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Abstract4

Re-ranking is the last part of a multi-stage recommendation system, involving the reorder-5

ing of lists based on historical user behavior to better align with user preferences. Offline6

Reinforcement Learning (RL) has been employed in both the prediction and ranking phases7

of recommendation systems to align with long-term objectives, surpassing the efficacy of8

supervised learning. However, extrapolation error is a common problem in offline RL, due9

to the biased distribution of features, which can lead to the reduction of recommendation10

accuracy. Consider that as users browse an e-commerce app, their preferences are influ-11

enced by previously recommended items or pages, therefore the history can be used to12

correct the bias of offline RL. This paper uses offline RL to model re-ranking and presents13

a re-ranking algorithm named Page and Item Sequential Decision for Re-ranking (PISDR)14

to improve accuracy by correcting bias at two levels (pages and items). PISDR employs15

sequential RL, leveraging a session-level data structure that encapsulates global informa-16

tion at the page level and item-level interrelationships. Additionally, PISDR utilizes a17

multi-tower critic network to assess various feedback metrics, including click-through rate,18

conversion rate, etc. which can raise actor network from the long-term reward. Experi-19

mental results validate the effectiveness of PISDR in significantly enhancing of Area Under20

Curve (AUC), Mean Average Precision (MAP) and Normalized Discounted Cumulative21

Gain (NDCG) about 1.4% in generated re-ranking sequences when compared to current22

state-of-the-art re-ranking algorithms. Finally, as a consequence, our method achieves a23

significant improvement (2.59%) in terms of Click-Through Rate (CTR) over the industrial-24

level ranking model in online A/B tests.25

Keywords: Recommendation System; Re-ranking; Offline Reinforcement Learning.26

1. Introduction27

The Re-ranking is the final stage in a multi-stage recommendation system, where the initial28

list of the ranking stage is input and a reordered list is output that takes into account29

the listwise context of e-commerce applications. The primary objective of re-ranking is to30

elevate the user experience by adeptly recommending items that resonate with individual31

user preferences while simultaneously optimizing for more strategic, long-term objectives.32

In the domain of re-ranking, Reinforcement Learning (RL) has emerged as an innovative33

methodology, distinguished by its ability to optimize for cumulative rewards over time Wei34

et al. (2022); Wang et al. (2022). Some short-video recommendations in the KuaiShou app35

or food recommendations in the Meituan app have begun to use RL based methods and36

achieved a noticeable improvement in terms of total viewing time compared to supervised37

learning methods Afsar et al. (2022).38

RL-based recommendation systems exhibit the capability to manage sequential and39

dynamic user interactions within the recommendation system, while also accommodating40
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the consideration of long-term user interests Afsar et al. (2022); Lin et al. (2023). For41

instance, Value-based RL methods estimate the user’s expectations regarding recommended42

items by considering user features within the candidate item set. These methods select the43

item with the highest expected reward for recommendation Zou et al. (2020); Wei et al.44

(2023); Timmaraju et al. (2023). In contrast, policy-based RL methods directly learn45

the optimal policy for maximizing the user’s expected reward ?Gao et al. (2023a). As46

a combination of value-base and policy-base, the Actor-Critic approach involves training47

two networks: the actor, a policy-based network, responsible for generating recommended48

items, and the critic, a value-based network, which assesses the actions taken by the actor49

in response to the user’s current state Wang and Wang (2021); Liu et al. (2020a); Cai et al.50

(2023); Liu et al. (2023). Currently, RL is primarily applied to single-item recommendation51

or click-through rate prediction tasks, as seen in KuaiShou and Meituan app. This paper52

stands apart from single-item recommendation scenarios and delves into the optimization53

of re-ranking list generation within the e-commerce app directly through RL.54

Figure 1: The overall framework, where module (a) is the interaction process between the
recommendation system and the use, (b1-b3) is the main architecture of PISDR,
where sequential decisions are made at the page-level (b1) and item-level (b2)
respectively.

Nonetheless, the direct application of current RL algorithms to generate re-ranking55

sequences within recommendation systems faces several significant challenges. 1) Extrap-56

olation Error: The inaccuracies in Offline RL that arise when predicting user preferences57
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outside the training data distribution. 2) Reward Function: The re-ranking task pri-58

marily relies on an accuracy-based evaluation metric, focused on short-term gains, lacking59

the capability to assess long-term benefits effectively. To mitigate the issue of extrapolation60

error inherent in RL re-ranking algorithms, we propose a novel PISDR method as shown61

in Figure (1). To alleviate the extrapolation error in Offline RL, PISDR uses sequential62

decisions to reduce current decision bias through historical behavior. To match user be-63

havior more closely, PISDR makes decisions through two levels of history, the page(global)64

and the item(local). Specifically, we design long-term rewards through multiple metrics for65

the re-ranking problem and construct a multi-tower critic for multiple metrics. Our main66

contributions are as follows:67

1) In this paper, we present a novel model PISDR that focuses on the recommendation68

system re-ranking at page (global) and item (local) levels. Digging into user interests by69

processing user trajectories at the page level and item level separately.70

2) We propose an offline RL algorithm for re-ranking using a decision transformer ap-71

proach. This algorithm considers rewards, actions, and states at both the page and item72

levels. Different from model-based learning, combined with Decision-Transformer, PISDR73

directly utilizes offline datasets to reduce the extrapolation error through the interaction74

trajectory.75

3) To improve the re-ranking effectiveness at a long-term gain, this paper adopts multi-76

ple metrics to design the reward function. We employ a multi-tower critic to evaluate the ex-77

pected reward of multiple metrics. The code is open source at https://anonymous.4open.scie-78

nce/r/PISDR-832B.79

2. RELATED WORKS80

In this section, we will introduce related works on task re-ranking for recommendation81

systems, as well as work related to offline RL in other domains.82

2.1. Re-ranking in Recommendation83

There are two main branches of neural network based re-ranking models. The first one is84

supervised learning (SL) in which low-dimensional dense features of users and items, cross-85

item interactions Bello et al. (2018); Li et al. (2022); Liu et al. (2020b) are extracted by86

the Recurrent Neural Networks (RNN), self-attention, or Graph Neural Networks (GNN)87

to generate scores for re-ranking. Typical SL-based re-ranking methods can be classified88

into two types. The first type is the step-greedy re-ranking strategy, where the items as-89

signed to each position are determined sequentially through serialization. This approach90

often employs pointer-network Bello et al. (2018) or graph recurrent neural network (GRN)91

Zhuang et al. (2018) models to generate item IDs for each position one by one. The second92

type of approach involves re-ranking the item list based on context-wise information. In93

this method, the relationships of item-item and user-item are utilized to predict the click-94

through rate (CTR) of each item. PRM Pei et al. (2019) and DLCM Ai et al. (2018) take95

the initial ranking list as input and use RNN or self-attention mechanisms to model the96

relationship between contextual information, clicked labels, and predictions. Some of the97

SL-based models treat the user’s behavior history as extra features through a low dimen-98
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sional embedding layerFeng et al. (2021b). MIR incorporates users’ historical behaviors99

to model set-to-list interactions while considering personalized long-short term interests,100

aiming to better understand the user’s preferences over time Xi et al. (2022). PIER Shi101

et al. (2023) employs an end-to-end re-ranking framework based on full permutation.102

The other method is based on the evaluator-generator to handle some unobserved coun-103

terfactual rankings. The generator outputs feasible permutations, while the evaluator scores104

the results of each permutation. This method is a combination of SL and adversarial learn-105

ing and can be optimized for a wide range of metrics by using the evaluator Chen et al.106

(2023); Du et al. (2018). However, both evaluator-generator and SL-based re-ranking ap-107

proaches are limited to single recommendation tasks and cannot directly optimize long-term108

metrics like retention and total number of clicks.109

2.2. Offline Reinforcement Learning110

Online RL requires real-time interaction with users during training, consuming online com-111

putational resources and resulting in degraded user experience. As an alternative, offline RL112

can be used, where log feedback is utilized for training without consuming online resources.113

However, offline RL is susceptible to challenges such as unobserved logging strategies, as well114

as issues related to extrapolation errors. Wang and Wang (2021); Wang et al. (2023) pro-115

posed a stochastic Actor-Critic method based on a probabilistic formulation and adopted116

some regularization methods to alleviate the extrapolation error in the recommendation117

system.118

Typical offline RL can be categorized into two types: model-free and model-based.119

To address the problem of extrapolation errors in offline RL, model-free approaches such120

as BCQ Fujimoto et al. (2019) use a generative model to limit the probability of state-121

action pairs used by the policy and avoid using low-frequency data, and CQL Kumar et al.122

(2020) uses a conservative strategy that includes a penalty for overestimating the Q-value123

of state-action pairs that do not appear in the offline data. On the other hand, model-124

based approaches like MOPO Yu et al. (2020) train a pessimistic dynamics model to train125

a conservative critic. COMBO Yu et al. (2021) learns value functions based on offline126

datasets and model-generated data, and suppresses value functions for model-generated127

Out-Of-Distribution (OOD) data.128

The extrapolation error problem of offline RL easily leads to the Matthew effect in129

recommendation systems, to alleviate the Matthew effect, Gao et al. proposed a model-130

based offline RL method DORL Gao et al. (2023a), which alleviates the Matthew effect in131

the form of a reward function penalizing items. While there have been various efforts in132

offline RL in recommendation systems Chen et al. (2019); Gao et al. (2023b); Jeunen and133

Goethals (2021), only a few works do RL at the re-ranking stage, the evaluator-generator134

approach is used to do re-ranking in CMR, but still at the level of individual items rather135

than at the level of contextual information item pages.136
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3. OFFLINE RL IN RE-RANKING137

3.1. Markov Decision Process in Re-ranking138

We first define the Markov Decision Process (MDP) for the re-ranking stage of the recom-139

mendation system at the session level, as shown in Fig. 1(a), the recommendation system140

acts as the agent and the user acts as the environment, when the user opens the app, it141

is the beginning of a session. At each user request t, the recommendation system takes142

the action of reordering the list of items according to the result of the re-ranking phase to143

display to the user. After that, the user’s feedback are used as reward metrics. The MDP in144

a recommendation system can be represented in the form of a quintuple < S,A,P,R, γ >,145

where the specific meanings are as follows:146

• State S: The user’s current state can be represented by incorporating various factors147

st = {Ut, It, Ht}, including the user’s dense and spare profile Ut, the dense and spare148

characteristics of the items in the initial list It, and the attributes of the items that149

the user has previously clicked on Ht.150

• Action A: Map the input to a list of re-ranking scores at = ϕ(Vt) ∈ RN based on151

the initialized list of N items in the input Vt = {1, 2, ..., N}.152

• Transition Probability P: P : S × A → ∆(S) is the state transition probability,153

after the recommendation system agent receives the user’s feedback such as click, the154

state transits from s to s′ according to the probability p(s′|s, a).155

• Reward Function R: R : S × A → Rm is the vector-valued reward function which156

represents m different reward r(st, at) = (r1(st, at), ..., rm(st, at)). Once the recom-157

mendation system takes action at at state st, it will get the reward r(st, at) in accor-158

dance with the user’s feedback.159

• Discount Factor γ: The discount factor in response to future rewards.160

The goal of RL is to maximize the expected reward, so we define the discounted cumulative161

reward of the vector values to be Rt = (Rt,1, ..., Rt,m), in which Rt,m =
∑T

t′=t γ
t′−t ·rm(s′t, a

′
t)162

is the cumulative rewards for discounts for individual feedback signal and T is the session163

length such as the number of requests between user and recommendation system. The164

state value function is the expected reward given the initial state, and its value is V π(s) =165

(V π
1 (s), ..., V π

m(s)) = Eπ[Rt|st = s]. If the action is given simultaneously, the Q-value166

function is the state value function with the value of Q(s, a) = (Qπ
1 (s, a), ..., Q

π
m(s)) =167

Eπ[Rt|st = s, at = a]. Where π is a trainable policy function, the ultimate goal of RL is to168

obtain a trained policy function that maximizes the expected reward given the initial state169

to solve the following optimization problem:170

max
π

Eπ[Rt|st = s] ⇐⇒ max
π

Eπ[V
π(s)] (1)

3.2. Model-Free Offline RL in Re-ranking171

In model-free offline RL, we sample one trajectory at a time within a session where the user172

interacts with the recommendation system. Each trajectory τ = (s0, a0, r0, s1, a1, r1, ..., sT ,173



aT , rT ) consists of a series of states, actions, and rewards. The reward returned at each174

timestamp t within the trajectory is the cumulative sum of all rewards from the current175

timestamp Rτ
t =

∑T
t′=t r

τ
t′ . Based on Equation 1, the objective of offline RL is to maximize176

the sum of rewards Eτ [
∑T

t=1 r
τ
t ] which starting from the initial timestamp of the trajectory.177

In offline RL, we cannot acquire data through user interaction with the recommendation178

system, but can only sample trajectories in the dataset with a fixed distribution of the action179

space. Thus there is the problem of extrapolation error where the distribution between180

environment and sample has bias. Decision-Transformer can correct bias through historical181

interactions in offline RL, so in this paper, we choose to use decision transformer to process182

the sequential states.183

4. METHOD184

In e-commerce scenarios, each time a user slides or turns a page is equivalent to a request,185

and the recommendation system will regenerate a new list of items based on the user’s clicks186

on the previous page. Ideally, the recommendation system should be able to stimulate the187

user to keep sliding or turning the page, and at the same time, generate more clicks on the188

items to ultimately transform into the revenues of the e-commerce app, therefore, the user’s189

attentions between different pages as well as attention on the different items on the same190

page all have sequential relationship, inspired by SPGA Feng et al. (2021a), we define it as191

global level (page) and local level (item) attention, there have been many studies on inter-192

item attention at the local level, but there are fewer studies on global page level attention in193

e-commerce scenarios, and to the best of our knowledge, we are the first study to consider194

the page-level attention in RL-based re-ranking.195

Figure 2: Decision transformer in page-level and item-level sequential decision. The page-
level transformer decoder is employed for processing interaction trajectory, and
the item-level transformer decoder processes the item list on the current page,
with the final hidden layer’s output corresponding to the state as input to the
Actor.
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4.1. Supervised Learning and Pre-train Embedding196

The state inputs to PISDR have sparse and dense features for each item in the initial197

sorted list, sparse and dense features for the user, and sparse features for the user’s history198

of clicking on items. We use the embedding layer to obtain low-dimensional dense layer199

embedding vectors from the corresponding sparse features. Each feature contains different200

attributes, e.g., the dense feature of an item contains the price of the item, the sparse201

feature contains it’s id information, and the category information, etc., defining mi
dense,j as202

the jth dense feature of the ith item and mi
spare,j as the jth sparse feature of the ith item.203

The sparse features are converted to low-dimensional dense features through a learnable204

embedding layer matrix to obtain the embedding vector em,j ∈ Rdme,j with low-dimensional205

dimension dme,j in which j represents the jth sparse feature of item. After that, we put206

together the low-dimensional dense features obtained from the sparse features through the207

embedding layer with the original dense features of the items to obtain the embedding layer208

vector of the original sorted list of items:209

xm = [em,1

⊕
...
⊕

em,Nm,spare

⊕
mdense,1

⊕
...
⊕

mdense,Nm,dense
], (2)

in which Nm,spare and Nm,dense are the number of a item’s sparse feature and dense feature,210

respectively.211

Similarly, the input of the user features after the embedding layer is:212

xu = [eu,1
⊕

...
⊕

eu,Nu,spare

⊕
udense,1

⊕
...
⊕

udense,Nu,dense
], (3)

in which Nu,spare and Nu,dense are the number of the user’s sparse feature and dense feature.213

The embedding layer matrices of users and items are shared with the embedding layers214

of historical items as well as of the Actor-Multi-Tower-Critic network, and we pre-train the215

embedding layer parameters using a supervised learning approach. The loss of supervised216

learning is:217

Lsup = −
N∑

n=1

yn · log(pn), (4)

where yn ∈ {0, 1} is the click label of the nth item in the initial ranking list and the pn ∈ RN
218

is the output probability generated from the supervised learning model:219

p = [p1, ..., pn] = MLPsup(xm,xu), (5)

Afterward, the embedding layer matrix can be updated by log-loss function (4).220

4.2. Sequential Transformer Decision-Making221

4.2.1. Global page-level sequential decision222

In e-commerce scenarios, every time a user slides down or goes to the next page, a request223

is sent to the recommendation system to generate a new sorted sequence of recommended224

items. From a global perspective, the whole interaction process is that the user enters the225

next page, and the recommendation system generates a sorted sequence of items based on226

the user’s features, and the clicked items in history. Therefore, inspired by the Decision227

Transformer, we believe that the user’s feedback on the previously recommended item se-228



quences can also be used as input to the model for the generation of the next re-ranking229

sequence.230

Thus after getting the features of the user and item through the embedding layer, at the231

timestamp t, we use the information from the previous interactions to construct a trajectory232

to represent the T length time features following the form:233

τt =< at−T , Rt−T , St−T+1, at−T+1, Rt−T+1, ..., at−1, Rt−1, St >, (6)

where T is the total length of the session, St = MLP (Concat(xm.xu)) is the fusion of user234

and item features at the timestamp t.235

After constructing the trajectory, we feed the last K timesteps into the transformer236

decoder as Figure (2) shows, we learned three embeddings which are action embedding,237

reward embedding, and state embedding. After generating the three embeddings, we add238

page position embedding to the input of each embedding layer, after which the three output239

vectors are concatenated and processed using a transformer decoder to obtain the decoded240

vector. This process can also use a GPT model to generate the decoder vector, we believe241

that deep features can be more fully presented through the GPT. Then we use a linear layer242

to get the re-ranking list for the latest state.243

The input of the global level transformer decoder at timestamp t is:244

Xt,global ∈ R3∗(T−1)×dim = {Emb(at−T ), Emb(Rt−T ), ..., Emb(St)}, (7)

where Emb is the function of the embedding, dim is the dimension of embedding output.245

Define the output of ith layers multi attention is:246

Ai,global = MultiAttention(Qi−1,Ki−1, Vi−1) = Concat(h1, ..., hH) (8)
247

hi = Attention(qi, ki, vi) = softmax(
qik

T
i√

dim
)vi, (9)

in whichQi−1,Ki−1, Vi−1 = Ai−1,global×(WQ,WK ,WV ), A0,global = Xt,global andWQ,WK ,WV ∈248

Rdim×dim is the weight matrix of query, key and value.249

The final output of the global page-level sequential decision is the last dimension of the250

hidden state which means use the hidden layer state of the Lth layer of ST as input to the251

Actor :252

Xout,state = MultiAttention(AL,global)[−1]. (10)

4.2.2. Local item-level sequential decision253

According to the initial item list, we model the sequential decision at the item level, and254

output the re-ranking action sequence through the linear layer.255

The input of the local level transformer decoder is:256

Xt,local ∈ RN×dim = {Emb(I1), Emb(I2), ..., Emb(IN )}, (11)

where Ii = Concat(Iispare, I
i
dense) is the fusion of the ith item spare and dense feature.257

Similar to global sequential decision, the final output of the local item-level sequential258

decision is:259

Xout,item = MultiAttention(AL,local)[−1]. (12)
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After obtaining the hidden layer output Xout,state and Xout,item at the global and local260

levels, they are fused and fed into the Actor network to generate the re-ranking sequence,261

the re-ranking score at timestamp t is:262

at = Sigmoid(MLP (Concat(Xout,state, Xout,item))). (13)

4.3. Multi-Tower Critic for Multi-Feedback Metrics263

Inspired by existing work RMTL Zhuang et al. (2018), we use multi-tower critic as shown264

in Figure (3) to integrate these three feedback metrics in order of priority, using click-265

through rate as the primary evaluation metric, conversion rate, and fine-tuning score as266

the secondary metrics, and calculating the Q-value for updating the actor network using267

a weighted approach. For m feedback metrics, we have m different critics, defining the

Figure 3: Actor with Multi-Tower Critic. Evaluating Multiple Feedback Metrics Using
Multi Tower Critic, Updating Actor Networks Using Weighted Values.

268

kth, k ∈ [1,m] assessment metric with a Q value of:269

Qk(st, at) = E[rk(st, at) + γV (st+1)|st, at], (14)

in which, at is the output re-ranking score from actor network Equ.(13) and we define the270

weighted value of each feedback indicator to be ωk, the td-error of the kth critic is:271

TDk = rk(st, at) + γQ(st+1, at+1; ϕ̃k)−Q(st, at;ϕk), (15)

where ϕk is the parameters of the kth current critic network, and ϕ̃k is the parameters of272

the kth target critic network. Then we update the kth current critic network for each task273

by the following gradient descent:274

ϕk = ϕk − γϕ∇TDk. (16)

Then we define the weighted Q value at tth timesteps is: Qω,t =
∑m

k=1 ωkQk(st, at|ϕk) We275

update the actor network by minimizing the loss function:276

L = γθQω,t +
∑
τ

Logloss(π(st; θk), yt) (17)



in which yt is the label of the click in the item list. Finally, we update the target network277

every t timesteps:278

θ̃k = β ∗ θ̃k + (1− β)θt (18)
279

ϕ̃ = β ∗ ϕ̃+ (1− β)ϕ (19)

5. EXPERIMENTS280

In this section, we conduct several experiments using a real world public dataset Avito, and281

the online industry dataset to evaluate the effectiveness of our framework.282

5.1. Experimental Setup283

5.1.1. Dataset284

• Avito 1 The public dataset comprises user search logs and metadata from avito.ru.285

To organize it in the form of a session level, we pre-process the entire dataset by286

clustering it according to the user-id information and filtering out the advertisement287

click information corresponding to user IDs with less than M total clicks.288

• 1688. The online 1688 industrial dataset, containing daily user clicks on the main289

product promotion screen, is accessed three million times a day. Similar to the pro-290

cessing with Avito, we cluster the 1688 dataset by users and timestamps and filter291

the information with more than M total clicks, which contains the user’s profile, the292

information of the product, and the user’s historical click sequence.293

5.1.2. Evaluation Metrics294

Our proposed model and baselines undergo evaluation using both ranking and utility met-295

rics. Regarding ranking metrics, we utilize the widely accepted MAP@K and NDCG@K296

metrics, consistent with prior studies. Specifically, we employ the prevalent AUC metric to297

assess the effectiveness of the prediction module.298

5.1.3. Initial ranker and baselines299

We use the LambdaMART to generate initial lists. LambdaMART is a state-of-the-300

art listwise learning-to-rank algorithm, which optimizes NDCG directly. To compare the301

proposed model with the following state-of-the-art reranking models, listed as follows:302

• PRM(Pei et al. (2019)): employs self-attention to model the mutual influence between303

any pair of items and users’ preferences.304

• SetRank(Pang et al. (2020)): learns permutation-equivariant representations for the305

inputted items via self-attention.306

• DLCM(Ai et al. (2018)): first apply GRU to encode and rerank the top results.307

1. https://www.kaggle.com/c/avito-context-ad-clicks/overview.

https://www.kaggle.com/c/avito-context-ad-clicks/overview
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• CMR(Chen et al. (2023)): a rerank model to adapt the recommendation re-ranking308

models according to the preference weights in a dynamic manner.309

• MIR(Xi et al. (2022)): a rerank model can estimate the reranking score on the ordered310

initial list before reranking.311

• EGRerank(Du et al. (2018)): a rank model adopts an evaluator generator paradigm.312

• PRS (Beam-Search & Evaluator)(Feng et al. (2021a)): uses the beam search313

method to generate K candidate lists based on the calculated estimated reward and314

a evaluator to rank multiple candidate lists.315

5.1.4. Implementation details316

All experiments use mini-batches of 256 training examples and the Transformer Decoder317

with 512 hidden units. We train PISDR with the Adam optimizer with a learning rate of318

0.0001. We regularize the decoder model by using dropout with the probability of 0.1.319

5.2. Offline Experiments320

We conducted a performance comparison of PISDR 2 with six other models, assessing their321

performance based on MAP, NDCG, and AUC. The results are presented in Table 1.322

Table 1: Offline evaluation results on Avito dataset and 1688 dataset (bold: best).
Avito 1688

MAP NDCG AUC MAP NDCG AUC

@3 @5 @12 @3 @5 @12 / @5 @10 @12 @5 @10 @12 /

PRMPei et al. (2019)(2019) 0.3974 0.4506 0.4694 0.4040 0.4849 0.5731 0.6886 0.4261 0.4410 0.4408 0.4598 0.5774 0.5865 0.6045

SetRankPang et al. (2020)(2020) 0.4001 0.4537 0.4720 0.4368 0.5488 0.6029 0.6905 0.4144 0.4325 0.4326 0.4468 0.5690 0.5788 0.5806

DLCMAi et al. (2018)(2018) 0.3987 0.4544 0.4714 0.4375 0.5564 0.6029 0.6868 0.4254 0.4404 0.4403 0.4589 0.5765 0.5859 0.6023

CMRChen et al. (2023)(2023) 0.3092 0.3241 0.3669 0.3269 0.3552 0.5143 0.5607 0.4142 0.4324 0.4325 0.4479 0.5687 0.5787 0.5844

MIRXi et al. (2022)(2022) 0.3938 0.4474 0.4669 0.4314 0.5445 0.5990 0.6889 0.4178 0.4350 0.4351 0.4555 0.5717 0.5809 0.6015

EGRerankDu et al. (2018)(2018) 0.4026 0.4426 0.4618 0.4391 0.5034 0.5915 0.6915 0.4173 0.4347 0.4348 0.4537 0.5714 0.5807 0.6012

PRSFeng et al. (2021a)(2021) / / / / / / / 0.4246 0.4395 0.4392 0.4565 0.5755 0.5852 0.6020

PISDR(Ours) 0.4041 0.4608 0.4767 0.4428 0.5639 0.6069 0.6943 0.4264 0.4412 0.4410 0.4606 0.5782 0.5874 0.6054

Our proposed PISDR model outperforms state-of-the-art methods across all metrics.323

As illustrated in Table 1, PISDR attains the highest scores in re-ranking metrics including324

MAP, NDCG, and AUC. Specifically, in terms of the MAP metric, PISDR exhibits a 0.3%-325

1.4% improvement over the EGRerank and DLCM. Furthermore, PISDR outperforms the326

EGRerank, DLCM and SetRank by 0.6%-1.3% on the NDCG@ metric.327

Given that PISDR attains superior results in both MAP and NDCG metrics, it can be328

argued that sequential decision plays a significant role in effectively addressing the challenge329

of extrapolation errors in offline RL. In terms of AUC, PISDR and EGRerank achieve higher330

performance than others, therefore the use of RL can achieve better performance than SL331

in recommendation systems.332

On the 1688 dataset, we conducted a performance comparison of PISDR with seven333

other models across three key aspects: MAP, NDCG, and AUC. Our proposed PISDR model334

consistently outperforms state-of-the-art methods in all evaluated metrics. As indicated in335

Table 1, in the context of the MAP@5 metric, PISDR exhibits a 0.1% improvement over the336

PRM, along with similar improvements of 0.1% for MAP@10 and MAP@12. In terms of337

2. The code is publicly accessible at https://anonymous.4open.science/r/PISDR-832B.

https://anonymous.4open.science/r/PISDR-832B


NDCG, PISDR achieves a 0.2% enhancement over PRM for NDCG@5, 0.1% for NDCG@10,338

and 0.2% for NDCG@12. Moreover, PISDR demonstrates a 0.1% improvement over PRM339

in the overall AUC metric.340

The DLCM and PRM perform more significantly this is due to the 1688 dataset con-341

taining a higher proportion of session-level data compared to the Avito dataset. PRM342

contains more attention mechanisms compared to DLCM and achieves better results due343

to its ability to adapt to this data distribution. Additionally, the uneven distribution of344

users in the 1688 dataset, with differences between users from the previous day and current345

day, presents challenges for evaluators trained by EGRerank. Consequently, the impact of346

re-ranking, as assessed by EGRerank, is less pronounced compared to that observed in the347

Avito dataset. PISDR, in comparison to PRM, introduces page-level attention consider-348

ations and incorporates item-level attention mechanisms into the decision-making process349

within the current state. This approach allows for the extraction of user interests from a350

dynamic, sliding perspective, thereby further enhancing the re-ranking effectiveness.351

5.3. Ablation Study352

The most essential modules of the PISDR model are the pre-train embedding (SLPE),353

Global page-level sequential decision (GPSD) and local item-level sequential decision. To354

explore the effectiveness of these modules in PISDR, we conduct ablation studies on Avito355

dataset. All experiments were repeated 3 times and the averaged AUC is in Table (2).

Table 2: Result of ablation experiment of re-ranking model on Avito dataset.
MAP NDCG AUC

@3 @5 @12 @3 @5 @12 /

PISDR 0.4041 0.4608 0.4767 0.4428 0.5639 0.6069 0.6943

-SLPE 0.3891 0.4453 0.4620 0.4293 0.5482 0.5958 0.6839

-GPSD 0.3909 0.4472 0.4651 0.4290 0.5487 0.5979 0.6912

-STDM 0.3869 0.4422 0.4600 0.4274 0.5434 0.5942 0.6803

356

PISDR (-SLPE) blocks the supervised learning pre-training embedding layer. This par-357

ticular layer is designed for the pre-training of item information, which can subsequently358

be utilized in the Actor-Critic network. As demonstrated in Table 3, MAP@k decreases359

by 0.0150/0.0175/0.0147, NDCG@k decreases by 0.0135/0.0157/0.0111, AUC decreases by360

0.0104, suggesting that it is more appropriate to pretrain item features rather than ran-361

domly generating them within the RL network. PISDR (-GPSD) blocks the GPSD module362

and only keeps the local item-level sequential decision. For instance, when k=3, 5, and 10,363

MAP@k decreases by 0.0132/0.0136/0.0116, respectively. Similarly, NDCG@k decreases364

by 0.0138/0.0152/0.0090, respectively. Additionally, the AUC decreases by 0.0031. These365

findings highlight the significance of extracting context information from previous pages,366

which is effectively addressed by the proposed GPSD module. To further investigate the367

complementary roles of page-level and item-level sequential decision mechanisms, we blocks368

the total Sequential Transformer Decision-Making (STDM) module. As demonstrated in369

Table 3, PISDR (-GPSD) outperforms PISDR (-STDM) across multiple metrics, namely370

MAP@k, NDCG@k, and AUC. The last experiment demonstrates the efficacy of the com-371

bined utilization of page-level and item-level attention modules.372



PISDR

5.4. Online Experiments373

Table 3: Online A/B test results.
Model CTR content exposure number per user

Base Ranking Model +0.00% +0.00%

PRS +1.56% +2.02%

PISDR +1.96% +2.59%

As in CMRChen et al. (2023) and PIERShi et al. (2023), the online A/B test uses the374

online baseline model to compare with PISDR. We compare PISDR with the base ranking375

model which is similar as Deep Match to Rank ModelWei et al. (2023) and PRS and all376

deployed on the recommended scenes on the homepage of 1688 APP through online A/B377

test. Specifically, we will conduct a two-week online A/B test in July 2023 using 5% of the378

total production traffic. As a result, we find that PISDR gets CTR and content exposure379

number per user increase by 1.96% and 2.59% respectively. Compared with PRS, PISDR380

has also improved CTR by 0.40% and content exposure number per user by 0.57% .381

Figure 4: Online A/B test on return visit rate in five days.

Finally, we compared the percentage of improvement in user retention between PISDR382

and the baseline over a 7-day period, as shown in Figure 4. This suggests that PISDR can383

better capture the user’s interest and is more effective in re-ranking recommendations.384

6. CONCLUSION385

In e-commerce app, a significant portion of re-ranking tasks is currently reliant on super-386

vised learning, often lacking the optimization of long-term benefits. We propose an offline387

RL method aimed at optimizing three crucial metrics: MAP, NDCG, and AUC, particularly388

on session-level datasets. Our approach takes into account user scroll-down actions, intro-389

duces a fusion of page-level and item-level attention mechanisms, and leverages a decision390

transformer methodology to mitigate extrapolation errors associated with offline RL. Exper-391

imental results demonstrate that incorporating sequential decision-making contributes to a392

noticeable enhancement in model performance. Through online A/B testing, our proposed393

framework leads to a substantial 2.59% increase in CTR.394
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