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ABSTRACT

Training adversarial agents to attack neural network policies has proven to be both
effective and practical. However, we observe that existing methods can be further
enhanced by distinguishing between states leading to win or lose and encouraging
the policy training to prioritize winning states. In this paper, we address this gap
by introducing an episodic control-based approach for adversarial policy train-
ing. Our method extracts the historical evaluations for states from historical ex-
periences with an episodic memory, and then incorporating these evaluations into
the rewards to improve the adversarial policy optimization. We evaluate our ap-
proach using two-player competitive games in MuJoCo simulation environments,
demonstrating that our method establishes the most promising attack performance
and defense difficulty against the victims among the existing adversarial policy
training techniques.

1 INTRODUCTION

It has been proved that deep reinforcement learning (DRL) policies are vulnerable to adversarial
attacks (Huang et al., 2017; Kos & Song, 2017). Most existing attacks on DRL policies are executed
by searching the adversarial examples and manipulating the environment (Huang et al., 2017; Kos &
Song, 2017; Nguyen & Reddi, 2019). However, such adversarial examples may not be applicable in
the real world (Gleave et al., 2020). Recently, training adversarial agents as attackers to DRL policies
in two-player games has been proven effective and practical (Gleave et al., 2020; Wu et al., 2021;
Guo et al., 2021; Bui et al., 2022). These kind of attacks first reduce the two-player environments
to single-player environments by fixing the victim agents, and then train the other agent to be an
adversarial agent which can be trained by conventional single-agent policy training method. Known
as adversarial policy training, these attacks generate natural observations that are adversarial to the
victim agents, achieving significant results.

While the aforementioned adversarial policy training methods have proven effective, there is still
room to improve adversarial training by exploring how states influences game outcomes. We believe
that utilizing the adversarial agent’s historical experiences can enable policy training to distinguish
between states that lead to win or lose and facilitate the learning of winning states through reward
adjustment, leading to an improvement in the effectiveness of adversarial policy training. In this
paper, we introduce a novel adversarial policy training approach that leverages the analysis of infor-
mation from past episodes to assess game states and adjust rewards, thereby assisting the adversarial
agent in achieving better performance.

Technically, we propose an episodic control-based adversarial policy training method for two-player
competitive games. Inspired by previous works on improving the performance of DRL using
episodic control (Blundell et al., 2016; Pritzel et al., 2017; Li et al., 2023), our method develops
a neural network-based episodic memory to store historical experiences. We utilize this episodic
memory to generate historical evaluations, which are used for reward revision. In our experiments,
we evaluate our method on two-player competitive games in MuJoCo domains (Todorov et al., 2012)
and compare it with state-of-the-art adversarial policy training approaches (Gleave et al., 2020; Guo
et al., 2021; Wu et al., 2021). Our experimental results show that our method establishes the most
promising attack performance and defense difficulty.

In summary, this paper presents four contributions. First, we propose an episodic control-based
adversarial policy learning method for two-player competitive games. Second, we introduce a
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method for generating state evaluation from historical experiences, implemented through our pro-
posed episodic memory. Third, we propose a reward revision approach to incorporate the historical
evaluations into the rewards. Fourth, our work demonstrates that by identifying and highlighting
the winning states with historical experiences, adversarial agents can achieve higher winning rates
against fixed victim agents and possess the capability to integrate multiple winning strategies to
defeat the victims.

2 RELATED WORK

2.1 ADVERSARIAL ATTACKS ON DRL POLICIES

Previous attacks against DRL policies mainly focus on manipulating the environment to fail the
victim agents. One type of attack focuses on perturbing the victim’s observations, forcing its policy
network to output sub-optimal actions, and thus failed the victim agent (Russo & Proutiere, 2019;
Sun et al., 2020; Zhang et al., 2021; Madry et al., 2018; Pattanaik et al., 2018; Pan et al., 2022; Zhao
et al., 2020). Another kind of attack directly perturbs the trajectory of the victim, specifically actions
the victim agent takes (Lee et al., 2020; Pan et al., 2022) or the rewards it receives (Ma et al., 2019;
Yang et al., 2019; Lykouris et al., 2021) to effectively attack the victim. However, the above attacks
are argued to be unrealistic since the real-world environment can not be manipulated (Gleave et al.,
2020; Guo et al., 2021; Wu et al., 2021).

Unlike the above attacks, to simulate the real-world scenarios, Gleave et al. has successfully trained
adversarial agents by PPO algorithm (Schulman et al., 2017) in two-player competitive games un-
der a strict zero-sum assumption and demonstrated the effectiveness of training adversarial agents
against fixed black-box victims (Gleave et al., 2020). Wu et al. further improved the attack per-
formance by exploring the minimal observation differences of the shared environment to maximize
deviations of the victim actions (Wu et al., 2021). Guo et al. relaxed the zero-sum assumptions
of previous works and demonstrated that such attack could be achieved by maximizing the gap be-
tween the adversary and victim rewards which are approximated by observations of the adversarial
agent (Guo et al., 2021). On the other hand, Bui et al. adopted imitators of the victim policies
learned by imitation learning algorithms (e.g., GAIL (Ho & Ermon, 2016)) to roll out the victim
actions for the attacker and reached better performances (Bui et al., 2022). However, this attack is
based on the specification that the victim’s actions are visible and accessible to the imitators.

This paper adopts the same setting as (Gleave et al., 2020; Guo et al., 2021; Wu et al., 2021),
wherein we have control solely over the adversarial agent and treat the victim agent as a black box,
rendering its observations, actions, and rewards inaccessible. Meanwhile, unlike (Gleave et al.,
2020; Guo et al., 2021; Wu et al., 2021), we concentrate on leveraging the historical experiences
from adversarial agents to emphasize the winning states to improve the adversarial policy training.

2.2 MODEL-FREE EPISODIC CONTROL

Episodic Control (Lengyel & Dayan, 2007) has demonstrated the effectiveness of utilizing past
experiences to address sample inefficiency in various tasks, such as multi-agent tasks (Zheng et al.,
2021), model-based reinforcement learning (Le et al., 2021), and continuous control (Zhang et al.,
2019; Kuznetsov & Filchenkov, 2021). Previous works primarily adopt a tabular episodic memory to
save experiences of past scenes, leveraging the information gained during exploration and retrieving
past experiences of similar scenes to expedite policy optimization (Blundell et al., 2016). This
memory uses the state as a key and a measurement of the state (e.g., the Q-value of the state) as
the value, storing these key-value pairs. Then, a distance-based analysis (e.g., KNN) is adopted to
retrieve a summary statistic of similar states from the episodic memory, and the retrieved statistic
can be used to guide the training process (Hansen et al., 2018).

In this paper, we adopts the episodic control to generate historical evaluations to measure the quality
of the states. Unlike the episodic memory proposed by previous works, our method proposes a neural
network-based episodic memory which uses state sequences as the basis of historical experiences
analysis and predict historical evaluations for states based on the learned experiences.
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3 METHODOLOGY

In this work, we propose an adversarial training approach for training adversarial agents. Our
method utilizes the conventional adversarial policy training framework and improves the rewards
used for training. The workflow of our approach is shown in Figure 1. First, the adversarial agent
interacts with the environment and gathers information (states, actions, rewards) from the episodes.
This information is adjusted using our proposed reward revision method, and then saved in the expe-
rience storage (e.g., replay buffer). We calculate the objective function based on the revised rewards
sampled from the experience storage and update the agent’s policy with the objective function. In
the following, we mainly elaborate on our reward revision method based on historical experiences
analysis.
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Figure 1: The workflow of our adversarial policy training.

3.1 ADVERSARY IN TWO-PLAYER MARKOV GAME ENVIRONMENT

A two-player Markov game environment can be modeled as E = (S, (Aα, Aν), T, (Rα, Rν)). Here,
we use α and ν to represent the adversary and victim respectively. S represents a state set, and both
Aα and Aν are action sets. T denotes a joint state transition function T : S × Aα × Aν → ∆(S),
where ∆(S) is a probability distribution on S. The reward function Ri : S × Aα × Aν × S → R
depends on the current state, actions taken by both agents and the next state.

Gleave et al. discovered that by fixing the victim agents, the two-player competitive games can be
reduced to single-player games. In such environment, the other agent can be trained as an adversarial
agent with conventional single-agent policy training methods (e.g., PPO) to attack the victim (Gleave
et al., 2020). The training for the adversarial agent to defeat the fixed victim agent is called adver-
sarial policy training. Under this setting, the two-player game reduces to a single-player MDP:
Eα = (S,Aα, Tα, R

′
α) as the victim policy can be treated as a part of the environment. S be-

comes the state set of the adversary and the state transition function and reward function change to
Tα : S ×Aα × S → ∆(S) and R′

α : S ×Aα × S → R.

Our threat model We use the same setting as Gleave et al. and assumes that our threat model
has control over the adversarial agent and black-box access to the information of the victim agent.
The adversarial agent can only interact with the environment, which is the common practice in
adversarial policy training.

3.2 REWARD REVISION BASED ON HISTORICAL EXPERIENCES

The reward R′
α obtained by the adversarial agent only includes the evaluations from a single game

and does not contain evaluations from the historical experiences. To enhance the adversarial policy
training, our key insight is to integrate state evaluations from historical experiences into the rewards,
thereby providing the adversarial policy with more comprehensive rewards for learning.

3
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As a two-player Markov game is not deterministic, past episodes starting from the same state may
include different state sequences. Therefore, we use state sequences, referred to as patterns, as
the basis for performance evaluation in past episodes. Our choice of utilizing state sequence for
performance evaluation aligns with existing research (Sutton & Barto, 2018; Li et al., 2023), which
has proved that failures in adversarial games are often the result of a series of poor decisions rather
than isolated states. Based on the qualification of these patterns from historical experiences, we can
assign higher rewards to states that lead to good patterns and lower rewards to states that lead to bad
patterns, thereby integrating evaluations from historical experiences into the rewards.

3.2.1 EVALUATION OF PATTERN PERFORMANCE

As mentioned above, a pattern refers to a sequence of states within an episode. For a given episode
e, a k-step pattern starting from time step t, denoted as pt, refers to k consecutive states in e, i.e.,
pt = st, . . . , st+k−1. For example, p1 = s1, . . . , sk exemplifies a k-step pattern from the first state
s1. Notice that a state can be considered a special case of a pattern, specifically a 1-step pattern.

To evaluate the past performance of the patterns, we propose that a pattern can be considered high-
performing if the past episodes containing this pattern result in more wins than losses. Conversely,
a pattern can be considered poor-performing if the past episodes containing it result in more losses
than wins. Based on this idea, we introduce a historical score for each pattern to quantify its past
performance, defined as the average cumulative reward received in past episodes that include that
pattern. The cumulative reward for an episode, which quantifies the adversarial agent’s performance,
tends to be higher in episodes where the agent wins than in those it loses. As the performance
of adversarial agents improves, these cumulative rewards increase. Therefore, using the average
cumulative reward of episodes including the pattern effectively reflects its past performance. The
historical score h score(pt) can be calculated as:

h score(pt) = M(pt), (1)

where M is an episodic memory we proposed to collect and analyze patterns in past episodes. In
Section 3.3.1, we will further explain how we implement the episodic memory.

3.2.2 CONDITIONAL REWARD REVISION

Based on the historical scores of patterns, we incorporate the historical evaluations into rewards by
reward revision. If the historical score of a pattern falls below the average cumulative rewards of
all past episodes, we cannot consider such a pattern as a desirable one. Thus, we propose episodic
feedback, which is defined as the difference between the historical score of a pattern and the average
cumulative reward of all past episodes:

δ(pt) = h score(pt)−R. (2)

where h score(pt) is the historical score of pattern pt andR is the average cumulative reward of all
past episodes.

With the episodic feedback, we conditionally add the episodic feedback of a pattern to the reward of
its initial state. Specifically, for an episode e, depending on the outcome of e (whether the adversarial
agent wins), we revise the rewards of the initial states of patterns in e in two cases. Assume that st
is the initial state of pattern pt in episode e, whose reward is rt, and δ(pt) is the episodic feedback
for pt, the conditional reward revision can be formulated as:

r̂t =



rt + δ(pt)× ϵ, if the adversarial agent wins
and δ(pt) > 0,

rt + δ(pt)× ϵ, if the adversarial agent loses
and δ(pt) < 0,

rt, otherwise,

(3)

where r̂t is the revised reward and ϵ is a coefficient used to regulate the magnitude of encouragement
and punishment. After the revision, we update rt with r̂t.

The reason we only revise the reward in the two cases mentioned above is that the revision must
adhere to the win-loss rules of the two-player competitive game environment, even though this envi-
ronment reduces to a single-player game environment during the training process. In a competitive
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game, we believe only states from a winning episode of the adversarial agents should be rewarded
(δ(pt) > 0), while states from the losing episode should be penalized (δ(pt) < 0). We will further
analyze other cases in Section 4.3.3.

3.3 EPISODIC CONTROL-BASED ADVERSARIAL POLICY TRAINING

3.3.1 NEURAL NETWORK-BASED EPISODIC MEMORY

As we stated in Section 3.2.1, we propose an episodic memory to generate historical scores for
patterns based on the historical experiences. The architecture of our episodic memory, as shown
in Figure 1, includes an LSTM network followed by a multi-layer perceptron (MLP). The LSTM
encodes the patterns into abstract vectors, while the MLP aggregates these encodings to produce
historical scores for the patterns.

During the training, new episodes are used to update the episodic memory. Assume a newly pro-
duced episode e has a cumulative reward of R and contains the set of patterns P . The episodic
memory M is then trained to map patterns in P to the new cumulative reward R. Note that for a
pattern in P , the learning target is the historical score of the pattern, which is not a fixed value and
will change as new episodes occur. Then, during the reward revision, M predicts historical scores
for the patterns as Equation 1 to generate historical evaluations for reward revision. More details of
our implementation of the episodic memory can be found in Appendix A.2.

3.3.2 GROUP-BASED EPISODIC FEEDBACK

In practice, we find that later-generated episodes exhibit higher winning rates than earlier-generated
episodes during the training process. To achieve better performance in finding the optimal policy, we
compare the historical score of a pattern with the average cumulative reward from recently generated
episodes when computing the episodic feedback. To achieve this, we divide the episodes into groups
of size n, where n is a hyper-parameter, and calculate the average reward of past episodes in the
group. The average reward of the ith episode of group m can be calculated by

Rm

i =

∑j=i
j=1Rm

j

i
, 1 ≤ i ≤ n. (4)

Thus, we compute the episodic feedback of pattern pt in the ith episode of group m by

δ(pt) = h score(pt)−R
m

i , (5)
which is implemented in our experiments.

3.3.3 ADVERSARIAL POLICY TRAINING WITH EPISODIC MEMORY

We implement our policy training as Algorithm 1. First, we have the adversarial agent interact
with the environment and generate states, actions and rewards (Line 2-3). When an episode is
ended, we extract patterns from the episode (In practical, we use sliding window) and calculate
the cumulative reward of the episode (Line 5-6). We then update the episodic memory with the
patterns and the cumulative reward (Line 7), and predict the historical score for each pattern with
the episodic memory(Line 8). Subsequently, we calculate the average cumulative reward of the
group with Equation 4 (line 9-11), and then utilize the average cumulative reward to calculate the
episodic feedback for each pattern following Equation 5 (Line 12). With the episodic feedbacks,
the rewards of the states could be revised by Equation 3 (Line 13) under the condition stated in
Section 3.2.2. After the reward revision, we store the states, actions and the revised rewards into
the experience storage (Line 14). When the update condition is satisfied (e.g., storage is full), we
will sample some data from the storage and calculate the objective function from our selected policy
training method (Line 17-19). The adversarial agent will be updated with the objective function
(Line 20). Iteration will end when the maximum training step is reached.

4 EVALUATION

In this section, we conduct a comprehensive evaluation of our approach. We compare the perfor-
mances of our approach with state-of-the-art adversarial policy training techniques and show its
effectiveness and efficiency in the context of two-player competitive games.
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Algorithm 1 Episodic control-based Adversarial Policy Training
Input: A: Adversarial Agent, E: Environment, M : Our episodic memory, B: Experience Storage,
O: Objective Function
Parameter: k: Pattern Length, n: Group Size, ϵ: Revision Coefficient
Output: A: A Well-trained Adversarial Agent

1: while Training does not reach the maximum step do
2: A interacts with E and generate state s, action a, reward r.
3: S.add(s), A.add(a), R.add(r).
4: if An episode ends then
5: P ← Pattern(k, S)
6: Rcum ← Cumulative reward(R)
7: M.update(P,Rcum)
8: H Score(P )←M(P )
9: if The episode is the ith episode in Group m then

10: Rm

i ← Average Reward(i,m)
11: end if
12: ∆(P )← Episodic Feedback(H Score(P ),Rm

i )
13: R′ ← Reward Revision(R,∆(P ), ϵ)
14: B ← S,A,R′

15: Clear S,A,R
16: end if
17: if Check Update() is true then
18: Experiences← Sample(B)
19: O(Experiences)
20: A.update(O)
21: end if
22: end while
23: return A

4.1 EXPERIMENT SETUP

In our experiment, our method use PPO (Schulman et al., 2017) as the basic single-agent policy
training method to train the adversarial agents to attack well-trained Zoo agents (Bansal et al., 2018).
We take three state-of-the-art approaches (Gleave et al., 2020; Wu et al., 2021; Guo et al., 2021) as
baselines to show the effectiveness of our method. It is important to note that Gleave et al. ’s
method fundamentally incorporates PPO for the adversarial policy training without modifying the
training mechanisms of PPO. Therefore, when we draw comparisons with the outcomes achieved
by Gleave et al. ’s method, we are also comparing our method against a PPO baseline. To main-
tain the fairness of the experiments, we use the same two-player competitive games in the MuJoCo
robotics simulator as our baselines, which are YouShallNotPassHumans, KickAndDefend, SumoHu-
mans and SumoAnts, and run 5 seeds on each environment to evaluate our proposed adversarial
training method. Hyper-parameters setting are shown in the Appendix A.1.

4.2 MAIN RESULTS

The comparison of the winning rates and non-loss rates between our approach and the baseline ap-
proaches are summarized in Figure 2. We can observe that our proposed method reaches 88% and
89% winning rates and outperforms the baseline methods significantly in YouShallNotPassHumans
and KickAndDefend. In SumoHumans, our method also surpasses all baselines. These results in-
dicate that by leveraging historical experiences to highlight the high-performing states, our agents
demonstrate higher sample efficiency and have more potential to discover effective adversarial poli-
cies to defeat victim agents. In SumoAnts, Since the winning rates of all agents against the victim
are far below 50%, we use the non-loss rates to measure the effectiveness of our method. From
Figure 2(b), we observe that in SumoAnts, the non-loss rate of our agent is still able to surpass that
of agent trained by (Guo et al., 2021), which exhibits the second highest non-loss rate.
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Our Guo et.al.Gleave et.al. Wu et.al.

(a) The comparison of winning rates.

(b) The comparison of non-loss rates.

Figure 2: The performance of our adversarial agents and baseline adversarial agents in each envi-
ronment. Dashed lines represent the highest rates of each agent. More details are shown in Table 4
and Table 5 in Appendix A.5.

Table 1: The non-loss rate of our adversarial agent and baseline adversarial agents against masked
victim agents in 100 games. Each experiment has been done 4 times.‘Before’ and ‘After’ indicate
before and after masking the victim agent.

Environment Our (%) Gleave et al. (%) Guo et al. (%) Wu et al. (%)
Before After Before After Before After Before After

YouShallNotPassHumans 96 ± 2 73 ± 4 66 ± 2 0 ± 0 72 ± 3 0 ± 0 50 ± 2 0 ± 0
KickAndDefend 93 ± 4 7 ± 1 65 ± 1 3 ± 1 63 ± 2 5 ± 1 69 ± 4 5 ± 1

SumoAnts 83 ± 2 81 ± 2 76 ± 2 69 ± 4 81 ± 3 78 ± 1 57 ± 5 53 ± 4
SumoHumans 92 ± 1 90 ± 1 92 ± 1 91 ± 1 92 ± 0 91 ± 1 94 ± 2 92 ± 1

We share the videos of agents trained by our approach and baseline approaches in Appendix A.4 and
compare their behaviors. In KickAndDefend and SumoHumans, all the adversarial agents perform
similar adversarial actions to trick the victim into performing abnormal behaviors. These results
align with the conclusion in (Gleave et al., 2020) that adversarial agents win by confusing the victim,
instead of becoming a strong opponent. However, in YouShallNotPassHumans, while the three
baseline agents attack the victim by convulsing on the ground, our agent simultaneously performs
the adversarial action and obstructs the victim with its body. This indicates that our agent is not
restricted to utilizing only one winning strategy. In fact, it is able to explore the optimal strategy
by combining multiple winning strategies from historical experiences. Additionally, in SumoAnts,
agents trained by our approach and (Guo et al., 2021) both jump out of the arena at the beginning
since falling out of the arena without touching the opponent is considered a draw in this game,
while agents trained by (Gleave et al., 2020) and (Wu et al., 2021) still fight with the victim. This
suggests that same as (Guo et al., 2021), our agent is also capable of discovering and exploiting
game imbalances.

To validate whether our approach is difficult to defend against, we conduct retraining experiments on
the victim agents using the PPO algorithm. We report the results of our adversarial agent and base-
line agents against the victim agents during the retraining in Figure 3. In YouShallNotPassHumans,
our agent maintains a relatively high winning rate during the retraining of victim agents, unlike
baseline agents whose winning rate quickly drops to a low level. In KickAndDefend, the winning
rates of our agent also decreases at a slower rate compared to the baseline agents. This indicates that
our approach is more difficult to defend than baseline approaches.

7
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Our Guo et.al.Gleave et.al. Wu et.al.

Figure 3: The comparison between our adversarial agent and baseline adversarial agents in each en-
vironment (Gleave et al., 2020; Guo et al., 2021; Wu et al., 2021) during the retraining. Specifically,
we show winning rates of the agents in YouShallNotPassHumans, KickAndDefend, SumoHumans
and non-loss rate in SumoAnts. The lowest rate of each agent is depicted with a dashed line. More
details are shown in Table 6 in Appendix A.5.

Pattern State

Figure 4: The comparison of performances between agents guided by pattern-based and state-based
historical evaluation. We show winning rates of the agents in YouShallNotPassHumans, KickAnd-
Defend, SumoHumans and non-loss rate in SumoAnts. The highest rate of each agent is depicted
with a dashed line. More details are shown in Table 7 in Appendix A.5.

In order to gain a better understanding of the effectiveness of our method, following the approach
in (Gleave et al., 2020), we have our adversarial agents play games against masked victim agents,
whose observation of the adversary’s position is set to a static value corresponding to a typical initial
position so that the adversarial actions may not be effective. We show the performances of our
adversarial agents and baseline agents against masked victims in Table 1. We observe a significant
decline in the non-loss rates of the three baseline agents, while our agent maintains a high non-loss
rate against the masked victim in YouShallNotPassHumans. This could be attributed to the fact
that our agent not only relies on adversarial actions to attack the victim, but also incorporates non-
adversarial actions like obstructing the victim with its body to win the game. Based on this finding,
we demonstrate that in YouShallNotPassHumans, our agent can defeat the victim by performing
adversarial and non-adversarial actions simultaneously.

4.3 ABLATION STUDY

4.3.1 PATTERNS

As mentioned in Section 3.2.1, we use historical score of the pattern to represent historical evalua-
tion. To show the effectiveness of utilizing pattern as the basis, we calculate the episodic feedback
with historical scores of both states and 3-step patterns and then revise the rewards with two episodic
feedbacks. In Figure 4, we can see pattern-guided agents hold higher winning rates than state-guided
agents, which proves that patterns can provide a richer, more contextual basis for the historical eval-
uation.

4.3.2 EPISODIC FEEDBACK

In Section 3.2.2, we mention that the episodic feedback of a pattern is computed by the difference
between the historical score and the average cumulative reward of the group containing the episode.
If episodic feedback is greater than 0, the pattern can be considered a better pattern than patterns in
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Episodic Feedback Historical Score

Figure 5: The comparison of performances between proposed training approach guided by episodic
feedbacks and historical scores. We show winning rates of the agents in YouShallNotPassHumans,
KickAndDefend, SumoHumans and non-loss rate in SumoAnts. The highest rate of each agent is
depicted with a dashed line. More details are shown in Table 8 in Appendix A.5.

Our_two_case Our_all_case

Figure 6: The comparison of performances between proposed training approach with different revi-
sion conditions. We show winning rates of the agents in YouShallNotPassHumans, KickAndDefend,
SumoHumans and non-loss rate in SumoAnts. The highest rate of each agent is depicted with a
dashed line. More details are shown in Table 9 in Appendix A.5.

recently generated episodes, thereby enabling the adversarial agent to search for an optimal strategy.
To show the effectiveness of episodic feedback, we use both episodic feedback and historical score
to revise the reward. Based on the results shown in Figure 5, we can find that the performances
of agents trained with episodic feedback outperform agents trained with historical score, which
indicates that compared to the historical score, episodic feedback is more effective in helping the
agent find the optimal policy.

4.3.3 REVISION CONDITION

As stated in Section 3.2.2, there are other cases in which we do not perform the reward revision. For
example, we do not revise the reward when a state from a winning episode of the adversarial agents
obtains negative episodic feedback. If we were to implement the revision for other cases, some states
that lead to losses would be rewarded and some states that lead to wins would be penalized. This
may make the adversarial agent learn a policy that aims at losing the episode. To better demonstrate
the effectiveness, we also perform reward revisions in those cases and show the performances in
Figure 6. We can observe that the winning rate drops when we revise the reward in all cases,
especially in KickAndDefend. This proves that reward revision must comply with the rules of the
two-player competitive games, even though our adversarial training method uses an single-player
game environment.

5 DISCUSSION AND CONCLUSION

As stated in Section 4.1, our method utilizes PPO algorithm as the single-agent training method
to train the adversarial agents. It is also important to note that our method is scalable and can be
applied to various DRL algorithms. In the Appendix, we demonstrate the performances of our ap-
proach applied to the baseline algorithms (Wu et al., 2021; Guo et al., 2021) and compare the results
with those of the original baseline algorithms in YouShallNotPassHumans and KickAndDefend. The
results show that by leveraging historical evaluations to revise the rewards, the performances of all
baseline approaches get improved.

9
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In this paper, we propose an episodic control-based adversarial policy training method to train an
adversarial agent more effectively and efficiently. Our method introduces an episodic memory to
utilize the historical experiences to generate historical evaluations for the states and consequently
revise the rewards of the states based on the evaluation, thereby integrating the historical evaluations
into the rewards used for adversarial training to emphasize the high-performing states. In our ex-
periments, we demonstrate that agents trained with our approach achieve the most promising attack
performance and defense difficulty. Additionally, by comparing the behaviors of adversarial agents,
we discover that our attack method can explore optimal strategies by integrating multiple winning
approaches. We believe our exploration of game states and use of historical experiences advance ad-
versarial policy training methods. Future research could focus on extracting more specific insights
from these historical experiences to further enhance the effectiveness of adversarial learning.

Limitation Our method is designed for two-player competitive game environments. For other envi-
ronments, the reward revision needs to be redesigned.
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A APPENDIX

A.1 HYPER-PARAMETER ANALYSIS

Table 2: Hyper-parameters of episodic memory used in our experiments.
Hyper-parameter

Pattern Length k 3
Group Size n 100
Epsilon ϵ 0.1

For PPO hyper-parameter selections, we use the same parameters from (Gleave et al., 2020). The
hyper-parameters for our episodic memory are listed in Table 2. As mentioned in (Li et al., 2023),
0.1 for ϵ works well for episodic control method in MuJuCo games, so we follow this setting in our
experiments. We further analyze the rest two hyper-parameters.

A.1.1 PATTERN LENGTH

As stated in Section 3.2, we use state sequences, referred to as patterns, as the basis for performance
evaluation in past episodes. To find out the best parameter for the length of patterns, we conduct
experiments with different pattern lengths and show the results in Figure 7. We have selected three
different pattern lengths in our experiments. We can see from Figure 7 that the agents have the best
average winning rates when the pattern length is 3.

A.1.2 GROUP SIZE

In Section 3.3.2, we compare the historical score of a pattern with an average cumulative reward of
recently generated past episodes to calculate episodic feedback. Group size n is introduced to control
the number of past episodes. If the group size is too large, some states that lead to bad patterns may
be erroneously rewarded, and the magnitude of rewards and penalties is reduced, thereby weakening
the ability to find the optimal policy. On the other hand, if the group size is too small, it is more
likely to wrongly penalize good states and reward bad states. Therefore, we conduct an analysis of
3 group sizes which are 50, 100 and 150. With the result shown in Figure 8, we find that the agents
have the best performances when the group size is 100. Therefore, we use 100 as the group size in
our experiments.

A.2 EPISODIC MEMORY

In this section we share more details about the implementation of the episodic memory introduced
in Section 3.3.1.

Table 3: The architecture of the episodic memory
Module shape

LSTM (64, 256, 1)
linear1 (256, 512)
Tanh
linear2 (512, 1)

In Table 3, we give the architecture of the episodic memory. The episodic memory consists of a
LSTM and a MLP (linear1, Tanh, linear2). 64 in the shape of LSTM refers to the length of the state
from environment and 256 refers to the hidden length of LSTM. The LSTM is used to encode a
pattern into an abstract vector so that the MLP can process. The MLP is used to output the historical
score of the pattern, which evaluates the average performance of the pattern in past episodes.

In the Algorithm 2, we show the forward process of the episodic memory. The LSTM receives a
pattern p as input and outputs an output sequence, the last hidden state vector and the last cell state
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Algorithm 2 Forward process of the episodic memory.
Input: pattern p (shape:[3, 64])
Output: historical score h score (shape:1)

1: output, hidden, cell = LSTM(p)
2: h score = linear1(hidden[-1,])
3: h score = Tanh(h score)
4: h score = linear2(h score)

Algorithm 3 Update process of the episodic memory.
Input: episode e

1: P = Pattern(e)
2: R = Cumulative Reward(e)
3: for p in P do
4: h score = Memory(p)
5: loss = MSELoss(h score, R)
6: loss.backpropagation()
7: end for

vector of LSTM. The last hidden state vector will be processed with MLP, under the order of linear1,
Tanh, linear2 and the MLP will output the historical score h score of the input pattern.

In the Algorithm 3, we show the update process of the episodic memory. After one episode is ended,
we extract patterns from the episode and calculate the cumulative reward of the episode. Then, we
predict the historical score for each pattern and calculate the MSELoss between the historical score
and the cumulative reward. The loss will be backpropagated to update the network.

A.3 SCALABILITY ANALYSIS

In Section 5, we state that our approach is scalable and can be applied to various DRL algorithms.
Since Gleave et al. can be seen as PPO, we adopt our approach on the other two baseline at-
tacks (Guo et al., 2021; Wu et al., 2021) and compare the performances with them. The results are
shown in Figure 9. We can see the baselines adopting our episodic memory outperform the original
baselines in YouShallNotPassHumans and KickAndDefend.

pattern-1 pattern-5pattern-3

Figure 7: The comparison of winning rate between our adversarial agent with different input pattern
lengths in YouShallNotPassHumans and KickAndDefend.

A.4 VIDEOS OF EXPERIMENTS

Due to the limited maximum file size for the supplementary materials, we have uploaded
the videos mentioned in Section 4.2 at https://drive.google.com/drive/folders/
1lJmWA7y8-1nMs_kOwzGlIMkjkPh2QVF6?usp=drive_link.

A.5 MAIN RESULTS SUPPLEMENTARY

Supplementary tables of the figures in the main text are provided on the subsequent pages.

14

https://drive.google.com/drive/folders/1lJmWA7y8-1nMs_kOwzGlIMkjkPh2QVF6?usp=drive_link
https://drive.google.com/drive/folders/1lJmWA7y8-1nMs_kOwzGlIMkjkPh2QVF6?usp=drive_link


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

group-50 group-150group-100

Figure 8: The comparison of winning rate between our adversarial agent with group size in YouShall-
NotPassHumans and KickAndDefend.

Guo et.al. Guo_ep

(a) The performaces of adversarial agents trained by (Guo et al., 2021)
implementing with and without our episodic memory.

Wu el.al. Wu_ep

(b) The performaces of adversarial agents trained by (Wu et al., 2021) im-
plementing with and without our episodic memory.

Figure 9: The performance comparison of winning rate between agents trained by (Wu et al., 2021;
Guo et al., 2021) implementing with and without our episodic memory in YouShallNotPassHumans
and KickAndDefend.

Table 4: The highest winning rates of our agents and agents attacks against zoo victim agents are
shown in Figure 2(a).

Environment Our (%) Gleave et al. (%) Guo et al. (%) Wu et al. (%)
YouShallNotPassHumans 87.62± 7.38 60.08± 6.22 65.77± 7.60 48.60± 8.99

KickAndDefend 89.06± 7.98 64.37± 8.61 65.32± 6.92 64.76± 8.55
SomoAnts 5.18± 1.27 5.19± 2.10 4.70± 1.43 8.14± 2.87

SumoHumans 76.35± 8.29 69.24± 12.16 64.49± 7.15 62.22± 16.86

Table 5: The highest non-loss rates of our agents and baseline agents against zoo victim agents are
shown in Figure 2(b).

Environment Our (%) Gleave et al. (%) Guo et al. (%) Wu et al. (%)
YouShallNotPassHumans 87.62± 7.38 60.08± 6.22 65.77± 7.60 48.60± 8.99

KickAndDefend 90.01± 7.56 65.17± 8.87 66.56± 7.14 65.27± 8.45
SomoAnts 84.66± 3.92 74.94± 16.24 82.98± 3.73 40.97± 6.65

SumoHumans 91.68± 7.52 91.88± 12.18 90.49± 5.48 92.55± 14.40
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Table 6: The performances of our agents and baseline agents against retrained victim agents are
shown in Figure 3. We show winning rates of the agents in YouShallNotPassHumans, KickAndDe-
fend, SumoHumans and non-loss rate in SumoAnts.

Environment Our (%) Gleave et al. (%) Guo et al. (%) Wu et al. (%)
YouShallNotPassHumans 50.27± 13.03 5.00± 2.50 6.22± 2.82 5.99± 2.99

KickAndDefend 51.82± 6.84 28.02± 7.33 29.33± 9.84 32.38± 9.54
SomoAnts 83.15± 2.98 79.78± 2.28 82.49± 2.77 90.13± 3.42

SumoHumans 6.17± 7.60 6.03± 5.35 7.61± 5.88 10.71± 6.95

Table 7: The performances of our agents guided by pattern-based and state-based historical eval-
uation against zoo victim agents is shown in Figure 4. We show winning rates of the agents in
YouShallNotPassHumans, KickAndDefend, SumoHumans and non-loss rate in SumoAnts.

Environment Pattern (%) State (%)
YouShallNotPassHumans 87.62± 7.38 71.36± 11.26

KickAndDefend 89.06± 7.98 83.15± 11.29
SumoAnts 84.66± 3.92 83.73± 4.15

SumoHumans 76.35± 8.29 74.35± 6.71

Table 8: The performances of our agents trained with episodic feedback and historical score against
zoo victim agents shown in Figure 5. We show winning rates of the agents in YouShallNotPassHu-
mans, KickAndDefend, SumoHumans and non-loss rate in SumoAnts.

Environment Episodic Feedback (%) historical score (%)
YouShallNotPassHumans 87.62± 7.38 75.28± 8.25

KickAndDefend 89.06± 7.98 72.85± 11.48
SumoAnts 84.66± 3.92 83.66± 2.30

SumoHumans 76.35± 8.29 72.15± 6.90

Table 9: The performances of our agents with and without revision conditions against zoo victim
agents is shown in Figure 6. We show winning rates of the agents in YouShallNotPassHumans,
KickAndDefend, SumoHumans and non-loss rate in SumoAnts.

Environment Our two case (%) Our all case (%)
YouShallNotPassHumans 87.62± 7.38 78.39± 10.74

KickAndDefend 89.06± 7.98 30.64± 9.10
SumoAnts 84.66± 3.92 80.44± 3.73

SumoHumans 76.35± 8.29 68.40± 4.14
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