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Abstract

We study privacy in a distributed learning framework, where clients collaboratively
build a learning model iteratively through interactions with a server from whom
we need privacy. Motivated by stochastic optimization and the federated learning
(FL) paradigm, we focus on the case where a small fraction of data samples
are randomly sub-sampled in each round to participate in the learning process,
which also enables privacy amplification. To obtain even stronger local privacy
guarantees, we study this in the shuffle privacy model, where each client randomizes
its response using a local differentially private (LDP) mechanism and the server
only receives a random permutation (shuffle) of the clients’ responses without
their association to each client. The principal result of this paper is a privacy-
optimization performance trade-off for discrete randomization mechanisms in this
sub-sampled shuffle privacy model. This is enabled through a new theoretical
technique to analyze the Rényi Differential Privacy (RDP) of the sub-sampled
shuffle model. We numerically demonstrate that, for important regimes, with
composition our bound yields significant improvement in privacy guarantee over
the state-of-the-art approximate Differential Privacy (DP) guarantee (with strong
composition) for sub-sampled shuffled models. We also demonstrate numerically
significant improvement in privacy-learning performance operating point using real
data sets. Despite these advances an open question is to bridge the gap between
lower and upper privacy bounds in our RDP analysis.

1 Introduction

As learning moves towards the edge, there is a need to collaborate to build learning models1, such
as in federated learning [36, 44, 33]. In this framework, the collaboration is typically mediated by
a server. In particular, we want to collaboratively build a learning model by solving an empirical
risk minimization (ERM) problem (see (2) in Section 2). To obtain a model parametrized by ✓ using
ERM, the commonly used mechanism is Stochastic Gradient Descent (SGD) [12]. However, one
needs to solve this while enabling strong privacy guarantees on local data from the server, while also
obtaining good learning performance, i.e., a suitable privacy-learning performance operating point.

Differential privacy (DP) [18] is the gold standard notion of data privacy that gives a rigorous
framework through quantifying the information leakage about individual training data points from
the observed interactions. Though DP was originally proposed in a framework where data resides
centrally [18], for distributed learning the more appropriate notion is of local differential privacy
(LDP) [35, 17]. Here, each client randomizes its interactions with the server from whom the data is to
be kept private (e.g., see industrial implementations [23, 31, 16]). However, LDP mechanisms suffer

1This is because no client has access to enough data to build rich learning models locally and we do not want
to directly share local data.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).



from poor performance in comparison with the central DP mechanisms [17, 35, 32]. To overcome
this, a new privacy framework using anonymization has been proposed in the so-called shuffled model

[22, 25, 6, 26, 5, 15, 7, 8]. In the shuffled model, each client sends her private message to a secure
shuffler that randomly permutes all the received messages before forwarding them to the server.
This model enables significantly better privacy-utility performance by amplifying DP through this
shuffling. Therefore, in this paper we consider the shuffle privacy framework for distributed learning.

In solving (2) using (distributed) gradient descent, each exchange leaks information about the local
data, but we need as many steps as possible to obtain a good model; setting up the tension between
privacy and performance. The goal is to obtain as many such interactions as possible for a given
privacy budget. This is quantified through analyzing the privacy of the composition of privacy
mechanisms. Abadi et al. [1] developed a framework for tighter analysis of such compositions, and
this was later reformulated in terms of Rényi Differential Privacy (RDP) [37], and mapping this back
to DP guarantee [38]. Therefore, studying RDP is important to obtaining strong composition privacy
results, and is the focus of this paper.
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Figure 1: An iteration from the CLDP-
SGD Algorithm, where 3 clients are ran-
domly chosen at each iteration. Each client
sends the private gradient Rp (gt(di)) to
the shuffler that randomly permutes the
gradients before passing them to the server.

In distributed (and federated) learning, a fraction of
the data samples are sampled; for example, with ran-
dom client participation and stochastic gradient descent
(SGD), which can be written as

✓t+1  ✓t � ⌘t
1

|I|
X

i2I
R(rfi(✓t)),

where R is the local randomization mechanism and I
are the indices of the sampled data. This is a subsampled
mechanism that enables another privacy amplification
opportunity; which, in several cases, is shown to yield a
privacy advantage proportional to the subsampling rate;
see [35, 42]. The central technical question addressed
in this paper is how to analyze the RDP of an arbitrary
discrete mechanism for the subsampled shuffle privacy
model. This enables us to answer the overall question
posed in this paper, which is an achievable privacy-learning performance trade-off point for solving
(2) in the shuffled privacy model for distributed learning (see Figure 1). Our contributions are:

• We analyze the RDP of subsampled mechanisms in the shuffle framework by developing a novel
bound applicable to any discrete ✏0-LDP mechanism as a function of the RDP order �, subsampling
rate �, the LDP parameter ✏0, and the number of clients n; see Theorem 1. The bound is explicit
and amenable to numerics, including all constants.2 Furthermore, the bounds are valid for generic
LDP mechanisms and all parameter regimes.3 We also provide a lower bound for the RDP in
Theorem 2. We prove our upper bound (Theorem 1) using the following novel analysis techniques:
First, we reduce the problem of computing the RDP of sub-sampled shuffle mechanisms to the
problem of computing ternary |�|↵-DP [43] of shuffle (non sub-sampled) mechanisms; see Lemma 2.
Then we reduce the computation of the ternary |�|↵-DP of shuffle mechanisms for a generic triple
of neighboring datasets to those that have a special structure (see Theorem 5) – this reduction
step is one of the core technical results of this paper. Then we bound the ternary |�|↵-DP of the
shuffle mechanisms for triples of neighboring datasets having special structures by bounding the
Pearson-Vajda divergence [43] using some concentration properties (see Theorem 6).

• Using the core technical result in Theorem 1, we analyze privacy-convergence trade-offs of the
CLDP-SGD algorithm (see Algorithm 1) for Lipschitz convex functions in Theorem 3. This partially
resolves an open question posed in [27], to extend their privacy analysis to RDP and significantly
strengthening their privacy guatantees.

• Numerically, we save a factor 14⇥ in privacy (✏) over the best known results for approximate
DP for shuffling [24] combined with strong composition [34] for T = 105, � = 0.001, n = 106,
and a factor of 2.5⇥ better than the best known RDP for shuffling bound [29] combined with the
sub-sampling result in [43]. Translating these to privacy-performance operating point in distributed

2As emphasized in [43], “in differential privacy, constants matter”.
3Some of the best known approximate DP bounds for the shuffle model [7, 24] are restricted to certain

parameter regimes in terms of n, �, ✏0, etc.
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optimization, over the MNIST data set with `1 clipping we numerically show gains: For the same
privacy budget of ✏ = 1.4, we get a test performance of 80% whereas using strong composition
the test performance of [24] is 70%; furthermore, we achieves 90% accuracy with the total privacy
budget ✏ = 2.91, whereas, [24] (with strong composition) achieves the same accuracy with a total
privacy budget of ✏ = 4.82. See Section 4 and the supplementary material for more results.

Related work: We give a more complete literature review in Appendix A, and focus here on the
works that are closest to the results presented in this paper.

Private optimization in the shuffled model: Recently, [21] and [27, 28] have proposed differentially
private SGD algorithms for federated learning, where at each iteration, each client applies an LDP
mechanism on the gradients with the existence of a secure shuffler between the clients and the central
server. However, the privacy analyses in these works developed approximate DP using advanced
composition theorems for DP (e.g., [20, 34]), which are known to be loose for composition [1]. To
the best of our knowledge, analyzing the private optimization framework using RDP and subsampling
in the shuffled model is new to this paper.

Subsampled RDP: The works [38, 43, 45] have studied the RDP of subsampled mechanisms without

shuffling. They demonstrated that this provides a tighter bound on the total privacy loss than the
bound that can be obtained using the standard strong composition theorems. The RDP analysis of
subsampled mechanisms in the shuffled privacy framework has not been studied before,4 and is new to
this paper. The RDP of the shuffled model was very recently studied in [29], but without incorporating
subsampling, which poses new technical challenges, as directly bounding the RDP of subsampled
shuffle mechanisms is non-trivial. We overcome this by reducing our problem of computing RDP to
bounding the ternary |�|↵-DP, and bounding the latter is a core technical contribution of our paper.

Paper organization: We give preliminaries and problem formulation in Section 2, main results (upper
and lower bounds, and privacy-convergence tradeoff) in Section 3, numerical results in Section 4,
proof of the upper bound in Section 5, and proof of the ternary DP of the shuffle model in Section 6.
Omitted details/proofs from this paper are given in the supplementary material.

2 Preliminaries and Problem Formulation

We use several privacy definitions throughout this paper. Among these, the local and central differen-
tial privacy definitions are standard and we defer them to Appendix B. The other privacy definitions
(Rényi DP and ternary |�|↵-DP) are relatively less standard and we define them below.

We say that two datasets D = {d1, . . . , dn} 2 Xn and D0 = {d01, . . . , d0n} 2 Xn are neighboring
(and denoted by D ⇠ D0) if they differ in one data point, i.e., there exists an i 2 [n] such that di 6= d0i
and for every j 2 [n], j 6= i, we have dj = d0j .

Definition 1 ((�, ✏)-RDP (Rényi Differential Privacy) [37]). A randomized mechanism M : Xn ! Y
is said to have ✏-Rényi differential privacy of order � 2 (1,1) (in short, (�, ✏(�))-RDP), if for any
neighboring datasets D, D0 2 Xn, the Rényi divergence of order � between M(D) and M(D0) is
upper-bounded by ✏(�), i.e.,

D�(M(D)||M(D0)) =
1

�� 1
log

 
E✓⇠M(D0)

"✓
M(D)(✓)

M(D0)(✓)

◆�
#!
 ✏(�), (1)

where M(D)(✓) denotes the probability that M on input D generates the output ✓.

Definition 2 (⇣-Ternary |�|↵-differential privacy [43]). A randomized mechanism M : Xn ! Y is
said to have ⇣-ternary-|�|↵-DP, if for any triple of mutually adjacent datasets D,D0,D00 2 Xn (i.e.,
they mutually differ in the same location), the ternary-|�|↵ divergence of M(D),M(D0),M(D0) is
upper-bounded by (⇣(↵))↵ for all ↵ � 1 (where ⇣ is a function from R+ to R+), i.e.,

D|�|↵ (M(D),M(D0)||M(D00)) := EM(D00)

����
M(D)�M(D0)

M(D00)

����
↵�
 (⇣(↵))↵ .

4One naive approach is to plug in the RDP analysis of shuffle model [29] into the results of [43]; however,
our direct analysis of subsampled mechanisms yields better results in several interesting regimes; see Section 4.
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The ternary |�|↵-DP was proposed in [43] to characterize the RDP of the sub-sampled mechanism
without shuffling. In this work, we analyze the ternary |�|↵-DP of the shuffled mechanism to bound
the RDP of the sub-sampled shuffle model.

We can use the following result for converting the RDP guarantees of a mechanism to its central DP
guarantees. To the best of our knowledge, this result gives the best conversion.
Lemma 1 (From RDP to DP [13, 4]). Suppose for any � > 1, a mechanism M is (�, ✏ (�))-RDP.

Then, the mechanism M is (✏, �)-DP, where � > 0 is arbitrary and ✏ is given by

✏ = min
�

✓
✏ (�) +

log (1/�) + (�� 1) log (1� 1/�)� log (�)

�� 1

◆
.

Problem formulation: We consider a distributed private learning setup comprising a set of n clients,
where the ith client has a data point di drawn from a universe X for i 2 [n]; see also Figure 1. Let
D = (d1, . . . , dn) denote the entire training dataset. The clients are connected to an untrusted server
in order to solve the following empirical risk minimization (ERM) problem

min
✓2C

⇣
F (✓,D) :=

1

n

nX

i=1

f(✓, di)
⌘
, (2)

where C ⇢ Rd is a closed convex set, and f : C ⇥ D ! R is the loss function. Our goal is to
construct a global learning model ✓ via stochastic gradient descent (SGD) while preserving privacy
of individual data points in the training dataset D by providing strong DP guarantees.

Algorithm 1 Acldp: CLDP-SGD
Input: Datasets D = (d1, . . . , dn), LDP privacy parameter ✏0,
gradient norm bound C, and learning rate schedule {⌘t}.

1: Initialize: ✓0 2 C
2: for t 2 [T ] do
3: Client sampling: A random set Ut of k clients is chosen.
4: for clients i 2 Ut do
5: Compute gradient: gt (di) r✓tf (✓t, di)

6: Clip gradient: g̃t (di) gt (di) /max
n
1, kgt(di)kp

C

o

7: Client i sends Rp (g̃t (di)) to the shuffler.
8: end for
9: Shuffling: The shuffler sends random permutation of

{Rp (g̃t (di)) : i 2 Ut} to the server.
10: Aggregate: gt  1

k

P
i2Ut

Rp (g̃t (di))
11: Descent Step: ✓t+1  

Q
C (✓t � ⌘tgt), where

Q
C is the

projection operator onto the set C.
12: end for
Output: The model ✓T and the privacy parameters ✏, �.

We revisit the CLDP-SGD al-
gorithm presented in [27] and
described in Algorithm 1 to
solve the ERM (2). In each
step of CLDP-SGD, we choose
uniformly at random a set Ut

of k  n clients out of n
clients. Each client i 2 Ut

computes and clips the `p-norm
of the gradient r✓tf (✓t, di) to
apply the LDP mechanism Rp,
where Rp : Bd

p ! {0, 1}b
is an ✏0-LDP mechanism when
inputs come from an `p-norm
ball. In [27], the authors pro-
posed different ✏0-LDP mecha-
nisms for general `p-norm balls.
After that, the shuffler randomly
permutes the received k gra-
dients {Rp (g̃t (di))}i2Ut and
sends them to the server. Finally,
the server takes the average of the received gradients and updates the parameter vector. Our main
contribution in this work is to present a stronger privacy analysis of the CLDP-SGD algorithm by
characterizing the RDP of the sub-sampled shuffle model.

3 Main Results

In this section, we present our main results. First, we characterize the RDP of the subsampled shuffle
mechanism by presenting an upper bound in Theorem 1 and a lower bound in Theorem 2. We then
present the privacy-convergence trade-offs of the CLDP-SGD Algorithm in Theorem 3.

Consider an arbitrary ✏0-LDP mechanism R, whose range is a discrete set [B] = {1, . . . , B} for
some B 2 N := {1, 2, 3, . . .}. Here, [B] could be the whole of N. Let M(D) be a subsampled
shuffle mechanism defined as follows: First subsample k  n clients of the n clients (without
replacement), where � = k

n denotes the sampling parameter. Each client i out of the k selected
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clients applies R on di and sends R(di) to the shuffler,5 who randomly permutes the received k
inputs and outputs the result. To formalize this, let Hk : Yk ! Yk denote the shuffling operation
that takes k inputs and outputs their uniformly random permutation. Let sampnk : Xn ! X k denote
the sampling operation for choosing a random subset of k elements from a set of n elements. We
define the subsampled-shuffle mechanism as

M (D) := Hk � sampnk (R (d1) , . . . ,R (dn)) . (3)
Observe that each iteration of Algorithm 1 can be represented as an output of the subsampled shuffle
mechanism M. Thus, to analyze the privacy of Algorithm 1, it is sufficient to analyze the privacy of
a sequence of identical T subsampled shuffle mechanisms, and then apply composition theorems.

Histogram notation. It will be useful to define the following notation. Since the output of Hk is a
random permutation of the k outputs of R (subsampling is not important here), the server cannot
associate the k messages to the clients; and the only information it can use from the messages is the
histogram, i.e., the number of messages that give any particular output in [B]. We define a set Ak

B as

Ak
B =

⇢
h = (h1, . . . , hB) :

BX

j=1

hj = k

�
, (4)

to denote the set of all possible histograms of the output of the shuffler with k inputs. Therefore, we
can assume, without loss of generality (w.l.o.g.), that the output of M is a distribution over Ak

B .

Our main results for the RDP of the subsampled shuffled mechanism (defined in (3)) are given below.
Our first result provides an upper bound (stated in Theorem 1 and proved in Section 5) and the second
result provides a lower bound (stated in Theorem 2 and proved in Appendix D).
Theorem 1 (Upper Bound). For any n 2 N, k  n, ✏0 � 0, and any integer � � 2, the RDP of the

subsampled shuffle mechanism M (defined in (3)) is upper-bounded by

✏(�)  1

�� 1
log

0

@1 + 4

✓
�

2

◆
�2 (e

✏0 � 1)2

ke✏0
+

�X

j=3

✓
�

j

◆
�jj� (j/2)

 
2
�
e2✏0 � 1

�2

ke2✏0

!j/2

+⌥

1

A ,

where k = b k�1
2e✏0 c+ 1, � = k

n , and � (z) =
R1
0 xz�1e�xdx is the Gamma function. The term ⌥ is

given by ⌥ =

✓⇣
1 + � e2✏0�1

e✏0

⌘�
� 1� �� e2✏0�1

e✏0

◆
e�

k�1
8e✏0 .

Theorem 2 (Lower Bound). For any n 2 N, k  n, ✏0 � 0, and any integer � � 2, the RDP of the

subsampled shuffle mechanism M (defined in (3)) is lower-bounded by

✏ (�) � 1

�� 1
log

0

@1 +

✓
�

2

◆
�2 (e

✏0 � 1)2

ke✏0
+

�X

j=3

✓
�

j

◆
�j

 �
e2✏0 � 1

�

ke✏0

!j

E
✓
m� k

e✏0 + 1

◆j
1

A ,

where expectation is taken w.r.t. the binomial r.v. m ⇠ Bin (k, p) with parameter p = 1
e✏0+1 .

Our CLDP-SGD algorithm and its privacy-convergence trade-offs (stated in Theorem 3 below) are
given for a general local randomizer Rp (whose inputs comes from an `p-ball for any p 2 [1,1]) that
satisfies the following conditions: (i) The randomized mechanism Rp is an ✏0-LDP mechanism. (ii)
The randomized mechanism Rp is unbiased, i.e., E [Rp (x) |x] = x for all x 2 Bp(a), where a is the
radius of the ball Bp. (iii) The output of the randomized mechanism Rp can be represented using B 2
N+ bits. (iv) The randomized Rp has a bounded variance: supx2Bp(a) EkRp (x) � xk22  G2

p(a),
where G2

p is a function from R+ to R+.

Girgis et al. [27] proposed unbiased ✏0-LDP mechanisms Rp for several values of norms p 2 [1,1]
that require b = O (log (d)) bits of communication and satisfy the above conditions. In this paper,
achieving communication efficiency is not our goal (though we also achieve that since the ✏0-LDP
mechanism Rp that we use takes values in a discrete set), as our main focus is on analyzing the RDP
of the subsampled shuffle mechanism. If we use the ✏0-LDP mechanism Rp from [27], we would
also get similar gains in communication as were obtained in [27].

The privacy-convergence trade-off of our algorithm Acldp is given below.
5With a slight abuse of notation, in this paper we write R(di) to denote that R takes as its input the gradient

computed on di using the current parameter vector.
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Figure 2: Comparison of several bounds on the Approximate (✏, �)-DP for composition of a sequence of
subsampled shuffle mechanisms for � = 10�8: (i) Approximate DP obtained from our upper bound on the
RDP in Theorem 1 (blue); (ii) Approximate DP obtained from our lower bound on the RDP in Theorem 2
(red); (iii) Approximate DP obtained from the upper bound on the RDP given in [29] with RDP amplification
by subsampling from [43] (black); and (iv) Applying the strong composition theorem [34] after getting the
Approximate DP of the shuffled model given in [24] with subsampling [42] (magenta).

Theorem 3 (Privacy-Convergence tradeoffs). Let the set C be convex with diameter D and the

function f (✓; .) : C ⇥ D ! R be convex and L-Lipschitz continuous with respect to the `g-norm,

which is the dual of the `p-norm. Let ✓⇤ = argmin✓2C F (✓) denote the minimizer of the problem (2).
For � = k

n , if we run Algorithm Acldp over T iterations, then we have

1. Privacy: Acldp is (✏, �)-DP, where � > 0 is arbitrary and ✏ is given by

✏ = min
�

✓
T ✏ (�) +

log (1/�) + (�� 1) log (1� 1/�)� log (�)

�� 1

◆
, (5)

where ✏ (�) is the RDP of the subsampled shuffle mechanism given in Theorem 1.

2. Convergence: If we run Acldp with ⌘t =
D

G
p
t
, where G2 = max{d1�

2
p , 1}L2 +

G2
p(L)

�n , we get

E [F (✓T )]� F (✓⇤)  O
✓
DG log(T )p

T

◆
.

The proof outline of Theorem 3 is as follows: Note that Acldp is an iterative algorithm, where in each
iteration we use the subsampled shuffle mechanism as defined in (3), for which we have computed
the RDP guarantees in Theorem 1. Now, for the privacy analysis of Acldp, we use the adaptive
composition theorem from [37, Proposition 1] and then use the RDP to DP conversion given in
Lemma 1. For the convergence analysis, we use a standard non-private SGD convergence result and
compute the required parameters for that. See Appendix F for a complete proof of Theorem 3.
Remark 1. Note that our convergence bound is affected by the variance of the ✏0-LDP mechanism Rp.
For example, when f is L-Lipschitz continuous w.r.t. the `2-norm, we can use the LDP mechanism R2

proposed in [11] that has variance G2
2(L) = 14L2d

�
e✏0+1
e✏0�1

�2; and when f is L-Lipschitz continuous
w.r.t. the `1-norm or `1-norm, we can use the LDP mechanisms R1 or R1, respectively, proposed
in [27] that have variances G2

1(L) = L2d2
�
e✏0+1
e✏0�1

�2 and G2
1(L) = L2d

�
e✏0+1
e✏0�1

�2, respectively. By
plugging these variances G2

p(L) (for p = 1, 2,1) into Theorem 3, we get the convergence rate of the
L-Lipschitz continuous loss function w.r.t. the `p-norm (for p =1, 2, 1).
Remark 2. The privacy parameter in (5) is not in a closed form expression and could be obtained
by solving an optimization problem. However, we numerically compute it for several interesting
regimes of parameters in our numerical experiments; see Section 4 for more details.

4 Numerical Results

In this section, we present numerical experiments to show the performance of our bounds on RDP
of the subsampled shuffle mechanism and its usage for getting approximate DP of Algorithm 1 for
training machine learning models.

Composition of a sequence of subsampled shuffle models: In Figure 2, we plot several bounds
on the approximate (✏, �)-DP for a composition of T mechanisms (M1, . . . ,MT ), where Mt is
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a subsampled shuffle mechanism for t 2 [T ]. In all our experiments reported in Figure 2, we fix
� = 10�8. We observe that our new bound on the RDP of the subsampled shuffle mechanism achieves
a significant saving in total privacy ✏ compared to the state-of-the-art. For example, we save a factor
of 14⇥ compared to the bound on DP [24] with strong composition theorem [34] and 2.5⇥ compared
to the bound on the RDP given in [29] with subsampled RDP [43] in computing the overall privacy
parameter ✏ for number of iterations T = 105, subsampling parameter � = 0.001, LDP parameter
✏0 = 2, and number of clients n = 106. We observe in Figure 2b that the bound given in [24] with
the strong composition theorem [34] behaves better than the bound on the RDP [29] with subsampled
RDP bound [43] when the number of subsampled clients per iteration is equal to k = �n = 104;
however, our bound beats both of them.6 In Figure 2c, we fix the number of subsampled clients per
iteration to be k = �n = 103, and hence, the subsampling parameter � varies with n.

Distributed private learning: We numerically evaluate the proposed privacy-learning performance
on training machine learning models. We consider the standard MNIST handwritten digit dataset that
has 60, 000 training images and 10, 000 test images. We train a simple neural network that was also
used in [21, 39] and described in Table 1. This model has d = 13, 170 parameters and achieves an
accuracy of 99% for non-private, uncompressed vanilla SGD. We assume that we have n = 60, 000
clients, where each client has one sample. At each step of the Algorithm 1, we choose uniformly at
random 10, 000 clients, where each client clips the `1-norm of the gradient with clipping parameter
C = 1/100 and applies the R1 ✏0-LDP mechanism proposed in [27] with ✏0 = 1.5. We run
Algorithm 1 with � = 10�5 for 200 epochs, with learning rate ⌘ = 0.3 for the first 70 epochs, and
then decrease it to 0.18 in the remaining epochs.

Layer Parameters
Convolution 16 filters of 8⇥ 8, Stride 2
Max-Pooling 2⇥ 2
Convolution 32 filters of 4⇥ 4, Stride 2
Max-Pooling 2⇥ 2

Fully connected 32 units
Softmax 10 units

Table 1: Model architecture for MNIST 0 1 2 3 4 5
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Figure 3: Privacy-Utility trade-offs on the
MNIST dataset with `1-norm clipping.

Figure 3 plots the mean and the standard deviation of privacy-accuracy trade-offs averaged over 10
runs. For our privacy analysis, the total privacy budget is computed by optimizing over RDP order �
using our upper bound given in Theorem 1. For privacy analysis of [24], we first compute the privacy
amplification by shuffling numerically given in [24]; then we compute its privacy obtained when
amplified via subsampling [42]; and finally we use the strong composition theorem [34] to obtain the
central privacy parameter ✏.

We observe that we achieve an accuracy of 80%(±1.8) with a total privacy budget of ✏ = 1.4 using
our new privacy analysis, whereas, [24] achieves an accuracy of only 70.7%(±2.1) with the same
privacy budget of ✏ = 1.4 using the standard composition theorems. Furthermore, we can see that
we achieves accuracy 90%(±0.5) with total privacy budget ✏ = 2.91 using our new privacy analysis,
whereas, [24] (together with the standard strong composition theorem) achieves the same accuracy
with a total privacy budget of ✏ = 4.82.

5 Proof of Theorem 1: Upper Bound

For any dataset Dk = (d1, . . . , dk) 2 X k containing of k data points, we define a shuffle mechanism
Msh(Dk) as follows:

Msh(Dk) = Hk (R (d1) , . . . ,R (dk)) , (6)

6In fact, there are several parameter regimes of great practical interest for which the results of [24] are not
even valid; see Appendix G for more details on this, and also for more numerical comparisons.
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where Hk takes k inputs and outputs a uniformly random permutation of them. Recall from (3), for
any dataset Dn = (d1, . . . , dn) 2 Xn containing n data points, the subsampled-shuffle mechanism
is defined as M (D) := Hk � sampnk (R (d1) , . . . ,R (dn)).

The proof of Theorem 1 consists of two steps. First, we bound the ternary-|�|↵-DP of the shuffle
mechanism Msh (see Theorem 4), which is the main technical contribution in this proof. Then, using
this, we bound the RDP of the subsampled shuffle mechanism M.
Theorem 4 (⇣-ternary-|�|↵-DP of the shuffle mechanism Msh). For any integer k � 2, ✏0 > 0, and

all ↵ � 2, the ⇣-ternary-|�|↵-DP of the shuffle mechanism Msh is bounded by:

⇣ (↵)↵ 

8
><

>:

4 (e✏0�1)2

ke✏0
+ (e✏0 � e�✏0)↵e�

k�1
8e✏0 if ↵ = 2,

↵� (↵/2)

✓
2(e2✏0�1)2

ke2✏0

◆↵/2

+ (e✏0 � e�✏0)↵e�
k�1
8e✏0 otherwise,

(7)

where k = b k�1
2e✏0 c+ 1 and � (z) =

R1
0 xz�1e�xdx is the Gamma function.

Theorem 4 is one of the core technical results of this paper, and we prove it in Section 6.

It was shown in [43, Proposition 16] that if a mechanism obeys ⇣-ternary-|�|↵-DP, then its subsampled
version (with subsampling parameter �) will obey �⇣-ternary-|�|↵-DP. Using that result, the authors
then bounded the RDP of the subsampled mechanism in [43, Eq. (9)]. Adapting that result to our
setting, we have the following lemma.
Lemma 2 (From ⇣-ternary-|�|↵-DP to subsampled RDP). Suppose the shuffle mechanism Msh

obeys ⇣-ternary-|�|↵-DP. For any � � 2, k  n, RDP of the subsampled shuffle mechanism M (with

subsampling parameter � = k/n) is bounded by: ✏(�)  1
��1 log

�
1 +

P�
↵=2

��
↵

�
�↵⇣(↵)↵

�
.

Lemma 2 can be seen as a corollary to [43, Proposition 16 and Eq. (9)]. However, for completeness,
we prove it in Appendix E.1. Substituting the bound on ⇣(↵) from Theorem 4 into Lemma 2 together
with some algebraic manipulation gives proves Theorem 1; see Appendix E.2 for details.

6 Proof of Theorem 4: Ternary |�|↵-DP of the Shuffle Model

The proof has two main steps. In the first step, we reduce the problem of deriving ternary divergence
for arbitrary neighboring datasets to the problem of deriving the ternary divergence for specific
neighboring datasets, D ⇠ D0 ⇠ D00, where all elements in D are the same and D0,D00 differ from D
in one entry. In the second step, we derive the ternary divergence for the special neighboring datasets.

The specific neighboring datasets to which we reduce our general problem has the following form:

Dm
same = {(Dm,D0

m,D00
m) : Dm = (d, . . . , d, d) 2 Xm, D0

m = (d, . . . , d, d0) 2 Xm, and
D00

m = (d, . . . , d, d00) 2 Xm, where d, d0, d00 2 X} , (8)

Consider arbitrary neighboring datasets D = (d1, . . . , dk�1, dk), D0 = (d1, . . . , dk�1, d0k), and
D00 = (d1, . . . , dk�1, d00k), each having k elements. For any m 2 {0, . . . , k�1}, we define new neigh-
boring datasets D(k)

m+1 = (d00k , . . . , d
00
k , dk), D

0(k)
m+1 = (d00k , . . . , d

00
k , d

0
k), and D00(k)

m+1 = (d00k , . . . , d
00
k),

each having m+ 1 elements. Observe that (D00(k)
m+1,D

0(k)
m+1,D

(k)
m+1) 2 Dm

same.

The first step of the proof is given in the following theorem.
Theorem 5 (Reduction to the Special Case). Let q = 1

e✏0 . We have:

Eh⇠Msh(D00)

����
Msh(D)(h)�Msh(D0)(h)

Msh(D00)(h)

����
↵�

 Em⇠Bin(k�1,q)

"
E
h⇠Msh(D00(k)

m+1)

"�����
Msh(D(k)

m+1)(h)�Msh(D0(k)
m+1)(h)

Msh(D00(k)
m+1)(h)

�����

↵##
. (9)

We know (by Chernoff bound) that the binomial r.v. is concentrated around its mean, which
implies that the terms in the RHS of (9) that correspond to m < (1 � ⌧)q(k � 1) (we
will take ⌧ = 1/2) will contribute in a negligible amount. Then we show that Em :=
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E
h⇠Msh(D00(k)

m+1)

����
Msh(D(k)

m+1)(h)�Msh(D0(k)
m+1)(h)

Msh(D00(k)
m+1)(h)

����
↵�

is a non-increasing function of m. These obser-

vation together imply that the RHS in (9) is approximately equal to E(1�⌧)q(k�1).

Since Em is precisely what is required to bound the ternary DP for the specific neighboring datasets,
we have reduced the problem of computing the ternary DP for arbitrary neighboring datasets to the
problem of computing ternary DP for specific neighboring datasets. The second step of the proof
bounds E(1�⌧)q(n�1), which follows from the result below that holds for any m 2 N.
Theorem 6 (|�|↵-DP for special case). For any m 2 N, integer ↵ � 2, and (D00

m,D0
m,Dm) 2 Dm

same
,

Eh⇠Msh(Dm)

����
Msh(D0

m)(h)�Msh(D00
m)(h)

Msh(Dm)(h)

����
↵�


8
<

:
4 (e✏0�1)2

me✏0 if ↵ = 2,

↵�(↵/2)
⇣

2(e2✏0�1)2

me2✏0

⌘↵/2
otherwise.

Missing details of how Theorem 4 follows from Theorems 5, 6 can be found in Appendix C.4.

Proof sketch of Theorem 5. Let pi, i 2 [k],p0
k,p

00
k denote the distributions of R when the input data

point is di, d0k, d
00
k , respectively. The main idea of the proof is the observation that each pi can be

written as a mixture distribution pi =
1

e✏0 p
00
k +

�
1� 1

e✏0

�
p̃i, where p̃i is defined in terms of pi,p

00
k .

So, instead of client i 2 [k� 1] mapping its data point di according to pi, we can view it as the client
i maps di according to p00

k with probability (w.p.) 1/e✏0 and according to p̃i w.p. (1 � 1/e✏0). As a
result, the number of clients that sample from the distribution p00

k follows a binomial distribution
Bin(k � 1, 1/e✏0 ). This allows us to write the distribution of Msh when clients map their data points
according to p1, . . . ,pk,p

0
k,p

00
k as a convex combination of the distribution of M when clients map

their data points according to p̃1, . . . , p̃k�1,pk,p
0
k,p

00
k ; see Lemma 4. Then using a joint convexity

argument (see Lemma 3), we write the ternary divergence between the original triple of distributions
of Msh in terms of the same convex combination of the ternary divergence between the resulting
triples of distributions of Msh as in Lemma 4. Using a monotonicity argument (see Lemma 5), we
can remove the effect of clients that do not sample from the distribution p00

k without decreasing the
ternary divergence. By this chain of arguments, we have reduced the problem to the one involving the
computation of ternary divergence only for the special form of neighboring datasets (as in Theorem 6),
which proves Theorem 5. See Appendix C.1 for a complete proof. ⌅

Proof sketch of Theorem 6. Consider (D00
m,D0

m,Dm) 2 Dm
same as in the statement of Theorem 6.

First we observe that for any ↵ � 1 and any three distributions p, q, r over the same domain, we can
write Er

h��p�q
r

��↵
i
 2↵�1

�
Er

⇥��p
r � 1

��↵⇤+ Er

⇥�� q
r � 1

��↵⇤�. This is a straight-forward application
of the standard inequality |x + y|↵  2↵�1(|x|↵ + |y|↵) which holds for all x, y 2 R and ↵ � 1.
Now, by taking p = Msh(D0

m), q = Msh(D00
m), and r = Msh(Dm), we reduce the problem of

computing the ternary |�|↵-divergence (which we need to bound) to the problem of computing the
Pearson-Vajda divergence [43], which we can write in terms of the ↵-th absolute moment of the r.v.
X : Am

B ! R, defined as X(h) :=
� Msh(D0)(h)
Msh(Dm)(h) � 1

�
for all h 2 Am

B (where D0 2 {D0
m,D00

m})
and distributed according to X(h) ⇠Msh(Dm)(h). In [29], the authors have bounded the absolute
moments of the r.v. X(h) by showing that X(h) is sub-Gaussian r.v. and using standard concentration
results. See Appendix C.3 for a complete proof. ⌅

7 Discussion

In this paper, we analyzed the Rényi differential privacy of the subsampled shuffle model by bounding
the ternary |�|↵-DP of the shuffle model. We numerically demonstrated the importance of our
proposed bound, where we obtain a significant improvement over using the state-of-the-art in
practical regimes. Furthermore, we used our privacy analysis to study the privacy-accuracy trade-offs
on the MNIST dataset, where we obtained 90% accuracy with total privacy budget of ✏ = 2.91, which
is an improvement over an analysis yielding 4.82, using standard strong composition theorem.

Closing the gap (shown numerically) between our lower bound in Theorem 2 and the achievable
upper bound in Theorem 1 is an important unresolved question. Another direction to explore would
be to analyze the RDP of the subsampled shuffle model for different sub-sampling techniques such as
Poisson subsampling [45], random check-in [9], or client self-sampling [30].
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Societal Impact. Collaborative learning comes with significant societal risks of privacy violations,
which is the main topic addressed in this paper. However, such learning is only as good as the data
used for training, and if the data is not unbiased, this could lead to significant issues related to fairness
and could also lead to societally undesirable outcomes. Such an issue is exacerbated when privacy
is guaranteed on the data used for training, making a-priori fairness checks on data infeasible. This
can be ameliorated by properly testing models finally obtained against fairness criteria and rejecting
models that fail the test. This paper did not consider the issue of robustness to security, and this could
also be an important societal issue in collaborative learning, where a small subset of users could insert
malicious inputs to disrupt the learning process or worse bias the learned model covertly. This could
also lead to negative outcomes. This issue of robustness to malicious participants has been studied in
several papers, and incorporating this into the framework of the paper is an important future research
topic.

Acknowledgment

This work was supported in part by NSF grants #2007714 and #1955632 and a Google Faculty
research award and an Amazon Research Award.

References
[1] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Talwar, and L. Zhang. Deep

learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC conference on

computer and communications security, pages 308–318, 2016.

[2] N. Agarwal, A. T. Suresh, F. X. X. Yu, S. Kumar, and B. McMahan. cpsgd: Communication-
efficient and differentially-private distributed sgd. In Advances in Neural Information Processing

Systems, pages 7564–7575, 2018.

[3] S. Asoodeh, J. Liao, F. P. Calmon, O. Kosut, and L. Sankar. Three variants of differential
privacy: Lossless conversion and applications. IEEE Journal on Selected Areas in Information

Theory, 2(1):208–222, 2021.

[4] B. Balle, G. Barthe, M. Gaboardi, J. Hsu, and T. Sato. Hypothesis testing interpretations and
renyi differential privacy. In S. Chiappa and R. Calandra, editors, International Conference

on Artificial Intelligence and Statistics (AISTATS), volume 108 of Proceedings of Machine

Learning Research, pages 2496–2506. PMLR, 2020.

[5] B. Balle, J. Bell, A. Gascon, and K. Nissim. Differentially private summation with multi-
message shuffling. arXiv preprint arXiv:1906.09116, 2019.

[6] B. Balle, J. Bell, A. Gascón, and K. Nissim. Improved summation from shuffling. arXiv preprint

arXiv:1909.11225, 2019.

[7] B. Balle, J. Bell, A. Gascón, and K. Nissim. The privacy blanket of the shuffle model. In Annual

International Cryptology Conference, pages 638–667. Springer, 2019.

[8] B. Balle, J. Bell, A. Gascón, and K. Nissim. Private summation in the multi-message shuffle
model. In Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications

Security, pages 657–676, 2020.

[9] B. Balle, P. Kairouz, B. McMahan, O. D. Thakkar, and A. Thakurta. Privacy amplification
via random check-ins. In H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin,
editors, Advances in Neural Information Processing Systems 33: Annual Conference on Neural

Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

[10] R. Bassily, A. Smith, and A. Thakurta. Private empirical risk minimization: Efficient algorithms
and tight error bounds. In 2014 IEEE 55th Annual Symposium on Foundations of Computer

Science, pages 464–473. IEEE, 2014.

[11] A. Bhowmick, J. Duchi, J. Freudiger, G. Kapoor, and R. Rogers. Protection against recon-
struction and its applications in private federated learning. arXiv preprint arXiv:1812.00984,
2018.

10



[12] L. Bottou. Large-scale machine learning with stochastic gradient descent. In Proceedings of

COMPSTAT’2010, pages 177–186. Springer, 2010.

[13] C. L. Canonne, G. Kamath, and T. Steinke. The discrete gaussian for differential privacy. In
H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, editors, Advances in Neural

Information Processing Systems 33: Annual Conference on Neural Information Processing

Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

[14] K. Chaudhuri, C. Monteleoni, and A. D. Sarwate. Differentially private empirical risk mini-
mization. Journal of Machine Learning Research, 12(3), 2011.

[15] A. Cheu, A. D. Smith, J. Ullman, D. Zeber, and M. Zhilyaev. Distributed differential privacy
via shuffling. In Advances in Cryptology - EUROCRYPT 2019, volume 11476, pages 375–403.
Springer, 2019.

[16] B. Ding, J. Kulkarni, and S. Yekhanin. Collecting telemetry data privately. In Proceedings of

the 31st International Conference on Neural Information Processing Systems, NIPS’17, page
3574–3583, Red Hook, NY, USA, 2017. Curran Associates Inc.

[17] J. C. Duchi, M. I. Jordan, and M. J. Wainwright. Local privacy and statistical minimax rates.
In 2013 IEEE 54th Annual Symposium on Foundations of Computer Science, pages 429–438.
IEEE, 2013.

[18] C. Dwork, F. McSherry, K. Nissim, and A. D. Smith. Calibrating noise to sensitivity in private
data analysis. In Theory of Cryptography Conference (TCC), pages 265–284, 2006.

[19] C. Dwork and A. Roth. The algorithmic foundations of differential privacy. Foundations and

Trends in Theoretical Computer Science, 9(3-4):211–407, 2014.

[20] C. Dwork, G. N. Rothblum, and S. Vadhan. Boosting and differential privacy. In 2010 IEEE

51st Annual Symposium on Foundations of Computer Science, pages 51–60. IEEE, 2010.

[21] Ú. Erlingsson, V. Feldman, I. Mironov, A. Raghunathan, S. Song, K. Talwar, and A. Thakurta.
Encode, shuffle, analyze privacy revisited: Formalizations and empirical evaluation. CoRR,
abs/2001.03618, 2020.

[22] Ú. Erlingsson, V. Feldman, I. Mironov, A. Raghunathan, K. Talwar, and A. Thakurta. Amplifi-
cation by shuffling: From local to central differential privacy via anonymity. In Proceedings of

the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 2468–2479. SIAM,
2019.

[23] Ú. Erlingsson, V. Pihur, and A. Korolova. Rappor: Randomized aggregatable privacy-preserving
ordinal response. In Proceedings of the 2014 ACM SIGSAC conference on computer and

communications security, pages 1054–1067, 2014.

[24] V. Feldman, A. McMillan, and K. Talwar. Hiding among the clones: A simple and nearly
optimal analysis of privacy amplification by shuffling. In 2021 IEEE 62nd Annual Symposium

on Foundations of Computer Science. IEEE, 2021.

[25] B. Ghazi, N. Golowich, R. Kumar, R. Pagh, and A. Velingker. On the power of multiple
anonymous messages. IACR Cryptol. ePrint Arch., 2019:1382, 2019.

[26] B. Ghazi, R. Pagh, and A. Velingker. Scalable and differentially private distributed aggregation
in the shuffled model. arXiv preprint arXiv:1906.08320, 2019.

[27] A. Girgis, D. Data, S. Diggavi, P. Kairouz, and A. Theertha Suresh. Shuffled model of differential
privacy in federated learning. In A. Banerjee and K. Fukumizu, editors, Proceedings of The 24th

International Conference on Artificial Intelligence and Statistics, volume 130 of Proceedings of

Machine Learning Research, pages 2521–2529. PMLR, 13–15 Apr 2021.

[28] A. M. Girgis, D. Data, S. Diggavi, P. Kairouz, and A. T. Suresh. Shuffled model of federated
learning: Privacy, accuracy and communication trade-offs. IEEE Journal on Selected Areas in

Information Theory, 2(1):464–478, 2021.

11



[29] A. M. Girgis, D. Data, S. Diggavi, A. T. Suresh, and P. Kairouz. On the renyi differential privacy
of the shuffle model. In Proceedings of the 2021 ACM SIGSAC conference on computer and

communications security. ACM, 2021.

[30] A. M. Girgis, D. Data, and S. N. Diggavi. Differentially private federated learning with shuffling
and client self-sampling. In IEEE International Symposium on Information Theory, ISIT 2021,

Melbourne, Australia, July 12-20, 2021, pages 338–343. IEEE, 2021.

[31] A. Greenberg. Apple’s ‘differential privacy’is about collecting your data—but not your data.
Wired, June, 13, 2016.

[32] P. Kairouz, K. Bonawitz, and D. Ramage. Discrete distribution estimation under local privacy.
In International Conference on Machine Learning, ICML, pages 2436–2444, 2016.

[33] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N. Bhagoji, K. Bonawitz,
Z. Charles, G. Cormode, R. Cummings, et al. Advances and open problems in federated learning.
arXiv preprint arXiv:1912.04977, 2019.

[34] P. Kairouz, S. Oh, and P. Viswanath. The composition theorem for differential privacy. In
International conference on machine learning, pages 1376–1385. PMLR, 2015.

[35] S. P. Kasiviswanathan, H. K. Lee, K. Nissim, S. Raskhodnikova, and A. Smith. What can we
learn privately? SIAM Journal on Computing, 40(3):793–826, 2011.
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