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ABSTRACT

Tabular data is one of the most widely used formats in practice, yet much of it re-
mains inaccessible due to privacy concerns. Synthetic data generation with formal
privacy guarantees, i.e. differential privacy (DP), offers a promising solution to en-
able data sharing while protecting sensitive information. Despite extensive study,
state-of-the-art methods often focus on minimizing low-order marginal query er-
rors and overlook the challenges posed by high-order correlations. To address
this gap, we adapt the Private Evolution (PE) framework, originally developed
for DP-compliant image and text synthesis, to tabular data. We introduce Tab-PE
– an algorithm for generating synthetic tabular data under DP. Tab-PE refines a
synthetic dataset by an evolutionary process that leverages APIs to generate vari-
ations of the data, privately evaluate them, and retain the highest-quality samples.
While the original PE requires access to large foundation models, Tab-PE is com-
putationally efficient with heuristic APIs specialized for tabular data. Through
extensive experiments on real-world and simulation datasets, we demonstrate that
Tab-PE substantially outperforms prior baselines on datasets exhibiting high-order
correlations. Compared to the best baseline – AIM, Tab-PE improves classifica-
tion accuracy by up to 10% while running 28× faster.

1 INTRODUCTION

Tabular data is an important type of data that is widely used in many domains. However, because
it often contains sensitive information such as patient records and financial transactions, using and
sharing such data are challenging due to potential risks of exposing private information (Borisov
et al., 2024). To tackle the privacy concerns, generating synthetic tabular data with differential pri-
vacy (DP) guarantees has been a long-standing and active research area (Li et al., 2014; Zhang et al.,
2021; Liu et al., 2021; McKenna et al., 2022; Liu et al., 2023; Tran & Xiong, 2024; Cormode et al.,
2025). This synthetic data can be used for various purposes – such as data analysis, machine learn-
ing model training, and sharing with third parties – while still providing formal privacy guarantees
for individual records in the original dataset.

Despite this promise, generating realistic tabular data remains challenging due to difficulties in cap-
turing complex multi-dimensional data distributions under the privacy constraints. State-of-the-art
(SOTA) methods (McKenna et al., 2022; Liu et al., 2021; 2023) address this by estimating low-order
statistical queries (typically marginals) and then stitching them together to approximate the full data
distribution. However, these methods have a fundamental limitation: they do not scale well to model
high-order correlations as the number of queries grows exponentially with the order (i.e., the number
of involved attributes). Since DP requires adding noise to each query answer, the noise accumulates
as the number of queries increases. Therefore, estimating a large number of queries under strict
privacy constraints is challenging and often leads to low-quality measurements.

Most prior evaluations sidestep the challenge of high-order correlations. Popular datasets used
in the literature appear to be dominated by low-order dependencies (Chen et al., 2025; Tao et al.,
2022). Intuitively, we measure the order of correlations in a dataset by considering the downstream
performance gap of simple classifiers that capture only low-order correlations (e.g., shallow decision
trees) versus complex classifiers that leverage high-order correlations (e.g., deep trees). When the
performance gap between these two types of classifiers is small, the dataset primarily reflects low-
order correlations. Indeed, many commonly used datasets such as Adult, Bank, and Census have
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this property. Varying the maximum depth of the XGBoost trees (Chen & Guestrin, 2016) yields
trivial performance differences (typically <1%) (Fig. 7, App. B.1). This characteristic makes the
existing leading methods using statistical queries appear highly effective, even though they do not
model high-order correlations. Consequently, much of the field has been implicitly optimized for
these favorable settings, while leaving open the question of whether the current methods can truly
preserve high-order correlations that are not revealed by standard benchmarks.
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Figure 1: Stress test for high-order cor-
relation modeling with XOR simulation
datasets at ϵ = 1.0. UB stands for Up-
per Bound using private data (ϵ = ∞).
LB presents random guess performance.

In this work, we focus on investigating this gap. We con-
struct a stress test with XOR correlations and show that
SOTA methods quickly fail to capture such high-order
correlations (Fig. 1). To address this challenge, we pro-
pose a method based on the Private Evolution (PE) frame-
work (Lin et al., 2024), tailored for tabular data – named
Tab-PE. PE is a breakthrough that has shown promis-
ing results in generating high-quality synthetic data in
other domains such as images (Lin et al., 2024; 2025)
and texts (Xie et al., 2024; Hou et al., 2024; 2025; Wang
et al., 2025). It generates synthetic data through an it-
erative process of generating variations of the data and
then selecting the best ones based on a DP voting mecha-
nism. Previous methods have designed APIs for generat-
ing variations of images or texts such as using foundation
models (Lin et al., 2024; Xie et al., 2024; Wang et al.,
2025) or using simulators (Lin et al., 2025). For tabular
data, Swanberg et al. (2025) argue Private Evolution with
API access to LLMs does not perform satisfactorily.

We design simple yet effective and efficient APIs for gen-
erating variations of tabular data without using any foun-
dation models. Building on the PE framework, Tab-PE
first initializes a random synthetic dataset then iteratively refines it. In each iteration, we generate
variations by simply adding controlled random noise to numerical features and resampling categor-
ical features with a scheduled probability. The synthetic samples are then scored by a DP voting
mechanism based on full-record nearest-neighbor matching to private data, which can implicitly
capture complex, high-dimensional dependencies. High-scoring samples are selected for the next it-
eration, enabling an iterative refinement process. We show that Tab-PE outperforms SOTA methods
on a wide range of settings and is the most computationally efficient. Overall, our contributions can
be summarized as follows:

• We revisit the challenge of modeling high-order correlations in differentially private syn-
thetic tabular data generation. Our stress test reveals that SOTA methods fail to capture
such correlations.

• We propose Tab-PE, a method based on the Private Evolution framework, with simple
yet effective and efficient APIs for generating variations of tabular data without using any
foundation models.

• We conduct extensive experiments on a broad collection of new datasets and settings, going
beyond the standard benchmarks that mainly reflect low-order correlations. Our results
indicate that Tab-PE consistently outperforms the baselines, especially under strict privacy
regimes. Tab-PE is also the most computationally efficient method and faster than utility-
competitive baselines up to 30× without requiring GPUs.

2 RELATED WORKS

Differentially Private Tabular Synthesis. DP synthetic tabular data is a long-standing prob-
lem with many prior works (Yang et al., 2024; Cormode et al., 2025). In a real-world competi-
tion (NIST, 2018), the winning solutions are dominated by methods that rely on marginal queries
such as MST (McKenna et al., 2021), DPSyn (Li et al., 2021), and PrivBayes Zhang et al. (2017).
All these methods first answer the low-order marginal queries in a DP manner, then reconstruct
the synthetic data from the noisy answers with different techniques, e.g., probabilistic graphical
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models (PGMs) (McKenna et al., 2019) and Bayesian networks. To improve this pipeline, more ad-
vanced methods (AIM (McKenna et al., 2022), MRF (Cai et al., 2021)) dynamically select suitable
marginal queries. Subsequently, RAP (Liu et al., 2021), RAP++ (Vietri et al., 2022), PrivGSD (Liu
et al., 2023), and PrivPGD (Donhauser et al., 2024) consider generation as an optimization process
that iteratively refines the synthetic dataset to minimize the error on the noisy answers. Meanwhile,
JAM (Fuentes et al., 2024) aims to utilize publicly available data. Beyond the methods using statis-
tical queries, there is a line of research that leverages machine learning for this problem. Inspired
by the success of image generation, some works employ GANs (Xie et al., 2018; Yoon et al., 2019).
However, it turns out that GAN-based methods do not align well with DP noise due to its complex
architecture and adversarial training process (Cormode et al., 2025). Some recent works explore
transformer-based architectures (Castellon et al., 2023; Sablayrolles et al., 2023), and large-language
models (Tran & Xiong, 2024). Although the gap between these and the marginal-based methods is
smaller than GANs, they still lag behind the marginal-based methods. A recent benchmark (Chen
et al., 2025) confirms that the marginal-based methods still dominate the field. In this work, we
revisit the problem with a perspective of high-order correlations and propose a new efficient and
effective framework that does not rely on statistical queries or model training.

Private Evolution. PE is a breakthrough for synthetic data generation with DP. PE was first
introduced by Lin et al. (2024) for images. Unlike previous synthesizers, which require model
training/fine-tuning on private data (Kurakin et al., 2024; Dockhorn et al., 2023), PE instead lever-
ages API access to pretrained foundation models. By employing an evolutionary process that iter-
atively refines the synthetic data, PE achieves SOTA results while being computationally efficient.
Xie et al. (2024) extended PE to text, demonstrating its effectiveness by significantly outperforming
LLM DP fine-tuning baselines. Zou et al. (2025) enhanced the performance for text by utilizing
multiple LLMs via a weighted fusion mechanism. Moreover, the PE framework has been adapted to
federated learning settings to reduce communication costs while achieving better utility for language
modeling (Hou et al., 2024; 2025). While most PE-based works rely on foundation models, Lin et al.
(2025) showed that PE can also be applied to simulators. Additionally, Zhang et al. (2025) modified
PE for few-shot generation, while González et al. (2025) studied theoretical convergence aspects
of PE. For tabular data, Swanberg et al. (2025) applied PE with LLM-guided APIs. However, the
authors argue that PE with LLM API access does not perform satisfactorily. While our work does
not contradict their message, we demonstrate that PE using heuristic APIs (without any foundation
models) and appropriate designs can be both effective and computationally efficient.

3 METHODOLOGY – TAB-PE

Differential Privacy. (ϵ, δ)-differential privacy (DP) is a property of a randomized algorithm M
that guarantees that the output of M does not change much whether we add or remove any particular
entry in the input. More precisely, given any two neighboring datasets D,D′ (one can be obtained
from the other by deleting a single entry) and any possible set of outputs S, it holds that Pr[M(D) ∈
S] ≤ eϵ Pr[M(D′) ∈ S] + δ (Dwork et al., 2014).

Variation_API

1

0
3

1
3 +

DP_NN_Histogram

Top K Selection/Sampling

Synthetic Data

Figure 2: Illustration of Tab-PE. The process starts with an initial set of synthetic samples and
iteratively refines them through variations and private scoring.

Overview. Let s be a sample s = {xcat(1) , xcat(2) , ..., xnum(1) , xnum(2) , ..., c}, where xcat denotes cat-
egorical attributes, xnum refers to numerical attributes, and c is the class label. X(i) is the domain of
attribute i. Given a private dataset Dpriv of samples, our goal is to generate a synthetic dataset Dsyn
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that preserves the statistical properties of Dpriv while ensuring DP. Our approach, Tab-PE, consists
of three main components: (1) a RANDOM API that generates an initial set of synthetic samples, (2)
a VARIATION API that creates variations of existing samples to explore the sample space, and (3)
a DP NN HISTOGRAM function that scores each sample in a DP manner. The overall process is an
evolutionary loop, illustrated in Fig. 2. For each iteration, we generate variations of the current sam-
ples using VARIATION API, evaluate them using the private dataset with DP NN HISTOGRAM,
and retain the top-scoring samples to form the next generation. This process continues for a prede-
fined number of iterations or until convergence.

RANDOM API. The RANDOM API generates an initial set of the synthetic samples. For categorical
attribute xcat(i) , it randomly selects a value from the set of possible categories Xcat(i) . For numerical
attribute xnum(j) , it uniformly samples values within the range (minX

num(j)
,maxX

num(j)
). This ensures

that the initial synthetic samples are diverse and cover the attribute space.

RANDOM API(n) = {s1, s2, . . . , sn} where
sk = {xcat(1) , xcat(2) , . . . , xnum(1) , xnum(2) , . . . , c},

xcat(i) ∼ Uniform(Xcat(i)), xnum(j) ∼ Uniform(min(Xnum(j)),max(Xnum(j)))

(1)

VARIATION API. The API generates perturbed variations of existing samples to explore the sam-
ple space. The variation degree m is the number of variations generated per sample. We implement
a simple but effective random walk strategy. For a categorical attribute xcat(i) ∈ Xcat(i) , the variation
is produced by resampling from its domain with a controlled categorical mutation rate µcat ∈ [0, 1].

x′
cat(i) ∼

xcat(i) , with probability 1− µcat,

Uniform(Xcat(i)) , with probability µcat.
(2)

For a numerical attribute xnum(j) ∈ Xnum(j) , the variation is generated by adding controlled Gaussian
perturbation with scale controlled by a numerical mutation rate µnum ∈ [0, 1] and projecting back
into the valid range:

x′
num(j) = ΠX

num(j)

(
xnum(j) + ϕ

)
, ϕ ∼ N (0, σ2), σ = µnum · (max(Xnum(j))−min(Xnum(j))) (3)

where ΠX (·) denotes projection onto the feasible range of Xnum(j)
1.

Both mutation rates µcat and µnum follow a polynomial decay as a function of the iteration index t
to balance exploration and exploitation. In the early stages, higher mutation rates encourage explo-
ration of the sample space, while in later stages, lower rates focus on refining high-quality samples.

µ = µinit − (µinit − µfinal) · (t/T )γ (4)

Algorithm 1: DP NN HISTOGRAM

Input: Private dataset Dpriv, Population P ,
Noise multiplier σ

Output: Noisy histogram hist
1 hist← [0, 0, ..., 0]
2 for each sample s ∈ Dpriv do
3 i← argminj distance(s, P [j])
4 hist[i]← hist[i] + 1

5 for each index i in hist do
6 hist[i]← hist[i] +N (0, σ2)

7 return hist

DP NN HISTOGRAM. The DP NN HISTOGRAM
scores synthetic samples in a DP manner. At each it-
eration t, Tab-PE maintains a population P , which is
a set of candidate synthetic samples, mainly gener-
ated by VARIATION API. We denote a histogram
hist, where each bin hist[i] corresponds to a sample
P [i] in P . The value hist[i] represents the count of
private samples in Dpriv whose nearest neighbor in
P is P [i]. The pseudocode of DP NN HISTOGRAM
is presented in Algo. 1. For each sample in the
private dataset Dpriv, we find its nearest neighbor in
P and increment the corresponding bin (Algo. 1,
Lines 2– 4). To ensure DP, we add Gaussian noise
to each bin of the histogram (Algo. 1, Line 6). As
each private sample can only affect one bin, the
sensitivity of this histogram query is 1. By adding noise drawn from N (0, σ2) to each bin, we
achieve (ϵ, δ)-DP, where ϵ and δ are determined by the noise multiplier σ and the number of
iterations T . The privacy analysis can be reused from the Gaussian mechanism and the composition

1Numerical bounds are assumed known, as the default setting of a widely used library (Holohan et al., 2019)
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theorem, as done in the original private evolution paper Lin et al. (2024) and detailed in App. A.1.
The distance metric between samples is the mixed-type distance defined as follows, where λ is a
hyperparameter to balance the contributions of categorical and numerical attributes.

distance(sa, sb) =

√√√√√λ
∑
i

1
(
x
(a)

cat(i) ̸= x
(b)

cat(i)

)
+
∑
j

(
x
(a)

num(j) − x
(b)

num(j)

maxX
num(j)

−minX
num(j)

)2

(5)

Tabular Private Evolution. The overall process of Tab-PE is summarized in Algo. 2. We first
initialize a synthetic dataset Dsyn with RANDOM API. Then we iteratively refine the synthetic sam-
ples over T iterations. In each iteration, we generate a population of sample candidates using
VARIATION API, score them with DP NN HISTOGRAM, and select the top samples to form the
next generation. To enhance exploration and exploitation, we employ a two-stage approach: sam-
pling with replacement in the early iterations, followed by ranking and selecting the top samples in
later iterations. In the first Tsampling iterations, we sample new synthetic samples based on the noisy
histogram-based probabilities. The variation degree m is set to 1 (Algo. 2, Line 8) to maintain a
small population size, which yields higher average histogram counts (Algo. 1, Lines 2– 4) and thus
reduces sensitivity to noise (Algo. 1, Line 6). This leads to more reliable sampling probabilities
(Algo. 2, Line 14). In the second stage, we set m to a higher value to encourage local refinement.
The population P now includes both the variations and the previous selected samples (Algo. 2,
Line 10). We then select the top N (c) samples based on their noisy histogram scores (Algo. 2,
Line 17). Intuitively, at the beginning, some samples may have significantly large counts and sam-
pling with replacement allows these samples to be selected multiple times, which helps to quickly
shift the distribution of synthetic samples towards the private data distribution. In the later stage,
selecting the top samples helps to locally refine the synthetic dataset and improve its quality. This
two-stage approach effectively exploits the strengths of both sampling and top selection, leading to
better overall performance.

Algorithm 2: Tabular Private Evolution
Input: The set of classes C, Private dataset Dpriv, Noise multiplier σ,

Number of iterations T , Number of sampling iterations Tsampling,
Variation degree m, Number of synthetic samples N

Output: Synthetic dataset Dsyn
1 Dsyn ← ∅
2 for each class c ∈ C do
3 D(c)

priv ← subset of Dpriv of class c

4 N (c)← N · |D(c)
priv|/|Dpriv|2 /*Num synthetic samples of class c*/

5 D0← RANDOM API(N (c)); /*Initialize a dataset*/
6 for t← 1 to T do
7 if t ≤ Tsampling then
8 Pt← VARIATION API(Dt−1, 1) /*Population at t*/
9 else

10 Pt← VARIATION API(Dt−1, m) ∪ Dt−1 /*Population at t*/

11 histt← DP NN HISTOGRAM(D(c)
priv, Pt, σ)

12 if t ≤ Tsampling then
13 histt[i]← max(0, histt[i]) /*Clamp negative counts to zero*/
14 prob[i]← histt[i]/

∑
j histt[j]

15 Dt← sample N (c) samples from Pt with replacement according to prob
16 else
17 Dt← top N (c) samples of Pt by histt

18 Dsyn ←Dsyn ∪ DT

19 return Dsyn

The previous query-based methods require answering many queries. Each single query needs to
scan the entire dataset. Moreover, high-dimensional queries involving many attributes are especially

2We assume class distributions are known as (Lin et al., 2024; Xie et al., 2024). Additionally, experiments
in App. C.8 show Tab-PE performs similarly either w/ or w/o this assumption.
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costly, as they create large multi-way count tables that consume significant memory and computation
resources. Additionally, model fitting and optimization over these query measurements usually
requires iterative solvers that may scale poorly with the dimensionality. In contrast, Tab-PE operates
at the sample level, and each iteration only requires a single pass over the private dataset to conduct
nearest neighbor search. While the query-based methods struggle to handle high-order correlations
due to the exponential growth of queries, Tab-PE leverages full-record nearest neighbor matching
and iterative refinement that can implicitly capture complex, high-dimensional dependencies.

4 EXPERIMENTS AND RESULTS

Overview. As we focus on high-order correlation modeling in DP tabular data, we first exam-
ine the algorithmic capability of the baselines and Tab-PE by an extreme case of XOR simula-
tion datasets. We then conduct extensive experiments on realistic simulated datasets with multiple
non-linear underlying functions and real-world datasets with high-order correlations, under various
privacy constraint settings. We also evaluate the methods on widely-used real-world datasets with
predominantly low-order correlations. Finally, we examine computational efficiency and analyze
the technical design choices in Tab-PE.

4.1 EXPERIMENT SETUP

Baselines. We consider several SOTA baselines in DP tabular data synthesizers, following a re-
cent benchmark (Chen et al., 2025): PrivSyn (Zhang et al., 2021), PrivMRF (Cai et al., 2021),
GEM (Vietri et al., 2022), RAP++ (Liu et al., 2021), PrivGSD (Liu et al., 2023), the SOTA method
– AIM (McKenna et al., 2022). We refer the reader to the original papers and recent surveys (Yang
et al., 2024; Cormode et al., 2025) for details on these methods. Additionally we present the upper
bound performance (UB), directly using private dataset without DP guarantees.

Datasets. In total, we organize the datasets used in our experiments into four categories. 1) XOR,
simulation stress-test datasets. 2) Structural Causal Model Simulation generated from causal
graphs (details in App. B.1.2). 3) Real-World Datasets with High-Order Correlations, in which
complex classifiers significantly outperform simple ones, requiring synthetic data to capture high-
order dependencies. 4) Real-World Datasets with Low-Order Correlations, widely used in the
literature, only low-order correlations are sufficient for high downstream accuracy.

Evaluation Metrics. Following previous benchmarks (Chen et al., 2025; Tao et al., 2022), we eval-
uate the methods using Machine Learning (ML) Downstream Efficiency and Fidelity Error. For the
fidelity, we calculate the average of total variation distance (TVD) of single and two-way joint distri-
butions between the synthetic and private datasets. Additionally, we perform evaluations in a unified
embedding space, derived from an autoencoder trained on the private data with a reconstruction ob-
jective. This high-dimensional space enables us to compare the synthetic and real distributions at
the representation level rather than just marginals. We calculate Precision and Recall (Sajjadi et al.,
2018) which are widely used in image (Gong et al., 2025) and text domains (Wang et al., 2025). We
present the details of the metrics in App. B.2.

Implementation Details. We provide additional details and hyperparameters of Tab-PE in App. B.3.
For the baselines, we follow the original papers and a recent benchmark (Chen et al., 2025) for the
hyperparameter settings. We run all methods on three distinct data splits generated by different
random seeds and report the average performance values with corresponding standard deviations.
When running an (ϵ, δ)-DP algorithm on a dataset Dpriv of size |Dpriv|, for all methods, we set
δ = 1/ (|Dpriv| · ln |Dpriv|), which is a common choice in the DP literature (Dwork et al., 2014).

4.2 CURSE OF DIMENSIONALITY

In this experiment, we examine the algorithmic capability of methods in modeling high-order cor-
relation. We construct a simulated XOR dataset where all features are drawn from zero-centered
uniform distributions. The label is assigned based on the parity of number of positive feature values.
In this dataset, the features themselves are mutually independent; the only dependency lies between
the features and the label. This setup represents an extreme case where any single feature can flip
the label. Consequently, failing to capture the contribution of only a single feature reduces the per-

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

formance to random guessing (illustrated in Fig. 10& 9, App. B.1.2). The baseline methods are set
up with the ideal degree for marginal queries, i.e., K = num features + 1.

Fig. 1 presents the AUC score of the classifier trained on the synthetic data generated by the methods
at ϵ = 1.0. As the number of features increases, the classification problem itself becomes more
challenging leading to the performance drop of the upper bound – using private data (ϵ = ∞).
Intuitively, the number of marginal queries grows exponentially with the correlation order. This is
challenging to marginal query-based methods for modeling high-order correlations. Consequently,
all the baselines fail completely at 5 features, delivering a downstream performance of random guess.
In contrast, Tab-PE successfully yields an AUC score of 0.8 for 5 features. This demonstrates Tab-
PE provides broader support for capturing high-order correlations.

Dataset Method ML Downstream (↑) Fidelity (↓) Embedding (↑)
Accuracy Macro F1 1-TVD 2-TVD Precision Recall

Artificial

UB 80.80 ± 0.44 79.87 ± 0.65 0.031 ± 0.002 0.115 ± 0.003 98.09 ± 0.15 98.66 ± 0.27

Characters

PrivSyn 13.83 ± 0.00 2.43 ± 0.00 0.054 ± 0.002 0.223 ± 0.001 13.42 ± 0.32 98.05 ± 0.43

PrivMRF 13.63 ± 0.28 4.72 ± 3.24 0.034 ± 0.004 0.206 ± 0.005 13.93 ± 0.18 97.33 ± 0.59

GEM 10.13 ± 0.86 5.62 ± 0.46 0.243 ± 0.012 0.412 ± 0.011 9.55 ± 0.75 94.57 ± 1.19

RAP++ 33.29 ± 2.14 32.17 ± 2.11 0.211 ± 0.008 0.406 ± 0.014 28.45 ± 4.49 3.77 ± 1.76

PrivGSD 40.36 ± 1.29 39.10 ± 1.38 0.168 ± 0.007 0.314 ± 0.009 26.98 ± 0.36 98.40 ± 0.22

AIM 23.24 ± 1.48 20.17 ± 1.24 0.036 ± 0.005 0.177 ± 0.004 18.82 ± 0.55 98.06 ± 0.21

Tab-PE 49.38 ± 0.46 48.09 ± 0.71 0.173 ± 0.007 0.367 ± 0.010 36.57 ± 1.51 89.77 ± 3.09

UB 78.01 ± 0.06 54.63 ± 0.36 0.009 ± 0.001 0.033 ± 0.001 98.27 ± 0.13 98.30 ± 0.07

Person

PrivSyn 33.05 ± 0.00 4.52 ± 0.00 0.003 ± 0.000 0.195 ± 0.000 41.87 ± 0.12 97.74 ± 0.12

Activity

PrivMRF 51.83 ± 1.28 22.42 ± 1.01 0.004 ± 0.000 0.078 ± 0.001 88.85 ± 0.37 98.11 ± 0.14

GEM 31.85 ± 1.10 5.64 ± 0.79 0.218 ± 0.018 0.357 ± 0.026 55.92 ± 3.42 95.20 ± 1.35

RAP++ 52.72 ± 0.83 26.57 ± 0.82 0.190 ± 0.004 0.353 ± 0.004 59.95 ± 2.49 62.36 ± 2.81

PrivGSD 56.47 ± 0.36 29.25 ± 0.53 0.105 ± 0.005 0.201 ± 0.008 80.06 ± 0.74 93.74 ± 0.58

AIM 59.53 ± 0.47 30.79 ± 0.32 0.003 ± 0.000 0.055 ± 0.000 89.97 ± 0.24 98.73 ± 0.07

Tab-PE 63.72 ± 0.18 35.09 ± 0.19 0.036 ± 0.006 0.126 ± 0.006 90.93 ± 0.88 91.57 ± 0.38

Table 1: ϵ = 1.0. The query degree hyperparameter of baselines vary from 2 to 5, the best-
performing results of the baselines are reported.

4.3 SIMULATED DATASETS BY STRUCTURAL CAUSAL MODELS (SCM)
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Figure 3: The test accuracy on SCM simulated datasets under various privacy budgets.

We adapt the simulation method from TabPFN (Hollmann et al., 2025), which is a breakthrough
in tabular data classification. The full pipeline is described in App. B.1.2. Compared to the pre-
vious XOR setting, this is a more realistic scenario: features are correlated; modeling a subset of
the joint distribution can translate into gains for downstream tasks. In our experiments, we imple-
ment three non-linear prior functions (defining the mapping from features to labels): Tree, Neural
Network (NN), and Random Fourier Features (RFF).

Across all prior functions, Tab-PE achieves the best downstream performance at ϵ = 1.0. See
Tab. 4, App. C.2 for numerical details. Tab-PE achieves 89.4% accuracy and 96.4% AUC for the
neural network prior, significantly above the best baseline – AIM (85.2%, 93.3%). For the fidelity,
AIM and MRF offer the best performance, while Tab-PE is slightly behind but still competitive
and better than several baselines. In the embedding space, Tab-PE consistently yields the highest
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precision ∼98% but the recall slightly lags at ∼81%. Overall, these results indicate that Tab-PE most
effectively captures high-order correlations to deliver the highest predictive downstream utility.

Fig. 3 depicts the test accuracy under different settings of privacy budget. In general, Tab-PE con-
sistently outperforms the baselines under a variety of privacy settings. Most methods improve with
larger ϵ. Tree and RFF priors induce sharp, brittle high-order correlations that marginal-based meth-
ods cannot approximate well. This results in large accuracy gains of Tab-PE, compared to the best-
performing baselines, around 10%. In contrast, the NN prior often produces smoother correlations,
so the gap remains around 4%. These results demonstrate that Tab-PE is effective at modeling chal-
lenging high-order correlations and maintains significant performance gains over baselines under
either strict or loose privacy settings.

4.4 REAL-WORLD DATASETS

100 101

{0.2, 0.5, 1.0, 3.0, 10.0}

0.2

0.4

0.6

Te
st

 A
cc

ur
ac

y

Artificial Characters

100 101

{0.2, 0.5, 1.0, 3.0, 10.0}

0.4

0.6

Person Activity

PrivSyn
PrivMRF

GEM
RAP++

PrivGSD
AIM

Tab-PE

Figure 4: The test accuracy on real-world datasets
under various privacy budgets.

We evaluate on two real-world datasets with
high-order correlations (details in App. B.1).
Generally, the performance trends are consis-
tent with the previous SCM simulated datasets,
as shown in Tab. 1. Tab-PE improves the down-
stream utilities by a large margin, e.g., +9.02%
accuracy and +8.99% macro F1 on the Artificial
Characters dataset, but still lags the non-private
upper bound (∼30% accuracy gap). More-
over, consistent with the SCM datasets, Tab-PE
achieves the highest precision in the embedding
space. However, the TVD metrics and recall are
slightly worse than AIM and PrivMRF. More-
over, Fig. 4 illustrates the test accuracy under
different privacy budgets. Tab-PE consistently outperforms the baselines across the privacy settings.
Due to space constraints, we present the results of low-order real-world datasets in App. C.3 (Tab. 5).
While Tab-PE is primarily designed for high-order correlations, it remains competitive (only ∼1%
accuracy drop compared to AIM) on datasets dominated by low-order correlations.

4.5 COMPUTE EFFICIENCY & SCALABILITY
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Figure 5: The runtime of the methods under different privacy budgets and dataset sizes. In the left
figure, each method is shown with multiple markers, corresponding to various query degree settings.
PrivSyn has only one marker as it does not have this hyperparameter.

We further study the compute efficiency and scalability of the methods. We run the experiments
on the Neural Network prior simulation dataset using the same computing resources allocated by
Slurm: 16 CPUs, 100 GB of memory, and a Quadro RTX 8000 GPU (48GB). While most baselines
require GPUs, Tab-PE runs entirely on CPUs. As shown in Fig. 5 (left), at ϵ = 1.0, Tab-PE is
the most efficient method while achieving the best downstream utilities. Compared to the leading
baselines in utility, Tab-PE runs 10× faster than PrivMRF and 28× faster than AIM. We also study
the scalability of the baselines by varying the query degree, detailed in App. C.4, Fig. 13. Generally,
increasing the query degree does not bring significant performance gains for the baselines. However,
it leads to an exponential increase in runtime for GEM and PrivGSD. Subsequently, most methods
including Tab-PE scale well with the privacy budget, as presented in Fig. 5 (middle). Meanwhile,
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AIM exhibits a rapid increase (60×) in runtime as ϵ increases from 1.0 to 10.0, as the larger privacy
budget allows them to issue more queries. Finally, we examine the scalability of the methods with
the dataset size. As depicted in Fig. 5 (right), at ϵ = 1.0, Tab-PE is the fastest method across all
dataset sizes. Notably, Tab-PE runs 18.6× faster than the leading baselines (AIM, RAP++, GSD, and
MRF) at 500K samples. Taken together, these results demonstrate that Tab-PE is highly efficient
and scalable, demonstrating it is practical for large-scale real-world applications.

4.6 FINDINGS & ANALYSES
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Figure 6: The performance of different selection strate-
gies. Tab-PE implements a two-stage strategy: 5 itera-
tions for sampling and 10 iterations for ranking (Artif-
ical Characters; ϵ = 1.0).

Two-stage selection outperforms
ranking- or sampling-only strategies.
Fig. 6 presents the ablation study on
two-stage selection by comparing with
ranking-only and sampling-only strate-
gies. While the sampling selection can
preserve the distribution quickly that
translates to TVD-related metrics, the
ranking selection is essential for local
refinement to boost the downstream
accuracy. The two-stage selection effec-
tively combines the advantages of both
strategies, leading to the best performance.

Polynomial schedule outperforms linear
decay. We study the impact of different
probability decay schedules in the VARIATION API. As shown in Fig. 15, App. C.5.1, the polyno-
mial schedule consistently outperforms the linear decay, used in Lin et al. (2025), across all metrics.
The polynomial schedule allows more aggressive exploration at the beginning and more focused
refinement at the end, leading to better overall performance, illustrated in Fig. 14, App. C.5.1. We
present additional performance analysis on different decay factors in App. C.5.1 (Fig. 20 and 21).
Generally, a moderate initial mutation rate µinit (0.5-0.7) and decay factor γ (0.2 - 0.5) yield the best
performance and consistently outperform the linear decay (γ = 1.0).

Simple APIs can be effective. We adapt the genetic algorithm design (crossover and mutation) from
PrivGSD (Liu et al., 2023) to VARIATION API in our private evolution framework. The results
and detailed implementations are provided in App. C.5.2 (Fig. 16). Tab-PE with either API achieves
higher accuracy compared to the best marginal-based method (∼40%). The simple random walk
with scheduled probability decay boosts accuracy by 7%, from 43% to 50%, compared to crossover
and mutation, while the TVD metrics remain competitive.

Hyperparameter Sensitivity Analysis. We study the sensitivity of key hyperparameters in Tab-PE.
The detailed results are presented in App. C.6. Generally, Tab-PE needs sufficient iterations (15-
20) to converge and provide good utilities. Our ideal number of iterations is notably smaller than
PrivGSD, which performs 200K iterations. The number of synthetic samples should be proportional
to the dataset size to ensure an appropriate signal-to-noise ratio. At ϵ = 1.0, Tab-PE best generates
10-20% of the original size (Fig. 17), but the synthetic data can be further enriched by oversampling
algorithms (App. C.7). The optimal hyperparameter setting is robust across ϵ settings (Fig. 23).

5 CONCLUSION

We revisit the challenges of modeling high-order correlations in synthetic tabular data generation
with DP guarantees. We showed that existing methods struggle to capture these correlations. To
address this, we introduced Tab-PE, a novel approach using Private Evolution. Our method effec-
tively models high-order correlations while being lightweight and efficient. While Private Evolution
has enhanced the performance in image and text synthesis (Lin et al., 2024; Xie et al., 2024; Lin
et al., 2025), a prior attempt for tabular data (Swanberg et al., 2025) did not yield satisfactory out-
comes. In contrast, our results demonstrate that with appropriate design choices, Private Evolution
can offer some advantages in either utility or efficiency over existing methods. We believe our work
establishes a new promising paradigm for private tabular data generation.
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REPRODUCIBILITY STATEMENT

Our experimental details are fully described in the main paper and Appendix. The code, datasets,
and instructions are available at https://anonymous.4open.science/r/tabpe-A11C

ETHICAL STATEMENT

We believe our work has positive ethical implications. By enabling the generation of high-quality
synthetic tabular data with differential privacy guarantees, our methods can enable data sharing,
application, and innovation in many fields where privacy concerns currently limit data access. How-
ever, we also acknowledge the potential risks of synthetic data, even with DP guarantees, loose set-
tings of privacy parameters may still lead to information leakage. We encourage users to carefully
consider the privacy-utility trade-offs and choose appropriate privacy parameters for their specific
use cases.

Large Language Models were occasionally used for polishing, the vast majority of the writing was
done manually.

REFERENCES

Borja Balle and Yu-Xiang Wang. Improving the gaussian mechanism for differential privacy: An-
alytical calibration and optimal denoising. In International conference on machine learning, pp.
394–403. PMLR, 2018.

Vadim Borisov, Tobias Leemann, Kathrin Seßler, Johannes Haug, Martin Pawelczyk, and Gjergji
Kasneci. Deep neural networks and tabular data: A survey. IEEE Transactions on Neural Net-
works and Learning Systems, 35(6):7499–7519, 2024. doi: 10.1109/TNNLS.2022.3229161.

Kuntai Cai, Xiaoyu Lei, Jianxin Wei, and Xiaokui Xiao. Data synthesis via differentially private
markov random fields. Proceedings of the VLDB Endowment, 14(11):2190–2202, 2021.

Rodrigo Castellon, Achintya Gopal, Brian Bloniarz, and David Rosenberg. Dp-tbart: A transformer-
based autoregressive model for differentially private tabular data generation, 2023. URL https:
//arxiv.org/abs/2307.10430.

Kai Chen, Xiaochen Li, Chen Gong, Ryan McKenna, and Tianhao Wang. Benchmarking differen-
tially private tabular data synthesis, 2025. URL https://arxiv.org/abs/2504.14061.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, KDD ’16, pp. 785–794, New York, NY, USA, 2016. Association for Computing Machin-
ery. ISBN 9781450342322. doi: 10.1145/2939672.2939785. URL https://doi.org/10.
1145/2939672.2939785.

Graham Cormode, Samuel Maddock, Enayat Ullah, and Shripad Gade. Synthetic tabular data:
Methods, attacks and defenses. In Proceedings of the 31st ACM SIGKDD Conference on Knowl-
edge Discovery and Data Mining V. 2, pp. 5989–5998, 2025.

Tim Dockhorn, Tianshi Cao, Arash Vahdat, and Karsten Kreis. Differentially private diffusion
models. Transactions on Machine Learning Research, 2023. ISSN 2835-8856. URL https:
//openreview.net/forum?id=ZPpQk7FJXF.

Jinshuo Dong, Aaron Roth, and Weijie J Su. Gaussian differential privacy. Journal of the Royal
Statistical Society Series B: Statistical Methodology, 84(1):3–37, 2022.

Konstantin Donhauser, Javier Abad, Neha Hulkund, and Fanny Yang. Privacy-preserving data re-
lease leveraging optimal transport and particle gradient descent. In Proceedings of the 41st Inter-
national Conference on Machine Learning, ICML’24. JMLR.org, 2024.

Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of differential privacy. Foundations
and trends® in theoretical computer science, 9(3–4):211–407, 2014.

10

https://anonymous.4open.science/r/tabpe-A11C
https://arxiv.org/abs/2307.10430
https://arxiv.org/abs/2307.10430
https://arxiv.org/abs/2504.14061
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
https://openreview.net/forum?id=ZPpQk7FJXF
https://openreview.net/forum?id=ZPpQk7FJXF


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Miguel Fuentes, Brett Mullins, Ryan McKenna, Gerome Miklau, and Daniel Sheldon. Joint se-
lection: Adaptively incorporating public information for private synthetic data, 2024. URL
https://arxiv.org/abs/2403.07797.

Chen Gong, Kecen Li, Zinan Lin, and Tianhao Wang. Dpimagebench: A unified benchmark for dif-
ferentially private image synthesis, 2025. URL https://arxiv.org/abs/2503.14681.
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Appendix
Due to the space limit, we present additional details, results, and analyses in the Appendix.
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A METHODOLOGY

A.1 PRIVACY ANALYSIS

The privacy analysis of Algorithm 2 can be reused from Lin et al. (2024) (see Section 4.3 there), as
Tab-PE changes only non-private steps of the original PE framework. For completeness, we include
it here as well. The DP guarantee of the Tab-PE algorithm (Algorithm 2) can be reasoned as follows:

• Step 1: The sensitivity of DP Nearest Neighbors Histogram (Algorithm 1). Each private
sample only contributes one vote for histogram of one class. If we add or remove one
sample, the resulting histogram for the corresponding class will change by at most 1 in the
ℓ2 norm. Therefore, the sensitivity is upper bounded by 1.

• Step 2: Regarding each PE iteration as a Gaussian mechanism. The second for loop of
Algorithm 1 adds i.i.d. Gaussian noise with standard deviation σ to each bin. This is a
standard Gaussian mechanism (Dwork et al. (2014)) with noise multiplier σ.

• Step 3: Regarding the entire PE algorithm as T adaptive compositions of Gaussian mecha-
nisms, as Tab-PE is simply applying Algorithm 1 T times sequentially.

• Step 4: Regarding the entire Tab-PE algorithm as one Gaussian mechanism with noise
multiplier σ/

√
T . It is a standard result from Dong et al. (2022) (see Corollary 3.3 therein).

• Step 5: Computing DP parameters ϵ and δ. Since the problem is simply computing ϵ and δ
for a standard Gaussian mechanism, we use the formula from Balle & Wang (2018) directly.

B EXPERIMENTAL SETUP

B.1 DATASETS

B.1.1 REAL-WORLD DATASETS

Qualifying high-order correlation through classifier performance gap We aim to study how
well the methods can capture high-order correlations. It is easy to be misled about high-dimensional
correlations and high-dimensional datasets. While some datasets can have a large number of fea-
tures, but the features are often independent or only have low-order correlations (i.e., dependencies
involving only a few features). We first propose a way to qualify the order of correlation in a dataset
by considering the performance gap between simple classifiers, which only capture low-order cor-
relations, and complex classifiers, which can leverage high-order correlations. The larger gap, the
more high-order correlations exist in the dataset. In practice, we vary the max depth of XGBoost,
where the depth of decisions work as an upper bound on the order of captured correlations.

Widely used datasets are dominated by low-order correlations We investigate a variety of
datasets that have been widely used in prior evaluations (Chen et al., 2025; Tao et al., 2022). We
increase the max depth from 2 to 7, while keeping other hyperparameters as default. The results
are shown in Figure 7. The gap of accuracy is trivial (typically smaller than 1%). This indicates
that the downstream tasks on these datasets are dominated by low-order correlations. This leads
to the conclusion that these datasets are not suitable for evaluating the ability to capture high-order
correlations because synthesizers that can only capture low-order correlations may already achieve
good performance.

Datasets with high-order correlations We selected two datasets that yield significant differences
in accuracy while varying the max depth of XGBoost, as depicted in Figure 8. In particular, we con-
sider the Artificial Characters dataset (Guvenir et al., 1992) 3 and the Person Activity dataset (Vidulin
et al., 2010) 4. The Artifical Characters dataset contains 10218 samples with 8 numerical features
and 10 classes, while the Person Activity dataset includes 164860 samples with 2 categorical fea-
tures, 6 numerical features, and 11 classes.

3https://www.openml.org/search?type=data&id=1459
4https://www.openml.org/search?type=data&id=1483
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Figure 7: Datasets with low-order correlations. These are widely used in prior evaluations.
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Figure 8: Datasets with high-order correlations – our focus.
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B.1.2 SIMULATION DATASETS

XOR correlations as a stress test We consider XOR correlations as a stress test for capturing
high-order correlations. The XOR function is a classic example that requires all input features to
determine the output. Failing to model any single feature leads to random guessing. Each feature
is drawn from an uniform distribution over (−10, 10). The label is then determined by the parity of
positive features.

c =

{
1 if

∑d
i=1 1(xi > 0) is odd

0 otherwise

For each setting of the number of features, we generate 50K samples and ensure balanced binary
classes. The dataset with two features is visualized in Figure 9. Figure 10 presents the performance
of XGBoost classifiers with varying max depths on the XOR datasets. The max depth of XGBoost
must be equal to the number of features to achieve better-than-random accuracy. Therefore, the
synthetic data must capture the full high-order correlations to achieve good downstream utilities.

Figure 9: XOR dataset with 2 features. The colors represent classes.
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Figure 10: XOR Simulation Datasets.
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SCM simulation datasets offer sustainable high-order correlations We adapt the simulation
method from TabPFN (Hollmann et al., 2025), which is a breakthrough in tabular data classifica-
tion. TabPFN generates large-scale realistic simulation data and pretrains a foundation model for in-
context learning. By learning on only the simulation data, TabPFN still offers strong generalization
to real-world data. This simulation pipeline employs Structural Causal Models (SCMs). An SCM
defines a directed acyclic graph where each node corresponds to a feature, and the edges capture
causal dependencies. The features are then generated by sampling values according to these depen-
dencies that can represent complex interactions and non-linear relationships. The label is calculated
by a prior function of features, inducing high-order correlations between the label and the feature
set. As a result, increasing the max depth of XGBoost can lead up to a 10% accuracy gap (Figure 11,
Appendix B.1). Compared to the previous XOR setting, this is a more realistic scenario: features are
correlated; modeling a subset of the joint distribution can translate into gains for downstream tasks.
In our experiments, we implement three non-linear prior function: Tree, Neural Network (NN), and
Random Fourier Features (RFF). Each dataset include 50K samples.
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Figure 11: SCM Simulation Datasets.

B.2 EVALUATION METRICS

We consider the following metrics to evaluate the quality of synthetic data.

Downstream utility The downstream utility reflects how well the synthetic data capture the cor-
relation between features and labels. These metrics are the most important ones for studying high-
order correlations. For consistency, we use the same SOTA classifier TabICL (Qu et al., 2025) for all
datasets. TabICL is a transformer-based foundation model that has been pretrained on 82 millions
of tabular datasets with in-context learning. It has demonstrated superior performance on a wide
range of tabular datasets while requiring little-to-no hyperparameter tuning. For all methods, we
fit TabICL on the generated synthetic data and evaluate on the same real test set.

Fidelity of statistical properties To capture the statistical properties, we consider the total vari-
ation distance (TVD) of the pairwise joint distributions, as used in prior work (Chen et al., 2025;
Tao et al., 2022). In particular, we bin each numerical feature into 20 equal-width bins. We con-
sider 1-TVD and 2-TVD, which are the average TVD of all univariate and bivariate distributions,
respectively. The following formula defines the TVD metrics:

1-TVD(D,D′) =
1

2NF

∑
fi∈F

∑
v∈fi

|PD(xi = v)− PD′(xi = v)|
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2-TVD(D,D′) =
1

2NF (NF − 1)

∑
fi,fj∈F

i̸=j

∑
vi∈fi

∑
vj∈fj

×
∣∣PD(xi = vi, xj = vj)− PD′(xi = vi, xj = vj)

∣∣
where F is the set of features/attributes including the label, NF is the number of features, and PD
and PD′ are the empirical probability by counting within datasets D and D′, respectively.

Representation-level alignment Evaluating the alignment on the representation space is common
for text and image generation Lin et al. (2024); Xie et al. (2024). The alignment reflects how well
the synthetic data cover the real data distribution in the representation space which can capture
somewhat high-dimensional dependencies. While the representation space is achieved directly from
foundation models in text and image domains, tabular data is challenged by strong distribution-
shift across datasets. Therefore, we train an autoencoder for each dataset using directly the private
dataset with a reconstruction loss. It is worth noting that the autoencoder here is only used for
evaluation, and is not part of the synthesis process. By training on the private data, we ensure that
the representation space is reliable and meaningful. We then calculate precision and recall Sajjadi
et al. (2018) on the embeddings of real and synthetic data. Precision measures how many generated
samples are actually close to the real data manifold, while Recall calculates how many real samples
are covered by the generated data. The formula of precision and recall are as follows:

Precision =
1

|Dsyn|
∑

x∈Dsyn

1(∃y ∈ Dreal, ∥ϕ(x)− ϕ(y)∥2 ≤ rk(ϕ(y), ϕ(Dreal)))

where ϕ is the encoder of the autoencoder that maps the raw data to the representation space;
rk(ϕ(y), ϕ(Dreal)) is the distance from ϕ(y) to its k-th nearest neighbor in the set ϕ(Dreal). We
set k = 5 in our experiments. Recall is defined symmetrically by swapping Dsyn and Dreal.

Recall =
1

|Dreal|
∑

y∈Dreal

1(∃x ∈ Dsyn, ∥ϕ(y)− ϕ(x)∥2 ≤ rk(ϕ(x), ϕ(Dsyn)))

B.3 IMPLEMENTATIONS

We split each dataset into 70% training, 15% validation, and 15% test sets, determined by fixed
random seeds. All the methods are fitted on the same training set and evaluated on the same test
set. The validation set is used for hyperparameter tuning for all methods. We generally do not
account the privacy budget for hyperparameter tuning. For the baselines, we reuse the code from
a recent benchmark (Chen et al., 2025) and follow their hyperparameter settings. For baselines
that requires discretizing numerical features, we employ PrivTree (Zhang et al., 2016), which yields
better performance than uniform binning, according to Chen et al. (2025). For baselines using
statistical queries, we use marginal queries, as they are the most commonly used in prior work and
the most important for capturing high-order correlations. Rather than fixing the degree of marginal
queries at 2, as is common in many previous setups, we treat it as a tunable hyperparameter (ranging
from 2 to 5), since our datasets exhibit high-order correlations. This tuning maximizes the chance
of capturing such correlations. The other hyperparameters of the baselines are presented in Table 2.

By default, we run Tab-PE with the hyperparameters presented in Table 3 if not specified. For the
real-world datasets, we generate 1K samples for the Artifical Characters dataset and 5K samples for
the Person Activity dataset. For the simulation data, we generate 2K samples by default.

C ADDITIONAL RESULTS

C.1 DATA DISTRIBUTION OF TAB-PE OVER ITERATIONS

Figure 12 illustrates the evolutionary process of synthetic datasets generated by Tab-PE. At the be-
ginning (iteration 0), the synthetic data is mostly random. As the algorithm progresses, the synthetic
data gradually aligns with the private data distribution.
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Method Hyperparameter Value

PrivSyn Consistent Iteration 501
Max update iteration 50

PrivMRF

Graph construction parameter 6
Sample size 400
Estimation iteration 3000
Size penalty 1e-8
Max clique size 1e+7

GEM

Synthesis size 1024
Learning rate 1e-3
Max iteration 500
Max selection round 5 · number of attributes

RAP++

Random Projection Number 2e+6
Categorical optimization rate 3e-3
Numerical optimization rate 6e-3
Top q 5
Categorical optimization step 1
Numerical optimization step 3
Upsample rate 10

PrivGSD

Mutation rate 50
Cross over rate 50
Upsample number 1e+5
Number of iterations 1e+6

AIM
Max model size 100
Max iteration 1000
Max marginal size 2.5e+5

Table 2: Hyperparameters of the baselines.

Hyperparameter Value
Number of iterations T 15
Number of sampling iterations Tsampling 5
Variation degree m 3
Mutation rate initial value µinit 0.5
Mutation rate final value µfinal 0.02
Categorical mutation rate µcat Polynomial decay from µinit to 0.02
Numerical mutation rate µnum Polynomial decay from µinit to 0.02
Decay factor γ 0.2
Categorical weight λ 1/3
Privacy budget ϵ 1.0
Privacy delta δ 1/(|Dreal| · ln(|Dreal|))

Table 3: Default hyperparameters of Tab-PE.
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Figure 12: Synthetic Datasets generated by Tab-PE over iterations for the XOR dataset with 2
features.
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Prior Method ML Downstream (↑) Fidelity (↓) Embedding (↑)
Accuracy AUC Score 1-TVD 2-TVD Precision Recall

Tree

UB 81.41 ± 0.09 90.17 ± 0.45 0.017 ± 0.000 0.062 ± 0.001 98.05 ± 0.22 97.74 ± 0.09

PrivSyn 51.04 ± 0.00 - 0.037 ± 0.001 0.129 ± 0.002 65.61 ± 0.98 98.08 ± 0.17

PrivMRF 65.68 ± 0.52 71.26 ± 0.82 0.037 ± 0.002 0.085 ± 0.002 92.11 ± 0.61 98.34 ± 0.13

GEM 56.66 ± 0.67 60.47 ± 0.47 0.119 ± 0.009 0.224 ± 0.013 59.65 ± 1.15 97.92 ± 0.18

RAP++ 64.77 ± 1.09 69.77 ± 1.49 0.152 ± 0.003 0.254 ± 0.006 93.21 ± 1.11 23.94 ± 3.32

PrivGSD 61.99 ± 0.37 66.22 ± 0.85 0.126 ± 0.003 0.208 ± 0.004 84.79 ± 0.77 91.74 ± 0.28

AIM 65.40 ± 0.26 71.19 ± 0.10 0.037 ± 0.001 0.083 ± 0.002 93.47 ± 0.45 98.33 ± 0.04

Tab-PE 68.78 ± 0.30 75.24 ± 0.36 0.064 ± 0.002 0.165 ± 0.002 98.63 ± 0.31 79.61 ± 1.33

NN

UB 96.58 ± 0.10 96.58 ± 0.10 0.016 ± 0.000 0.062 ± 0.000 98.02 ± 0.16 97.77 ± 0.05

PrivSyn 51.97 ± 16.18 50.59 ± 22.57 0.039 ± 0.003 0.136 ± 0.007 66.31 ± 0.08 97.93 ± 0.36

PrivMRF 84.78 ± 0.71 92.75 ± 0.77 0.039 ± 0.004 0.087 ± 0.006 92.89 ± 0.29 98.41 ± 0.25

GEM 74.26 ± 0.81 82.61 ± 0.47 0.136 ± 0.007 0.245 ± 0.011 57.55 ± 0.76 98.24 ± 0.13

RAP++ 85.16 ± 1.21 93.06 ± 1.10 0.152 ± 0.002 0.256 ± 0.002 94.00 ± 0.26 21.81 ± 2.22

PrivGSD 82.47 ± 0.40 90.86 ± 0.49 0.129 ± 0.005 0.214 ± 0.007 84.96 ± 0.42 91.17 ± 0.56

AIM 85.23 ± 0.40 93.26 ± 0.57 0.058 ± 0.002 0.159 ± 0.001 93.10 ± 0.26 98.36 ± 0.23

Tab-PE 89.36 ± 0.42 96.37 ± 0.25 0.048 ± 0.000 0.137 ± 0.001 98.57 ± 0.39 81.27 ± 1.75

RFF

UB 81.12 ± 0.19 81.12 ± 0.19 0.017 ± 0.000 0.063 ± 0.001 98.12 ± 0.18 97.55 ± 0.16

PrivSyn 50.96 ± 2.61 50.56 ± 4.13 0.035 ± 0.002 0.122 ± 0.004 66.83 ± 0.59 97.77 ± 0.44

PrivMRF 60.11 ± 0.15 63.68 ± 0.29 0.037 ± 0.002 0.083 ± 0.003 93.06 ± 0.16 98.55 ± 0.07

GEM 53.76 ± 0.99 55.53 ± 0.95 0.133 ± 0.022 0.243 ± 0.032 57.80 ± 3.26 98.51 ± 0.21

RAP++ 59.00 ± 1.32 62.13 ± 1.72 0.001 ± 0.000 0.162 ± 0.004 0.270 ± 0.007 25.84 ± 2.99

PrivGSD 57.08 ± 0.07 59.70 ± 0.15 0.135 ± 0.002 0.225 ± 0.005 85.13 ± 0.24 90.80 ± 0.79

AIM 59.60 ± 1.32 62.76 ± 1.41 0.035 ± 0.002 0.079 ± 0.003 93.41 ± 0.31 98.50 ± 0.16

Tab-PE 64.10 ± 0.40 69.19 ± 0.45 0.058 ± 0.002 0.159 ± 0.001 98.57 ± 0.39 81.27 ± 1.75

Table 4: The experiment is configured with ϵ = 1.0. The degree hyperparameter of baselines varies
from 2 to 5. The best and second-best results are highlighted in bold and underline, respectively.

C.2 SCM SIMULATION DATASETS

Table 4 presents the performance of all methods on the SCM simulation datasets. Tab-PE consis-
tently outperforms all baselines for the downstream utility metrics. For the fidelity metrics, Tab-PE
offers competitive perfomance. AIM remains the best on 1-TVD and 2-TVD, as it is designed
for capturing low-order marginals. In the embedding space, Tab-PE achieves the best precision,
demonstrating that the synthetic samples generated by Tab-PE are indeed close to the real data at
the representation level. Overall, these results indicate the effectiveness of Tab-PE in capturing
high-order correlations.

C.3 REAL-WORLD DATASETS WITH LOW-ORDER CORRELATIONS

We further evaluate the methods on well-known real-world datasets with low-order correlations.
Compared to Adult, Breast Cancer is a more challenging dataset with 30 features and only ∼500
samples. In this setting, we configure Tab-PE to run for 30 iterations generating 2K samples and 20
iterations generating 100 samples, respectively for the Adult and Breast Cancer datasets. The results
are presented in Table 5. Consistent to the prior evaluations (Chen et al., 2025), AIM offers the lead-
ing performance across most metrics. Tab-PE remains competitive on the downstream utilities with
only 1% accuracy drop compared to AIM. For low-order correlations, the marginal-based methods
are sufficient to capture the essential relationships between features and labels. This explains why
AIM, RAP, GSD, and PrivMRF perform well on these datasets. Overall, these results indicate that
while Tab-PE is primarily designed for high-order correlations, it remains competitive on datasets
dominated by low-order correlations.

C.4 COMPUTE EFFICIENCY

We present the running time and test accuracy of the baselines while varying the degree of marginal
queries in Figure 13. Generally, increasing the degree of marginal queries does not significantly
improve the accuracy. As the degree increases, the number of queries grows exponentially. For
PrivMRF, the test performance peaks at the degree of 4 at 84% and remains stable at 83.5%. For
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Dataset Method ML Downstream (↑) Fidelity (↓) Embedding (↑)
Accuracy Macro F1 1-TVD 2-TVD Precision Recall

Adult

UB 84.41 ± 0.57 75.68 ± 1.54 0.010 ± 0.001 0.027 ± 0.001 94.50 ± 0.14 94.09 ± 0.29

PrivSyn 75.77 ± 0.00 43.11 ± 0.00 0.012 ± 0.001 0.086 ± 0.000 45.34 ± 1.54 89.34 ± 0.17

PrivMRF 83.15 ± 0.43 76.85 ± 0.64 0.008 ± 0.000 0.034 ± 0.000 84.15 ± 0.25 93.74 ± 0.21

GEM 79.17 ± 2.32 69.63 ± 1.48 0.009 ± 0.006 0.086 ± 0.002 0.185 ± 0.004 76.48 ± 2.32

RAP++ 80.87 ± 0.59 72.22 ± 1.25 0.063 ± 0.000 0.137 ± 0.002 61.08 ± 4.24 80.64 ± 1.53

PrivGSD 82.09 ± 0.11 75.90 ± 0.43 0.028 ± 0.001 0.069 ± 0.001 74.45 ± 0.47 80.81 ± 0.41

AIM 83.36 ± 0.41 76.10 ± 1.41 0.007 ± 0.001 0.032 ± 0.001 87.06 ± 0.75 93.18 ± 0.21

Tab-PE 82.22 ± 0.51 73.66 ± 0.87 0.120 ± 0.008 0.221 ± 0.017 34.27 ± 1.57 77.25 ± 7.42

Breast

UB 97.68 ± 1.64 97.56 ± 1.73 0.143 ± 0.008 0.390 ± 0.015 97.48 ± 0.73 95.64 ± 0.78

Cancer

PrivSyn 51.60 ± 8.03 38.99 ± 6.92 0.431 ± 0.014 0.704 ± 0.012 60.39 ± 7.34 21.78 ± 7.84

PrivMRF 60.41 ± 3.37 37.63 ± 1.33 0.394 ± 0.020 0.683 ± 0.022 51.01 ± 11.29 16.83 ± 8.23

GEM 50.74 ± 13.88 44.91 ± 12.27 0.396 ± 0.012 0.681 ± 0.010 69.60 ± 11.83 28.64 ± 8.97

RAP++ 84.81 ± 4.43 83.97 ± 4.45 0.425 ± 0.018 0.699 ± 0.021 64.62 ± 3.48 9.63 ± 4.71

PrivGSD 60.02 ± 3.13 37.49 ± 1.24 0.419 ± 0.017 0.686 ± 0.023 60.30 ± 5.38 21.27 ± 1.91

AIM 89.25 ± 4.75 87.82 ± 6.17 0.419 ± 0.016 0.707 ± 0.017 68.17 ± 6.03 12.65 ± 4.86

Tab-PE 88.48 ± 3.53 87.01 ± 4.74 0.431 ± 0.014 0.779 ± 0.015 69.02 ± 6.14 15.24 ± 3.11

Table 5: Comparison on low-order real-world datasets under ϵ = 1. The best and second-best results
are highlighted in bold and underline, respectively. UB refers to the upper bound performance
trained on real data.
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Figure 13: Running Time and Test Accuracy of the baselines while varying the degree of marginal
queries. The trivial accuracy (random guessing) is 50%.
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GEM, the accuracy drops as the degree increases, due to the high noise to answer the large number
of queries. The running time of GEM significantly increases at the degree of 5. For RAP++, the
accuracy slightly increases from 84 to 84.45 at the degree of 4 then drops as the degree increases.
The running time of RAP++ is not significantly affected by the degree of queries. For AIM, the
accuracy remains approximately at 82% for all degrees that are less than 6. A degree that is too
high (≥ 6) causes the method to collapse without producing any meaningful patterns. For GSD, the
maximum degree is 3 due to the high compute resource requirement. In particular, at the degree of
4, GSD requires more than 200GB GPU memory which is not affordable for us. Theoretically, the
running time of methods that rely on marginal queries grows exponentially as the number of queries
increases. However, in practice, the running time of some methods may be still affordable and do
not change significantly. This is because some implementations limit the number of queries to a
fixed number to make sure the noise is not too large to yield reliable query answers. As a result, they
may not be able to fully model the high-order correlations. In summary, these results indicate the
limitations of marginal-based methods of both efficiency and effectiveness in capturing high-order
correlations.

C.5 VARIATION API STUDY

For consistency, this section presents the results on the Artificial Characters dataset with ϵ = 1.0.

C.5.1 DECAY SCHEDULE STUDY

Figure 14 illustrates the linear and polynomial decay schedules for the mutation rate. Generally, the
polynomial decay provides a higher mutation rate at the early stage for exploration while maintaining
a smaller mutation rate at the later iterations for better refinement. This leads to better performance
of the polynomial schedule over the linear decay, as shown in Figure 15.
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Figure 14: Visualization of different decay schedules.

C.5.2 API OPERATORS

We compare the proposed random walk strategy and a genetic algorithm-based design from an
existing work – PrivGSD (Liu et al., 2023). It is worth noting there are significant differences be-
tween Private Evolution and PrivGSD. PrivGSD is a method that heavily relies on marginal queries.
PrivGSD first defines a set of marginal queries and privately answers them. Then it uses a genetic
algorithm to search for a synthetic dataset that minimizes the error compared to the noisy answers.
Therefore, PrivGSD still inherits the limitations of marginal query-based approaches in capturing
high-order correlations. In contrast, Tab-PE does not rely on marginal queries, our evolutionary
process is directly guided by the private data at each iteration. In this comparison, we adapt the
genetic algorithm-based design from PrivGSD to our VARIATION API interface. More specifi-
cally, the original operators in PrivGSD work at dataset levels, while Tab-PE’s VARIATION API
requires sample-level operators. To achieve this, we remove the random selection of samples from
the dataset, and instead we apply the operators to all samples in the synthetic dataset. Addition-
ally, PrivGSD performs mutation only one attribute at a time, which leads to very slow convergence
( 200K iterations). This is not affordable for Private Evolution, as the privacy budget is consumed
at each iteration. Therefore, we modify the mutation operator to allow all attributes at once. The
crossover operator is kept the same as in PrivGSD. Figure 16 presents the results. This confirms that
the simple random-walk design in Tab-PE is effective and efficient.
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Figure 15: The performance of Tab-PE with different mutation rate decay schedules.
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Figure 16: Comparing the proposed random-walk VARIATION API with a genetic algorithm-
based design.
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C.6 HYPERPARAMETER SENSITIVITY ANALYSIS

For consistency, this section presents the results on the Artificial Characters dataset with ϵ = 1.0.
For the hyperparameter sensitivity analysis, we vary one hyperparameter while keeping the others
fixed as the default ones presented in the implementation if not specified.

Number of synthetic samples The smaller number of samples, the counts hist are larger, which
cause the noise to be less significant. However, too few samples may not be able to represent all
high-dimensional correlations. If the number of samples is too large, the noise has more impact
and can change the order of sample rankings. Figure 17 presents the performance of Tab-PE while
varying the number of synthetic samples. At ϵ = 1.0, 10% and 20% of the size of the private dataset
achieve the best performance.
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Figure 17: Tab-PE performance while varying the number of synthetic samples Dsyn.

Number of iterations A larger number of iterations T allows more refinement of the synthetic
data, but also leads to a larger noise scale σ. Figure 18 presents the performance of Tab-PE under
different settings of the number of iterations T . Tab-PE needs around 15-20 iterations to achieve
good performance.
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Figure 18: Tab-PE performance while varying the number of iterations T .

Number of sampling iterations The number of sampling iterations Tsampling controls how many
times we employ the sampling-with-replacement strategy. Figure 19 presents the performance of
Tab-PE under different configurations of Tsampling. Generally, combining both sampling and ranking
(i.e., 0 < Tsampling < T ) yields better performance than only ranking (i.e., Tsampling = 0) or only
sampling (i.e., Tsampling = T ). The best performance is achieved when using 20-40% of iterations
for the sampling strategy.

Mutation rate initial value µinit This parameter controls the noise level in the random walk strat-
egy. A larger mutation rate enables more exploration, but also makes it harder for local refinement.
Figure 20 presents the performance of Tab-PE with various values of µinit. A moderate value around
0.5-0.8 provides the best utility.
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Figure 19: Tab-PE performance while varying the number of sampling iterations Tsampling.
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Figure 20: Tab-PE performance while varying the mutation initial rate µinit in VARIATION API.

Decay factor γ This parameter controls how fast the mutation rate decays. A smaller γ leads to a
faster decay. A value at 1.0 is equal to a linear decay. Figure 21 presents the performance of Tab-PE
with different settings of γ. A value around 0.5-0.75 achieves the best performance and outperforms
the linear decay.
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Figure 21: Tab-PE performance while varying γ in the mutation rate schedule decay.

Hyperparameter search In Figure 22, we explore 144 settings of hyperparameters for the sec-
ond stage (Tab-PE with ranking), the hyperparameters are chosen from the following sets: num-
ber of iterations (epochs) ∈ {15, 20, 30, 50}, num samples ∈ {2k, 5k, 10k}, variation degree
(m = num variations) ∈ {3, 5, 7}, and mutation rate initial value (µinit) ∈ {0.15, 0.25, 0.35, 0.5}.
The mutation rate in this experiment is set by a linear decay schedule. Note that from the figure,
smaller values of all hyperparameters generally do better. This inspires us to employ the polynomial
decay schedule for the mutation rate, which enables a larger mutation rate at early iterations and a
smaller mutation rate at later iterations.

Hyperparameter configuration across privacy settings In Figure 23 for ϵ = 1.0 (left-most col-
umn) we order all 144 hyperparameters according to their achieved accuracy. 0 corresponds to the
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Figure 22: Hyperparameter search for Tab-PE on the Artificial Characters dataset for ϵ = 1.0.

best setting of hyperparameters, 1 corresponds to the second best setting, and so on. The lines are
colored according to their performance on ϵ = 1.0. The same line corresponds to the same setting
of hyperparameters. We note that the same hyperparameters that are good for ϵ = 1.0 are also good
for ϵ = 3.0 and ϵ = 10.0.

Figure 23: Ordering of the best hyperparameters for ϵ = 1.0, ϵ = 3.0 and ϵ = 10.0.

C.7 OVERSAMPLING STUDY

Following the simple recipe from PrivGSD (Liu et al., 2023), we conduct oversampling by randomly
duplicating the samples. Figure 24 shows that the performance does not change significantly by
oversampling.
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Figure 24: Tab-PE performance while enhancing by oversampling.
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C.8 NOISY CLASS DISTRIBUTION

We remove the assumption that the class distribution is public. Instead, we spend a bit of privacy
budget to estimate the class distribution. To simplify, we spend ϵcount out of ϵ for this estimation.
Let Nc is the count vector where Nc[i] corresponds to the number of samples of class i. Since each
sample is only counted once, the sensitivity of this counting process is 1. To achieve (ϵcount, δ)-DP,
we simply add noise, drawn from N (0, σ2) to each count, where the noise multiplier is calculated
by the analytic Gaussian Mechanism (Balle & Wang, 2018). In practice, our implementation uses
the diffprivlib library to calculate this noise scale. We conduct an experiment spending 0.02
out of 1.0 to privately estimate the class counts. Figure 25 presents the results of this experiments.
Overall, the performance does not change much with the assumption that the class distribution is
publicly available.
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Figure 25: Tab-PE performance with noisy and clean class counts.

D LIMITATIONS & FUTURE WORK

Although the results are promising, there are still limitations. First, while Tab-PE consistently out-
performs the baselines in capturing high-order correlations with better ML utilities, it underperforms
on fidelity metrics (i.e., TVD), which primarily reflects low-order statistics. Second, the gap between
Tab-PE and the upper bound (non-private) remains large. This gap is significantly larger than the
current gaps of datasets with low-order correlations. Therefore, there is still room for further im-
provements. Third, Tab-PE currently implements a basic distance function on raw attribute scaled
values without any embedding or attribute weighting. This can suffer in extreme cases where the
data is sparse and most of the attributes are irrelevant. While embedding in the image and text
domains can be achieved by pretrained foundation models, tabular data is very challenging with
strong distribution shift across datasets. We leave these for future work. Additionally, we only ex-
plored simple designs of the Private Evolution APIs. More advanced APIs may further boost the
performance.
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