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Abstract

Large Language Models (LLMs) rely on gen-
erating extensive intermediate reasoning units
(e.g., tokens, sentences) to enhance final answer
quality across a wide range of complex tasks.
While this approach has proven effective, it in-
evitably increases substantial inference costs.
Previous methods adopting token-level reduc-
tion without clear criteria result in poor perfor-
mance compared to models trained with com-
plete rationale. To address this challenge, we
propose a novel sentence-level rationale reduc-
tion framework leveraging likelihood-based cri-
teria, verbosity, to identify and remove redun-
dant reasoning sentences. Unlike previous ap-
proaches, our method leverages verbosity to
selectively remove redundant reasoning sen-
tences while preserving reasoning capabilities.
Our experimental results across various rea-
soning tasks demonstrate that our method im-
proves performance by an average of 7.71%
while reducing token generation by 19.87%
compared to model trained with complete rea-
soning paths.

1 Introduction

Recent advances in Large Language Models
(LLMs) have demonstrated remarkable reasoning
capabilities comparable to human cognitive abil-
ities (Madaan et al., 2024; Shinn et al., 2024,
Kumar et al., 2024). These works demonstrate
the capability to solve complex reasoning tasks
through explicitly generating extended reasoning
paths. The generation of such paths involves pro-
ducing explicit reasoning units (e.g., tokens, steps)
(Yu et al., 2024b), which further enhances model
performance through iterative prompting (Wang
et al., 2023; Yao et al., 2023). Through this iter-
ative generation of explicit reasoning paths, the
model refines and expands its thought processes
while incorporating strategic planning and contin-
uous cognitive generation (Xi et al., 2023; Yang
etal., 2024).

While the extensive generation of explicit rea-
soning units leads to improved performance, it
inevitably results in higher inference costs and
increased latency (Yu et al., 2024b; Wang et al.,
2024). Furthermore, fine-tuning LLMs with com-
plete reasoning paths does not necessarily guaran-
tee enhanced performance (Yu et al., 2024b; Deng
et al., 2024b; Liu et al., 2024), indicating the ne-
cessity for methods that maintain reasoning capa-
bilities while reducing the generation of reasoning
units. Despite this apparent requirement, it remains
underexplored how to maintain LLM reasoning ca-
pabilities while reducing intermediate reasoning
paths across diverse tasks.

Previous methods primarily focused on reduc-
ing reasoning paths from two distinct perspectives.
Some studies have proposed training pipelines
that leverage augmented datasets, iteratively gener-
ated by foundation LLMs, to fine-tune subsequent
LLMs (Yu et al., 2024b; Liu et al., 2024). However,
these approaches remain inherently vulnerable due
to their significant dependence on the generative
capabilities of LLMs.

In response, other works have focused on di-
rectly training LL.Ms without dataset augmenta-
tion to reduce explicit reasoning paths. Deng et al.
(2023) introduced a knowledge distillation method
to distill explicit reasoning into implicit reason-
ing through token-level hidden states. Deng et al.
(2024b) adopted tokens as the reasoning unit for
reduction and proposed a heuristic method to inter-
nalize explicit intermediate rationale tokens while
Hao et al. (2024) compressed complete rationales
into the predefined number of hidden states of to-
kens. However, their methods present a fundamen-
tal limitation as they lack sufficient justification
for selecting tokens over more linguistically natu-
ral units (e.g., sentences) for reduction (Table 1),
and they fail to provide principled criteria for the
removal process. Moreover, their evaluation has
primarily focused on synthetic arithmetic reason-



ing tasks, limiting their applicability to real-world
scenarios.

To address these limitations, we propose a novel
training method that maintains LLM reasoning per-
formance while systematically reducing redundant
reasoning units within the reasoning process. Our
method adopts sentences as fundamental reduction
units, establishing more linguistically meaningful
boundaries compared to token-level approaches.
Through empirical analysis, we demonstrate that
sentences in early rationale steps can introduce
redundancy in the LLM’s answer generation pro-
cess. Inspired by Dong et al. (2023), we introduce
the concept of ‘verbosity’, a likelihood-based cri-
teria, to identify redundant reasoning sentences.
By incorporating verbosity identification into the
training process, the model excludes redundant
reasoning sentences, thereby reducing intermedi-
ate token generation. Finally, we demonstrate our
method’s effectiveness and generalizability across
various real-world reasoning datasets, showing our
method improves performance by an average of
7.71% while reducing token generation by 19.87%
across various LLMs, and through systematic ab-
lation studies, we analyze the contribution of each
proposed component.

2 Related Works

2.1 Performance-Cost Tradeoffs in Reasoning
Path Generation

Recent research has demonstrated the critical role
of generating iterative and refined reasoning paths
in enhancing model reasoning capabilities, albeit at
increased computational costs (Wang et al., 2023;
Yao et al., 2023; Radha et al., 2024; Wang et al.,
2024; Madaan et al., 2024; Shinn et al., 2024; Ku-
mar et al., 2024). Self-Consistency (Wang et al.,
2023), Tree of Thoughts (ToT) (Yao et al., 2023),
and Strategic Chain of Thought (SCoT) (Wang
et al., 2024) improve reasoning accuracy through
ensemble-based path selection, tree-structured ex-
ploration, and adaptive reasoning with an Inner
Dialogue Agent, where each approach requires it-
erative reasoning path generation, resulting in sub-
stantial computational overhead.

Concurrently Self-Refine (Madaan et al., 2024)
and Reflexion-based framework (Shinn et al., 2024,
Kumar et al., 2024) enhance reasoning abilities
through iterative feedback-based refinement and re-
flective path generation, respectively, though both
require multiple forward passes through the model.

While the iterative generation and refinement of
reasoning paths are essential for achieving optimal
performance, they inherently increase inference
costs and latency. Therefore, it is crucial to in-
vestigate methods for efficiently generating these
paths.

2.2 Reasoning Path Reduction

To address the computational costs associated with
extensive reasoning paths generation, some lines
of work (Yu et al., 2024b; Liu et al., 2024) have
focused on generating augmented datasets with
varying rationale lengths to reduce the generation
of reasoning paths. Yu et al. (2024b) employs Self-
Consistency to generate multiple reasoning paths
for dataset augmentation, then fine-tunes the model
to produce direct answers. Liu et al. (2024) devel-
oped a heuristic approach to merge reasoning steps
and iteratively trained the model to produce shorter
reasoning paths, which are then integrated into the
progressive training phase. While these approaches
demonstrate empirical effectiveness, they exhibit
two fundamental limitations: (1) their substantial
dependence on LLM generation capabilities intro-
duces inherent instability, and (2) their objective of
reducing reasoning paths necessitates the paradoxi-
cal creation of datasets requiring extensive reason-
ing path generation.

To address these weaknesses, another line of
work (Deng et al., 2023, 2024b; Hao et al., 2024)
has focused on directly training LLMs without aug-
mented datasets. Implicit-CoT (Deng et al., 2023)
implements a multi-model framework where an
emulator model is trained to predict the teacher’s
token-level hidden states, and a student model lever-
ages these predicted states to generate answers.
ICoT-SI (Deng et al., 2024b) identifies tokens as
reduction units, proposing a method to internalize
explicit intermediate rationale tokens by progres-
sively eliminating them from the beginning of the
reasoning path within the CoT fine-tuning process.
However, these methods demonstrate limited gener-
alization across diverse datasets as they have been
validated exclusively on simple arithmetic reason-
ing tasks, such as multiplication problems. This
limitation raises concerns about their applicability
to real-world scenarios where rationales are ex-
pressed in natural language. Furthermore, they do
not explore the adoption of principled criteria and
linguistically natural units (e.g., sentences). Specif-
ically, the token-level reduction approach may elim-
inate critical information necessary for answer gen-



eration or distort the semantic information of the
sentence. Motivated by these limitations in existing
reduction approaches, we examine the redundancy
of various sentence positions for potential elimina-
tion and propose a novel method with principled
criteria that can effectively reduce reasoning paths
while maintaining their efficacy.

3 Early Step Rationales are Redundant
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Figure 1: NLL differences across varying sizes of {r;}.
The ‘original’ represents the NLL with the complete
rationale, while ‘front’, ‘random’, and ‘back’ indicate
that {r;} is sampled from the front, random, and back
indices of the full index set, respectively.

3.1 Quanitifying the Redundancy

Before delving into the method, we first investi-
gate which positions within the rationale sentences
should be selected for reduction. When the like-
lihood of the answer remains unchanged after re-
moving a sentence from the full rationales, this
indicates that the sentence may be redundant in the
reasoning process. To quantify the redundancy of a
sentence, we compute the negative log-likelihood
(NLL) for answer y after sentence reduction as
follows:

NLL = —logpy(y|R’, z),

1
where R = R\ {r;}ics, S CI. %

Let R denote the complete set of rationale sen-
tences, and [ represent the full index set of these
sentences. The subset of indices corresponding to
sentences selected for reduction is denoted by S,
and R’ represents the remaining rationale sentences
after their removal. {r; };cs denotes the sentences

selected for reduction. For simplicity, we use {r; }
without the subset index notation throughout the
rest of the paper.

3.2 Redundancy of Early Reasoning
Sentences

We performed a pilot study to empirically demon-
strate the redundancy of leading sentences within
the rationales by analyzing the NLL of Mistral
7B (Jiang et al., 2023) across diverse reasoning
datasets. Specifically, we varied the size of {r;}
from 1 to 4 and investigated general patterns of sen-
tence removal using a stochastic approach. To com-
pare different sentence selection configurations, we
considered three sampling methods for {r;}: front,
where initial sentences were prioritized; random,
with uniform probabilities; and back, where proba-
bilities progressively increased for later sentences!.
Additionally, we computed the NLL for complete
rationale sentences (i.e., —logpy(y|R,x)) as a
baseline to evaluate the impact of reduction. As
illustrated in Figure 1, the front (<) configuration
shows only marginal NLL differences relative to
complete rationale sentences. In contrast, removing
sentences randomly (¢) or from the back (>) results
in higher NLL as the removed sentences increase,
highlighting the importance of the selection of a
candidate rationale position strategy for removal in
the reasoning and answer prediction process (for
additional analysis, see Appendix A).

4 Verbosity-Aware Rationale Reduction

Based on these observations, we propose the
Verbosity-Aware Rationale Reduction (VARR)
framework. In Section 4.1, we introduce the con-
cept of ‘verbosity’ as a principled criterion for iden-
tifying redundant reasoning sentences. Section 4.2
elaborates on how we integrate verbosity into the
reduction process during CoT training. In Sec-
tion 4.3, we extend the verbosity term by incor-
porating incorrect answers to enhance robustness.
Finally, Section 4.4 presents the comprehensive
VARR framework.

4.1 Verbosity as Principled Criterion

To quantify the redundancy of sentences for poten-
tial removal, we introduce the fundamental concept
‘verbosity’. Given an input x, full rationale R, and

"For generating R’, we assign probabilities pi, = %}kﬂ

i=1"

(front), ﬁ (random), and —— (back) where k=1,...,N de-
i=1"

notes sentence position.
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Figure 2: Overview of our VARR/VARR+ framework. Initially, we select a candidate sentence from the beginning
of the rationale (Section 3). After selecting the candidate sentence, we evaluate Equations (5) and (9) by calculating
verbosity(yy) and verbosity(y,, ). If the candidate sentence meets the verbosity evaluation criteria, it is excluded in
subsequent training steps. The model then proceeds with training, where the redundant sentence is excluded from

the rationale.

a reduced rationale R’ = {r;};cp\ (s}, We quantify
the verbosity of a sentence r; on y by computing
the difference in Kullback—Leibler divergence (KL-
divergence) as follows:

verbosity(y) = Dz (q(y|x) || pe(y| R, x))
— Dicr(a(ylz) | po(y| R, ),
2
where ¢(y|x) is the ground truth distribution. The
verbosity(y) measures the informational contribu-
tion or redundancy of a rationale sentence r; with
respect to answer y. Since ¢(y|x) is the form of the
one-hot vector (i.e., Dirac delta function), we can
express the verbosity(y) as the log-likelihood ratio
between R and R’ as follows:

verbosity(yq) = [Hy(po(y| R, x)) — H(q(yl|z))]
— [Hy(po(y|R', 2)) — H(q(ylx))]
= Ey[—log pe(y| R, x)]
+ Eqllog pg(y| R, z)]

/
_ log (pg(yg!R ?$)> 7

p@(yglRa 1‘)
3)

where y, denotes the ground truth answer (i.e.,

q(yglx) = 1). Hy(-) and H(-) denote the cross-
entropy and the entropy, respectively?. Intuitvely, a
higher value of verbosity(y,) implies that the like-
lihood of the model generating the ground truth
answer increases after removing r;, indicating that
its removal is beneficial.

4.2 Verbosity Identification in CoT Training

Given an input sequence, CoT training (Nye et al.,
2021) aims to train LLMs to generate complete
rationale, followed by the ground truth answer:

—log pg(yy, R|x). “4)

During each training step ¢, we evaluate each sen-
tence r; within R using the following criterion:

verbosity(y,) > 0. (5

Here, we sequentially select r; starting from the
first sentence and construct R’ = {r;};en (i}
based on our analysis in Section 3, which indicates
that early-stage rationales are more likely to be re-
dundant. When the verbosity score is non-positive,

%For the sake of explainability, we assume each expres-
sion’s y is represented by a single token.



it indicates that removing r; from R would impair
the model’s performance, thus identifying the sen-
tence as essential and preserving it in the rationale.
Detailed training procedures will be described in
Section 4.4.

4.3 Contrasting with Wrong Answer

Inspired by the miscalibrated log-likelihoods be-
tween accepted and rejected responses in stan-
dalone Supervised Fine-Tuning (SFT) for align-
ment learning (Rafailov et al., 2024; Azar et al.,
2024; Hong et al., 2024), we examine whether re-
duced rationales R’ lead to inaccurate answer gen-
eration by incorporating a wrong answer ¥y,.

Instead of employing the correct answer distri-
bution ¢(y|z) in Equation (2), we initiate our for-
mula with the wrong answer distribution ¢’ (i.e.,
1 — q(y|x), normalized sum to 1). Through alge-
braic manipulation, we derive:

Drr(d (ylz) || pe(y|R, x))
— Drr(q'(ylz) || po(y|R', x))
= [Hu(po(y|R, x)) — H(¢ (y|z))]
— [Huw(po(y|R',x)) — H(q'(yl2))] ,

(6)

where H,,(-) denotes the cross-entropy calculated
with the wrong answer distribution ¢’. Due to the
impracticality of computing the expectation over
the entire space of V' — 1 wrong answers (where
V' is the vocabulary size), we sample K incorrect
answers for the following estimations:

Ey[—logpg(y|R, z)] + Eyllog po(y| R, x)]
po(y|R', x)
= B, |log 28217207
[ gPo(?AR,x)}
K
1 po(y | R, )

R — log
k b
K Pe(yz(u)\R )

(N

where {ygC )}ke[ ] is sampled from the in-batch
negatives depending on the dataset. Consequently,
verbosity(y,,) is computed as:

po( yw)!R’ )
yw ‘R m)

verbosity(yy) = =% Zl ®)

Since computational constraints necessitate sam-
pling incorrect answers to calculate verbosity(y,,),
we evaluate the effectiveness of removal by com-
paring verbosity(y,,) against verbosity(y,) rather
than solely using verbosity(y,,) as follows:

verbosity(y,) — verbosity(yy) < 0. (9)

When both conditions verbosity(y,) > 0 and
verbosity(y,,) — verbosity(yy) < 0 are satisfied,
it indicates that removing 7; from R not only im-
proves the model’s performance but also increases
its preference for the ground truth answer over in-
correct answers, supporting the removal of ;.

4.4 CoT Training with Rationale Reduction

In our framework, the model is trained using Equa-
tion (4) for predefined warm-up stage to inject its
reasoning capabilities. Subsequently, at each train-
ing step t, we evaluate each sentence r; sequentially
from the first sentence in R, using either Equation
(5) alone (denoted as VARR) or the combination of
Equations (5) and (9) (denoted as VARR+). Sen-
tences that satisfy these respective criteria are iden-
tified for removal and excluded from subsequent
training steps. The maximum removable number
of sentences at each training step ¢ is determined
based on a linear schedule, adopting ICoT-SI (Deng
et al., 2024b)’s setting as follows:

r(t) = [Ny - (t/T)],

where 1" represents the total number of training
steps, IV, is the total number of rationale sentences
at step t, and r(¢) indicates the maximum number
of sentences that can be removed at that step. Note
that unlike ICoT-SI, which enforcely removes a
predefined number of tokens during training, our
method preserves the essential reasoning steps by
employing principled removal criteria.

(10)

S Experiments

5.1 Training Configuration

Datasets We conducted experiments across two
categories to provide a comprehensive evaluation
of VARR'’s versatility and effectiveness, in con-
trast to prior research that predominantly focuses
on simple arithmetic tasks like multi-digit mul-
tiplication (Deng et al., 2023, 2024b). Initially,
we evaluate with arithmetic reasoning tasks, in-
cluding datasets like MathQA (MQA; Amini et al.
2019a) and GSMS8K (G8K; Cobbe et al. 2021a).
We also examine the performance of our method on
commonsense reasoning tasks, employing datasets
including CommonsenseQA (CQA; Talmor et al.
2019), TriviaQA (TQA; Joshi et al. 2017), and
StrategyQA (SQA; Geva et al. 2021). Note that
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Figure 3: Pareto plot of accuracy versus the number of generated tokens. The gray dotted lines connect the Pareto
frontiers of the baselines, and our VARR (or VARR+) consistently outperforms the pareto frontiers across all
subplots. While ICoT-SI and Coconut substantially trade-off accuracy for efficiency, VARR/VARR+ maintains high
accuracy while reducing generated tokens, demonstrating its superior efficiency-performance balance.

unlike previous works (Deng et al., 2023, 2024b),
we do not synthesize training data (especially the
intermediate steps) to validate the generalizability
and applicability of our method.

Models We trained Mistral 7B (Jiang et al., 2023)
as our base model for comparisons. We also trained
a series of Llama3.2 models (AI@Meta, 2024) scal-
ing from 1B to 3B to demonstrate our method’s
generalization capabilities.

Implementation Details The warm-up stage is
set to 0.1 of the total training steps, and its impact is
analyzed in Section 5.5.3. In addition, an optimizer
is reinitialized at the beginning of each epoch to
stabilize the model training inspired by Deng et al.
(2024b)’s setting, with its effects described in Ap-
pendix E. All methods are trained for 5 epochs for
fair comparison, with detailed implementation of
VARR/VARR+ provided in Appendix B.

5.2 Baselines

We compared our method against the following
baselines: Explicit-CoT (Nye et al., 2021), where
the model is finetuned with explicit chain-of-
thought reasoning; ICoT-SI (Deng et al., 2024b),

where the model is fine-tuned using a linear token
elimination schedule; and Coconut (Hao et al.,
2024), where the model is fined-tuned to com-
press rationales into a predefined number of token
hidden states. We excluded Implicit-CoT (Deng
et al., 2023) from our evaluation due to its sub-
stantial computational demands, specifically re-
quiring three models to be trained simultaneously
on a single GPU. Moreover, Deng et al. (2024b)
demonstrated that this method achieves a lower
performance compared to ICoT-SI. Given that both
our baselines and VARR aim to maintain Explicit-
CoT'’s performance while reducing the number of
generated tokens, we establish Explicit-CoT’s per-
formance as our primary baseline for comparison.
All baselines were trained on a single A100-80GB
GPU, and detailed training configurations for each
method are provided in Appendix C.

5.3 Evaluation

We employ two evaluation metrics: First, we evalu-
ate the accuracy of each method in generating the
final answer for the respective tasks. Second, we
count the generated tokens to evaluate reasoning
efficiency while maintaining performance.



5.4 Main results

In Figure 3, we present the results for each reason-
ing task across different models. VARR/VARR+
achieves comparable or superior performance com-
pared to Explicit-Cot across most datasets while
reducing the average token generation. Specifically,
VARR+ significantly increases performance by an
average of 7.71% across all datasets and models,
while improving efficiency by reducing token gen-
eration by 19.37% on average.

It is noteworthy that these findings contrast with
ICoT-SI, demonstrating that performance can be
improved while reducing the number of generated
tokens. This suggests that existing reasoning data
contains unnecessary reasoning sentences that may
harm performance. Furthermore, effective reason-
ing can be achieved by selectively removing sen-
tences based on appropriate criteria.

However, the baselines exhibit performance
degradation compared to Explicit-CoT. For ICoT-
SI, we observe an average performance decline of
21.98%, while Coconut shows a degradation of
25.20%, demonstrating their imbalanced trade-off
in efficiency. These results suggest that heuristic
reasoning reduction approaches do not effectively
induce implicit reasoning within the model as dis-
cussed by ICoT-SI and Coconut. This indicates
that identifying and retaining appropriate reason-
ing units through principled criteria is crucial for
maintaining performance in practical applications.
A more detailed discussion of the impact of the
choice of reduction unit and criterion is provided
in Section 5.5.1.

Furthermore, qualitative analysis (refer to Ap-
pendix G) confirms that ICoT-SI and Coconut fail
to generate valid reasoning paths for answer genera-
tion, while VARR+ produces concise, yet effective
reasoning paths that lead to correct answers. Ad-
ditionally, the incorporation of incorrect answers
in VARR+ resulted in performance improvements
across most datasets. While VARR alone enhanced
generation efficiency, VARR+ effectively preserves
rationales that help calibrate the probability dis-
tribution between correct and incorrect answers,
contributing to improved training robustness and
stability.

5.5 Ablation Studies

In this section, we conduct ablation studies to em-
pirically validate our method. All experiments are
implemented using Mistral 7B due to its higher

base capacity compared to other models.

5.5.1 Identifying Appropriate Units for

Removal
MQA  GSK CQA TQA  SQA
o 5584 5526 8433 8294 7470
Exp-CoT  (105.02) (122.54) (42.84) (63.46) (46.47)
Cors] | 3584 2827 6782 7709 6133
CoT-SI  (113.55) (10441) (6.0) (22.03) (22.86)
4679 4753 8260 67.14 7122
VARR-Tok  (9039)  (94.16) (25.07) (38.10) (31.92)
56.95 5498  89.56 8345 78.19
VARR-Sent 91,04y (100.38) (33.55) (39.17) (35.12)

Table 1: Analysis across various reasoning reduction
units and the application of principled criteria. Each
row presents accuracy in the first line, with average
generated tokens shown in parentheses in the second
line.

In this section, we empirically investigate the
necessity of our criteria and demonstrate why sen-
tences are more effective than tokens as reasoning
reduction units. While ICoT-SI removes tokens
without specific criteria, we first apply VARR+
at the token level (denoted as VARR-Tok) to as-
sess whether tokens can serve as effective reduc-
tion units when combined with our criteria. As
shown in Table 1, VARR+ applied at the token level
achieves an average performance gain of 24.74%
compared to ICoT-SI, demonstrating that our prin-
cipled criteria contribute to robust performance.
Furthermore, expanding the reduction units from
tokens to sentences (denoted as VARR-Sent) yields
an additional performance gain of 15.98% over
VARR-Tok. These findings highlight that sentences
provide natural and effective boundaries for the re-
duction process.

5.5.2 Analyzing the Impact of Sentence
Position on Removal Efficacy

In Section 3, we demonstrated that gradually re-
moving sentences from random and back positions
can degrade model performance. To further explore
this finding and assess the robustness of removing
sentences from the front position, we conducted ex-
periments with unguided random sentence removal
(denoted as No Rule) and applied VARR+ with ran-
dom position and reverse sentence order (denoted
as Random and Back, respectively). As shown
in Table 2, unguided random sentence removal re-
sulted in a 25.30% decrease in performance rela-
tive to our method, highlighting the critical role of
the verbosity evaluation even after selecting sen-



MQA  GSK CQA TQA  SQA

5584 5526 8433 8294 7470

Exp-CoT  (105.02) (122.54) (42.84) (63.46) (46.47)
3506 2585 7478 7414 7238

NoRule (5992) (63.56) (23.56) (6.84) (23.38)
4 5534 5231 8347 79.62  73.83
Random (99.13) (115.59) (49.19) (44.98) (50.51)
4971 4852 8521 700  74.41

Back  (92.64) (10325) (19.86) (36.22) (18.17)
5695 5498  89.56 8345 78.19

Front (91.04)  (100.38) (33.55) (39.17) (35.12)

Table 2: Performance across 5 different reasoning
tasks, evaluated with different sentence position re-
moval. Each row presents accuracy in the first line,
with average generated tokens shown in parentheses in
the second line.

tences as units of reduction. Furthermore, Random
and Back strategies exhibited an average 7.50%
performance degradation relative to our method.
These results further support our observation that
earlier sentences in the reasoning path tend to con-
tain more redundancy, and their prioritized removal
effectively balances rationale reduction while main-
taining reasoning performance.

5.5.3 Varying the Warm-up Ratio
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Figure 4: Accuracy (barplot) and the average generated
token (marker) across various warm-up stages on Trivi-
aQA and CommomsenseQA.

We evaluated our method against various warm-
up stages on the TriviaQA and CommonsenseQA
datasets. As the duration of the warm-up stages
increases, the model becomes more fitted to the
non-reduction dataset, which inhibits VARR’s abil-
ity to eliminate redundant sentences from the rea-
soning path. Consequently, as illustrated in Figure
4, longer warm-up periods result in an increase
in generated tokens and a decrease in accuracy.
These results suggest that 0.1 training steps pro-
vide sufficient time to inject reasoning abilities
while enabling the systematic reduction of redun-

dant reasoning sentences during the learning pro-
cess. Therefore, we set 0.1 as the default setting
for the warm-up steps.

5.5.4 Removal Ratio Analysis
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Figure 5: Removal ratio of redundant sentences during
training. The y-axis shows the removal ratio, calculated
as the number of removed sentences divided by the max-
imum potential removal sentences (size({r;})/r(t)).
The x-axis represents training epochs.

In Figure 5, we analyze the actual amount of
rationale sentences removed during training. We
examine it by calculating the removal ratio, the
proportion of actual removed sentences to the max-
imum potential removal sentences (t). Our anal-
ysis indicates that not all sentences designated for
maximum removal range are always eliminated
during the training process. Notably, a significant
proportion of redundant sentences are removed in
the early stages of training, with fewer sentences
being removed as the model progresses through
the middle to later stages, thereby stabilizing its
training. A similar trend is observed across other
datasets, as detailed in Appendix F.

6 Conclusion

In this work, we propose the sentence-level ra-
tionale reduction framework VARR and empiri-
cally demonstrate that models trained with non-
redundant rationales achieve enhanced efficiency.
We address the lack of principled criteria for iden-
tifying redundant sentences during training by de-
veloping a reduction framework that not only pre-
serves the model’s reasoning capabilities but also
reduces the likelihood of generating incorrect an-
swers. Our experiments show that VARR can effi-
ciently handle a diverse range of tasks with fewer
generated tokens, without sacrificing its accuracy.
This work contributes novel insights to rationale
reduction research, contributing to the efficient rea-
soning elicitation in language models.



Limitations

While our work provides novel insights into ra-
tionale reduction research, our experiments were
primarily conducted using a relatively small large
language model and limited batch size, constrained
by computational costs (i.e., a single A100-80GB
GPU). Additionally, for the same reasons, it was
not feasible to test the model with datasets featur-
ing long sequences in both queries and rationales
(Reddy et al., 2024; Yu et al., 2024a). Nevertheless,
given the systematic design principles underlying
the VARR/VARR+ frameworks, we believe their ef-
fectiveness would extend to larger-scale implemen-
tations. Furthermore, we reserve the application
of VARR/VARRH in iterative reasoning path gen-
eration and refinement/reflexion-based evaluation
discussed in Section 2.1 for future work.

Ethical Considerations

Our work explores how LLLMs can maintain their
reasoning performance while improving efficiency.
To this end, we conducted verbosity-aware ratio-
nale reduction (i.e., reasoning sentence pruning)-
based CoT fine-tuning, requiring computational
resources comparable to standard CoT fine-tuning.
Additionally, we used only open-source LLMs and
publicly available reasoning datasets with minimal
preprocessing using gpt4o-mini’s (OpenAl, 2024)
API. Therefore, we do not anticipate significant eth-
ical issues arising from our work. On the contrary,
we believe future works could leverage our analysis
to reduce computational overhead in CoT inference
settings.
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A Additional Datasets Analysis
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Figure 6: NLL differences across varying sizes of {r;}.
The ‘original’ represents the NLL for the full rationale,
while ‘front’, ‘random’, and ‘back’ indicate that r; are
sampled from the front, random, and back indices of the
full index set, respectively.

As shown in Section 3, the NLL tends to rise
with increasing size of {r;} in random and back
configurations, compared to the front configuration,
as illustrated in Figure 6, this trend is consistent
across both the GSM8K and StrategyQA datasets.

B VARR Implementation

The detailed implementation of VARR+ is outlined
in Algorithm 1. After the warm-up stages, each

11

datum in the current batch is evaluated using the
verbosity equation—specifically, using only Equa-
tion 5 in VARR and both Equations 5 and 9 in
VARR+. As mentioned in Section 3 and 4, the
process assesses the redundancy of each sentence
in data starting from the first index during every
single epoch. Therefore, all data can potentially
shorten the length of the rationale progressively.

Algorithm 1 Training Procedure of VARR+

D: Training dataset
B: Training batch
E: Total training epochs
S Total training steps per epoch
T = E x S: Total training steps
Twarmup = 0.1 x T': Warm-up steps
Rp: A buffer to store removed sentences
r(t): Maximum number of removable sentences at ¢
: Ni: Number of rationale sentences at ¢
: 0: Trained model parameters
: for epoch =1 to E do
for step=1to S do
Sample training batch B from D
t = (epoch — 1) x S + step
if t < Twarmup then
pass
end if
for each d € B do
Rp «+ {}
fori=1to N; do

1:
2:
3:
4:
5:
6:
7.
8:

21: if r; satisfies Equations 5 and 9 then
22: remove 7; from d
23: Add r; to Rp

24: if |[Rg| > r(¢) then
25: break

26: end if

27: end if

28: end for

29: end for

30: Forward pass

31: Backward pass and update 6
32: end for

33: Reinitialize optimizer

34: end for

C Additional Experimental Details

For all experiments, we employ the AdamW opti-
mizer (Loshchilov and Hutter, 2019), configured
with a weight decay of 0.005. For the Mistral 7B
model, we utilize an effective batch size of 12 with
gradient accumulation set to 3, while the smaller
Llama3.2 models use an effective batch size of
15. For Coconut (Hao et al., 2024), we set the
max_latent_stage to 5 while maintaining all other
hyperparameters as their default repository values
unless otherwise mentioned. A constant learning
rate of 5 x 107% is applied across all datasets,
with bfloat16 precision. For Multiple-Choice and
True/False tasks, complete sets of non-correct la-
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bels are employed to configure in-batch negatives
to enhance the stability of the verbosity evalua-
tion. To ensure a fair comparison, all baselines
and methods are trained on a single A100 GPU
with 80GB of memory for up to 5 epochs or 36
hours, whichever is reached first and experimented
with single run evaluation (note that our setting is
different from prompting/inference only setting).
Regarding licensing, Mistral 7B is licensed under
Apache License, Version 2.0, while Llama3.2 is
governed by the Llama 3.2 Community License.

D Details and Statistics of Datasets

For our experimental analysis, we carefully se-
lected a diverse set of five datasets used in prior
works (Deng et al., 2023, 2024a; Liu et al., 2024;
Yu et al., 2024b; Yin et al., 2024). To ensure ex-
plicit sentence boundaries, all datasets were prepro-
cessed using gpt-40-mini (OpenAl, 2024) to es-
tablish clear sentence demarcation (e.g.,

be-
comes ‘He bikes 202=«202=40»40 miles each day
for work. So he bikes 405=«405=200»200 miles
for work”). Table 3 comprehensively outlines each
dataset, including its source and the size of the
training, validation, and test samples.

E Reinitializing the Optimizer

We reinitialized the optimizer after each training
epoch to stabilize training, inspired by Deng et al.
(2024b). Our implementation uses the AdamW op-
timizer (Loshchilov and Hutter, 2019), where the
first and second moments are gradually updated
based on current gradients. Consequently, when
VARR reduces rationales for certain data points
between epochs, the training process could become
unstable. As shown in table 4, the average 19.32%
performance improvement achieved through opti-
mizer reinitialization extends the findings of Deng
et al. (2024b) beyond simple tasks (e.g., multiplica-
tion; synthesized dataset) to demonstrate effective-
ness across diverse datasets with complex semantic
and syntactic reasoning structures.

F Removal Ratio Analysis on additional
datasets.

In the GSMSK, StrategyQA, and MathQA datasets,
similar trends are observed as in Section 5.5.4. Ad-
ditionally, we observe that our method reduces
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Figure 7: Additional analysis of the Removal ratio on
other datasets. The Removal ratio, indicated on the y-
axis, is calculated by dividing the number of sentences
actually removed by the maximum potential removal
ratio (i.e., size({r;})/r(t)). The x-axis represents the
index of the epochs.

fewer sentences in later training stages, demon-
strating that verbosity preserves essential reasoning
sentences even when larger r(t) encourages sub-
stantial reduction. Notably, in StrategyQA, the
Removal ratio converges more rapidly than in other
datasets. This is attributed to the dataset’s charac-
teristics, where the sentences within the rationale
predominantly list simple information rather than
forming complex, interrelated structures. Conse-
quently, redundant sentences are rapidly removed,
leading to a rapid decrease in further removal ac-
tivities.

G Qualitative Analysis

Table 5 illustrates the generation outputs for each
method on the GSMS8K test set. While Explicit-
CoT generates a complete reasoning path, its redun-
dant generation of ‘needs a 3 piece place setting’ in-
troduces hallucinations into the reasoning process,
ultimately leading to an incorrect answer. ICoT-
SI’s token-level elimination of reasoning paths, on
the other hand, results in generations that lack suf-
ficient reasoning capacity. Additionally, Coconut’s
predefined hidden-states fail to compress the com-
plete reasoning path in its token-level compression
approach. In contrast, VARR+ demonstrates effi-
cient generation by concisely producing ‘$15.00°
in a single sentence, achieving both effectiveness
and efficiency in its output. Additional qualitative
examples on the MathQA dataset are outlined in
Table 6.


https://github.com/meta-llama/llama-models/blob/main/models/llama3_2/LICENSE

Dataset Reasoning Task Source Answer Format | # TRAIN. | # VALID. | # TEST.
GSMS8K (Cobbe et al., 2021a) Arithmetic Cobbe et al. (2021b) Number 7000 473 1319
MathQA (Amini et al., 2019a) Arithmetic Amini et al. (2019b) Multi-choice 29837 4475 2985
TriviaQA (Joshi et al., 2017) Commonsense Kim et al. (2023) Natural Language 8844 552 1659
CommonsenseQA (Talmor et al., 2019) Multi-choice Kim et al. (2023) Multi-choice 609 38 115
StrategyQA (Geva et al., 2021) Commonsense Sileo (2024) T/F 1832 114 344

Table 3: Comprehensive statistics of the datasets used in our experiments are provided. GSM8K and MathQA are
sourced directly from their original datasets, while the remaining datasets were obtained from Kim et al. (2023) and
Sileo (2024) to access complete reasoning paths. GSMS8K, StrategyQA, and CommonsenseQA are licensed under

the MIT License, whereas MathQA and TriviaQA are distributed under the Apache License, Version 2.0.

MQA GS8K CQA TQA  SQA
. 4870 4518  87.82 8372 7674
wloreinit (92.86) (115.91) (32.95) (38.27) (33.89)
. 5695 5498 8956 8345  78.19
wireinit (91.04) (100.38) (33.55) (39.17) (35.12)

Table 4: Performance comparison before and after the
reinitializing optimizer in every training epoch. Each
row presents accuracy in the first line, with average
generated tokens shown in parentheses in the second

line.
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Question

Avery needs to buy a 3 piece place setting (dinner & salad plate and a bowl) for her holiday dinner. She’s
having 12 people over for dinner. If the dinner plates cost $6.00 each and bowls each cost $5.00 and the
salad plates cost $4.00, how much will she spend on place settings?

Explicit-CoT

The dinner plates cost $6.00 each and she needs 36 of them so that comes to 6*36 = $216.00.

The bowl costs $5.00 each and she needs 36 of them so that comes to 5*36 = $180.00.

The salad plates cost $4.00 each and she needs 36 of them so that comes to 4*36 = $144.00.

All total, the place settings will cost $216 for dinner plates, $180 for bowls and $144 for salad plates for a
total of 216+180+144 = $540.00

#i##HE 540

ICoT-SI

each so 12*6 = $72.00 She’s buying 3 pieces of place settings (dinner plates, salad plates and bowls) for
$72.00 each so 3*72 = $216.00
#iHH# 216

Coconut

<Istart-latent/><llatent|><llatentl><llatent|><lend-latent|>
#H##H 4.00

VARR+

She needs 12 place settings and each setting costs $15.00 so she will spend 12*15 = $180.00
#i## 180

Ground Truth Answer

###H# 180

Table 5: Qualitative Example: Generation outputs on GSMS8K test set.

14




Question

The cost price of 20 articles is the same as the selling price of x articles. if the profit is 25%, find out the
value of x.
a) 13,b) 14,¢) 15,d) 16, ¢e) 17

Explicit-CoT

explanation : let the cost price 1 article =rs . 1

cost price of x articles=r1s . x

selling price of x articles = 125% of x =1s. (125/100z )=1s.(25/20xz)=1s.5/4 x
=>z=20

=> z =20 answer : option a
#iHHE a

ICoT-SI

of x articles = x

s.p of x articles =rs . 20

gain=rs.(20-x)

gain % =25 % of x=rs.(20-z)/x x 100 =25
=>20-2=52=>42=20-2=>52=20-2=>20=52=>200=522=>400=522=>400/5
=22=>22=80=>x=100r10.c

#it#HE ¢

Coconut

<Istart-latentl><llatentI><llatentl><llatent|><lend-latent|>
H#iHHE ¢

VARR+

explanation : let the cost price of z articles = x
s.p of z articles = 20

20=1.25 z =>x =16 option d.

#H#H# d

Ground Truth Answer

###H# d

Table 6: Qualitative Example: Generation outputs on MathQA test set.
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