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Abstract

Large Language Models (LLMs) rely on gen-001
erating extensive intermediate reasoning units002
(e.g., tokens, sentences) to enhance final answer003
quality across a wide range of complex tasks.004
While this approach has proven effective, it in-005
evitably increases substantial inference costs.006
Previous methods adopting token-level reduc-007
tion without clear criteria result in poor perfor-008
mance compared to models trained with com-009
plete rationale. To address this challenge, we010
propose a novel sentence-level rationale reduc-011
tion framework leveraging likelihood-based cri-012
teria, verbosity, to identify and remove redun-013
dant reasoning sentences. Unlike previous ap-014
proaches, our method leverages verbosity to015
selectively remove redundant reasoning sen-016
tences while preserving reasoning capabilities.017
Our experimental results across various rea-018
soning tasks demonstrate that our method im-019
proves performance by an average of 7.71%020
while reducing token generation by 19.87%021
compared to model trained with complete rea-022
soning paths.023

1 Introduction024

Recent advances in Large Language Models025

(LLMs) have demonstrated remarkable reasoning026

capabilities comparable to human cognitive abil-027

ities (Madaan et al., 2024; Shinn et al., 2024;028

Kumar et al., 2024). These works demonstrate029

the capability to solve complex reasoning tasks030

through explicitly generating extended reasoning031

paths. The generation of such paths involves pro-032

ducing explicit reasoning units (e.g., tokens, steps)033

(Yu et al., 2024b), which further enhances model034

performance through iterative prompting (Wang035

et al., 2023; Yao et al., 2023). Through this iter-036

ative generation of explicit reasoning paths, the037

model refines and expands its thought processes038

while incorporating strategic planning and contin-039

uous cognitive generation (Xi et al., 2023; Yang040

et al., 2024).041

While the extensive generation of explicit rea- 042

soning units leads to improved performance, it 043

inevitably results in higher inference costs and 044

increased latency (Yu et al., 2024b; Wang et al., 045

2024). Furthermore, fine-tuning LLMs with com- 046

plete reasoning paths does not necessarily guaran- 047

tee enhanced performance (Yu et al., 2024b; Deng 048

et al., 2024b; Liu et al., 2024), indicating the ne- 049

cessity for methods that maintain reasoning capa- 050

bilities while reducing the generation of reasoning 051

units. Despite this apparent requirement, it remains 052

underexplored how to maintain LLM reasoning ca- 053

pabilities while reducing intermediate reasoning 054

paths across diverse tasks. 055

Previous methods primarily focused on reduc- 056

ing reasoning paths from two distinct perspectives. 057

Some studies have proposed training pipelines 058

that leverage augmented datasets, iteratively gener- 059

ated by foundation LLMs, to fine-tune subsequent 060

LLMs (Yu et al., 2024b; Liu et al., 2024). However, 061

these approaches remain inherently vulnerable due 062

to their significant dependence on the generative 063

capabilities of LLMs. 064

In response, other works have focused on di- 065

rectly training LLMs without dataset augmenta- 066

tion to reduce explicit reasoning paths. Deng et al. 067

(2023) introduced a knowledge distillation method 068

to distill explicit reasoning into implicit reason- 069

ing through token-level hidden states. Deng et al. 070

(2024b) adopted tokens as the reasoning unit for 071

reduction and proposed a heuristic method to inter- 072

nalize explicit intermediate rationale tokens while 073

Hao et al. (2024) compressed complete rationales 074

into the predefined number of hidden states of to- 075

kens. However, their methods present a fundamen- 076

tal limitation as they lack sufficient justification 077

for selecting tokens over more linguistically natu- 078

ral units (e.g., sentences) for reduction (Table 1), 079

and they fail to provide principled criteria for the 080

removal process. Moreover, their evaluation has 081

primarily focused on synthetic arithmetic reason- 082
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ing tasks, limiting their applicability to real-world083

scenarios.084

To address these limitations, we propose a novel085

training method that maintains LLM reasoning per-086

formance while systematically reducing redundant087

reasoning units within the reasoning process. Our088

method adopts sentences as fundamental reduction089

units, establishing more linguistically meaningful090

boundaries compared to token-level approaches.091

Through empirical analysis, we demonstrate that092

sentences in early rationale steps can introduce093

redundancy in the LLM’s answer generation pro-094

cess. Inspired by Dong et al. (2023), we introduce095

the concept of ‘verbosity’, a likelihood-based cri-096

teria, to identify redundant reasoning sentences.097

By incorporating verbosity identification into the098

training process, the model excludes redundant099

reasoning sentences, thereby reducing intermedi-100

ate token generation. Finally, we demonstrate our101

method’s effectiveness and generalizability across102

various real-world reasoning datasets, showing our103

method improves performance by an average of104

7.71% while reducing token generation by 19.87%105

across various LLMs, and through systematic ab-106

lation studies, we analyze the contribution of each107

proposed component.108

2 Related Works109

2.1 Performance-Cost Tradeoffs in Reasoning110

Path Generation111

Recent research has demonstrated the critical role112

of generating iterative and refined reasoning paths113

in enhancing model reasoning capabilities, albeit at114

increased computational costs (Wang et al., 2023;115

Yao et al., 2023; Radha et al., 2024; Wang et al.,116

2024; Madaan et al., 2024; Shinn et al., 2024; Ku-117

mar et al., 2024). Self-Consistency (Wang et al.,118

2023), Tree of Thoughts (ToT) (Yao et al., 2023),119

and Strategic Chain of Thought (SCoT) (Wang120

et al., 2024) improve reasoning accuracy through121

ensemble-based path selection, tree-structured ex-122

ploration, and adaptive reasoning with an Inner123

Dialogue Agent, where each approach requires it-124

erative reasoning path generation, resulting in sub-125

stantial computational overhead.126

Concurrently Self-Refine (Madaan et al., 2024)127

and Reflexion-based framework (Shinn et al., 2024;128

Kumar et al., 2024) enhance reasoning abilities129

through iterative feedback-based refinement and re-130

flective path generation, respectively, though both131

require multiple forward passes through the model.132

While the iterative generation and refinement of 133

reasoning paths are essential for achieving optimal 134

performance, they inherently increase inference 135

costs and latency. Therefore, it is crucial to in- 136

vestigate methods for efficiently generating these 137

paths. 138

2.2 Reasoning Path Reduction 139

To address the computational costs associated with 140

extensive reasoning paths generation, some lines 141

of work (Yu et al., 2024b; Liu et al., 2024) have 142

focused on generating augmented datasets with 143

varying rationale lengths to reduce the generation 144

of reasoning paths. Yu et al. (2024b) employs Self- 145

Consistency to generate multiple reasoning paths 146

for dataset augmentation, then fine-tunes the model 147

to produce direct answers. Liu et al. (2024) devel- 148

oped a heuristic approach to merge reasoning steps 149

and iteratively trained the model to produce shorter 150

reasoning paths, which are then integrated into the 151

progressive training phase. While these approaches 152

demonstrate empirical effectiveness, they exhibit 153

two fundamental limitations: (1) their substantial 154

dependence on LLM generation capabilities intro- 155

duces inherent instability, and (2) their objective of 156

reducing reasoning paths necessitates the paradoxi- 157

cal creation of datasets requiring extensive reason- 158

ing path generation. 159

To address these weaknesses, another line of 160

work (Deng et al., 2023, 2024b; Hao et al., 2024) 161

has focused on directly training LLMs without aug- 162

mented datasets. Implicit-CoT (Deng et al., 2023) 163

implements a multi-model framework where an 164

emulator model is trained to predict the teacher’s 165

token-level hidden states, and a student model lever- 166

ages these predicted states to generate answers. 167

ICoT-SI (Deng et al., 2024b) identifies tokens as 168

reduction units, proposing a method to internalize 169

explicit intermediate rationale tokens by progres- 170

sively eliminating them from the beginning of the 171

reasoning path within the CoT fine-tuning process. 172

However, these methods demonstrate limited gener- 173

alization across diverse datasets as they have been 174

validated exclusively on simple arithmetic reason- 175

ing tasks, such as multiplication problems. This 176

limitation raises concerns about their applicability 177

to real-world scenarios where rationales are ex- 178

pressed in natural language. Furthermore, they do 179

not explore the adoption of principled criteria and 180

linguistically natural units (e.g., sentences). Specif- 181

ically, the token-level reduction approach may elim- 182

inate critical information necessary for answer gen- 183
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eration or distort the semantic information of the184

sentence. Motivated by these limitations in existing185

reduction approaches, we examine the redundancy186

of various sentence positions for potential elimina-187

tion and propose a novel method with principled188

criteria that can effectively reduce reasoning paths189

while maintaining their efficacy.190

3 Early Step Rationales are Redundant191

Figure 1: NLL differences across varying sizes of {ri}.
The ‘original’ represents the NLL with the complete
rationale, while ‘front’, ‘random’, and ‘back’ indicate
that {ri} is sampled from the front, random, and back
indices of the full index set, respectively.

3.1 Quanitifying the Redundancy192

Before delving into the method, we first investi-193

gate which positions within the rationale sentences194

should be selected for reduction. When the like-195

lihood of the answer remains unchanged after re-196

moving a sentence from the full rationales, this197

indicates that the sentence may be redundant in the198

reasoning process. To quantify the redundancy of a199

sentence, we compute the negative log-likelihood200

(NLL) for answer y after sentence reduction as201

follows:202

NLL = − log pθ(y|R′, x),

where R′ = R \ {ri}i∈S , S ⊆ I.
(1)203

Let R denote the complete set of rationale sen-204

tences, and I represent the full index set of these205

sentences. The subset of indices corresponding to206

sentences selected for reduction is denoted by S,207

and R′ represents the remaining rationale sentences208

after their removal. {ri}i∈S denotes the sentences209

selected for reduction. For simplicity, we use {ri} 210

without the subset index notation throughout the 211

rest of the paper. 212

3.2 Redundancy of Early Reasoning 213

Sentences 214

We performed a pilot study to empirically demon- 215

strate the redundancy of leading sentences within 216

the rationales by analyzing the NLL of Mistral 217

7B (Jiang et al., 2023) across diverse reasoning 218

datasets. Specifically, we varied the size of {ri} 219

from 1 to 4 and investigated general patterns of sen- 220

tence removal using a stochastic approach. To com- 221

pare different sentence selection configurations, we 222

considered three sampling methods for {ri}: front, 223

where initial sentences were prioritized; random, 224

with uniform probabilities; and back, where proba- 225

bilities progressively increased for later sentences1. 226

Additionally, we computed the NLL for complete 227

rationale sentences (i.e., − log pθ(y|R, x)) as a 228

baseline to evaluate the impact of reduction. As 229

illustrated in Figure 1, the front (◁) configuration 230

shows only marginal NLL differences relative to 231

complete rationale sentences. In contrast, removing 232

sentences randomly (⋄) or from the back (▷) results 233

in higher NLL as the removed sentences increase, 234

highlighting the importance of the selection of a 235

candidate rationale position strategy for removal in 236

the reasoning and answer prediction process (for 237

additional analysis, see Appendix A). 238

4 Verbosity-Aware Rationale Reduction 239

Based on these observations, we propose the 240

Verbosity-Aware Rationale Reduction (VARR) 241

framework. In Section 4.1, we introduce the con- 242

cept of ‘verbosity’ as a principled criterion for iden- 243

tifying redundant reasoning sentences. Section 4.2 244

elaborates on how we integrate verbosity into the 245

reduction process during CoT training. In Sec- 246

tion 4.3, we extend the verbosity term by incor- 247

porating incorrect answers to enhance robustness. 248

Finally, Section 4.4 presents the comprehensive 249

VARR framework. 250

4.1 Verbosity as Principled Criterion 251

To quantify the redundancy of sentences for poten- 252

tial removal, we introduce the fundamental concept 253

‘verbosity’. Given an input x, full rationale R, and 254

1For generating R′, we assign probabilities pk = N−k+1∑N
i=1 i

(front), 1
N

(random), and k∑N
i=1 i

(back) where k=1,...,N de-
notes sentence position.
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Figure 2: Overview of our VARR/VARR+ framework. Initially, we select a candidate sentence from the beginning
of the rationale (Section 3). After selecting the candidate sentence, we evaluate Equations (5) and (9) by calculating
verbosity(yg) and verbosity(yw). If the candidate sentence meets the verbosity evaluation criteria, it is excluded in
subsequent training steps. The model then proceeds with training, where the redundant sentence is excluded from
the rationale.

a reduced rationale R′ = {rj}j∈I\{i}, we quantify255

the verbosity of a sentence ri on y by computing256

the difference in Kullback–Leibler divergence (KL-257

divergence) as follows:258

verbosity(y) = DKL(q(y|x) ∥ pθ(y|R, x))

−DKL(q(y|x) ∥ pθ(y|R′, x)),

(2)
259

where q(y|x) is the ground truth distribution. The260

verbosity(y) measures the informational contribu-261

tion or redundancy of a rationale sentence ri with262

respect to answer y. Since q(y|x) is the form of the263

one-hot vector (i.e., Dirac delta function), we can264

express the verbosity(y) as the log-likelihood ratio265

between R and R′ as follows:266

verbosity(yg) = [Hq(pθ(y|R, x))−H(q(y|x))]
−
[
Hq(pθ(y|R′, x))−H(q(y|x))

]
= Eq[− log pθ(y|R, x)]

+ Eq[log pθ(y|R′, x)]

= log

(
pθ(yg|R′, x)

pθ(yg|R, x)

)
,

(3)

267

where yg denotes the ground truth answer (i.e.,268

q(yg|x) = 1). Hq(·) and H(·) denote the cross- 269

entropy and the entropy, respectively2. Intuitvely, a 270

higher value of verbosity(yg) implies that the like- 271

lihood of the model generating the ground truth 272

answer increases after removing ri, indicating that 273

its removal is beneficial. 274

4.2 Verbosity Identification in CoT Training 275

Given an input sequence, CoT training (Nye et al., 276

2021) aims to train LLMs to generate complete 277

rationale, followed by the ground truth answer: 278

− log pθ(yg, R|x). (4) 279

During each training step t, we evaluate each sen- 280

tence ri within R using the following criterion: 281

verbosity(yg) ≥ 0. (5) 282

Here, we sequentially select ri starting from the 283

first sentence and construct R′ = {rj}j∈I\{i}, 284

based on our analysis in Section 3, which indicates 285

that early-stage rationales are more likely to be re- 286

dundant. When the verbosity score is non-positive, 287

2For the sake of explainability, we assume each expres-
sion’s y is represented by a single token.
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it indicates that removing ri from R would impair288

the model’s performance, thus identifying the sen-289

tence as essential and preserving it in the rationale.290

Detailed training procedures will be described in291

Section 4.4.292

4.3 Contrasting with Wrong Answer293

Inspired by the miscalibrated log-likelihoods be-294

tween accepted and rejected responses in stan-295

dalone Supervised Fine-Tuning (SFT) for align-296

ment learning (Rafailov et al., 2024; Azar et al.,297

2024; Hong et al., 2024), we examine whether re-298

duced rationales R′ lead to inaccurate answer gen-299

eration by incorporating a wrong answer yw.300

Instead of employing the correct answer distri-301

bution q(y|x) in Equation (2), we initiate our for-302

mula with the wrong answer distribution q′ (i.e.,303

1 − q(y|x), normalized sum to 1). Through alge-304

braic manipulation, we derive:305

DKL(q
′(y|x) ∥ pθ(y|R, x))

−DKL(q
′(y|x) ∥ pθ(y|R′, x))

=
[
Hw(pθ(y|R, x))−H(q′(y|x))

]
−
[
Hw(pθ(y|R′, x))−H(q′(y|x))

]
,

(6)306

where Hw(·) denotes the cross-entropy calculated307

with the wrong answer distribution q′. Due to the308

impracticality of computing the expectation over309

the entire space of V − 1 wrong answers (where310

V is the vocabulary size), we sample K incorrect311

answers for the following estimations:312

Ew[− log pθ(y|R, x)] + Ew[log pθ(y|R′, x)]

= Ew

[
log

pθ(y|R′, x)

pθ(y|R, x)

]
≈ 1

K

K∑
k=1

log
pθ(y

(k)
w |R′, x)

pθ(y
(k)
w |R, x)

,

(7)313

where {y(k)w }k∈[K] is sampled from the in-batch314

negatives depending on the dataset. Consequently,315

verbosity(yw) is computed as:316

verbosity(yw) =
1

K

K∑
k=1

log
pθ(y

(k)
w |R′, x)

pθ(y
(k)
w |R, x)

. (8)317

Since computational constraints necessitate sam-318

pling incorrect answers to calculate verbosity(yw),319

we evaluate the effectiveness of removal by com-320

paring verbosity(yw) against verbosity(yg) rather321

than solely using verbosity(yw) as follows:322

verbosity(yw)− verbosity(yg) ≤ 0. (9) 323

When both conditions verbosity(yg) ≥ 0 and 324

verbosity(yw) − verbosity(yg) ≤ 0 are satisfied, 325

it indicates that removing ri from R not only im- 326

proves the model’s performance but also increases 327

its preference for the ground truth answer over in- 328

correct answers, supporting the removal of ri. 329

4.4 CoT Training with Rationale Reduction 330

In our framework, the model is trained using Equa- 331

tion (4) for predefined warm-up stage to inject its 332

reasoning capabilities. Subsequently, at each train- 333

ing step t, we evaluate each sentence ri sequentially 334

from the first sentence in R, using either Equation 335

(5) alone (denoted as VARR) or the combination of 336

Equations (5) and (9) (denoted as VARR+). Sen- 337

tences that satisfy these respective criteria are iden- 338

tified for removal and excluded from subsequent 339

training steps. The maximum removable number 340

of sentences at each training step t is determined 341

based on a linear schedule, adopting ICoT-SI (Deng 342

et al., 2024b)’s setting as follows: 343

r(t) = ⌊Nt · (t/T )⌋, (10) 344

where T represents the total number of training 345

steps, Nt is the total number of rationale sentences 346

at step t, and r(t) indicates the maximum number 347

of sentences that can be removed at that step. Note 348

that unlike ICoT-SI, which enforcely removes a 349

predefined number of tokens during training, our 350

method preserves the essential reasoning steps by 351

employing principled removal criteria. 352

5 Experiments 353

5.1 Training Configuration 354

Datasets We conducted experiments across two 355

categories to provide a comprehensive evaluation 356

of VARR’s versatility and effectiveness, in con- 357

trast to prior research that predominantly focuses 358

on simple arithmetic tasks like multi-digit mul- 359

tiplication (Deng et al., 2023, 2024b). Initially, 360

we evaluate with arithmetic reasoning tasks, in- 361

cluding datasets like MathQA (MQA; Amini et al. 362

2019a) and GSM8K (G8K; Cobbe et al. 2021a). 363

We also examine the performance of our method on 364

commonsense reasoning tasks, employing datasets 365

including CommonsenseQA (CQA; Talmor et al. 366

2019), TriviaQA (TQA; Joshi et al. 2017), and 367

StrategyQA (SQA; Geva et al. 2021). Note that 368
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Figure 3: Pareto plot of accuracy versus the number of generated tokens. The gray dotted lines connect the Pareto
frontiers of the baselines, and our VARR (or VARR+) consistently outperforms the pareto frontiers across all
subplots. While ICoT-SI and Coconut substantially trade-off accuracy for efficiency, VARR/VARR+ maintains high
accuracy while reducing generated tokens, demonstrating its superior efficiency-performance balance.

unlike previous works (Deng et al., 2023, 2024b),369

we do not synthesize training data (especially the370

intermediate steps) to validate the generalizability371

and applicability of our method.372

Models We trained Mistral 7B (Jiang et al., 2023)373

as our base model for comparisons. We also trained374

a series of Llama3.2 models (AI@Meta, 2024) scal-375

ing from 1B to 3B to demonstrate our method’s376

generalization capabilities.377

Implementation Details The warm-up stage is378

set to 0.1 of the total training steps, and its impact is379

analyzed in Section 5.5.3. In addition, an optimizer380

is reinitialized at the beginning of each epoch to381

stabilize the model training inspired by Deng et al.382

(2024b)’s setting, with its effects described in Ap-383

pendix E. All methods are trained for 5 epochs for384

fair comparison, with detailed implementation of385

VARR/VARR+ provided in Appendix B.386

5.2 Baselines387

We compared our method against the following388

baselines: Explicit-CoT (Nye et al., 2021), where389

the model is finetuned with explicit chain-of-390

thought reasoning; ICoT-SI (Deng et al., 2024b),391

where the model is fine-tuned using a linear token 392

elimination schedule; and Coconut (Hao et al., 393

2024), where the model is fined-tuned to com- 394

press rationales into a predefined number of token 395

hidden states. We excluded Implicit-CoT (Deng 396

et al., 2023) from our evaluation due to its sub- 397

stantial computational demands, specifically re- 398

quiring three models to be trained simultaneously 399

on a single GPU. Moreover, Deng et al. (2024b) 400

demonstrated that this method achieves a lower 401

performance compared to ICoT-SI. Given that both 402

our baselines and VARR aim to maintain Explicit- 403

CoT’s performance while reducing the number of 404

generated tokens, we establish Explicit-CoT’s per- 405

formance as our primary baseline for comparison. 406

All baselines were trained on a single A100-80GB 407

GPU, and detailed training configurations for each 408

method are provided in Appendix C. 409

5.3 Evaluation 410

We employ two evaluation metrics: First, we evalu- 411

ate the accuracy of each method in generating the 412

final answer for the respective tasks. Second, we 413

count the generated tokens to evaluate reasoning 414

efficiency while maintaining performance. 415
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5.4 Main results416

In Figure 3, we present the results for each reason-417

ing task across different models. VARR/VARR+418

achieves comparable or superior performance com-419

pared to Explicit-Cot across most datasets while420

reducing the average token generation. Specifically,421

VARR+ significantly increases performance by an422

average of 7.71% across all datasets and models,423

while improving efficiency by reducing token gen-424

eration by 19.37% on average.425

It is noteworthy that these findings contrast with426

ICoT-SI, demonstrating that performance can be427

improved while reducing the number of generated428

tokens. This suggests that existing reasoning data429

contains unnecessary reasoning sentences that may430

harm performance. Furthermore, effective reason-431

ing can be achieved by selectively removing sen-432

tences based on appropriate criteria.433

However, the baselines exhibit performance434

degradation compared to Explicit-CoT. For ICoT-435

SI, we observe an average performance decline of436

21.98%, while Coconut shows a degradation of437

25.20%, demonstrating their imbalanced trade-off438

in efficiency. These results suggest that heuristic439

reasoning reduction approaches do not effectively440

induce implicit reasoning within the model as dis-441

cussed by ICoT-SI and Coconut. This indicates442

that identifying and retaining appropriate reason-443

ing units through principled criteria is crucial for444

maintaining performance in practical applications.445

A more detailed discussion of the impact of the446

choice of reduction unit and criterion is provided447

in Section 5.5.1.448

Furthermore, qualitative analysis (refer to Ap-449

pendix G) confirms that ICoT-SI and Coconut fail450

to generate valid reasoning paths for answer genera-451

tion, while VARR+ produces concise, yet effective452

reasoning paths that lead to correct answers. Ad-453

ditionally, the incorporation of incorrect answers454

in VARR+ resulted in performance improvements455

across most datasets. While VARR alone enhanced456

generation efficiency, VARR+ effectively preserves457

rationales that help calibrate the probability dis-458

tribution between correct and incorrect answers,459

contributing to improved training robustness and460

stability.461

5.5 Ablation Studies462

In this section, we conduct ablation studies to em-463

pirically validate our method. All experiments are464

implemented using Mistral 7B due to its higher465

base capacity compared to other models. 466

5.5.1 Identifying Appropriate Units for 467

Removal 468

MQA G8K CQA TQA SQA

Exp-CoT
55.84 55.26 84.33 82.94 74.70

(105.02) (122.54) (42.84) (63.46) (46.47)

ICoT-SI
35.84 28.27 67.82 77.09 61.33

(113.55) (104.41) (6.0) (22.03) (22.86)

VARR-Tok
46.79 47.53 82.60 67.14 71.22

(90.39) (94.16) (25.07) (38.10) (31.92)

VARR-Sent
56.95 54.98 89.56 83.45 78.19

(91.04) (100.38) (33.55) (39.17) (35.12)

Table 1: Analysis across various reasoning reduction
units and the application of principled criteria. Each
row presents accuracy in the first line, with average
generated tokens shown in parentheses in the second
line.

In this section, we empirically investigate the 469

necessity of our criteria and demonstrate why sen- 470

tences are more effective than tokens as reasoning 471

reduction units. While ICoT-SI removes tokens 472

without specific criteria, we first apply VARR+ 473

at the token level (denoted as VARR-Tok) to as- 474

sess whether tokens can serve as effective reduc- 475

tion units when combined with our criteria. As 476

shown in Table 1, VARR+ applied at the token level 477

achieves an average performance gain of 24.74% 478

compared to ICoT-SI, demonstrating that our prin- 479

cipled criteria contribute to robust performance. 480

Furthermore, expanding the reduction units from 481

tokens to sentences (denoted as VARR-Sent) yields 482

an additional performance gain of 15.98% over 483

VARR-Tok. These findings highlight that sentences 484

provide natural and effective boundaries for the re- 485

duction process. 486

5.5.2 Analyzing the Impact of Sentence 487

Position on Removal Efficacy 488

In Section 3, we demonstrated that gradually re- 489

moving sentences from random and back positions 490

can degrade model performance. To further explore 491

this finding and assess the robustness of removing 492

sentences from the front position, we conducted ex- 493

periments with unguided random sentence removal 494

(denoted as No Rule) and applied VARR+ with ran- 495

dom position and reverse sentence order (denoted 496

as Random and Back, respectively). As shown 497

in Table 2, unguided random sentence removal re- 498

sulted in a 25.30% decrease in performance rela- 499

tive to our method, highlighting the critical role of 500

the verbosity evaluation even after selecting sen- 501
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MQA G8K CQA TQA SQA

Exp-CoT
55.84 55.26 84.33 82.94 74.70

(105.02) (122.54) (42.84) (63.46) (46.47)

No Rule
35.06 25.85 74.78 74.14 72.38

(59.92) (63.56) (23.56) (6.84) (23.38)

Random
55.34 52.31 83.47 79.62 73.83

(99.13) (115.59) (49.19) (44.98) (50.51)

Back
49.71 48.52 85.21 70.0 74.41

(92.64) (103.25) (19.86) (36.22) (18.17)

Front
56.95 54.98 89.56 83.45 78.19

(91.04) (100.38) (33.55) (39.17) (35.12)

Table 2: Performance across 5 different reasoning
tasks, evaluated with different sentence position re-
moval. Each row presents accuracy in the first line,
with average generated tokens shown in parentheses in
the second line.

tences as units of reduction. Furthermore, Random502

and Back strategies exhibited an average 7.50%503

performance degradation relative to our method.504

These results further support our observation that505

earlier sentences in the reasoning path tend to con-506

tain more redundancy, and their prioritized removal507

effectively balances rationale reduction while main-508

taining reasoning performance.509

5.5.3 Varying the Warm-up Ratio510

Figure 4: Accuracy (barplot) and the average generated
token (marker) across various warm-up stages on Trivi-
aQA and CommomsenseQA.

We evaluated our method against various warm-511

up stages on the TriviaQA and CommonsenseQA512

datasets. As the duration of the warm-up stages513

increases, the model becomes more fitted to the514

non-reduction dataset, which inhibits VARR’s abil-515

ity to eliminate redundant sentences from the rea-516

soning path. Consequently, as illustrated in Figure517

4, longer warm-up periods result in an increase518

in generated tokens and a decrease in accuracy.519

These results suggest that 0.1 training steps pro-520

vide sufficient time to inject reasoning abilities521

while enabling the systematic reduction of redun-522

dant reasoning sentences during the learning pro- 523

cess. Therefore, we set 0.1 as the default setting 524

for the warm-up steps. 525

5.5.4 Removal Ratio Analysis 526

Figure 5: Removal ratio of redundant sentences during
training. The y-axis shows the removal ratio, calculated
as the number of removed sentences divided by the max-
imum potential removal sentences (size({ri})/r(t)).
The x-axis represents training epochs.

In Figure 5, we analyze the actual amount of 527

rationale sentences removed during training. We 528

examine it by calculating the removal ratio, the 529

proportion of actual removed sentences to the max- 530

imum potential removal sentences r(t). Our anal- 531

ysis indicates that not all sentences designated for 532

maximum removal range are always eliminated 533

during the training process. Notably, a significant 534

proportion of redundant sentences are removed in 535

the early stages of training, with fewer sentences 536

being removed as the model progresses through 537

the middle to later stages, thereby stabilizing its 538

training. A similar trend is observed across other 539

datasets, as detailed in Appendix F. 540

6 Conclusion 541

In this work, we propose the sentence-level ra- 542

tionale reduction framework VARR and empiri- 543

cally demonstrate that models trained with non- 544

redundant rationales achieve enhanced efficiency. 545

We address the lack of principled criteria for iden- 546

tifying redundant sentences during training by de- 547

veloping a reduction framework that not only pre- 548

serves the model’s reasoning capabilities but also 549

reduces the likelihood of generating incorrect an- 550

swers. Our experiments show that VARR can effi- 551

ciently handle a diverse range of tasks with fewer 552

generated tokens, without sacrificing its accuracy. 553

This work contributes novel insights to rationale 554

reduction research, contributing to the efficient rea- 555

soning elicitation in language models. 556
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Limitations557

While our work provides novel insights into ra-558

tionale reduction research, our experiments were559

primarily conducted using a relatively small large560

language model and limited batch size, constrained561

by computational costs (i.e., a single A100-80GB562

GPU). Additionally, for the same reasons, it was563

not feasible to test the model with datasets featur-564

ing long sequences in both queries and rationales565

(Reddy et al., 2024; Yu et al., 2024a). Nevertheless,566

given the systematic design principles underlying567

the VARR/VARR+ frameworks, we believe their ef-568

fectiveness would extend to larger-scale implemen-569

tations. Furthermore, we reserve the application570

of VARR/VARR+ in iterative reasoning path gen-571

eration and refinement/reflexion-based evaluation572

discussed in Section 2.1 for future work.573

Ethical Considerations574

Our work explores how LLMs can maintain their575

reasoning performance while improving efficiency.576

To this end, we conducted verbosity-aware ratio-577

nale reduction (i.e., reasoning sentence pruning)-578

based CoT fine-tuning, requiring computational579

resources comparable to standard CoT fine-tuning.580

Additionally, we used only open-source LLMs and581

publicly available reasoning datasets with minimal582

preprocessing using gpt4o-mini’s (OpenAI, 2024)583

API. Therefore, we do not anticipate significant eth-584

ical issues arising from our work. On the contrary,585

we believe future works could leverage our analysis586

to reduce computational overhead in CoT inference587

settings.588

References589

LlamaTeam AI@Meta. 2024. The llama 3 herd of mod-590
els. Preprint, arXiv:2407.21783.591

Aida Amini, Saadia Gabriel, Shanchuan Lin, Rik592
Koncel-Kedziorski, Yejin Choi, and Hannaneh Ha-593
jishirzi. 2019a. Mathqa: Towards interpretable594
math word problem solving with operation-based595
formalisms. In Proceedings of the 2019 Conference596
of the North American Chapter of the Association for597
Computational Linguistics: Human Language Tech-598
nologies, Volume 1 (Long and Short Papers), pages599
2357–2367.600

Aida Amini, Saadia Gabriel, Shanchuan Lin, Rik601
Koncel-Kedziorski, Yejin Choi, and Hannaneh Ha-602
jishirzi. 2019b. MathQA: Towards interpretable603
math word problem solving with operation-based604
formalisms. In Proceedings of the 2019 Conference605
of the North American Chapter of the Association for606

Computational Linguistics: Human Language Tech- 607
nologies, Volume 1 (Long and Short Papers), pages 608
2357–2367, Minneapolis, Minnesota. Association for 609
Computational Linguistics. 610

Mohammad Gheshlaghi Azar, Zhaohan Daniel Guo, Bi- 611
lal Piot, Remi Munos, Mark Rowland, Michal Valko, 612
and Daniele Calandriello. 2024. A general theoret- 613
ical paradigm to understand learning from human 614
preferences. In International Conference on Arti- 615
ficial Intelligence and Statistics, pages 4447–4455. 616
PMLR. 617

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, 618
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias 619
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro 620
Nakano, Christopher Hesse, and John Schulman. 621
2021a. Training verifiers to solve math word prob- 622
lems. Preprint, arXiv:2110.14168. 623

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, 624
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias 625
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro 626
Nakano, Christopher Hesse, and John Schulman. 627
2021b. Training verifiers to solve math word prob- 628
lems. arXiv preprint arXiv:2110.14168. 629

Yihe Deng, Weitong Zhang, Zixiang Chen, and Quan- 630
quan Gu. 2024a. Rephrase and respond: Let large 631
language models ask better questions for themselves. 632
Preprint, arXiv:2311.04205. 633

Yuntian Deng, Yejin Choi, and Stuart Shieber. 2024b. 634
From explicit cot to implicit cot: Learning to inter- 635
nalize cot step by step. Preprint, arXiv:2405.14838. 636

Yuntian Deng, Kiran Prasad, Roland Fernandez, Paul 637
Smolensky, Vishrav Chaudhary, and Stuart Shieber. 638
2023. Implicit chain of thought reasoning via knowl- 639
edge distillation. Preprint, arXiv:2311.01460. 640

Qingxiu Dong, Jingjing Xu, Lingpeng Kong, Zhifang 641
Sui, and Lei Li. 2023. Statistical knowledge assess- 642
ment for large language models. In Thirty-seventh 643
Conference on Neural Information Processing Sys- 644
tems. 645

Mor Geva, Daniel Khashabi, Elad Segal, Tushar Khot, 646
Dan Roth, and Jonathan Berant. 2021. Did aristotle 647
use a laptop? a question answering benchmark with 648
implicit reasoning strategies. Transactions of the 649
Association for Computational Linguistics, 9:346– 650
361. 651

Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li, 652
Zhiting Hu, Jason Weston, and Yuandong Tian. 2024. 653
Training large language models to reason in a contin- 654
uous latent space. arXiv preprint arXiv:2412.06769. 655

Jiwoo Hong, Noah Lee, and James Thorne. 2024. Orpo: 656
Monolithic preference optimization without refer- 657
ence model. In Proceedings of the 2024 Conference 658
on Empirical Methods in Natural Language Process- 659
ing, pages 11170–11189. 660

9

https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://doi.org/10.18653/v1/N19-1245
https://doi.org/10.18653/v1/N19-1245
https://doi.org/10.18653/v1/N19-1245
https://doi.org/10.18653/v1/N19-1245
https://doi.org/10.18653/v1/N19-1245
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2311.04205
https://arxiv.org/abs/2311.04205
https://arxiv.org/abs/2311.04205
https://arxiv.org/abs/2405.14838
https://arxiv.org/abs/2405.14838
https://arxiv.org/abs/2405.14838
https://arxiv.org/abs/2311.01460
https://arxiv.org/abs/2311.01460
https://arxiv.org/abs/2311.01460
https://openreview.net/forum?id=pNtG6NAmx0
https://openreview.net/forum?id=pNtG6NAmx0
https://openreview.net/forum?id=pNtG6NAmx0


Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-661
sch, Chris Bamford, Devendra Singh Chaplot, Diego662
de las Casas, Florian Bressand, Gianna Lengyel, Guil-663
laume Lample, Lucile Saulnier, Lélio Renard Lavaud,664
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,665
Thibaut Lavril, Thomas Wang, Timothée Lacroix,666
and William El Sayed. 2023. Mistral 7b. Preprint,667
arXiv:2310.06825.668

Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke669
Zettlemoyer. 2017. Triviaqa: A large scale distantly670
supervised challenge dataset for reading comprehen-671
sion. In Proceedings of the 55th Annual Meeting of672
the Association for Computational Linguistics (Vol-673
ume 1: Long Papers), pages 1601–1611.674

Seungone Kim, Se June Joo, Doyoung Kim, Joel Jang,675
Seonghyeon Ye, Jamin Shin, and Minjoon Seo. 2023.676
The cot collection: Improving zero-shot and few-shot677
learning of language models via chain-of-thought678
fine-tuning. In The 2023 Conference on Empirical679
Methods in Natural Language Processing.680

Aviral Kumar, Vincent Zhuang, Rishabh Agarwal, Yi Su,681
John D Co-Reyes, Avi Singh, Kate Baumli, Shariq682
Iqbal, Colton Bishop, Rebecca Roelofs, Lei M Zhang,683
Kay McKinney, Disha Shrivastava, Cosmin Paduraru,684
George Tucker, Doina Precup, Feryal Behbahani, and685
Aleksandra Faust. 2024. Training language models686
to self-correct via reinforcement learning. Preprint,687
arXiv:2409.12917.688

Tengxiao Liu, Qipeng Guo, Xiangkun Hu, Cheng Ji-689
ayang, Yue Zhang, Xipeng Qiu, and Zheng Zhang.690
2024. Can language models learn to skip steps? In691
The Thirty-eighth Annual Conference on Neural In-692
formation Processing Systems.693

Ilya Loshchilov and Frank Hutter. 2019. Decoupled694
weight decay regularization. In International Confer-695
ence on Learning Representations.696

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler697
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,698
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,699
et al. 2024. Self-refine: Iterative refinement with700
self-feedback. Advances in Neural Information Pro-701
cessing Systems, 36.702

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari,703
Henryk Michalewski, Jacob Austin, David Bieber,704
David Dohan, Aitor Lewkowycz, Maarten Bosma,705
David Luan, et al. 2021. Show your work: Scratch-706
pads for intermediate computation with language707
models. arXiv preprint arXiv:2112.00114.708

OpenAI. 2024. Gpt-4o mini: advancing cost-efficient709
intelligence.710

Santosh Kumar Radha, Yasamin Nouri Jelyani, Ara711
Ghukasyan, and Oktay Goktas. 2024. Iteration712
of thought: Leveraging inner dialogue for au-713
tonomous large language model reasoning. Preprint,714
arXiv:2409.12618.715

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo- 716
pher D Manning, Stefano Ermon, and Chelsea Finn. 717
2024. Direct preference optimization: Your language 718
model is secretly a reward model. Advances in Neu- 719
ral Information Processing Systems, 36. 720

Varshini Reddy, Rik Koncel-Kedziorski, Viet Dac Lai, 721
Michael Krumdick, Charles Lovering, and Chris Tan- 722
ner. 2024. Docfinqa: A long-context financial rea- 723
soning dataset. arXiv preprint arXiv:2401.06915. 724

Noah Shinn, Federico Cassano, Ashwin Gopinath, 725
Karthik Narasimhan, and Shunyu Yao. 2024. Re- 726
flexion: Language agents with verbal reinforcement 727
learning. Advances in Neural Information Process- 728
ing Systems, 36. 729

Damien Sileo. 2024. tasksource: A large collection 730
of NLP tasks with a structured dataset preprocess- 731
ing framework. In Proceedings of the 2024 Joint 732
International Conference on Computational Linguis- 733
tics, Language Resources and Evaluation (LREC- 734
COLING 2024), pages 15655–15684, Torino, Italia. 735
ELRA and ICCL. 736

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and 737
Jonathan Berant. 2019. Commonsenseqa: A question 738
answering challenge targeting commonsense knowl- 739
edge. In Proceedings of the 2019 Conference of the 740
North, page 4149. Association for Computational 741
Linguistics. 742

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, 743
Ed H. Chi, Sharan Narang, Aakanksha Chowdhery, 744
and Denny Zhou. 2023. Self-consistency improves 745
chain of thought reasoning in language models. In 746
The Eleventh International Conference on Learning 747
Representations. 748

Yu Wang, Shiwan Zhao, Zhihu Wang, Heyuan Huang, 749
Ming Fan, Yubo Zhang, Zhixing Wang, Haijun Wang, 750
and Ting Liu. 2024. Strategic chain-of-thought: 751
Guiding accurate reasoning in llms through strategy 752
elicitation. Preprint, arXiv:2409.03271. 753

Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen 754
Ding, Boyang Hong, Ming Zhang, Junzhe Wang, 755
Senjie Jin, Enyu Zhou, Rui Zheng, Xiaoran Fan, 756
Xiao Wang, Limao Xiong, Yuhao Zhou, Weiran 757
Wang, Changhao Jiang, Yicheng Zou, Xiangyang 758
Liu, Zhangyue Yin, Shihan Dou, Rongxiang Weng, 759
Wensen Cheng, Qi Zhang, Wenjuan Qin, Yongyan 760
Zheng, Xipeng Qiu, Xuanjing Huang, and Tao Gui. 761
2023. The rise and potential of large language model 762
based agents: A survey. Preprint, arXiv:2309.07864. 763

Ling Yang, Zhaochen Yu, Tianjun Zhang, Shiyi Cao, 764
Minkai Xu, Wentao Zhang, Joseph E. Gonzalez, 765
and Bin CUI. 2024. Buffer of thoughts: Thought- 766
augmented reasoning with large language models. 767
In The Thirty-eighth Annual Conference on Neural 768
Information Processing Systems. 769

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, 770
Thomas L. Griffiths, Yuan Cao, and Karthik R 771
Narasimhan. 2023. Tree of thoughts: Deliberate 772

10

https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2409.12917
https://arxiv.org/abs/2409.12917
https://arxiv.org/abs/2409.12917
https://openreview.net/forum?id=w4AnTVxAO9
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://arxiv.org/abs/2409.12618
https://arxiv.org/abs/2409.12618
https://arxiv.org/abs/2409.12618
https://arxiv.org/abs/2409.12618
https://arxiv.org/abs/2409.12618
https://aclanthology.org/2024.lrec-main.1361
https://aclanthology.org/2024.lrec-main.1361
https://aclanthology.org/2024.lrec-main.1361
https://aclanthology.org/2024.lrec-main.1361
https://aclanthology.org/2024.lrec-main.1361
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://arxiv.org/abs/2409.03271
https://arxiv.org/abs/2409.03271
https://arxiv.org/abs/2409.03271
https://arxiv.org/abs/2409.03271
https://arxiv.org/abs/2409.03271
https://arxiv.org/abs/2309.07864
https://arxiv.org/abs/2309.07864
https://arxiv.org/abs/2309.07864
https://openreview.net/forum?id=ANO1i9JPtb
https://openreview.net/forum?id=ANO1i9JPtb
https://openreview.net/forum?id=ANO1i9JPtb
https://openreview.net/forum?id=5Xc1ecxO1h
https://openreview.net/forum?id=5Xc1ecxO1h


problem solving with large language models. In773
Thirty-seventh Conference on Neural Information774
Processing Systems.775

Zhangyue Yin, Qiushi Sun, Qipeng Guo, Zhiyuan Zeng,776
Xiaonan Li, Junqi Dai, Qinyuan Cheng, Xuan-Jing777
Huang, and Xipeng Qiu. 2024. Reasoning in flux:778
Enhancing large language models reasoning through779
uncertainty-aware adaptive guidance. In Proceedings780
of the 62nd Annual Meeting of the Association for781
Computational Linguistics (Volume 1: Long Papers),782
pages 2401–2416.783

Longhui Yu, Weisen Jiang, Han Shi, Jincheng YU,784
Zhengying Liu, Yu Zhang, James Kwok, Zhenguo Li,785
Adrian Weller, and Weiyang Liu. 2024a. Metamath:786
Bootstrap your own mathematical questions for large787
language models. In The Twelfth International Con-788
ference on Learning Representations.789

Ping Yu, Jing Xu, Jason Weston, and Ilia Kulikov. 2024b.790
Distilling system 2 into system 1. arXiv preprint791
arXiv:2407.06023.792

A Additional Datasets Analysis793

Figure 6: NLL differences across varying sizes of {ri}.
The ‘original’ represents the NLL for the full rationale,
while ‘front’, ‘random’, and ‘back’ indicate that ri are
sampled from the front, random, and back indices of the
full index set, respectively.

As shown in Section 3, the NLL tends to rise794

with increasing size of {ri} in random and back795

configurations, compared to the front configuration,796

as illustrated in Figure 6, this trend is consistent797

across both the GSM8K and StrategyQA datasets.798

B VARR Implementation799

The detailed implementation of VARR+ is outlined800

in Algorithm 1. After the warm-up stages, each801

datum in the current batch is evaluated using the 802

verbosity equation—specifically, using only Equa- 803

tion 5 in VARR and both Equations 5 and 9 in 804

VARR+. As mentioned in Section 3 and 4, the 805

process assesses the redundancy of each sentence 806

in data starting from the first index during every 807

single epoch. Therefore, all data can potentially 808

shorten the length of the rationale progressively. 809

Algorithm 1 Training Procedure of VARR+
1: D: Training dataset
2: B: Training batch
3: E: Total training epochs
4: S: Total training steps per epoch
5: T = E × S: Total training steps
6: Twarmup = 0.1× T : Warm-up steps
7: RB : A buffer to store removed sentences
8: r(t): Maximum number of removable sentences at t
9: Nt: Number of rationale sentences at t

10: θ: Trained model parameters
11: for epoch = 1 to E do
12: for step = 1 to S do
13: Sample training batch B from D
14: t = (epoch− 1)× S + step
15: if t ≤ Twarmup then
16: pass
17: end if
18: for each d ∈ B do
19: RB ← {}
20: for i = 1 to Nt do
21: if ri satisfies Equations 5 and 9 then
22: remove ri from d
23: Add ri to RB

24: if |RB | ≥ r(t) then
25: break
26: end if
27: end if
28: end for
29: end for
30: Forward pass
31: Backward pass and update θ
32: end for
33: Reinitialize optimizer
34: end for

C Additional Experimental Details 810

For all experiments, we employ the AdamW opti- 811

mizer (Loshchilov and Hutter, 2019), configured 812

with a weight decay of 0.005. For the Mistral 7B 813

model, we utilize an effective batch size of 12 with 814

gradient accumulation set to 3, while the smaller 815

Llama3.2 models use an effective batch size of 816

15. For Coconut (Hao et al., 2024), we set the 817

max_latent_stage to 5 while maintaining all other 818

hyperparameters as their default repository values 819

unless otherwise mentioned. A constant learning 820

rate of 5 × 10−6 is applied across all datasets, 821

with bfloat16 precision. For Multiple-Choice and 822

True/False tasks, complete sets of non-correct la- 823
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bels are employed to configure in-batch negatives824

to enhance the stability of the verbosity evalua-825

tion. To ensure a fair comparison, all baselines826

and methods are trained on a single A100 GPU827

with 80GB of memory for up to 5 epochs or 36828

hours, whichever is reached first and experimented829

with single run evaluation (note that our setting is830

different from prompting/inference only setting).831

Regarding licensing, Mistral 7B is licensed under832

Apache License, Version 2.0, while Llama3.2 is833

governed by the Llama 3.2 Community License.834

D Details and Statistics of Datasets835

For our experimental analysis, we carefully se-836

lected a diverse set of five datasets used in prior837

works (Deng et al., 2023, 2024a; Liu et al., 2024;838

Yu et al., 2024b; Yin et al., 2024). To ensure ex-839

plicit sentence boundaries, all datasets were prepro-840

cessed using gpt-4o-mini (OpenAI, 2024) to es-841

tablish clear sentence demarcation (e.g., ‘He bikes842

20*2=«20*2=40»40 miles each day for work So843

he bikes 40*5=«40*5=200»200 miles for work’ be-844

comes ‘He bikes 202=«202=40»40 miles each day845

for work. So he bikes 405=«405=200»200 miles846

for work’). Table 3 comprehensively outlines each847

dataset, including its source and the size of the848

training, validation, and test samples.849

E Reinitializing the Optimizer850

We reinitialized the optimizer after each training851

epoch to stabilize training, inspired by Deng et al.852

(2024b). Our implementation uses the AdamW op-853

timizer (Loshchilov and Hutter, 2019), where the854

first and second moments are gradually updated855

based on current gradients. Consequently, when856

VARR reduces rationales for certain data points857

between epochs, the training process could become858

unstable. As shown in table 4, the average 19.32%859

performance improvement achieved through opti-860

mizer reinitialization extends the findings of Deng861

et al. (2024b) beyond simple tasks (e.g., multiplica-862

tion; synthesized dataset) to demonstrate effective-863

ness across diverse datasets with complex semantic864

and syntactic reasoning structures.865

F Removal Ratio Analysis on additional866

datasets.867

In the GSM8K, StrategyQA, and MathQA datasets,868

similar trends are observed as in Section 5.5.4. Ad-869

ditionally, we observe that our method reduces870

Figure 7: Additional analysis of the Removal ratio on
other datasets. The Removal ratio, indicated on the y-
axis, is calculated by dividing the number of sentences
actually removed by the maximum potential removal
ratio (i.e., size({ri})/r(t)). The x-axis represents the
index of the epochs.

fewer sentences in later training stages, demon- 871

strating that verbosity preserves essential reasoning 872

sentences even when larger r(t) encourages sub- 873

stantial reduction. Notably, in StrategyQA, the 874

Removal ratio converges more rapidly than in other 875

datasets. This is attributed to the dataset’s charac- 876

teristics, where the sentences within the rationale 877

predominantly list simple information rather than 878

forming complex, interrelated structures. Conse- 879

quently, redundant sentences are rapidly removed, 880

leading to a rapid decrease in further removal ac- 881

tivities. 882

G Qualitative Analysis 883

Table 5 illustrates the generation outputs for each 884

method on the GSM8K test set. While Explicit- 885

CoT generates a complete reasoning path, its redun- 886

dant generation of ‘needs a 3 piece place setting’ in- 887

troduces hallucinations into the reasoning process, 888

ultimately leading to an incorrect answer. ICoT- 889

SI’s token-level elimination of reasoning paths, on 890

the other hand, results in generations that lack suf- 891

ficient reasoning capacity. Additionally, Coconut’s 892

predefined hidden-states fail to compress the com- 893

plete reasoning path in its token-level compression 894

approach. In contrast, VARR+ demonstrates effi- 895

cient generation by concisely producing ‘$15.00’ 896

in a single sentence, achieving both effectiveness 897

and efficiency in its output. Additional qualitative 898

examples on the MathQA dataset are outlined in 899

Table 6. 900
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Dataset Reasoning Task Source Answer Format # TRAIN. # VALID. # TEST.
GSM8K (Cobbe et al., 2021a) Arithmetic Cobbe et al. (2021b) Number 7000 473 1319
MathQA (Amini et al., 2019a) Arithmetic Amini et al. (2019b) Multi-choice 29837 4475 2985
TriviaQA (Joshi et al., 2017) Commonsense Kim et al. (2023) Natural Language 8844 552 1659
CommonsenseQA (Talmor et al., 2019) Multi-choice Kim et al. (2023) Multi-choice 609 38 115
StrategyQA (Geva et al., 2021) Commonsense Sileo (2024) T/F 1832 114 344

Table 3: Comprehensive statistics of the datasets used in our experiments are provided. GSM8K and MathQA are
sourced directly from their original datasets, while the remaining datasets were obtained from Kim et al. (2023) and
Sileo (2024) to access complete reasoning paths. GSM8K, StrategyQA, and CommonsenseQA are licensed under
the MIT License, whereas MathQA and TriviaQA are distributed under the Apache License, Version 2.0.

MQA G8K CQA TQA SQA

w/o reinit
48.70 45.18 87.82 83.72 76.74

(92.86) (115.91) (32.95) (38.27) (33.89)

w/ reinit
56.95 54.98 89.56 83.45 78.19

(91.04) (100.38) (33.55) (39.17) (35.12)

Table 4: Performance comparison before and after the
reinitializing optimizer in every training epoch. Each
row presents accuracy in the first line, with average
generated tokens shown in parentheses in the second
line.
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Question
Avery needs to buy a 3 piece place setting (dinner & salad plate and a bowl) for her holiday dinner. She’s
having 12 people over for dinner. If the dinner plates cost $6.00 each and bowls each cost $5.00 and the
salad plates cost $4.00, how much will she spend on place settings?
Explicit-CoT
She’s having 12 people over and needs a 3 piece place setting for each so she needs 12*3 = 36 place
settings.
The dinner plates cost $6.00 each and she needs 36 of them so that comes to 6*36 = $216.00.
The bowl costs $5.00 each and she needs 36 of them so that comes to 5*36 = $180.00.
The salad plates cost $4.00 each and she needs 36 of them so that comes to 4*36 = $144.00.
All total, the place settings will cost $216 for dinner plates, $180 for bowls and $144 for salad plates for a
total of 216+180+144 = $540.00
#### 540
ICoT-SI
each so 12*6 = $72.00 She’s buying 3 pieces of place settings (dinner plates, salad plates and bowls) for
$72.00 each so 3*72 = $216.00
#### 216
Coconut
<|start-latent|><|latent|><|latent|><|latent|><|end-latent|>
#### 4.00
VARR+
She needs 12 place settings and each setting costs $15.00 so she will spend 12*15 = $180.00
#### 180
Ground Truth Answer
#### 180

Table 5: Qualitative Example: Generation outputs on GSM8K test set.
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Question
The cost price of 20 articles is the same as the selling price of x articles. if the profit is 25%, find out the
value of x.
a) 13, b) 14, c) 15, d) 16, e) 17
Explicit-CoT
explanation : let the cost price 1 article = rs . 1
cost price of x articles = rs . x
selling price of x articles = 125% of x = rs . ( 125 / 100 x ) = rs . ( 25 / 20 x ) = rs . 5 / 4 x
= > x = 20
cost price of 20 articles = rs . 20 selling price of 20 articles = rs . ( 25 / 4 × 20 ) = rs . ( 25 / 4 × 20 ) / 20
= rs . 1
= > x = 20 answer : option a
#### a
ICoT-SI
of x articles = x
s.p of x articles = rs . 20
gain = rs . ( 20 - x )
gain % = 25 % of x = rs . ( 20 - x ) / x × 100 = 25
= > 20 - x = 5 x = > 4 x = 20 - x = > 5 x = 20 - x = > 20 = 5 x = > 200 = 5 x2 = > 400 = 5 x2 = > 400 / 5
= x2 = > x2 = 80 = > x = 10 or 10 . c
#### c
Coconut
<|start-latent|><|latent|><|latent|><|latent|><|end-latent|>
#### c
VARR+
explanation : let the cost price of x articles = x
s.p of x articles = 20
20 = 1.25 x = > x = 16 option d.
#### d
Ground Truth Answer
#### d

Table 6: Qualitative Example: Generation outputs on MathQA test set.
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