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Abstract

Automated classification of epileptic seizure types from electroencephalogram
(EEG) signals is important for accurate diagnosis, yet current state-of-the-art
deep learning models often fail to generalize to unseen patients due to covariate
distribution shifts. To overcome this limitation, this paper introduces Patient-
Invariant Causal Representation Learning (PInvCRL), a novel framework that
disentangles the patient covariate representation into the invariant and variant parts,
and only uses the invariant part for final model training. Specifically, our method
first employs a Diffusion Convolutional Recurrent Neural Network (DCRNN) to
extract informative spatiotemporal representation from original multi-channel EEG
signals. The representations are then clustered using k-means to establish an initial
set of patient "environments". Subsequently, we initiate an iterative learning process
that dynamically refines these environments while concurrently learning a covariate
mask, which decomposes the covariate vector into a patient-invariant component,
which captures the core seizure patterns stable across environments, and a residual
patient-variant component. Finally, a Multi-Layer Perceptron (MLP) is trained
based on these robust, invariant representations for the final seizure classification.
We validate PInvCRL on the largest public Temple University Hospital Seizure
Corpus (TUSZ) dataset, demonstrating that by explicitly removing patient-variant
information, our model achieves a state-of-the-art performance in the cross-patient
seizure classification scenario.

1 Introduction

Epilepsy is a globally prevalent neurological disorder, affecting millions of people [5]. Accurate
seizure classification is fundamental for effective diagnosis to benefit society [6]. One of the
significant challenges is to process the Electroencephalography (EEG) signal effectively during
the diagnosis procedure [1]. However, the manual interpretation of lengthy EEG recordings by
neurologists is labor-intensive, time-consuming, and subject to inter-rater variability [12, 25]. With
the rapid development of the combination of electronic health and artificial intelligence [14, 13],
machine learning-based methods for seizure classification have therefore attracted increasing attention
[7, 21]. For example, Graph Neural Networks (GNNs) have emerged as a powerful tool to model
the brain’s network topology relations [26, 17], and architectures like the Diffusion Convolutional
Recurrent Neural Network (DCRNN) have shown particular promise by integrating GNNs with
recurrent units to capture complex spatiotemporal dynamics simultaneously [15].

Despite these advances, a critical limitation persists: most models are trained and tested under the
assumption that data distributions are identical between the training set and test set, which is a
condition rarely met in clinical practice. When a model is deployed on new patients not seen during
training, its performance often degrades [20, 24]. This is because EEG signals contain a mixture
of covariates: some are "invariant" and truly indicative of a specific seizure type, while others are
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"variant" or "spurious" [29], which is beneficial for classification in the training set but not in the
test set with another distribution. Traditional machine learning based models often conflate these
covariate types, learning spurious correlations that fail to generalize to unseen patients with different
covariate distributions [3].

Several recent works have explored approaches to improve cross-patient seizure classification. Zhang
et al. [31] propose to use adversarial learning based on the patient ID to train a more generalizable
classifier. Wu et al. [30] presented a spatiotemporal invariant representation learning framework
with self-supervised consistency learning loss and prespecified environments based on a clustering
algorithm. Despite these efforts, existing methods still face limitations in explicitly and dynamically
finding invariant covariate representation that causally governs seizure types, which motivates our
proposed causal representation learning approach [19].

In this work, we introduce a new framework, Patient-Invariant Causal Representation Learning
(PInvCRL), which treats individual patients (or clusters of similar patients) as different "environ-
ments" and learn representations that are robust across them using the invariant risk minimization
techniques [3, 18]. Our contributions are summarized below:

• We propose a novel, multi-stage method that can tackle the cross-patient seizure classification
problem by finding the invariant representation dynamically.

• Specifically, we first use a DCRNN to extract powerful spatiotemporal covariates from raw
EEG signals. Then we adapt the concept of environment-based invariant learning, using
k-means clustering for initialization and an iterative process to learn a covariate mask that
separates patient-invariant representations from variant ones. Finally, we train an MLP
classifier on these patient-invariant representations.

• Experiments on the large-scale TUSZ dataset that PInvCRL improves cross-patient seizure
classification by mitigating patient-specific confounding factors.

2 Methodology

Our proposed PInvCRL framework is designed to learn invariant covariate representations that are
the same across all patients.

Problem Setup. An input EEG clip is represented as X ∈ RT×K×M , where T is the number of
time steps, K is the number of EEG channels (brain regions), and M is the covariate dimension after
preprocessing. Our goal is to predict the seizure class label y. In addition, in our paper, we have
four seizure types, i.e., y ∈ {0, 1, 2, 3}. In the cross-patient seizure classification task, the dataset is
partitioned such that patients in the training set do not appear in the validation or test sets, simulating
a real-world clinical scenario. Formally, the cross-patient scenario means that the distribution of X in
the training set is not equal to the test set, but P (Y | X) is the same.

Next, we introduce the proposed method, whose overall workflow consists of two main stages.

2.1 Stage 1: Spatiotemporal Covariate Extraction with DCRNN

DCRNN Encoder. We model the relationship between EEG channels as a graph G = (V, E ,W ),
where nodes V = {v1, v2, . . . , vK} represent the K channels and the adjacency matrix W encodes
their spatial relationships or functional connectivity. We employ a DCRNN as our primary covariate
encoder. The DCRNN replaces standard matrix multiplications in a Gated Recurrent Unit (GRU)
with diffusion convolution operations, allowing it to capture both spatial dependencies via graph
convolutions and temporal dependencies via the recurrent structure. For an input sequence X =
(X(1), . . . , X(T )), the DCRNN computes a sequence of hidden states H = (H(1), . . . ,H(T )), where
each H(t) ∈ RK×d is a rich spatiotemporal representation of the EEG data in time t, and d ≪ M
is the hidden dimension of the GRU. The details of the diffusion convolution step can be found
at [15]. For training speed consideration, we first train a DCRNN encoder with a readout MLP
layer, following Tang et al. [27], with cross entropy as the classification loss, then we fix the learned
representation in the following stage.
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2.2 Stage 2: Patient-Invariant Causal Representation Learning

This stage is the core of our PInvCRL framework. We take the final hidden state matrix H(T ) ∈ RK×d

as the covariate matrix, which contains a d-dimensional covariate vector for each of the K brain
regions, to avoid the high dimension problem caused by the original data while maintaining the
enough information of predicting y. We then flatten this matrix into a vector hflat ∈ RKd. This
vector serves as the informative input for the invariant learning algorithm. It separates the flattened
representation hflat into an "invariant" component that is stable across different patient environments
and a "variant" component that captures patient-specific noise.

Invariant and Variant Representations. We introduce a learnable float vector, the invariant mask
m ∈ RKd, with values constrained in [0, 1]. This mask is used to decompose hflat. The invariant
representation Φ and the variant representation Ψ are defined as:

Φ = m⊙ hflat,

Ψ = (1−m)⊙ hflat,

where ⊙ denotes the element-wise product. The goal is to learn a mask m such that Φ contains only
generalizable, seizure-specific invariant information.

Environment Initialization via Clustering. To learn the invariant covariate representation under the
invariant risk minimization framework, we require an initial partition of the training data into distinct
"environments". Thus, for faster convergence, we perform k-means clustering on hflat,1, . . . , hflat,n

to partition the training data into E clusters. Each cluster constitutes an initial environment, based on
the hypothesis that samples with similar high-level spatiotemporal covariates may share common
spurious characteristics.

Iterative Environment Partitioning and Mask Generation. We learn the optimal mask m through
an iterative process that alternates between refining the environments and updating the mask, as
inspired by Liu et al. [18] and Du et al. [4].

1. Environment Partition: Holding the mask m fixed, we refine the environment assignments. We
first train E simple, environment-specific classifiers, Γ(e), using only the variant representation Ψ
as input. The goal is for each classifier to specialize in the spurious correlations of its environment
using the following loss

argmin
Θe

L
(
Γ(e)(hflat,i ·Ψi | Θe)

∣∣Re

)
,

where Re means the training samples in the corresponding environment e and Ψi = (1−m) · hflat,i.

After training, we re-assign each training sample to the environment e whose classifier Γ(e) predicts
its seizure type most accurately

e(i) = argmax
e∈E

Γ(e)(hflat,i ·Ψi | Θe).

This step clusters samples based on their shared spurious covariates. This process is repeated until
the environment assignments converge.

2. Mask Generation: With stable environment partitions {Re|e ∈ E}, we update the invariant mask
m. The objective is to find a mask that minimizes the prediction variance of a model trained on the
invariant representation Φ across all environments. This is framed as an Invariant Risk Minimization
problem. The loss function to optimize m is:

Lmask = Ee∈ELe + α ∥Vare∈E(∇ΘmaskLe)∥2 + λ∥m∥2.
Here, Le is the loss of a shared model on environment e. The first term optimizes for average
performance, while the second term (with hyperparameter α) penalizes gradient variance, pushing
the model to learn from covariates that are equally predictive in all environments. The third term is
an L2 regularization on the mask.

These two procedures are alternated, progressively refining both the environment groupings and the
invariant mask m.

Final Prediction with MLP. After the iterative process converges, the optimized invariant mask
m is fixed. We compute the final invariant representation Φfinal = m ⊙ hflat for all data. This
representation, theoretically stripped of patient-specific noise, is then used to train a final, lightweight
Multi-Layer Perceptron (MLP) as the seizure classifier with the cross-entropy loss.
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12-s 60-s

Method F1 Recall Precision F1 Recall Precision

CNN-LSTM 0.596 ± 0.035 0.654 ± 0.030 0.647 ± 0.036 0.623 ± 0.028 0.661 ± 0.030 0.647 ± 0.036
LSTM 0.690 ± 0.043 0.724 ± 0.033 0.725 ± 0.041 0.692 ± 0.011 0.718 ± 0.007 0.717 ± 0.017
Dense-CNN 0.657 ± 0.069 0.690 ± 0.053 0.694 ± 0.049 0.653 ± 0.085 0.704 ± 0.057 0.659 ± 0.118
MSTGCN 0.670 ± 0.031 0.719 ± 0.023 0.734 ± 0.029 0.647 ± 0.046 0.696 ± 0.027 0.694 ± 0.030
NeuroGNN 0.647 ± 0.040 0.710 ± 0.024 0.744 ± 0.030 0.698 ± 0.044 0.733 ± 0.042 0.714 ± 0.056
DCRNN 0.729 ± 0.058 0.756 ± 0.041 0.752 ± 0.047 0.672 ± 0.038 0.712 ± 0.021 0.705 ± 0.029
PANN-DCRNN 0.728 ± 0.052 0.753 ± 0.042 0.755 ± 0.041 0.684 ± 0.023 0.717 ± 0.016 0.720 ± 0.024
PInvCRL (ours) 0.740 ± 0.040 0.765 ± 0.015 0.767 ± 0.050 0.709 ± 0.030 0.739 ± 0.019 0.744 ± 0.030

Table 1: Performance comparison of different methods under 12-second and 60-second scenarios.

3 Experiments

3.1 Experimental Settings

Datasets. We conduct experiments on the Temple University Hospital EEG Seizure Corpus (TUSZ)
v1.5.2, following the experimental settings in previous works [16, 23, 28]. As the largest public EEG
dataset for seizure research, TUSZ contains 5,612 EEG recordings collected from over 300 patients.
EEG signals are recorded using 19 electrodes placed according to the international 10-20 system [10].

Data Preprocessing and Experimental Protocols. Our preprocessing procedure is consistent with
that used in Tang et al. [27] and other recent works [2]. Initially, all EEG recordings are resampled
to 200 Hz and segmented into fixed-length clips of 12 seconds and 60 seconds without overlap.
Subsequently, each clip is subdivided into 1-second non-overlapping segments. Covariate extraction
is performed by applying the Fast Fourier Transform (FFT) to every 1-second window for frequency
components, following the method in Tang et al. [27]. For the evaluation, the model performance is
primarily evaluated using the weighted F1-score, precision, and recall. We adopt the same range in
[30] for the hyperparameter tuning.

Baselines. We consider the following existing baselines. For convolutional models, we include
DenseCNN [22]; for recurrent models, we include LSTM [9]; and for hybrid convolution-recurrent
approaches, we include CNN-LSTM [2]. Furthermore, we evaluate our method in comparison with
graph-based methods, including MSTGCN [11], NeuroGNN [8], DCRNN [27], and PANN [31].

3.2 Performance Analysis

Table 1 presents the primary results of our experiments. Our proposed PInvCRL framework, with its
final MLP classifier, consistently outperforms all baseline models for both 12-second and 60-second
clip lengths. The DCRNN baseline already demonstrates a strong performance compared to non-
graph methods, affirming the utility of graph-based spatiotemporal modeling. Most importantly, our
PInvCRL-MLP model achieves a performance gain over the DCRNN baseline. This performance
leap directly validates our central hypothesis: by explicitly modeling and removing patient-variant
information, the final classifier learns from a more robust and generalizable covariate, leading to
superior cross-patient performance. The improvement is consistent across different clip lengths,
demonstrating the framework’s effectiveness in disentangling invariant and variant representations
from complex spatiotemporal covariates.

4 Conclusion

In this paper, we introduced PInvCRL, a novel framework for cross-patient seizure classification.
By adapting and concretizing principles of invariant representation learning, we have developed
a method that can explicitly decompose learned EEG covariates into patient-invariant and patient-
variant components. Our two-stage approach—combining a powerful DCRNN encoder, an iterative
environment-based learning procedure initialized by k-means clustering, and a final MLP classi-
fier—effectively isolates the core, generalizable biomarkers of seizure types from confounding
patient-specific patterns. Experimental results on the large-scale TUSZ dataset confirm that training a
classifier on these invariant representations leads to improvements in performance over baselines.
One of the potential limitations is that this paper flattens the representation learned by DCRNN, rather
than considering the spatiotemporal information explicitly.
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