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Abstract

Automatic seizure type classification from electroencephalogram (EEG) data can1

help clinicians to better diagnose epilepsy. Although many previous studies have2

focused on the classification problem of seizure EEG data, most of these methods3

require that there is no distribution shift between training data and test data, which4

greatly limits the applicability in real-world scenarios. In this paper, we propose an5

invariant spatiotemporal representation learning method for cross-patient seizure6

classification. Specifically, we first split the spatiotemporal EEG data into different7

environments based on heterogeneous risk minimization to reflect the spurious8

correlations. We then learn invariant spatiotemporal representations and train9

the seizure classification model based on the learned representations to achieve10

accurate seizure type classification across various environments. The experiments11

are conducted on the largest public EEG dataset, the Temple University Hospital12

Seizure Corpus (TUSZ) dataset, and the experimental results demonstrate the13

effectiveness of our method.14

1 Introduction15

Epilepsy is a pervasive neurological disease that affects individuals all over the world, with consid-16

erable cognitive, psychological, and social ramifications [4]. The mainstream approach to epilepsy17

diagnosis relies on EEG data to classify seizures [8, 9]. However, traditional methods based on18

human labor are not only costly, but also susceptible to human uncertainty, as these methods require19

clinicians to meticulously review extensive EEG recordings [17]. As a result, using machine learning20

techniques to automatically classify seizure type attract increasingly attentions.21

Early machine learning methods for accurately classifying EEG data included Support Vector Ma-22

chines (SVM), k-Nearest Neighbors (k-NN), and Bayesian methods [19, 32]. With the advancement23

of deep learning, Convolutional Neural Networks (CNNs) [34] and Recurrent Neural Networks24

(RNNs) [33] have been introduced. CNN-based methods typically aim at learning spatiotemporal25

feature representations of EEG signals through convolutional operations [6], exemplified by EEG-26

DBNet [24] and ACPA-ResNet [41]. RNNs, including CNN-BiRNN and CNN-Bi-LSTM [15, 25],27

capture temporal dependencies and dynamics. To address non-Euclidean geometric properties over-28

looked by CNNs and RNNs, Graph Neural Networks (GNNs) have been proposed to model the29

spatial relationships between EEG electrodes using a graph representation [10, 12, 18]. Methods such30

as REST [1], DCRNN [35], NeuroGNN [11] integrate GNNs with recurrent structures to enhance31

classification by capturing spatiotemporal dependencies and dynamic interactions.32

However, these aforementioned methods are predominantly patient-specific and rely on a consistent33

distribution between training and test sets, which limits their ability to address cross-patient problem34

[40]. This kind of problems can be partially attributed to the spatial-temporal evolution of EEG35

data, which is common in real-world scenario where data from different patients exhibit significant36
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variability [22, 43]. Thus, for a group of new patients, it is very likely that this shift will impact the37

performance of models, leading to less precision and reduced generalizability. These challenges38

underscore the crucial and urgent need to develop robust cross-patient methods.39

Previous methods addressing the cross-patient problem can be broadly categorized into three types.40

The first type involves unsupervised representation learning, particularly domain generalization, to41

initialize more robust representations for downstream tasks [38, 39, 42]. The second type revolves42

around supervised models to enhance generalization by employing techniques such as causal learning43

and invariant risk minimization. These approaches emphasize end-to-end learning strategies, which44

have been shown to improve robustness to distributional shifts [26–28]. The third type involves45

optimization-based approaches, including distributionally robust optimization (DRO), which focuses46

on minimizing the worst-case performance under potential shifts in the data [21, 30]. However, most47

of these methods ignore the spatiotemporal information, which leads to sub-optimal performance.48

In this paper, we proposed a novel spatiotemporal invariant risk minimization loss to solve this49

problem. Specifically, we first use the invariant mask function to separate the raw EEG feature into50

the invariant representation and variant representation, and use the self-supervised learning (SSL) to51

guarantee the preserved invariant information is able to predict the invariant feature at next timestamp.52

In addition, we use the label information to generate the supervised signal to ensure the preserved53

invariant information can predict the seizure type. Finally, we use the variance of the gradient toward54

the mask function to control the time-varying variation of our methods in different patient groups.55

We highlight our contributions as follows:56

• We use the mask function to capture the invariant spatiotemporal information in the raw57

EEG data and use such information for self-supervised learning.58

• To further control the variation of the loss of the classification model, we use the variance of59

the gradient as the penalty to achieve invariant learning.60

• The experiments on the largest public dataset verify the effectiveness of our method.61

2 Preliminary62

2.1 Problem Setup63

The primary objective of the seizure classification task is to predict the seizure type from a given64

EEG signal clip. These clips were sliced from seizure EEGs using non-overlapping sliding windows65

with fixed temporal size T . For each sample, we denote X ∈ RT×N×M as the EEG clip feature66

after preprocessing, where T is the temporal length of the EEG clip, N is the number of EEG67

channels/electrodes, and M is the number of features obtained through Fast Fourier Transform (FFT).68

Meanwhile, we denote y as the seizure class label. For the independent identical distributed scenario,69

different clips from the same patient may appear in both the training and test sets. However, in real70

healthcare scenarios, patients in the test sets (a group of new patients) may completely unseen in the71

training set, leading to the cross-patient problem [44], which can be further formulated as follows:72

The patient set P is divided into two disjoint subsets, PT and PD, such that PT ∪ PD = P and73

PT ∩ PD = ∅. Here, PD is used for training, and PT is used for testing.74

2.2 Previous Graph-Based methods for EEGs75

Graph Representing. Let G = {V, E ,W } denote the graph structure, where V is the set of nodes,76

E refers to the set of edge, and W is the adjacency matrix of the graph. In consideration of the77

distribution of nodes and the physiological properties of the brain, two distinct approaches to graph78

construction on EEG clips are evident. One undirected distance graph-based approach is to utilize the79

Euclidean distance between different nodes on standard 10-20 EEG electrode placement as the basis,80

followed by the threshold Gaussian kernel to determine the weights between vi and vj (vi, vj ∈ V):81

Wij =

exp

(
−dist(vi, vj)2

σ2

)
if dist(vi, vj) ≤ ζ

0 otherwise,

where dist(vi, vj) represents the Euclidean distance between two nodes vi and vj , σ is the standard82

deviation of the distances, while ζ is the threshold for sparsity.83

2



Pre-
processing

EEG Graph
Construction

EEG signals

EEG 
Electrode 
Montage

EEG Signal Graphs

DCRNN

Time

Max-
pool

Softmax

Classification Layer

FC Layer

Encoder

𝑋1

Model

Input

Mask 𝑚(𝜙(𝑋1))

𝑧1(⋅) 𝑧1(𝜅(𝑋1))

𝐿𝑠𝑠𝑙(𝑧1(𝜅(𝑋1)),𝜅(𝑋2))

Encoder

𝑋2

𝑚(𝜙(𝑋2))

𝑧2(𝜅(𝑋2))

𝐿𝑠𝑠𝑙(𝑧2 𝜅 𝑋2 ,𝜅(𝑋3))

𝜅(𝑋1)

ℎ1(𝜅(𝑋1))
𝐿𝑠𝑢𝑝(ℎ1(𝜅(𝑋1),𝑦)

𝑦

𝐿𝑠𝑢𝑝(ℎ2(𝜅(𝑋2),𝑦)

𝑦

𝜅(𝑋2) … Encoder

𝑋𝑡

𝑚(𝑋𝑡)

𝑧𝑡(𝜅(𝑋𝑡))

𝐿𝑠𝑢𝑝(ℎ𝑡(𝜅(𝑋t),𝑦)

𝑦

𝜅(𝑋t)

𝜅(𝑋2) 𝜅(𝑋3)

𝜓(𝑋1) 𝜓(𝑋2)

𝑚(𝜙(𝑋𝑡))

𝜓(𝑋𝑡)

𝐿𝑖𝑛𝑣
𝑡 (𝐿𝑠𝑢𝑝 , 𝑚(𝜙(𝑋𝑡 )))𝐿𝑖𝑛𝑣

2 (𝐿𝑠𝑢𝑝 , 𝑚(𝜙 𝑋2 ))𝐿𝑖𝑛𝑣
1 (𝐿𝑠𝑢𝑝 , 𝑚(𝜙(𝑋1)))

ℎ2(𝜅(𝑋2))

Encoder

ℎ𝑡(𝜅(𝑋𝑡))

𝜙(𝑋1) 𝜙(𝑋2) 𝜙(𝑋𝑡)

𝑧2(⋅) 𝑧𝑡(⋅)

Figure 1: Overview of the proposed spatiotemporal invariant learning method.

An alternative approach, based on a directed correlation graph, particularly focuses on the dynamic84

connectivity between different nodes. To evaluate the connectivity, only the weights that fall within85

the most k similar neighbors (including self-edges) are preserved to ensure the sparsity of the graph.86

The weight can be formulated as follows:87

Wij =

{
Corr(X:,i,:,X:j,:) if vj ∈ Ck(vi)
0 otherwise,

whereX:,i,: andX:,j,: denotes the preprocessed signals in vi and vj , Corr(·, ·) represents the pearson88

correlation coefficient, and Ck(vi) referring to the most k similar neighbors of vi.89

Diffusion Convolutional Recurrent Neural Network. Previous works utilize the diffusion convolu-90

tional recurrent neural network (DCRNN) to effectively capture the temporal and spatial dependencies91

in EEG signals. To capture the temporal dependencies in EEG data, modified gated recurrent units92

(GRUs) [5] are employed. For spatial dependency, diffusion convolution provides significant insights93

into the influence exerted by each node on all others, and the extent of this kind of influence can be94

quantified by applying a bidirectional random walk on the directed graph and calculating a K-step95

diffusion convolution. The diffusion convolution is defined by:96

X:,m⋆Gfθ =

K−1∑
k=0

(
θk,1(D

−1
O W )k + θk,2(D

−1
I W ⊺)k

)
X:,m, m ∈ {1, . . . ,M},

where X is the preprocessed segment with N nodes and M features at timestamps t ∈ {1, · · · , T},97

θ ∈ RK×2 are the parameters of the filter, and DO and DI are the out-degree and in-degree diagonal98

matrices of the graph. The transition matrices for the diffusion processes are D−1
O W and D−1

I W ⊺.99

For undirected graphs, the process converts to ChebNet spectral graph convolution [7], where X:,m100

is filtered using Chebyshev polynomial bases. The spectral graph convolution can be expressed as101

X:,m⋆Gfθ = Φ

(K−1∑
k=0

θkΛ
k

)
Φ⊺X:,m =

K−1∑
k=0

θkL
kX:,m =

K−1∑
k=0

θ̃kTk(L̃)X:,m, m ∈ {1, ...,M},

where Φ and Λ are the eigenvector and eigenvalue matrix of the graph Laplacian L. Tk(L̃) is the102

k-th Chebyshev polynomial of the scaled Laplacian L̃, allowing for efficient computation without103

explicit eigenvalue decomposition.104
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3 Methodology105

In a cross-patient scenario, we propose the spatiotemporal invariant risk minimization (ST-IRM) loss,106

making the prediction model achieves both (a) accurately predicting patient’s seizure type in each107

patient group; (b) The variation of prediction between the different groups is small. Specifically,108

for a timestamp t, we derive an invariant mask function m(·) to separate the representations of the109

raw EEG feature into two orthogonal components. We denote the representation of the raw EEG110

feature as ϕ(X:,:,t). For simplification of notations, we use Xt instead of X:,:,t. The representation111

in the present paper is obtained by DRCNN. Through the invariant mask function m(·), ϕ(Xt) is112

decomposed into an invariant representation κ(Xt) = m(ϕ(Xt)), and the variant representation113

ψ(Xt) = (1−m(ϕ(Xt)))⊙ ϕ(Xt), where m(Xt) ∈ [0, 1]N×M .114

In time-series data, especially EEG data, there should be some correlation of the previous representa-115

tions Xt−1 with the current feature Xt [35]. Unlike the previous SSL approach that aims to learn116

a model zt(·) to ensure zt−1(Xt−1) ≈ Xt, we claim that preserve the relation between the variant117

parts, ψ(Xt−1) and ψ(Xt) may not be helpful due to the spurious correlation. We expect only a good118

prediction performance between the invariant representations. The proposed SSL loss is as below:119

Lssl =
1

|nT |

n∑
i=1

T∑
t=1

L(zt−1(m(ϕ(Xi
t−1))),m(ϕ(Xi

t))),

where L(·, ·) is the loss function such as mean-square-error loss andXi
t ∈ RN×M is the preprocessed120

signal for sample i at timestamp t. In addition, we want the information preserved by the mask121

function can not only predict the next invariant representation but also can predict the final seizure122

type, thus we use the following loss to provide the supervised signal for training the mask function:123

Lsup =
1

|n|

n∑
i=1

L(hT (m(ϕ(Xi
T ))), yi),

where hT (·) is the classification model and yi is the ground truth label.124

In addition, an ideal mask function m(·) should be able to capture the invariant representation from125

the raw EGG data. To address this, environments are created using the K-means clustering method to126

separate the samples into groups, ensuring that samples within a group share similar characteristics,127

while those in different groups exhibit distinct features. Thus, a classifier that performs consistently128

across these environments would truly learn the invariant components and suffer the least from129

spurious correlations. Assuming there is a total of G groups/environments, and the group indicator of130

each sample is denoted by gi. The supervised loss at timestamp t for the group g is given by131

Lg,t
sup =

1

♯{i : gi = g}
∑

{i:gi=g}

L(ht(m(ϕ(Xi
t))), yi),

where ♯ denotes the cardinal number of the set. It represents the supervised loss within the g-th group.132

Combining the group-based supervised loss, the overall invariant risk loss at timestamp t is composed133

of two major terms:134

Lt
inv = Eg∈GLg,t

sup + λ
∥∥Varg∈G

(
∇ΘmLg,t

sup ⊙m(ϕ(Xt))
)∥∥2 ,

where Θm is the parameter of the mask function, and λ is the hyper parameter for tuning. The135

previous term can be naively computed by 1
n

∑
g∈G Lg,t

sup, suggesting the overall supervised loss at136

timestamp t; while the second term penalizes the classifier to perform consistently across groups. The137

variance depicts the variation across the environments: the lower the variance is, the more consistent138

performance the classifier obtains, thus, the better invariant presentation the classifier has learned139

with. In the second term, we multiply the gradient with the mask function for scaling. For further140

incorporating the spatiotemporal information, because the more information being observed, the141

more accurate classification should be, we propose the weight decay loss below:142

Linv =

T∑
t=1

wT−tLt
inv,

where w ∈ (0, 1) is the weight decay rate, which is a hyper-parameter for tuning. The final proposed143

ST-IRM loss is:144

LST−IRM = Lssl + αLsup + βLinv,

where α and β are the hyper-parameters. An overview of the proposed method is given in Figure 1.145
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Table 1: Performance comparison of different methods under 12-second and 60-second scenario.
12-s 60-s

Method F1 Recall Precision F1 Recall Precision

CNN-LSTM 0.596 ± 0.035 0.654 ± 0.030 0.647 ± 0.036 0.623 ± 0.028 0.661 ± 0.030 0.647 ± 0.036
LSTM 0.690 ± 0.043 0.724 ± 0.033 0.725 ± 0.041 0.692 ± 0.011 0.718 ± 0.007 0.717 ± 0.017
Dense-CNN 0.657 ± 0.069 0.690 ± 0.053 0.694 ± 0.049 0.653 ± 0.085 0.704 ± 0.057 0.659 ± 0.118
MSTGCN 0.670 ± 0.031 0.719 ± 0.023 0.734 ± 0.029 0.647 ± 0.046 0.696 ± 0.027 0.694 ± 0.030
NeuroGNN 0.647 ± 0.040 0.710 ± 0.024 0.744 ± 0.030 0.698 ± 0.044 0.733 ± 0.042 0.714 ± 0.056
Corr-DCRNN 0.729 ± 0.058 0.756 ± 0.041 0.752 ± 0.047 0.672 ± 0.038 0.712 ± 0.021 0.705 ± 0.029
Dist-DCRNN 0.713 ± 0.044 0.735 ± 0.043 0.734 ± 0.045 0.695 ± 0.028 0.735 ± 0.013 0.738 ± 0.021
PANN-DCRNN 0.728 ± 0.052 0.753 ± 0.042 0.755 ± 0.041 0.684 ± 0.023 0.717 ± 0.016 0.720 ± 0.024
ST-InvDCRNN(ours) 0.748 ± 0.038 0.772 ± 0.028 0.764 ± 0.043 0.713 ± 0.043 0.741 ± 0.024 0.742 ± 0.037

Figure 2: F1 under different numbers of patient groups (the two subfigures on the left) and different
values of hyper-parameter top-k to control the graph sparsity (the two subfigures on the right).

4 Experiments146

4.1 Experimental Settings147

Datasets. Following previous works [20, 31, 36], we utilized the Temple University Hospital EEG148

Seizure Corpus (TUSZ) dataset, which is the largest public dataset for our experiments. Specifically,149

we use the version v1.5.2 of the TUSZ dataset. The TUSZ dataset contains 5,612 EEG signals, and150

3,050 annotated seizure events from over 300 patients, covering eight seizure types. The EEG signal151

was recorded using 19 electrodes from the standard 10-20 system [14].152

Data preprocessing and Experiment Details. Following the preprocessing approach of Tang et al.153

[35], we transform the raw EEG signals into the frequency domain, as seizures are associated with154

brain electrical activity in specific frequency bands [37]. Following prior methodologies [2, 3],155

EEG recordings were resampled to 200Hz and segmented into non-overlapped 60-second windows156

(clips), and only clips that contain a single type of seizure are considered. If a seizure event ends and157

another begins within the same clip, it is truncated and zero-padded to preserve a 60-second duration.158

Each 60-second clip is then segmented into 1-second intervals. The Fast Fourier Transform (FFT)159

algorithm is applied to each segment to obtain the logarithmic amplitudes of non-negative frequency160

components, as is outlined in Tang et al. [35]. Consequently, each 60-second clip is transformed161

into a sequence of 60 log-amplitude vectors. In addition, following recent studies on seizure type162

classification [2, 3, 35], we use weighted F1-score as the main evaluation metric with precision163

and recall as well to measure the classification performance. See Appendix B for more experiment164

protocols and details.165

Baselines. We compare our proposed method with CNN-based method: DenseCNN [29], RNN-166

based method: LSTM [13], and hybrid approach that combine CNN and RNN: CNN-LSTM [2].167

We also compared our method with GNN-based methods: MSTGCN [16], Dist-DCRNN [35],168

Corr-DCRNN [35], NeuroGNN [11], and PANN [44].169

4.2 Performance Analysis170

Table 1 shows the performance of our method compared with various baseline methods, evaluating171

with three metrics, i.e., weighted F1, Recall, and Precision scores. First, DCRNN-based models172

achieve competitive performance among all baselines. Second, our method significantly outperforms173

the baselines under both scenarios with 12-second and 60-second clip windows. Note that we adopt174

DCRNN as a backbone in the experiment, which is shown in Figure 1, and the superior against175

DCRNN-based methods demonstrates the effectiveness of our invariant learning framework.176
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Figure 3: Confusion matrices for four classes of seizures.

Figure 4: 12-second Performance under different penalty weights.

4.3 In-Depth Analysis177

To comprehensively evaluate the proposed invariant learning method, we conduct four in-depth178

analyses on the number of patient groups, the value of hyper-parameter top-k, the classification179

confusion matrix, and the 12-second performance under different penalty weights respectively. Note180

that the patients are clustered into groups according to their EEG recordings, and the two subfigures181

on the left of Figure 2 show that different numbers of groups result in varying performance. In182

the scenario of 12-second clip windows, the best choice for group number is 4, while in the 60-183

second case, the best value is 8. Our method outperforms Corr-DCRNN with top-k ranging from184

1 to 6, and the highest F1 is achieved when top-k is around 3 for both scenarios. In addition, we185

provide the results of the recall metric and the confusion metrics in Appendix B. Figure 3 shows the186

confusion matrices for four seizure classification models, highlighting the superior performance of187

our method. The ST-InvDCRNN reduces misclassifications and confusion between seizure types,188

notably 0.81 for the CT class and 0.54 for GN seizures, outperforming baseline models. Figure 4189

compares ST-InvDCRNN and CNN-LSTM performance across different penalty parameters (α and190

β) for recall and precision. ST-InvDCRNN consistently outperforms CNN-LSTM, especially at191

intermediate penalty values. For Penalty α, ST-InvDCRNN peaks at α = 10−1, achieving 0.772192

recall score and 0.764 precision score, while CNN-LSTM shows lower scores. Similarly, for Penalty193

β, ST-InvDCRNN reaches its best performance at β = 10−1, with 0.762 recall score and 0.761194

prescision score. Overall, ST-InvDCRNN delivers better classification results.195

5 Conclusion196

Epilepsy remains a significant global health challenge, with traditional EEG-based diagnostic methods197

posing limitations due to their reliance on clinician review. With the recent advancement of deep198

learning, techniques such as CNNs, RNNs, and GNNs are proposed to automatically classify the199

seizure type. However, existing methods often lack cross-patient robustness and guarantee, which200

is very common in practice. In addition, most of the methods addressing the cross-patient problem201

ignore the spatiotemporal information. To bridge this gap, we propose a spatiotemporal invariant202

risk minimization approach that addresses these challenges by adopting self-supervised learning and203

capturing time-varying invariant features. Experimental results on the largest public dataset verify204

the effectiveness of our approach, demonstrating its potential to advance epilepsy diagnosis in the205

cross-patient scenario. One of the possible limitations is to investigate a more efficient way to learn206

the model parameters and reduce the complexity while maintaining the classification performance.207

6



References208

[1] Arshia Afzal, Grigorios Chrysos, Volkan Cevher, and Mahsa Shoaran. Rest: Efficient and accelerated eeg209

seizure analysis through residual state updates. arXiv preprint arXiv:2406.16906, 2024.210

[2] David Ahmedt-Aristizabal, Tharindu Fernando, Simon Denman, Lars Petersson, Matthew J Aburn, and211

Clinton Fookes. Neural memory networks for seizure type classification. In 2020 42nd Annual International212

Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pages 569–575. IEEE, 2020.213

[3] Umar Asif, Subhrajit Roy, Jianbin Tang, and Stefan Harrer. Seizurenet: Multi-spectral deep feature214

learning for seizure type classification. In Machine Learning in Clinical Neuroimaging and Radiogenomics215

in Neuro-oncology: Third International Workshop, MLCN 2020, and Second International Workshop,216

RNO-AI 2020, Held in Conjunction with MICCAI 2020, Lima, Peru, October 4–8, 2020, Proceedings 3,217

pages 77–87. Springer, 2020.218

[4] Ettore Beghi. The epidemiology of epilepsy. Neuroepidemiology, 54(2):185–191, 2020.219

[5] Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bahdanau, and Yoshua Bengio. On the properties of220

neural machine translation: Encoder–decoder approaches. In Proceedings of SSST-8, Eighth Workshop221

on Syntax, Semantics and Structure in Statistical Translation, page 103. Association for Computational222

Linguistics, 2014.223

[6] Alexander Craik, Yongtian He, and Jose L Contreras-Vidal. Deep learning for electroencephalogram (eeg)224

classification tasks: a review. Journal of neural engineering, 16(3):031001, 2019.225

[7] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on graphs226

with fast localized spectral filtering. Advances in neural information processing systems, 29, 2016.227

[8] Jessica Falco-Walter. Epilepsy—definition, classification, pathophysiology, and epidemiology. In Seminars228

in neurology, volume 40, pages 617–623. Thieme Medical Publishers, Inc., 2020.229

[9] Robert S Fisher, J Helen Cross, Jacqueline A French, Norimichi Higurashi, Edouard Hirsch, Floor E Jansen,230

Lieven Lagae, Solomon L Moshé, Jukka Peltola, Eliane Roulet Perez, et al. Operational classification231

of seizure types by the international league against epilepsy: Position paper of the ilae commission for232

classification and terminology. Epilepsia, 58(4):522–530, 2017.233

[10] Arash Hajisafi, Haowen Lin, Sina Shaham, Haoji Hu, Maria Despoina Siampou, Yao-Yi Chiang, and234

Cyrus Shahabi. Learning dynamic graphs from all contextual information for accurate point-of-interest235

visit forecasting. In Proceedings of the 31st ACM International Conference on Advances in Geographic236

Information Systems, pages 1–12, 2023.237

[11] Arash Hajisafi, Haowen Lin, Yao-Yi Chiang, and Cyrus Shahabi. Dynamic gnns for precise seizure238

detection and classification from eeg data. In Pacific-Asia Conference on Knowledge Discovery and Data239

Mining, pages 207–220. Springer, 2024.240

[12] Jiatong He, Jia Cui, Gaobo Zhang, Mingrui Xue, Dengyu Chu, and Yanna Zhao. Spatial–temporal seizure241

detection with graph attention network and bi-directional lstm architecture. Biomedical Signal Processing242

and Control, 78:103908, 2022.243

[13] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):1735–1780,244

1997.245

[14] Richard W Homan, John Herman, and Phillip Purdy. Cerebral location of international 10–20 system246

electrode placement. Electroencephalography and Clinical Neurophysiology, 66(4):376–382, 1987. ISSN247

0013-4694.248

[15] Chengbin Huang, Weiting Chen, and Guitao Cao. Automatic epileptic seizure detection via attention-based249

cnn-birnn. In 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pages250

660–663, 2019. doi: 10.1109/BIBM47256.2019.8983420.251

[16] Ziyu Jia, Youfang Lin, Jing Wang, Xiaojun Ning, Yuanlai He, Ronghao Zhou, Yuhan Zhou, and H Lehman252

Li-wei. Multi-view spatial-temporal graph convolutional networks with domain generalization for sleep253

stage classification. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 29:1977–1986,254

2021.255

[17] Yizhang Jiang, Dongrui Wu, Zhaohong Deng, Pengjiang Qian, Jun Wang, Guanjin Wang, Fu-Lai Chung,256

Kup-Sze Choi, and Shitong Wang. Seizure classification from eeg signals using transfer learning, semi-257

supervised learning and tsk fuzzy system. IEEE Transactions on Neural Systems and Rehabilitation258

Engineering, 25(12):2270–2284, 2017.259

7



[18] Dominik Klepl, Min Wu, and Fei He. Graph neural network-based eeg classification: A survey. IEEE260

Transactions on Neural Systems and Rehabilitation Engineering, 2024.261

[19] Alicia Guadalupe Lazcano-Herrera, Rita Q Fuentes-Aguilar, and Mariel Alfaro-Ponce. Eeg motor/imagery262

signal classification comparative using machine learning algorithms. In 2021 18th International Conference263

on Electrical Engineering, Computing Science and Automatic Control (CCE), pages 1–6. IEEE, 2021.264

[20] Yang Li, Yu Liu, Wei-Gang Cui, Yu-Zhu Guo, Hui Huang, and Zhong-Yi Hu. Epileptic seizure detection in265

eeg signals using a unified temporal-spectral squeeze-and-excitation network. IEEE Transactions on Neural266

Systems and Rehabilitation Engineering, 28(4):782–794, 2020. doi: 10.1109/TNSRE.2020.2973434.267

[21] Jiashuo Liu, Zheyan Shen, Peng Cui, Linjun Zhou, Kun Kuang, Bo Li, and Yishi Lin. Stable adversarial268

learning under distributional shifts. In Proceedings of the AAAI Conference on Artificial Intelligence,269

volume 35, pages 8662–8670, 2021.270

[22] Jiashuo Liu, Zheyan Shen, Yue He, Xingxuan Zhang, Renzhe Xu, Han Yu, and Peng Cui. Towards271

out-of-distribution generalization: A survey. arXiv preprint arXiv:2108.13624, 2021.272

[23] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv preprint273

arXiv:1608.03983, 2016.274

[24] X Lou, X Li, H Meng, J Hu, M Xu, Y Zhao, J Yang, and Z Li. Eeg-dbnet: A dual-branch network for275

temporal-spectral decoding in motor-imagery brain-computer interfaces. 2024.276

[25] Yahong Ma, Zhentao Huang, Jianyun Su, Hangyu Shi, Dong Wang, Shanshan Jia, and Weisu Li. A multi-277

channel feature fusion cnn-bi-lstm epilepsy eeg classification and prediction model based on attention278

mechanism. IEEE Access, 11:62855–62864, 2023.279

[26] Bijan Mazaheri, Atalanti Mastakouri, Dominik Janzing, and Michaela Hardt. Causal information splitting:280

Engineering proxy features for robustness to distribution shifts. In Uncertainty in Artificial Intelligence,281

pages 1401–1411. PMLR, 2023.282

[27] Michael Oberst, Nikolaj Thams, Jonas Peters, and David Sontag. Regularizing towards causal invariance:283

Linear models with proxies. In International Conference on Machine Learning, pages 8260–8270. PMLR,284

2021.285

[28] Advait U Parulekar, Karthikeyan Shanmugam, and Sanjay Shakkottai. Pac generalization via invariant286

representations. In International Conference on Machine Learning, pages 27378–27400. PMLR, 2023.287

[29] Khaled Saab, Jared Dunnmon, Christopher Ré, Daniel Rubin, and Christopher Lee-Messer. Weak super-288

vision as an efficient approach for automated seizure detection in electroencephalography. NPJ digital289

medicine, 3(1):59, 2020.290

[30] Shiori Sagawa, Pang Wei Koh, Tatsunori B Hashimoto, and Percy Liang. Distributionally robust neural291

networks for group shifts: On the importance of regularization for worst-case generalization. arXiv preprint292

arXiv:1911.08731, 2019.293
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Appendix339

A Experimental Details340

Following previous works, we divide the clips and patients of the TUSZ dataset into training,341

validation, and test sets. The number of EEG clips is 1,925, 450, and 521 for the three sets respectively,342

while the number of patients is 179, 22, and 34. Note that the patient sets are disjoint for training,343

validation, and test sets to study the cross-patient seizure classification robustness.344

We tune the following hyper-parameters on the validation set.345

• lr_init ∈ [1e− 5, 5e− 3], the initial learning rate;346

• top-k ∈ {1, 2, 3, 4, 5, 6}, the number of neighbors included in the correlation graphs for347

each node;348

• K ∈ {2, 3, 4}, the maximum diffusion step;349

• d ∈ [0, 0.7], the dropout probability in the prediction networks.350

• e ∈ [20, 40, 60, 80, 100], the number of training epochs.351

During the training, each batch has 40 EEG clips and the cosine annealing learning rate scheduler [23]352

is adopted. Our experiments are conducted on a computing platform of NVIDIA GeForce RTX 3090353

and Intel(R) Xeon(R) Gold 6248R CPU @ 3.00GHz.354
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B Additional Evaluation Results355

Figure 5 shows the weighted F1 and the Recall scores to evaluate the performance of our method356

under different number of patient groups, for both 12-second and 60-second clip windows. We can357

observe that as the number of patient groups increases, the Recall-score has a similar pattern as the358

weighted F1-score, achieving the highest value at 4 for the 12-second case and 8 for the 60-second359

case.

Figure 5: Performance under different numbers of patient groups.
360

Figure 6 shows the weighted F1 and the Recall scores to compare the performance of our method361

with Corr-DCRNN under different top-k values, for both 12-second and 60-second clip windows. As362

the value of top-k ranges from 1 to 6, the trend for both weighted F1 and Recall scores is increasing363

until a peak at around 3, followed by a slight decrease.364

Figure 6: Performance under different values of top-k.
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