the need for expensive computations typically associated with combining com-
pressed sensing with GNN sampling (e.g., determining the orthonormal basis and sampling ma-
trix), thereby making the sampling process highly efficient.

• Experimental results demonstrate the effectiveness of YOSO on both node classification and link
prediction tasks. Specifically, YOSO significantly reduces overall training time by an average of
around 75% while preserving model accuracy. Ablation studies further reveal that YOSO achieves
near-zero bias and variance, effectively reconstructing the embedding matrix with minimal error.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 RELATED WORK

2.1 SCHEMES FOR LARGE-SCALE GNN TRAINING

To address the efficiency issue of large-scale GNN training, different schemes have been proposed
at the algorithmic level (Zhang et al., 2023), such as Historical Embedding (Chen et al., 2017; Fey
et al., 2021), Linearization (Frasca et al., 2020; Abu-El-Haija et al., 2021), Graph Condensation &
Distillation (Zheng et al., 2024; Wu et al., 2022), and sampling-based methods. For the first three
schemes, please refer to Appendix A for a detailed description, where we discuss their differences
and connections with sampling-based methods. The scope of this paper focuses on sampling-based
methods.

A widely accepted criterion (Liu et al., 2021b) divides current different sampling methods into three
categories: node-wise sampling, layer-wise sampling, and subgraph-based sampling, depending on
the granularity of the sampling operation during mini-batch generation.
Node-wise Sampling: This fundamental approach, pioneered by works such as GraphSage (Hamil-
ton et al., 2017) and others (Ying et al., 2018; Chen et al., 2017; Dai et al., 2018), involves sampling
at the individual node level. Each node’s neighbors are selected according to specific probabilities.
For example, GraphSage samples k−hop neighbors at varying depths with the sampling sizes, for
each depth tailored to optimize model performance. This approach, while simple and effective, has
been criticized for its exponential increase in sampling time complexity as the number of GNN lay-
ers grows.
Layer-wise Sampling: Developed to address the exponential growth in computational complexity
as GNNs depth increases in node-wise sampling, this method samples multiple nodes simultane-
ously in one step. Techniques like FastGCN (Chen et al., 2018) reframe GNN loss functions as
integral transformations and utilize importance sampling and Monte-Carlo approximation to man-
age variance. Further developments, such as AS-GCN (Huang et al., 2018) and LADIES (Zou et al.,
2019), focus on maintaining sparse connections between sampled nodes to aid convergence. How-
ever, these methods tend to introduce additional complexity and computational cost.
Subgraph-based Sampling: This approach forms mini-batch training subgraphs using expensive
graph partitioning algorithms. Cluster-GCN (Chiang et al., 2019) partitions the full graph into clus-
ters, sampling these clusters to create subgraphs for training batches. GraphSAINT (Zeng et al.,
2019) dynamically estimates sampling probabilities for nodes and edges to form subgraphs over
which the full GNN model is trained. While these techniques typically improve model accuracy,
they also lead to longer training time.

2.2 COMPRESSED SENSING

CS (Candes & Tao, 2005; 2006) is a framework that enables perfect recovery of data from a signif-
icant small number of measurements. Assuming a signal x ∈ RN can be sparsely represented as
x = Ux̂, where x̂ ∈ RK is sparse, i.e., ∥x̂∥0 ≪ K. U ∈ RN×K usually is a known transformation,
the measurement process is modeled as y = Φx = ΦUx̂, with Φ ∈ RM×N and M ≪ N . Φ is
called sensing matrix (Candes & Tao, 2006) or sampling matrix (Anis et al., 2016). Subsequently,
CS uses y ∈ RM instead of the original data x ∈ RN for processes, such as computation (Shi et al.,
2019) or network transmission (Haupt et al., 2008). Since M ≪ N , the cost of using y is signifi-
cantly lower than directly using x. After the process step is completed, the original data x needs to
be reconstructed from y. The Restricted Isometry Property (RIP) provides a necessary condition for
successfully recovering x from y, which guarantees that ΦU should preserve:

(1− δk)∥x̂∥22 ≤ ∥ΦUx̂∥22 ≤ (1 + δk)∥x̂∥22,
where δk ∈ (0, 1) is a constant. If the chosen Φ and U satisfy the RIP, then x̂ can be reconstructed
perfectly from y by solving an ℓ1-minimization problem

argminẑ∈RK∥ẑ∥1 s.t. y = ΦUẑ (1)

3 PRELIMINARIES

Graph Neural Networks. GNNs operate on graphs G = {V,E, Â,X}, where V = {1, 2, . . . , N}
represents the set of nodes, E = {(i, j) | i, j ∈ V } defines the edges, and Â ∈ RN×N is a matrix
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that encoding the connections between nodes, i.e., adjacency matrix or normalized Laplacian ma-
trix. The initial node features are stored in the matrix X ∈ RN×d, where d is the feature dimension.
GNNs iteratively learn node embeddings H(l) through a layer-specific transformations governed by
parameters θ(l), expressed as H(l) = fθ(l)(H(l−1), Â), l = 1, 2, ..., L, where L represents the num-
ber of layers, with H(0) = X.
Sampling-based GNNs. To manage computational and storage complexity, a class of GNNs em-
ploys sampling techniques, where a subset V

′ ⊂ V of nodes is selected based on certain rules P ,
such as importance sampling and Monte Carlo estimation (Chen et al., 2018). The node embeddings
H(l) are then approximated as fθ(l)(H

(l−1)

[V ′ ]
, Â), where [V

′
] denotes the indices corresponding to

V
′
, reducing the data need to be processed. However, many sampling methods have increasingly

complicated the computation of P to achieve more accurate approximations, leading to a growing
overhead in sampling time.
Apply CS to GNNs. Assume there exists a matrix U(l) ∈ RM×N such that: H(l) = U(l)Ĥ(l), l =

1, 2, ..., L, where Ĥ(l) is sparse, i.e., Ĥ(l) contains at most K non-zero rows, noted as ∥Ĥ(l)∥0,row ≤
K. The set of indices corresponding to the non-zero rows in Ĥ(l) is called the support. The existence
of such U(l) is a necessary condition for CS to operate on GNNs. Fortunately, U(l) that satisfying
H(l) = U(l)Ĥ(l) where ∥Ĥ(l)∥0,row ≤ k, exists. The existence has been proven in studies of graph
signal processing (Isufi et al., 2024; Bo et al., 2023; Tsitsvero et al., 2016; Puy et al., 2018; Chen
et al., 2015). U(l) can be derived from the properties of graph structure, i.e., normalized Laplacian
matrix, and possesses orthogonality: U(l)[U(l)]T = [U(l)]TU(l) = I. Let T(l) ∈ RM×d where
M ≪ N , be the measurements, computed as:

T(l) = Φ(l)U(l)Ĥ(l) (2)

where Φ(l) ∈ RM×N is the sampling matrix. To reconstruct the original sparse Ĥ(l), the following
optimization problem need to be solved:

argminH̃(l)∥H̃(l)∥2,1 s.t. T(l) = Φ(l)U(l)H̃(l) (3)

where ∥ · ∥2,1 is l2,1 norm (Liu et al., 2018). Perfect reconstruction requires that the matrix Φ(l)U(l)

satisfies RIP:
(1− δk)∥Ĥ(l)∥2F ≤ ∥Φ(l)U(l)Ĥ(l)∥2F ≤ (1 + δk)∥Ĥ(l)∥2F (4)

where 0 < δk < 1, and ∥ · ∥F is the Frobenius norm. After obtaining H̃(l) through Equation (3), the
original H(l) can be reconstructed as:

H(l) = [U(l)]TH̃(l) (5)

4 DISCUSSION OF COMPRESSED SENSING AS SAMPLING FOR GNNS

Reason why CS can be used as sampling. As discussed in Section 3, the goal of sampling is to
select a V

′
that V

′ ⊂ V and perform GNN computations on it. Meanwhile, T(l) ∈ RM×d, where
the rows of T form a subset of V . Therefore, using T for GNN computation achieves the same
effect as traditional sampling.
Benefits of compressed sensing as sampling. Assuming a Φ(l) that satisfies all requirements exists
(the existence proof and specific form are provided in Section 5.3), CS offers two main advantages
over other sampling methods. Firstly, input matrix H(0) = X ∈ RN×d can be sampled into a
much smaller T(0) ∈ RM×d, significantly reducing computational and storage requirements while
retaining essential information. Second, CS enables lossless reconstruction at the output layer, al-
lowing T(L) ∈ RM×d accurately expanded back to H(L) ∈ RN×d, as if all nodes were involved
in the whole computation. Thus, a smaller sample size can effectively emulate the full training set,
achieving high accuracy and reduced sampling time.

We can obtain lossness H(l) ∈ RN×d from T(l−1) ∈ RM×d. This lossless property ensures that the
model retains all information, thereby enhancing accuracy. Specifically:

H(l) = fθ(l)

(
Rec

{
T(l−1)

}
, Â
)

(6)
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where Rec{·} represents the processing of reconstruction, i.e., solving the optimization problem in
Equation (3) and Equation (5). However, the iterative processes outlined in Equation (6) is highly
inefficient and has the following challenges:

• Expensive Computations of Orthonormal Basis U(l) and Sampling Matrix Φ(l). Determin-
ing appropriate orthonormal bases U(l) and sampling matrices Φ(l) for l = 1, ..., L is time-
consuming. While Section 3 theoretically confirms the existence of U(l), its practical computation
is costly, often requiring matrix decompositions with an average time complexity of O(n3). Since
H(l) changes across GNN layers, a single U(l) is unlikely to fulfill the sparsity requirements for
all layers, necessitating (L + 1) separate decompositions. Similarly, Φ(l) must adapt to changes
in U(l) to maintain RIP, requiring an additional (L+1) adjustments. Thus, determining both U(l)

and Φ(l) involves a total of 2(L+ 1) costly computations during training.
• Accurate but Time-inefficient Reconstruction. The original approach reconstructs H(l) at ev-

ery layer before proceeding to the next layer’s computation to minimize error propagation, as
described in Equation (6). However, this incurs significant computational overhead. The fastest
known reconstruction algorithm has an average time complexity of O(nm) (Maleki, 2010), where
n is the signal dimension and m is the measurement length. For GNNs, this translates to an aver-
age reconstruction time complexity of O(dM) per layer, resulting in a total cost of O(dML) for
an L-layer GNN. Such overhead greatly reduces training efficiency.

Consequently, to effectively integrate CS into GNNs and ensure its efficiency, two obstacles must
be overcame in YOSO design:
Obstacle I. Working with Unknown U and Universal Φ. Given the high computational cost of
determining U(l), we need to satisfy or approximate CS’s necessary and sufficient condition with-
out explicitly knowing U(l). Without U(l), identifying the support and determining essential nodes
for reconstruction becomes challenging, complicating the construction of Φ(l). Since Φ(l) is layer-
specific, calculating it for each layer is impractical. Thus, we require a method that works with an
unknown U using a universal sampling matrix Φ, ensuring Φ remains adaptable to any U while
satisfying compressed sensing conditions.
Obstacle II. Balancing computational efficiency with the need for accurate reconstruction. If
we sample once at the input layer and use these results throughout the GNN computation, followed
by reconstruction only at the output layer, this approach requires just one sampling and reconstruc-
tion step for the entire training process. Although it may introduce some accuracy loss due to
reduced intermediate layer information, it remains efficient if this loss is controllable with a known
upper bound, allowing a balance between computational efficiency and model accuracy.

We address the Obstacle I in Section 5.2 (Unknown U) and Section 5.3 (Univerisal Φ), respectively,
and explain how YOSO solve the Obstacle II in Section 5.2.

5 METHODOLOGY

In Section 4, we explained why CS can be applied to GNN sampling and highlighted the benefits of
this approach compared to other sampling methods. In this section, we provide a detailed description
of the YOSO design, including how it addresses Obstacles I and II from Section 4.

5.1 OVERALL PROCESS OF YOSO

YOSO is primarily divided into four parts:

(a) Construction of Sampling Matrix Φ. As discussed in Section 4, we require an universal sam-
pling matrix Φ to perform one-time sampling and enable the subsequent training process. There-
fore, before the training process in YOSO (as indicated in Equation (2)), it is necessary to con-
struct Φ first. For a detailed construction of the sampling matrix Φ, please refer to Section 5.3.

(b) One-time Sampling. This process (Equation (2) where l = 0) takes node feature X = H(0) ∈
RN×d as input and produces T(0) ∈ RM×d, where M ≪ N . The computation of the orthonor-
mal basis U is provided in Section 5.2.

(c) Forward Propagation. After obtaining T(0) from one-time sampling, T(0) is used as the input
for the forward propagation process (Equation (7) in Section 5.2). Upon reaching the output of
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the L-th layer (i.e., the output layer), noted as Z ∈ RM×d, reconstruction is then performed
to obtain H(L) ∈ RN×d. Unlike the traditional CS process (Candes & Tao, 2005), where U
is known and the reconstruction process can be directly computed, in the GNN context, U is
unknown. To overcome this, YOSO constructs a joint loss function to determine the optimal U
together with GNN model parameters through the backpropagation process.

(d) Joint Optimization and Backward Propagation. YOSO constructs a joint optimization prob-
lem to form the loss function. This loss function consists of two parts. The first part is related to
reconstruction (Equation (8) in Section 5.2). The unknown U affects the reconstruction perfor-
mance (Equation (3) and Equation (5)) and must ensure that the matrix Ĥ(L) to be reconstructed
remains sparse; The second part is the GNN’s inherent loss, which is specific to the learning
task. For example, in node classification, a possible loss function is the cross-entropy loss. By
combining these two parts, we aim to simultaneously minimize the reconstruction error and the
GNN’s inherent loss. This results in a joint loss function (Equation (9) in Section 5.2), which is
used to update the relevant parameters through backpropagation.

5.2 YOSO DESIGN

This section provides a detailed elaboration on the YOSO design.

Unlike the standard GNN training process, YOSO operates within a specific sparse domain (i.e., U)
instead of the original data domain. As shown in Algorithm 1, the YOSO training process consists of
four key stages: one-time sampling, forward propagation, loss computation, and backward propaga-
tion. The process begins with transforming the data into the sparse domain (Line 3), where one-time
sampling is performed using the sampling matrix Φ. The subsequent steps: forward propagation
(Lines 4-7), loss computation (Lines 8-10), and backward propagation (Lines 11-17) are carried out
entirely within this sparse domain. A detailed explanation of these steps is provided below:
Initialization process (Line 1). The parameters are initialized randomly using the Xavier initializa-
tion method (Glorot & Bengio, 2010). It is worth noting that U is not initialized as an orthogonal
matrix but is iteratively adjusted to become orthogonal during the training process (Line 16).
One-time sampling (Line 3). Given a graph G = {V,E, Â,X}, where specific Â is the normal-
ized Laplacian matrix. We perform the sampling stage only once using the sampling matrix Φ on
the sparsity domain X̂ as ΦUX̂, resulting in T(0) ∈ RM×d, where M ≪ |V | = N . This process
involves the construction of the sampling matrix Φ, for details, please refer to Section 5.3.
Forward propagation (Lines 4-7). The forward propagation of YOSO can be expressed as: T(l) = σ

(
ΦÂΦTT(l−1)W(l)

)
1 ≤ l ≤ L− 1

U, Ĥ(L) = Rec
{
σ
(
ΦÂΦTT(L−1)W(L)

)}
l = L

(7)

where σ(·) is the activation function, W(l), l = 1, ..., L is the l−th layer’s trainable parameters, U
is the unknown orthonormal basis and the method for addressing this (working with unknown U)
will be discussed in the following.
Loss function and working with unknown U (Lines 8-10). We discuss the construction of
YOSO’s loss function in the following two points (i.e., P1 and P2). These two points mainly explain
how this construction effectively overcomes the challenge of working with the unknown U (Obsta-
cle I from Section 4).
(P1) Loss function. The Rec{·} in Equation (7) is equal to solve the following optimization prob-
lem:

argmin
Ĥ(L),U

{
1

2

∥∥∥Z−ΦUĤ(L)
∥∥∥2
F
+ λ

∥∥∥Ĥ(L)
∥∥∥
2,1

}
s.t. UUT = UTU = I (8)

where Z = σ(ΦÂΦTT(L−1)W(L)) represents the measurement matrix at the output layer, and λ is
a hyperparameter controlling the balance between fidelity and sparsity. Equation (8) is a non-trivial
optimization problem involving both Ĥ(L) and U due to non-convexity introduced by orthogonality
constraint (UUT = UTU = I) and the interaction between variables. To overcome it, we perform
joint optimization of Equation (8) with the GNN’s specific loss function (e.g., cross-entropy in node
classification learning task). Let the GNN’s loss function be LΘ

GNN , where Θ = {W(1), ...,W(L)}
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represents the set of all trainable parameters. The joint optimization objective function is defined as:

argmin
Ĥ(L),U,Θ

{
α

(
1

2

∥∥∥Z−ΦUĤ(L)
∥∥∥2
F
+ λ

∥∥∥Ĥ(L)
∥∥∥
2,1

)
+ βLΘ

GNN (H
(L)

)

}
s.t. UUT = UTU = I

(9)
where α and β are the hyperparameters to balance the reconstruction loss and GNN loss, and based
on the reconstruction process in Equation (5), we have H

(L) ∈ RN×d, which contains the represen-
tations for all nodes in the entire graph, will be reconstructed from the results of Z and subsequently
used in calculating the GNN loss.

Algorithm 1 Forward and Backward Propagation of YOSO

1: Initialize Θ, U, and Ĥ(L)

2: while not converged do
3: Compute T(0) = ΦUX̂
4: for l = 1 to L− 1 do
5: Compute T(l) = σ

(
ΦÂΦTW(l)T(l−1)

)
6: end for
7: Compute Z = σ

(
ΦÂΦTW(L)T(L−1)

)
8: Compute reconstruction Loss: Lrecon = 1

2∥Z−ΦUĤ(L)∥2F + λ∥Ĥ(L)∥2,1
9: Compute GNN Loss: LΘ

GNN (H
(L)

)

10: Compute Total Loss: L = αLrecon + βLΘ
GNN (H

(L)
)

11: Compute gradient w.r.t Θ: ∇ΘL = α∇ΘLrecon + β∇ΘLΘ
GNN (H

(L)
)

12: Compute gradient w.r.t U: ∇UL = α∇ULrecon + β∇ULΘ
GNN (H

(L)
)

13: Compute gradient w.r.t Ĥ(L): ∇Ĥ(L)L = ηĤ(L)∇Ĥ(L)Lrecon
14: Update Θ: Θ← Θ− ηΘ∇ΘL
15: Update U: Utemp = U− ηU∇UL
16: Project U onto the Stiefel manifold (Koochakzadeh et al., 2016) to ensure UTU = I

17: Update Ĥ(L): Ĥ(L) ← Ĥ(L) − ηĤ∇Ĥ(L)L
18: end while

(P2) Working with unknown U. To tackle the challenge of the unknown U, we treat U as an
optimization target. By leveraging Equation (9), we compute the total loss, which is subsequently
used to generate gradients for updating U through all training processes. A detailed derivation of
the gradient of the loss in Equation (9) with respect to U can be found in Appendix D.1).
Backward Propagation (Lines 11-17). The backward propagation process uses the loss generated
by Equation (9) to update three parameters, which are U, Ĥ(L) and Θ = {W(1), ...,W(L)} through
gradient descent. This process results in three gradients, namely ∇UL, ∇Ĥ(L)L, and ∇ΘL, each
corresponding to three learning rates ηU, ηĤ(L) , and ηΘ, respectively. For the detailed setting of
hyperparameters used here, i.e., α and ηU, please refer to Appendix C.4 and the detailed gradient
computation list in Appendix D.1.
Through Algorithm 1, we obtain both U and Ĥ(L). With U now determined, Equation (5) can
be used to reconstruct H(L), which is then applicable to downstream tasks such as link prediction.
Compared to Equation (6), the process described in Algorithm 1 achieves improved efficiency at the
cost of a slight reduction in accuracy and this loss in accuracy is bounded. For detailed statements
and proofs, see Appendix D.4.

5.3 CONSTRUCTION OF SAMPLING MATRIX Φ

When the orthonormal basis U remains unspecified prior to training, a key challenge arises in com-
puting T(0) = ΦUX̂ in Equation (7), as the lack of knowledge about U complicates the design of
Φ. In traditional CS, U maps data into a sparse domain, where the support (i.e., the indices of non-
zero rows) is explicitly identifiable, and these non-zero rows contain the crucial information. This
clarity allows Φ to be tailored to the supports. However, without prior knowledge of U, designing a
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Φ that effectively captures the essential information becomes significantly more difficult. Thus, the
core challenge lies in designing an robust and universal sampling matrix Φ that accurately captures
the key characteristics of the graph data while remaining compatible with any U without violating
the RIP.
To address this challenge, we propose an approach that integrates the design of a matrix Ŝ ∈ RM×N ,
derived from the graph structure, with the construction of the sampling matrix Φ, i.e., Φ = Ŝ⊗Σ,
where Σ ∈ RM×N is a random matrix and ⊗ is element-wise production. The matrix Ŝ is de-
termined once during the preprocessing phase and remains fixed throughout training. Its design
is based on graph-structure for two reasons: (1) the graph structure is invariant, and (2) it reflects
the importance of certain nodes, which is crucial for the GNN message-passing process. For the
sampling matrix Φ, maintaining a row full rank property is essential. Intuitively, Φ combines node
features or embeddings linearly, using weights corresponding to the indices of the support (non-zero
rows). If Φ is row over-ranked, it introduces redundancy, if row under rank, it results in information
loss. Thus, ensuring that Φ is crucial for effectively capturing the necessary information.
Construction of Ŝ. Considering the normalized Laplacian matrix Â = I−D−1/2AD−1/2 where
D and A denote the degree matrix and adjacency matrix, respectively. The N nodes correspond to
N eigenvalues from the spectral decomposition of Â, denoted as {λ1, . . . , λN} with λi ≥ 0 for any
i. These eigenvalues capture important structural properties of the graph, where larger eigenvalues
correspond to more influential nodes. To construct the sampling probability distribution, we define
P (i) = λi∑N

j=1 λj
, assigning node i a sampling probability proportional to its eigenvalue relative to

the total eigenvalue sum. Using this distribution, we sample M times to form the M rows of Ŝ. If
node i is sampled, the corresponding row in Ŝ includes the 1-hop neighbors of node i. Assume node
i has N(i) neighbors, each neighbor is randomly sampled with a probability of 1

N(i) . This construc-

tion ensures that Ŝ will not contain any all-zero rows, due to the self-loop added by the normalized
Laplacian. Consequently, the matrix Φ = ŜΣ is row full rank (detailed proof in Appendix D.2),
avoiding any row rank deficiency issues.
Construction of Σ. Randomness has been shown to play a critical role in achieving the RIP (Bara-
niuk et al., 2008). Therefore, we define Σ as a random matrix. Intuitively, in the absence of precise
support knowledge, we estimate the support by randomly sampling M nodes based on eigenvalue
weights. The matrix Σ must represent the contribution level of each node i to the non-zero rows
(the support). For instance, if node k contributes to both nodes i and j, Σ should quantify k’s con-
tribution to each. This is crucial for ensuring accurate reconstruction and satisfying the RIP. For
any column j in Ŝ, assume it contains g(j) non-zero elements. The corresponding elements in Σ
are assigned random values drawn from a Gaussian distribution N(0, 1

g(j) ). This design effectively
captures contribution levels, ensuring compliance with the Restricted Isometry Property.(detailed
proof in Appendix D.3).

6 EXPERIMENTS

In Section 6.2, we evaluate the training time along with model accuracy across two learning tasks:
node classification and link prediction. Also, to investigate convergence performance, we assess
the convergence of both the baselines and YOSO in Section 6.3. Finally, we conduct an ablation
study on the proposed compensations in Section 6.4. Details on the dataset, baselines, experimental
hardware and software configuration can be found in Section 6.1 and Appendix C.1.

6.1 EXPERIMENTAL SETTINGS

Datasets. For the node classification task, we selected Reddit (Hamilton et al., 2017), ogbn-arxiv
and ogbn-products (Hu et al., 2020). For the link prediction task, we used ogbl-ppa, and ogbl-
citation2 (Hu et al., 2020). For detailed dataset statistics, data splits and metrics, please refer to
Appendix C.2.
Baselines and Implementation. The baselines used in this paper include node-wise sampling
methods (GraphSage (Hamilton et al., 2017) and VR-GCN (Chen et al., 2017)), layer-wise sam-
pling methods (FastGCN (Chen et al., 2018), AS-GCN (Huang et al., 2018) and LADIES (Zou
et al., 2019)) and subgraph-based sampling methods (Cluster-GCN (Chiang et al., 2019) and Graph-
SAINT (Zeng et al., 2019)). Notably, several baseline models lacked implementations for link pre-
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Figure 2: Total training time comparison with the breakdown times including Sampling, Compu-
tation, and Mem2GPU. This evaluation covers two learning tasks across five datasets: (a) to (c)
represent the results for the node classification task on ogbn-arxiv (Hu et al., 2020), Reddit (Hamil-
ton et al., 2017), and ogbn-products (Hu et al., 2020), respectively; while (d)-(e) correspond to the
link prediction task on ogbl-ppa (Hu et al., 2020) and ogbl-citation2 (Hu et al., 2020). We use the
same model name abbreviations as in Figure 1.

diction, prompting us to modify them accordingly. Detailed information on the source code for these
baselines, the YOSO implementation, and other related materials can be found in Appendix C.3.
Hyperparameter Setting. All experiments are conducted using a two-layer GNN. Detailed hyper-
parameter settings are described in Appendix C.4.

6.2 OVERALL COMPARISON

In this section, we evaluate baselines and YOSO with two key metrics: model accuracy (varies with
different datasets and tasks) and total training time. The training time is broken down into three
non-overlapped parts: Sampling, Mem2GPU, and Computation.

Node Classification Task: First, YOSO achieves the shortest total training time with an average
of 75.3% reduction across all datasets compared to all baselines as shown in Figure 2. For ex-
ample, YOSO reduces around 95% total training time from 233.22 seconds (ogbn-arxiv/AS-GCN)
and 12,387.2 seconds (ogbn-products/AS-GCN) to 199.02 and 8,013.23 seconds, respectively. The
main reason is that YOSO significantly reduces the sampling time while introducing a little re-
construction overhead. As shown in Figure 2(a)-(c), the most substantial sampling time reduction
occurs on the Reddit dataset, where YOSO achieved a 99% decrease, cutting the sampling time
from 1149.02 seconds for GraphSAINT-EDGE and 1107.54 seconds for Random Walk to just 15.13
seconds. On average, YOSO reduced sampling time by approximately 95.7% compared to all other
baselines.

For model accuracy shown in Table 1, YOSO consistently matches or closely approaches the top
performers. For example, YOSO obtains an accuracy of 0.71 on ogbn-arxiv, just 0.01 below Graph-
Sage. On Reddit, it achieves the highest score of 0.967, matching GraphSAINT-Random Walk, and
on ogbn-products, it reaches 0.787, slightly trailing GraphSAINT-EDGE’s 0.792.

Link Prediction Task: For total training time, similar to the node classification task, YOSO
achieves the best training time with a 72.13% average training time decrease across all datasets for
the link prediction. For example, YOSO decreases the training time for the ogbl-ppa dataset from
44.53 seconds with AG-GCN to 21.42 seconds, and for the ogbl-citation2 dataset from 8423.06 sec-
onds with AG-GCN to 455.35 seconds.This improvement is consistent with the node classification
task, where YOSO achieves considerable reductions in sampling time while introducing minimal
reconstruction overhead. As depicted in Figure 2(d)-(e), YOSO achieves an average sampling time
reduction of about 80.5% across all datasets. As for model accuracy, outlined in Table 1, YOSO
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Table 1: Model accuracy results for different sampling schemes on node classification and link
prediction tasks. For specific evaluation metrics on each dataset, please refer to Table 5.

Different
Sampling
Schemes

Dataset
Node Classification Link Prediction

ogbn-arxiv Reddit ogbn-products ogbl-ppa ogbl-citation2
GraphSage 0.72 0.949 0.772 0.1704 0.8054
VR-GCN 0.697 0.962 0.699 0.1704 0.7967
FastGCN 0.438 0.927 0.404 0.1088 0.6555
AS-GCN 0.687 0.964 0.51 0.1245 0.6593
LADIES 0.649 0.927 0.501 0.1131 0.6693

Cluster-GCN 0.653 0.966 0.769 0.2053 0.7904
GraphSAINT-EG 0.702 0.967 0.792 0.2143 0.8039
GraphSAINT-RW 0.701 0.967 0.783 0.2263 0.8054

YOSO 0.72 0.967 0.787 0.2238 0.8025

(a) ogbn-arxiv (b) ogbl-ppa

Figure 3: Training loss and epoch curves for YOSO and baselines on two benchmark datasets.

maintained results with only a very small gap–0.0025 on ogbn-arxiv and 0.0029 on ogbl-citation2–
compared to the best results achieved by GraphSAINT-Random Walk and GraphSage, respectively.

In summary, for both tasks of node classification and link prediction, by combining high accuracy
with substantial reductions in sampling and total training time, YOSO demonstrates its efficiency in
GNN training and significantly improves both sampling and total training times across all datasets
while maintaining competitive accuracy, highlighting its effectiveness compared to the baselines on
the node classification task.

6.3 CONVERGENCE COMPARISON

We investigate YOSO’s convergence performance compared to other baselines. Specifically, we
select ogbn-arxiv and ogbl-ppa as representatives for node classification and link prediction, respec-
tively. The training loss-epoch curves are shown in Figure 3.

In both experiments, YOSO consistently outperformed the baselines in terms of convergence speed
and stability. On the ogbn-arxiv dataset, YOSO reached a lower training loss more rapidly than
GraphSAGE, GraphSAINT-EDGE, and FastGCN, with significantly fewer oscillations, indicating a
more stable and efficient training process. Similarly, on the ogbl-ppa dataset, YOSO demonstrated
faster convergence and maintained a smoother training loss curve, while the baselines, especially
FastGCN, exhibited more fluctuations. These results suggest that YOSO not only accelerates the
convergence process but also ensures a more stable training path compared to existing sampling
methods, highlighting its effectiveness in GNN training

6.4 ABLATION STUDY

In this subsection, we explore how YOSO’s total training time and model accuracy vary with dif-
ferent sampling sizes M and evaluate reconstruction effectiveness by comparing the H(L) matrix
generated without sampling to the H̃(L) matrix produced by YOSO’s sampling-reconstruction pro-
cess, with the differences visualized with heatmaps.
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(a) ogbn-products (b) ogbl-citation2

Figure 4: Total training time (including its breakdown) and model accuracy for YOSO with different
sampling sizes: (a) for the node classification learning task on the ogbn-products dataset, and (b) for
the link prediction learning task on the ogbl-citation2 dataset.
.

Figure 5: Reconstruction effectiveness visualized via heatmap. Using the ogbn-products dataset, 10
nodes are randomly selected from the training set, and for each node, 10 embedding dimensions are
randomly picked. The heatmap shows the absolute differences between original and reconstructed
embeddings for these elements. M is the size of the sampling set.

Varying sampling size M : We examine how total training time (including breakdown) and model
accuracy vary with M values, specifically M = {64, 128, 256, 1024, 2048}, as shown in Figure 4.
The results indicate that YOSO’s sampling time remains stable across different M , ranging from
107.94 to 111.53 seconds on ogbn-products and 143.56 to 149.65 seconds on ogbl-citation2, show-
ing minimal impact from M . In contrast, as M decreases, computation time increases, reflect-
ing more iterations needed for convergence (e.g., rising from 275.98s at M = 2048 to 301.94s at
M = 64 on ogbn-products, with a similar trend on ogbl-citation2). Model accuracy improves with
larger M , eventually stabilizing; it rises from 0.597 to 0.7873 on ogbn-products and from 0.312 to
0.8025 on ogbl-citation2. These findings highlight YOSO’s efficient sampling and improved accu-
racy and convergence with larger M .

Reconstruction effectiveness: The heatmap in Figure 5 shows the reconstruction effectiveness
for different sampling sizes M . Each 10 × 10 block represents the absolute difference between
reconstructed embeddings from our two-layer GNN sampling and those computed with all neighbors
(without sampling). As M increases, reconstruction accuracy improves, enhancing overall model
accuracy. However, beyond a certain point, such as M = 512 in Figure 5, further increases in M
offer diminishing returns in both reconstruction quality and model accuracy. This suggests there is
an optimal M that balances reconstruction quality and computational efficiency.

7 CONCLUSION

In this paper, we introduce YOSO (You Only Sample Once), a novel algorithm aimed at significantly
enhancing the efficiency of GNN training without sacrificing prediction accuracy. By leveraging a
compressed sensing-based sampling and reconstruction framework, YOSO performs node sampling
only once at the input layer, followed by a lossless reconstruction at the output layer during each
training epoch. Our experimental results demonstrate that YOSO can achieve up to 75% reduction of
existing state-of-the-art methods while achieving accuracy comparable to top-performing baselines.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Ethics Statement: In this paper, we present a technique grounded in compressed sensing that ad-
dresses the growing computational demands of GNN sampling schemes. Our approach significantly
reduces sampling time and overall GNN training duration without compromising model accuracy,
thereby enhancing the efficiency of graph neural network training. This improvement holds poten-
tial for a wide range of applications, such as recommendation systems and social network analysis,
and bioinformatics. We believe that our method contributes positively to the advancement of ma-
chine learning research by promoting computational efficiency. Although we do not anticipate any
immediate negative ethical implications or societal concerns from our approach, it’s important to
acknowledge that machine learning technologies, including graph-based methods, have broader im-
pacts. Therefore, responsible implementation is crucial to ensure that such technologies are applied
in a manner that promotes fairness and beneficial societal outcomes.
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A ADDITIONAL RELATED WORKS AND DISCUSSION

Graph Condensation&Distillation: Graph Condensation Gao et al. (2024) and Graph Distilla-
tion Tian et al. (2023) are methods designed to enhance computational efficiency. They achieve this
by shrinking large-scale graphs into smaller ones while preserving essential structural and feature
information. Alternatively, they replace complex GNN models with approximate and computation-
ally simpler models, such as MLPs (Ramchoun et al., 2016). However, these kinds of processes
introduce additional computational overhead and may result in the loss of important information,
potentially leading to a decrease in model performance. For example, GCond (Jin et al., 2021)
leverages a gradient matching framework to condense large graphs into significantly smaller syn-
thetic graphs. It optimizes node features as free parameters and models synthetic graph structures as
functions of these features, ensuring that training trajectories on the condensed graph mimic those
on the original graph. Another work, GC-SNTK Wang et al. (2024), reformulates graph condensa-
tion as a Kernel Ridge Regression (KRR) task, replacing computationally intensive GNN training
with a Structure-based Neural Tangent Kernel (SNTK). This approach captures both node feature
interactions and structural relationships, enabling efficient graph condensation while maintaining
strong generalization across GNN architectures.
Historical Embedding. This class of methods is not independent of sampling. Instead, they are of-
ten integrated with existing sampling strategies to improve specific aspects of sampling performance,
such as estimated variance (Chen et al., 2017), or expressiveness (Fey et al., 2021). For example,
VR-GCN (Chen et al., 2017) utilizes historical embeddings within node-wise sampling. GNNAu-
toScale (Fey et al., 2021) incorporates the concept of historical embeddings within subgraph-based
sampling. Although historical embedding can be effective in terms of accuracy, it often comes with
high computational complexity.
Linearization. This stream of works (Abu-El-Haija et al., 2021; Frasca et al., 2020) aims to simplify
the training and inference processes by removing the nonlinear components (e.g., activation func-
tions or deep iterative propagation) inherent in traditional GNN models. This simplification achieves
computational efficiency while preserving essential graph structure and feature information through
linear transformations, i.e., SIGN Frasca et al. (2020) or precomputations, i.e., iSVD (Abu-El-Haija
et al., 2021). Linearization techniques often involve precomputing graph-based transformations
(e.g., matrix products or embeddings) and applying efficient optimization methods (e.g., truncated
Singular Value Decomposition (SVD) or matrix factorization) to enable scalable training, particu-
larly for large graphs.

B ADDITIONAL EXPERIMENTS

B.0.1 YOSO V.S. GRAPH CONDENSATION&DISTILLATION

Both Graph Condensation and Graph Distillation introduce additional computational overhead and
may result in the loss of important information, potentially leading to a decrease in model perfor-
mance.

To better demonstrate the advantages of YOSO over these schemes, we conducted new experiments
comparing YOSO with two classic graph condensation schemes, GCond (Jin et al., 2021) and GC-
SNTK (Wang et al., 2024), on the ogbn-arxiv dataset. Both GCond and GC-SNTK use a graph
reduction rate of 0.25% on the ogbn-arxiv dataset and are paired with GCN (Kipf & Welling, 2016).
We evaluated preprocessing time and model accuracy for the node classification task. The results
are shown in Table 2. According to the new results, YOSO can achieve higher accuracy and much
lower preprocessing time (12X faster than GCond and 6X faster than GC-SNTK.) comapred to the
graph condensation-based scheme.

Table 2: Comparison of preprocessing time and model accuracy on the ogbn-arxiv dataset

Dataset ogbn-arxiv
Schemes GCond GC-SNTK YOSO

Preprocessing Time (s) 20615.6 11066.89 1643.32
Model Accuracy (Metric: Accuracy) 0.6172 0.6219 0.7169
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B.0.2 YOSO V.S. LINEARIZATION

To compare YOSO with linearization schemes, we conducted the following experiments:
SIGN (Frasca et al., 2020) and iSVD (Abu-El-Haija et al., 2021) were selected as baselines.
We compared the total training time and model accuracy on the ogbn-products and ogbn-arxiv
datasets. We use iSVD-best to represent the version of this baseline with the highest accuracy,
i.e., iSV D250 + dropout(LR) + dropout(M̂

(NC)
LR ) + finetuneH in the paper. The results are

shown in Table 3. From the results in the table, it can be observed that for SIGN, its accuracy on the

Table 3: Comparison between YOSO with linearization schemes.

Dataset ogbn-products ogbn-arxiv
Schemes SIGN-2 SIGN-4 SIGN-6 SIGN-8 YOSO iSVD iSVD-best YOSO

Total Training Time (s) 421.79 584.07 831.94 1052.96 499.02 9.94 982.12 10.74
Model Accuracy (Metric: Accuracy) 0.761 0.778 0.776 0.783 0.788 0.685 0.746 0.72

ogbn-products dataset does not exceed that of YOSO (0.788). While SIGN-2 achieves a total train-
ing time that is 18.3% lower than YOSO, its accuracy drops by 2.7%. A similar trend is observed for
the iSVD baseline. The low-accuracy version of iSVD reduces total training time by 8% but suffers
an accuracy drop of 4%. In contrast, the high-accuracy version, iSVD-best, increases total training
time by 91X compared to YOSO, with only a 0.014 improvement in accuracy.

B.0.3 LAYER-WISE Φ V.S. UNIVERSAL Φ

A notable drawback of using layer-wise Φ is that its computational cost is disproportionately high
compared to the improvement it brings in model accuracy. Specifically, to make this statement
more clearly, we conducted the following experiments: on the datasets ogbn-arxiv and ogbl-ppa,
we compared the total training time and model accuracy when using layer-wise Φ and universal Φ.
The results are shown in the Table 4. As seen in the table, across two different learning tasks, the

Table 4: Total training time and model accuracy on different types of Φ

Dataset ogbn-arxiv ogbl-ppa
Type of Φ Layer-wise Universal Layer-wise Universal

Total Training Time (s) 59.22 10.93 145.5 21.46
Model Accuracy 0.73 0.727 0.2254 0.2235

layer-wise based scheme increases the total training by 5X (ogbn-arxiv) and 7X (ogbl-ppa), yielding
only a marginal accuracy improvement at the 0.001 level compared to the universal-based scheme.
Therefore, using a universal Φ does not lead to a significant reduction in accuracy.

C DETAILS ABOUT EXPERIMENTS

C.1 HARDWARE AND SOFTWARE CONFIGURATION

We evaluate all baselines and our design on a Linux Desktop running Ubuntu 18.04.6 LTS, equipped
with an NVIDIA GTX 1060Ti (6GB memory) using CUDA version 11.8 and PyTorch version 2.0.0.
The system features a AMD Ryzen 5 5500 CPU with 64 GB DDR4 RAM, and the Python version
used is 3.9.0.

C.2 DATASETS

Data splitting: We adopt strategies consistent with previous works (Hamilton et al., 2017; Hu et al.,
2020). Specifically, for the Reddit dataset, we follow the data splitting used in GraphSage (Hamilton
et al., 2017), and for the OGB series (ogbn and ogbl), we maintain the splitting described in (Hu
et al., 2020).

The basic summary information of the datasets we use is provided in Table 5, and detailed descrip-
tions are as follows:
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Table 5: Statistics and metrics of the dataset

Dataset #Node #Edge #Dim. Metric

Node Property
Prediction

ogbn-arxiv 169,343 1,166,243 128 Accuracy
Reddit 232,965 11,606,919 602 Mirco-F1

ogbn-products 2,449,029 61,859,140 100 Accuracy
Link Property

Prediction
ogbl-ppa 576,289 30,326,273 128 Hits@100

ogbl-citation2 2,927,963 30,561,187 128 MRR

Table 6: Baselines and their public available source code link

Method Available Link
GraphSage https://github.com/williamleif/graphsage-simple
VR-GCN https://github.com/THUDM/cogdl/tree/master/examples/VRGCN
FastGCN https://github.com/gmancino/fastgcn-pytorch
AS-GCN https://github.com/Gkunnan97/FastGCN pytorch
LADIES https://github.com/acbull/LADIES

Cluster-GCN https://github.com/benedekrozemberczki/ClusterGCN
GraphSAINT https://github.com/GraphSAINT/GraphSAINT

ogbn-arxiv: This dataset is a directed citation network of Computer Science (CS) arXiv papers
from the Microsoft Academic Graph (MAG) (Wang et al., 2020). Each node represents a paper,
with directed edges indicating citations. The task is to classify unlabeled papers into primary cat-
egories using labeled papers and node features, which are derived by averaging word2vec embed-
dings (Mikolov et al., 2013) of paper titles and abstracts.
Reddit: Originally from GraphSage (Hamilton et al., 2017), this Reddit dataset is a post-to-post
graph where each node represents a post, and edges indicate shared user comments. The task is to
classify posts into communities using GloVe word vectors (Pennington et al., 2014) from post titles
and comments, along with features such as post scores and comment counts.
ogbn-products: This undirected, unweighted graph represents an Amazon product co-purchasing
network, where nodes are products and edges indicate frequent co-purchases. Node features are de-
rived from bag-of-words features of product descriptions, reduced to 100 dimensions via Principal
Component Analysis (Dunteman, 1989).
ogbl-ppa: This undirected, unweighted graph has nodes representing proteins from 58 species, with
edges indicating biologically meaningful associations. Each node features a 58-dimensional one-hot
vector for the protein’s species. The task is to predict new association edges, evaluated by ranking
positive test edges over negative ones.
ogbl-citation2: This dataset is a directed graph representing a citation network among a subset
of papers from Microsoft Academic Graph (MAG), similar to ogbn-arxiv. For each source paper,
two references are randomly removed, and the task is to rank these missing references above 1,000
randomly selected negative references, which are sampled from all papers not cited by the source
paper.

C.3 BASELINES AND IMPLEMENTATION

Table 6 presents the baselines used in this paper along with their publicly available source code links.
Since some baselines were not originally implemented in PyTorch, we standardized the framework
for fair comparison. If a PyTorch version involved the original authors, we selected that source code
(e.g., FastGCN (Chen et al., 2018)). Otherwise, we chose the most popular implementation based
on the number of stars. Notably, the repository linked for AS-GCN (Huang et al., 2018) in the table
includes implementations of both FastGCN and AS-GCN, but we only used the AS-GCN version,
while the FastGCN implementation was taken from the source listed in the table.
YOSO’s Implementation: The base code of YOSO1 is built on GCN (Kipf & Welling, 2016),
with the link available at https://github.com/tkipf/pygcn. The sampling stage in YOSO occurs on
the CPU and main memory since it involves calculations related to the entire feature matrix and
the regularized Laplacian matrix. After sampling, the relevant data is migrated to GPU memory

1https://anonymous.4open.science/r/YOSO-B49B
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Table 7: Node classification hyperparamter setting for baselines and YOSO on different datasets.

ogbn-arxiv Reddit ogbn-products
GraphSage 25&10 / Adam / 0.7 25&10 / Adam / 0.01 50&20 / Adam / 0.01
VR-GCN 8 / Adam / 0.01 16 / Adam / 0.01 32 / Adam / 0.01
FastGCN 64 / Adam / 0.01 128 / Adam / 0.001 256 / Adam / 0.001
AS-GCN 128 / Adam / 0.001 512 / Adam / 0.01 1000 / Adam / 0.01
LADIES 64 / Adam / 0.001 128 / Adam / 0.001 256 / Adam / 0.001

Cluster-GCN - / Adam / 0.01 - / Adam / 0.005 - / Adam / 0.005
GraphSAINT-EG 300 / Adam / 0.01 600 / Adam / 0.01 4000 / Adam / 0.01
GraphSAINT-RW 4000 / Adam / 0.01 8000 / Adam / 0.01 10000 / Adam / 0.01

YOSO 128 / Adam / 0.01 256 / Adam / 0.01 512 / Adam / 0.01

Table 8: Link prediction hyperparamter setting for baselines and YOSO on different datasets.

ogbl-ppa ogbl-citation2
GraphSage 25&10 / Adam / 0.7 50&20 / Adam / 0.01
VR-GCN 8 / Adam / 0.01 32 / Adam / 0.01
FastGCN 64 / Adam / 0.01 256 / Adam / 0.001
AS-GCN 128 / Adam / 0.001 1000 / Adam / 0.01
LADIES 64 / Adam / 0.001 256 / Adam / 0.001

Cluster-GCN - / Adam / 0.01 - / Adam / 0.005
GraphSAINT-EG 300 / Adam / 0.01 4000 / Adam / 0.01
GraphSAINT-RW 4000 / Adam / 0.01 10000 / Adam / 0.01

YOSO 128 / Adam / 0.01 512 / Adam / 0.01

for computation. Throughout the training process, multiple data exchanges occur between main
memory and GPU memory, such as in link prediction tasks where node embeddings need to be
updated.
Modification: All baselines support updating node embeddings and performing node classification
tasks. For node classification, if a baseline did not originally use the cross-entropy loss function,
we adjusted it to adopt this loss function. For the link prediction task, the following loss function is
applied:

L =
1

N+

∑
(i,j)∈E+

(
1−

h
(L)
i · h(L)

j

∥h(L)
i ∥∥h

(L)
j ∥

)
+

1

N−

∑
(i,j)∈E−

max

(
0, γ −

(
1−

h
(L)
i · h(L)

j

∥h(L)
i ∥∥h

(L)
j ∥

))

where N+ and N− represent the number of positive and negative samples, respectively, and E+

and E− denote the sets of positive and negative edges. The parameter γ is a hyperparameter, set to
0.5 in this study. As the ogbl-ppa and ogbl-citation2 datasets provide corresponding negative edges
by default, we used these pre-defined negative edges for our calculations.

C.4 HYPER-PARAMETER SETTING

The hyperparameter settings for both YOSO and the baselines are provided in Table 7 and Table 8 for
node classification and link prediction datasets, respectively. All experiments were conducted using
a two-layer GCN with official configurations. When certain parameters were not clearly specified
in some papers, we fine-tuned them for optimal accuracy. The recorded hyperparameters include
the sampling size (per node/layer/subgraph), the optimizer, and the learning rate. For YOSO, the
sampling size is denoted as M ; for example, on the ogbl-ppa dataset (Table 8), M = 128.
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D COMPUTATION AND PROOF

D.1 GRADIENT COMPUTATION

D.1.1 COMPUTATION OF ∇ΘL:

∇ΘL = α∇ΘLrecon + β∇ΘLΘ
GNN (Z) = ∂Lrecon

∂Z · ∂Z∂Θ +
∂LΘ

GNN (Z)
∂Z · ∂Z∂Θ

• ∂Lrecon

∂Z = (Z−ΦUĤ(L))

• Consider the g(L) which is the gradient at the output layer, and we have g(L) = ∂Lrecon

∂Z ⊙σ′
(S(L))

where⊙ denotes element-wise multiplication, σ
′
(S(L)) is the derivation of the activation function

at layer L and S(L) is the pre-activation input at layer L. Therefore, for l = L,L−1, ..., 1, we have
g(l−1) = ∇W(L)Lrecon ⊙ σ

′
(S(l−1)) = (ΦÂW(l))T g(l) ⊙ σ

′
(S(l−1)). By iteratively executing

this process, we can obtain ∂Z
∂Θ

• ∂LΘ
GNN

∂Z depends on the specific loss function used.

D.1.2 COMPUTATION OF ∇UL

∇UL = α∇ULrecon + β∇ULΘ
GNN (Z) = α∇ULrecon + β(

∂LΘ
GNN (Z)
∂Z · ∂Z

∂U )

• ∇ULrecon = −ΦT (Z−ΦUĤ(L))(Ĥ(L))T

• As in Section D.1.1, ∂LΘ
GNN

∂Z depends on specific loss function and easy to compute.

• For ∂Z
∂U , it need to be computed recursively. Since T(0) = ΦUX̂, ∂T(0)

∂U = ΦX̂. The

gradient propagates from Z back to U: ∇ULΘ
GNN (Z) = (

∂LΘ
GNN (Z)
∂Z · ∂Z

∂T(L−1) · · · ∂T
(1)

∂T(0) ·
∂T(0)

∂U ). As we know that T(l) = σ(S(l)) and S(l) = ΦÂW(l)T(l−1), therefore ∂T(l−1)

∂T(l−1) =

(ΦÂW(l))T diag(σ
′
(S(l)))

D.1.3 COMPUTATION OF ∇Ĥ(L)L

∇Ĥ(L)L = α∇Ĥ(L)Lrecon = −UTΦT (Z − ΦUĤ(L)) + λ∂∥Ĥ(L)∥2,1 where ∂∥Ĥ(L)∥2,1 is the

subgradient of the l2,1 norm and computed as (∂∥Ĥ(L)∥2,1)i =
Ĥ

(L)
i,:

∥Ĥ(L)
i,: ∥2

if and only if Ĥ(L)
i,: ̸= 0,

otherwise, (∂∥Ĥ(L)∥2,1)i = 0

D.2 FULL RANK OF Φ

Theorem 1: Let Ŝ ∈ RM×N be a binary sampling matrix derived from the graph’s structure, where
each entry Ŝi,j ∈ {0, 1} and each row has at least one non-zero entry. Let Σ ∈ RM×N be a
random matrix with entries drawn independently from a continuous probability distribution. Define
Φ = Ŝ⊗Σ, where ⊗ denotes element-wise multiplication. Then, with probability 1, the matrix Φ
has full row rank M .
Proof: First, we know that the structure of Φ satisfies the following conditions:

• Each entry of Φ is given by Φi,j = Ŝi,j ·Σi,j .

• The i-th row of Φ is Φi,: = Ŝi,: ⊗Σi,:.

• Non-zero entries in Φi,: correspond to positions where Ŝi,j = 1.

Assume there exist scalars c1, c2, . . . , cM , not all zero, such that
∑M

i=1 ciΦi,: = 0. This implies
that for each j = 1, . . . , N , we have

∑M
i=1 ciŜi,jΣi,j = 0. Let Ij = {i | Ŝi,j = 1}; then∑

i∈Ij
ciΣi,j = 0.
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Since the Σi,j values are independently drawn from continuous distributions, the probability that
this equation holds for any non-zero set of {ci} is zero unless all ci in Ij are zero. Therefore, for the
equation to be valid, ci = 0 for all i where Ŝi,j = 1.

As each row i contains at least one entry with Ŝi,j = 1, it follows that ci = 0 for all i. This
contradicts the assumption that not all ci are zero. Hence, the only solution is ci = 0 for all i,
indicating that the rows of Φ are linearly independent with probability 1. Thus, rank(Φ) = M with
probability 1.

D.3 SAMPLING MATRIX Φ AND RIP

Theorem 2: Let Ŝ ∈ RM×N be a selection matrix derived from the graph’s structure, where each
entry Ŝi,j ∈ {0, 1} indicates whether node j is included in the i-th measurement. Let Σ ∈ RM×N

be a matrix whose entries Σi,j are independent sub-Gaussian random variables with mean zero
and variance 1

g(j) , where g(j) > 0. Define the sampling matrix Φ = Ŝ ⊗ Σ, where ⊗ denotes
element-wise multiplication. Then, for any 0 < δk < 1, there exists a constant c > 0 such that if
M ≥ c · k log

(
N
k

)
, then with probability at least 1− e−cM , the matrix ΦU satisfies the Restricted

Isometry Property (RIP) of order k with constant δk; that is, for all Ĥ ∈ RN×d with ∥Ĥ∥0,row ≤ k,

(1− δk)∥Ĥ∥2F ≤ ∥ΦUĤ∥2F ≤ (1 + δk)∥Ĥ∥2F .

Proof: To demonstrate that ΦU satisfies the Restricted Isometry Property (RIP) of order k with
high probability, we consider ΦUĤ = (Ŝ ⊗ Σ)UĤ. For each row i and column r, the entry
(ΦUĤ)i,r can be expressed as

∑N
j=1 Ŝi,jΣi,j(UĤ)j,r. This sum only involves terms where Ŝi,j =

1. Therefore, (ΦUĤ)i,r =
∑

j∈Si
Σi,j(UĤ)j,r, where Si = {j | Ŝi,j = 1}.

The variables Σi,j are independent sub-Gaussian random variables with mean zero and variance
1

g(j) . Therefore, the expectation of ∥ΦUĤ∥2F can be computed as follows:

E
[
∥ΦUĤ∥2F

]
=

M∑
i=1

d∑
r=1

E


∑

j∈Si

Σi,j(UĤ)j,r

2


Expanding this and leveraging the independence of Σi,j , we have:

E


∑

j∈Si

Σi,j(UĤ)j,r

2
 =

∑
j∈Si

E
[
Σ2

i,j

] (
(UĤ)j,r

)2
Since E[Σ2

i,j ] =
1

g(j) , the expectation simplifies to:

E
[
∥ΦUĤ∥2F

]
=

M∑
i=1

∑
j∈Si

1

g(j)

d∑
r=1

(
(UĤ)j,r

)2
If we assume p(j) = g(j)

G , where G =
∑N

j=1 g(j) serves as a normalization factor, the expected

measurement count for each node j is Mp(j) = M g(j)
G . Thus:

E
[
∥ΦUĤ∥2F

]
=

N∑
j=1

M
g(j)

G
· 1

g(j)
∥(UĤ)j,:∥22 =

M

G
∥UĤ∥2F

By setting G = M , we have:
E
[
∥ΦUĤ∥2F

]
= ∥Ĥ∥2F

Now, define Zi,r =
∑

j∈Si
Σi,j(UĤ)j,r, which are sub-Gaussian random variables. Applying

Bernstein’s inequality, we obtain:

P
(∣∣∣∥ΦUĤ∥2F − ∥Ĥ∥2F

∣∣∣ ≥ δk∥Ĥ∥2F
)
≤ 2 exp

(
−c · δ

2
k∥Ĥ∥4F∑
i,r σ

2
i,r

)
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where σ2
i,r =

∑
j∈Si

1
g(j)

(
(UĤ)j,r

)2
. By bounding the total variance, we conclude that the prob-

ability of RIP failing is very low. This confirms that ΦU satisfies the RIP for all sparse Ĥ with
∥Ĥ∥0,row ≤ k with high probability.

D.4 ERROR BOUND

Theorem 3: Let H(L) be the output embeddings obtained by the standard GNN computation with
full reconstruction at each layer as per Equation (6). Let H̃(L) be the output embeddings obtained
by Algorithm 1, which performs sampling once at the input layer and reconstructs only at the output
layer. Assume that the activation function σ is Lipschitz continuous with Lipschitz constant Lσ , and
the sampling matrix ΦU satisfies the Restricted Isometry Property (RIP) of order k with constant
δk (i.e., 0 < δk < 1). Then, the error between H̃(L) and H(L) can be bounded as:∥∥∥H̃(L) −H(L)

∥∥∥
F
≤
(

Lσ

1− δk

)L

∥E∥F ,

where E = Z − ΦUĤ(L) is the reconstruction error at the output layer, and L is the number of
layers in the GNN.
Proof: We aim to bound the error

∥∥∥H̃(L) −H(L)
∥∥∥
F

between the output embeddings of the standard
GNN computation and those obtained by Algorithm 1.

Assume the activation function σ is Lipschitz continuous with a constant Lσ , such that

∥σ(X)− σ(Y)∥F ≤ Lσ ∥X−Y∥F ∀X,Y.

Further, let the sampling matrix ΦU satisfy the RIP of order k with constant δk, meaning

(1− δk)
∥∥∥Ĥ∥∥∥2

F
≤
∥∥∥ΦUĤ

∥∥∥2
F
≤ (1 + δk)

∥∥∥Ĥ∥∥∥2
F
,

for all Ĥ with
∥∥∥Ĥ∥∥∥

0,row
≤ k. We also have H(l) = UĤ(l), where Ĥ(l) has at most k non-zero

rows.

We will prove by induction on l = 1, 2, . . . , L that∥∥∥H̃(l) −H(l)
∥∥∥
F
≤
(

Lσ

1− δk

)l ∥∥∥H̃(0) −H(0)
∥∥∥
F
.

For the base case l = 0, at the input layer, we have H̃(0) = UX̂ and H(0) = X. The initial error∥∥∥H̃(0) −H(0)
∥∥∥
F

is assumed.

Assume that for some l ≥ 0,∥∥∥H̃(l) −H(l)
∥∥∥
F
≤
(

Lσ

1− δk

)l ∥∥∥H̃(0) −H(0)
∥∥∥
F
.

We aim to show that∥∥∥H̃(l+1) −H(l+1)
∥∥∥
F
≤
(

Lσ

1− δk

)l+1 ∥∥∥H̃(0) −H(0)
∥∥∥
F
.

For Algorithm 1, T̃(l) = σ
(
ΦÂW(l+1)T̃(l−1)

)
. At the output layer l = L, we perform recon-

struction:
H̃(L) = UĤ(L),

where Ĥ(L) is obtained by solving

min
Ĥ(L)

1

2

∥∥∥Z−ΦUĤ(L)
∥∥∥2
F
+ λ

∥∥∥Ĥ(L)
∥∥∥
2,1

,
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with Z = T̃(L). Due to the optimization and the RIP condition, we have∥∥∥Ĥ(L) − Ĥ
(L)
true

∥∥∥
F
≤ Crec ∥E∥F ,

where Ĥ
(L)
true is the true sparse representation of H(L), and Crec =

2δk
1−δk

. Since U is orthonormal,∥∥∥H̃(L) −H(L)
∥∥∥
F
=
∥∥∥Ĥ(L) − Ĥ

(L)
true

∥∥∥
F
,

implying ∥∥∥H̃(L) −H(L)
∥∥∥
F
≤ 2δk

1− δk
∥E∥F .

Given the Lipschitz continuity of σ, the error accumulates multiplicatively through L layers:∥∥∥H̃(L) −H(L)
∥∥∥
F
≤
(

Lσ

1− δk

)L ∥∥∥H̃(0) −H(0)
∥∥∥
F
.

If the initial error
∥∥∥H̃(0) −H(0)

∥∥∥
F

= 0, the primary source of error is from the reconstruction at
the output layer, yielding ∥∥∥H̃(L) −H(L)

∥∥∥
F
≤
(

Lσ

1− δk

)L

∥E∥F .
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