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Abstract

To enable egocentric contextual AI in always-on smart glasses, it is crucial to be able
to keep a record of the user’s interactions with the world, including during reading.
In this paper, we introduce a new task of reading recognition to determine when
the user is reading. We first introduce the first-of-its-kind large-scale multimodal
Reading in the Wild dataset, containing 100 hours of reading and non-reading videos
in diverse and realistic scenarios. We then identify three modalities (egocentric
RGB, eye gaze, head pose) that can be used to solve the task, and present a flexible
transformer model that performs the task using these modalities, either individually
or combined. We show that these modalities are relevant and complementary to
the task, and investigate how to efficiently and effectively encode each modality.
Additionally, we show the usefulness of this dataset towards classifying types of
reading, extending current reading understanding studies conducted in constrained
settings to larger scale, diversity and realism. Code, model, and data will be public.

Figure 1: Am I reading? The left figure shows a timeline as the user navigates the world. We aim to solve the
task of reading recognition to enable AI assistants in always-on wearables. We identify three modalities: eye
gaze (in colored dot patterns), RGB crop around gaze (in red box), and inertial sensors performs the task to high
accuracy (with Prediction and GT shown). Images from our Reading in the Wild dataset, which features 100
hours of diverse reading and non-reading activities in real-world settings, with examples shown in the right.

1 Introduction
The potential future of AI personal assistants depends on its ability to understand the physical context
of the user. Smart glasses are becoming a promising device form factor capable of linking visual AI
capabilities to the real world. Recently, there has been a sharp rise in the development of smart glasses,
both products (Meta Ray-Ban, Amazon Echo Frames) and prototypes (Snapchat Spectacles, Halliday
AI Glasses, Xreal One Pro). These all-day wearable devices enable proactive, personalized, and
contextualized AI agents to perceive the world like humans do by understanding the users’ context.

However, for always-on wearable glasses, due to both hardware (power, bandwidth, heat) and software
(perception capability of AI agents, especially with heavy models) constraints, it is impractical to
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record and process every single frame over long periods of time. One solution is to have a proxy
signal, so that the device can record and process key frames only when relevant. The question
becomes: what forms important context of the user that the AI assistant needs to know, and how do
we know when to capture them?

The ability to read underpins one of, if not the most important unique modalities by which modern
humans communicate, entertain each other, and learn. Reading is a key mechanism humans use
to communicate with high fidelity and high information density. Reading spans a broad array of
mediums, from handwritten and printed text on paper and digital displays to environmental signposts.
The act of reading occurs within real-time communication with one another and today’s AI chatbots,
through to reading long-form articles in books or online. Enabling AI with the ability to recognize
reading is hence clearly one of the most important context signals a future AI can be enabled with to
unlock truly personalized and contextually relevant AI.

Given this, we ask: how can we provide future AI with the ability to know when someone is reading?
This apparently simple idea underpins the ability to efficiently enable devices to know what the user
has and has not read, and hence where they can assist given what it understands that the user has read.

This task of reading recognition is challenging for two main reasons. First, the problem can often be
ill-posed: just because a text exists in the field of view does not mean that the user is reading it (or even
looking at it), which is ambiguous to solve using visual information alone. Also, the method should
be efficient for real-time, always-on computation subject to the practical constraints of a wearable
device. Both of these challenges render OCR-based text detection methods impractical, given the
inability to solve the ambiguity and the requirements for high-resolution capture and processing.
Instead, reading recognition can be used as an efficient proxy to indicate when and where it is relevant
to invoke heavier models (OCR and VLMs) instead of running these models all the time.

Motivated by this question, we introduce a new dataset created with Project Aria [11] glasses, which
enables us to develop the contextual AI capability of detecting when a wearer is reading. We present
the first-of-its-kind large-scale multimodal "Reading in the Wild" dataset, containing 100 hours
of reading and non-reading videos in diverse and realistic scenarios. This dataset allows us to
identify three modalities (egocentric RGB, eye gaze, head pose) that can be used to solve the task.
We then present a flexible transformer model that performs the task using these modalities, either
individually or combined. We show that these modalities are relevant and complementary to the task
and investigate how to efficiently and effectively encode each modality, as well as the model’s ability
to generalize towards unseen scenarios and perform real-time reading detection.

Achieving reading recognition makes it feasible to keep a record of a user’s reading interactions
with the world to build a contextually aware AI. It also enables several other applications: it allows
reading assistant tools [38] in children with learning difficulties [5] and people with low vision [40]
to operate in the real world; it can also be used to track whether a user has read crucial information
(e.g. signs during driving) and to measure attention and distraction while performing a task.

Additionally, the dataset and method contributed in this paper can be extended to classifying different
types of reading. This has been of interest in cognitive studies in reading comprehension, but they are
often limited to controlled environments [25, 26, 21, 1, 7], hence limiting its usefulness. We show
that our dataset allows for reading mode and medium classification to be performed in unconstrained
settings, and provide experimental results in this direction.

In summary, we make the following contributions:

• First, we introduce a new task of reading recognition in the wild, and demonstrate its usefulness.
Unlike previous studies, we focus on in-the-wild settings and practicality towards wearable glasses.

• Second, we present the first-of-its-kind large-scale egocentric multimodal Reading in the Wild
dataset, which will be made publicly available, alongside a scalable protocol for data collection.

• Third, we identify three modalities relevant and complementary to the task (RGB, gaze, and IMU),
and develop a lightweight, flexible model that inputs these modalities either individually or in
combination for reading recognition, resulting in a strong and efficient baseline for this task.

• Fourth, we show that our method and dataset extend towards reading understanding, including
classifying reading mode and medium, demonstrating usefulness towards cognitive studies.
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Subset Size Indoor Outdoor Medium Text type Multi-task Mode Language Not reading Mixed

Seattle 80 hours Offices Balconies Print Paragraphs None Engaged English (→) Daily activities Alternating
(train/val/test) 81 people Libraries Patios Digital Short texts Walking Skimming Hard negatives sequences
Focus: diversity 1061 videos Homes Roads/trails Objects Non-texts Writing Scanning (71%/29%) (reading /

Stores In the woods Dynamic texts Typing Out loud not reading)

Columbus 20 hours Offices Print Paragraphs None Engaged English (→) Hard negatives Mirror setups
(test) 31 people Libraries Digital Short texts Scanning Bengali (→) Daily activities (same settings,
Focus: edge cases, 655 videos Lounges Objects Non-texts Chinese (↓) (58%/42%) one reading,
generalization Corridors Arabic (←) another not)

Table 1: Dataset overview. We separately collect two subsets for the dataset. Seattle subset focuses on diversity,
while Columbus subset looks at the model’s generalization towards unseen settings, as well as edge cases where
the model fails. See Appendix A for more details.

2 Related Work
Reading recognition has been a long studied task with rich literature. Eye gaze has been used as the
primary signal [21, 6, 1, 26], however, it relied on handcrafted feature engineering methods such as
detecting fixations and saccades, which we show are unnecessary. Moreover, the experiments are
usually constrained, and not performed in the wild. Other modalities have also been considered, such
as electrooculography (EOG) signals [4], though the usage of electrodes can be invasive and hence less
practical towards building user-friendly wearable glasses. In this paper, we steer this towards practical
usage in modern smart glasses, where we show that gaze can be used in combination with visual
information and IMU sensors. With recent advances in wearable devices, reading recognition expands
to tasks such as word recognition and reading order prediction [17]. While this is relevant, it concerns
the reading content, and assumes the user is already reading, which differs from the task of detecting
whether the user is reading in this paper. Applications include reading comprehension [31, 19, 9, 36],
understanding user behavior [7], and in building reading assistants [38, 5, 40]. However, the literature
is largely constrained to controlled environments.

Egocentric activity recognition is a popular vision task that usually require computationally heavy
solutions using video input [20, 45]. In terms of data, reading is only a subset of activities in some
common datasets such as EGTEA Gaze+ [27] and Ego-Exo4D [14]. However, not all datasets contain
reading [10]. For those which include reading, its nature is very restricted to activities such as reading
recipes (in [27]), reading covid testing manuals, climbing instructions, and music sheets (in [14]).
Ego4D [13] offers a more diverse range of reading activities, but only less than 1% of the data
includes eye gaze. In contrast, our paper focuses on efficient reading recognition, and the proposed
dataset contains large-scale and diverse reading and non-reading examples with eye gaze information.

Gaze in computer vision has started to gain popularity, where gaze has many applicable uses. One
popular route is to perform gaze prediction i.e. predicting where the user is looking at [34, 12, 32, 37]
or how the user interacts with objects he/she observes [18, 39, 29]. In medical applications, eye
gaze can be used as a saliency test to ensure integrity in medial image analyses [41, 23, 22, 30], as
well as predicting learning disorders [16]. Recently, gaze has also been used to complement vision,
such as in action recognition [44], narration [8], and vision-language models [24]. Our paper further
explores whether gaze can reduce the input requirements for computer vision models by only using
gaze and/or parts of vision that are associated with gaze instead of using the whole image sequence.

3 Reading in the Wild Dataset
3.1 Overview

The dataset contains about 100 hours of recordings of reading and non-reading activities collected
from one RGB (30Hz, 1408p, 110° FoV) and two SLAM (150° FoV) cameras, two eye tracking
cameras (60Hz, calibrated), two IMUs (with odometry outputs from visual SLAM), and audio
transcribed using WhisperX [2]. We independently collect two subsets of this dataset, as in Table 1.

Seattle is collected for training, validation, and testing. We mainly focus on collecting reading and
non-reading activities in diverse scenarios, in terms of participants’ identities, reading scenarios,
reading modes, and reading materials. It contains a mix of normal and hard examples, as well as
mixed sequences alternating between reading and non-reading activities. The dataset is collected in
homes, office spaces, libraries, and outdoors.

Columbus is collected to find out where the model breaks in zero-shot experiments. It contains
examples of hard negatives (where text is present but is not being read), searching/browsing (which
gives confusing gaze patterns), and reading non-English texts (where reading direction differs).
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Dataset Gaze RGB Reading Real HN

Ego4D ✗ ✓ Limited ✓ ✗
Ego-Exo4D 10Hz ✓ Limited ✓ ✗
EGTEA 30Hz ✓ Limited ✓ ✗

ZuCo 500Hz ✗ ✓ ✗ ✗
InteRead 1.2kHz ✗ ✓ ✗ ✗

Ours 60Hz ✓ ✓ ✓ ✓

Table 2: Comparison to existing datasets. Our dataset is the first
reading dataset that contains high-frequency eye-gaze, diverse
and realistic egocentric videos, and hard negative (HN) samples.

Figure 2: Diversity in reading materials.
Reading examples across different materials,
both text type (rows) and medium (column).

3.2 Comparison to existing datasets

The closest kins to our dataset come in two categories, as shown in Table 2. First, in egocentric video
datasets [14, 13, 27], there are very limited reading sequences and they lack diversity as each dataset
only reads from 1-2 examples (COVID test kits for Ego-Exo4D, recipes for EGTEA). Moreover, their
eye tracking frequencies are also limited. Second, there are cognitive studies that focus on human
gaze behavior during reading [15, 43] with high-frequency eye tracking. However, these studies are
conducted in very constrained scenarios such as reading a text in front of a screen. Moreover, these
studies only collect gaze data without RGB stream.

3.3 Contents

Reading. Our dataset presents a large diversity in reading activities, including:

• Reading mode: Our dataset contains different reading modes, including deep reading (careful,
engaged reading), skimming (quickly glancing through for general ideas), scanning (searching for
specific information), and reading aloud (verbalizing the text).

• Single/Multi-task reading: Our dataset not only covers single-task reading, where the focus is
solely on the reading material, but also reading while multitasking, such as reading while writing,
typing, or walking.

• Medium and text type: We collect data across mediums: print (books, newspapers, flyers), digital
(phones, monitors), everyday objects (product labels, whiteboards); and text types: paragraphs,
short texts, non-texts, and dynamic texts (video captions and subtitles) as illustrated in Figure 2.

• Demographics: We collect data among 111 participants and include their age range and gender.
• Location: For diversity, we collect scenes across indoor (e.g., meeting rooms, bedrooms, living

rooms), balconies, outdoors, and in the woods.

Non-reading. We also collect negative examples. This includes Everyday activities that do not
involve reading such as physical exercise, outdoor activities, creative arts, culinary activities, and
household chores, as well as Hard negatives, where text is present in the scene but is not being read,
which would confuse RGB-only models.

Mixed. We also collect Alternating sequences, where the participants alternating between reading
and non-reading with annotated timestamps, and Mirror setups where we have the same participant
perform reading and non-reading activity in the same environment and the same material.

3.4 Data collection process

Logistics. We recruited a total of 111 participants, targeting a uniform distribution for gender and
age. We gave each participant a list of tasks to record, with moderators monitoring to ensure that the
recordings are correct as desired.

Instructions. We divided the collections into tasks, each with specific instructions, as elaborated in
the Appendix. We also asked the participants to perform eye gaze calibration within each recording.

Privacy. We strictly followed Project Aria Research guidelines. All data has been de-identified, and
faces and license plates were anonymized with EgoBlur [35]. We source the venues ourselves do not
use the participants’ private spaces to prevent exposure of sensitive or identifiable information.
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Figure 3: Complementary modalities. Ex-
ample success and failure cases for gaze and
RGB, suggesting the benefit of multimodality.

Figure 4: Model architecture. Our model is a simple trans-
former encoder with any combination of gaze, RGB, and IMU
as input.

Scalable Protocol through Automatic labeling. In addition to the dataset itself, we also present a
protocol for scalable, high-quality data collection. Instead of manually labeling the timestamps, we
instruct the participants to say “start reading!" whenever they start reading, and “finished reading!"
whenever they finish. In doing so, we can simply use WhisperX [2] to obtain accurate timestamps
without requiring manual annotations.

Quality assurance. We have several protocols to ensure that participants have read the text. This
involves before (pre-reading questions) and after (post-reading questions and summarization). For the
subset where the user reads out loud, the audio transcription can also be used to for quality assurance.

4 Method
4.1 Task definition

Formally, at time t, we want to predict the confidence score st ∈ [0, 1] whether the user is reading
or not, given several input modalities: eye gaze patterns gt−T≤τ≤t ∈ Rf×T×d, instantaneous
RGB It ∈ RH×W×C and head pose (IMU) sensor readings zt−T≤τ≤t ∈ Rf×T×d, where f is the
sampling frequency and T is the input duration i.e. st = Φ(gt−T≤τ≤t, It, zt−T≤τ≤t). Each modality
has different advantages and drawbacks. To harness the strength of all modalities, we propose a
multimodal model that takes into account all three modalities as input. In the following sections, we
first discuss individual modalities, followed by the model architecture.

4.2 Input modalities

Gaze. There exists a vast literature suggesting that gaze can be used to detect reading activity without
visual information [21, 6, 1, 26]. However, their experiments are limited to constrained environments
(reading long paragraphs in front of a screen), and they rely on feature engineering methods such
as fixation detection to circumvent small-scale data. As we demonstrate in the experiments section,
training on diverse data translates well to open-world settings, and feature engineering is unnecessary
at scale, which makes it robust to low frequency eye tracking inputs.

RGB. As with action recognition methods, visual information has been an effective cue in the
computer vision community. However, processing video models on a wearable device is expensive.
Meanwhile, there has been an interest in using gaze to guide model attention in action recognition
[27, 14, 44]. For reading, we argue that region outside the gaze point is likely to be irrelevant, as the
high-resolution human fovea capable of reading only covers a small region (2°) around the gaze [33].
Therefore, we only crop the image around the gaze region. This also allows for large efficiency gains
as capture and processing only needs to be done on a small patch. We find that cropping using only
1/484 of an image (64px, 5° from 110° FoV) can result in good accuracy, with the remainder for
context and gaze uncertainties.

Head pose (IMU). We also explore using odometry measurements. While not a good indicator on its
own, we find that it helps as a secondary sensor. The intuition here is that some inertial motions can
be used to address ambiguities, such as distinguishing between reading and horizontal head motion.

Complementary modalities. The main reason for using multiple modalities is that they are com-
plementary: they excel and fail in different places. For example, eye gaze can perform well even
if the text is not visible due to lighting or distance that images sometimes miss out, while RGB
works in cases where gaze patterns are not obvious, such as when reading short texts like signs, as
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shown in Figure 3. While IMU is not strong on its own, we show later that it further provides cues to
disambiguate some cases (e.g. turning heads vs reading).

4.3 Model

In order for this to be practical towards always-on wearable devices, we propose a simple and efficient
model that achieves a strong practical baseline for the task. Particularly, we propose a flexible
multimodal transformer model that takes in different modalities as input, as shown in Figure 4. By
keeping the model simple, we can investigate different combinations and forms of modalities.

Input. Unless otherwise stated (such as in ablation studies), we use T = 2, f = 60 for 3D eye gaze
and 6DoF IMU, and a 5° FoV (H,W = 64) crop for RGB as default.

Modality encoder. The model consists of different encoders Φ{g,r,i} (where g,r,i represent gaze,
RGB, and IMU respectively) to tokenize individual modality into feature tokens f{g,r,i} ∈ RN×D.
We use three layers each of 1D (gaze and IMU) and 2D (RGB) convolutions.

Multimodal transformer. We then combine these feature tokens using a simple transformer encoder
Φt and a linear head over the [CLS] token i.e. st = Φt(fg, fr, fi).

Modality dropout. During training, we dropout entire modalities at random, which serves two
purposes: (i) it helps with training less-used modalities; (ii) during inference, the model can perform
well even without all modalities being present.

4.4 Generalization

While we train on English texts, we find that our model generalizes well to other left-to-right
languages across different writing systems, but struggles with vertical and right-to-left texts, as the
gaze pattern is in a different direction. To address this, we find that simply augmenting the gaze at
inference time (90° rotation for vertical texts and horizontal flip for right-to-left texts) allows the
model to generalize well. In practical scenarios, this can be done depending on geo-location. During
training, we also add a small fraction of rotated gaze to help with reading vertical texts.

5 Experimental Setup
5.1 Dataset split

We split the Seattle subset into training, validation, and test sets, and train the model on the training
set. We evaluate on (i) the test set of the Seattle subset, and (ii) the entire Columbus subset. We also
evaluate on specific subsets to study latency and generalization.

5.2 Implementation details

Model. For the encoders, we use three layers of 1D convolution (kernel size 9, 32 dims) for gaze
and IMU, and three layers of 2D convolution (kernel size 5, 32 dims) for RGB. We then feed the
tokens as input to three layers of transformer encoder (32 dims, 2 heads) before linearly projecting
the [CLS] token to two classes. The combined model is lightweight, with 137k parameters.

Training. We impose modality dropout such that there is an equal probability of using one, two, or
three modalities at the same time, as well as perform rotation augmentation. We use Adam optimizer
with learning rate 1e−3 for ten epochs. All models are trained using a single GPU. The code and
models will be released alongside the dataset.

5.3 Evaluation metrics

Classification metrics. We calculate the accuracy and F1 scores for each task at 0.5 confidence
threshold. We also vary this threshold, and report the precision at 0.9 recall (denoted as PR=.9).

Latency. We consider latency to be the time between a state change and model detecting it, and is
unrelated to the computational time, which we assume to be negligible given the small model size.

6 Results
6.1 Main results

We present the main results and visualizations in Figure 5.
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Gaze RGB IMU Acc F1 PR=.9

✓ 82.3 84.5 79.8
✓ 82.2 83.7 76.5

✓ 74.7 80.0 71.9

✓ ✓ 84.9 86.5 83.6
✓ ✓ 83.5 85.2 82.3

✓ ✓ 86.0 87.8 87.3

✓ ✓ ✓ 86.9 88.1 88.0

(a) Main results (b) Visualization (G/R are for gaze/RGB, with wrong ones in red)

Figure 5: Main results and visualizations. We show the results on Seattle (test set). (a) Our method performs
the task to good accuracy, and combining all modalities yields the best results. Metrics are accuracy and F1
score at 0.5 threshold, and precision at 0.9 recall. (b) We show: (i) Col. 1, banal success cases distinguishing
reading from daily activities; (ii) Col. 2-4, difficult cases where our combined model predicts correctly even
if individual modality fails, including reading from objects, short texts, non-texts, fixation patterns, and hard
negatives; (iii) Col. 5, failure cases where all modalities fail, including reading while writing and browsing.

(a) Precision-recall curve

Scenario Acc (%)

Digital media (normal scenarios) 95.3
Print media (normal scenarios) 93.8
Reading average 88.1
Objects (normal scenarios) 87.6
Reading while walking 81.4
Reading from videos 78.0
Reading non-texts 65.8
Reading while writing/typing 55.5

Daily activities 95.2
Not reading average 86.4
Hard negatives 74.7

(b) Breakdown by scenario (c) Breakdown by gaze span

Figure 6: Results breakdown. We present the breakdown for the main results, including (a) precision-recall
curve for different modalities (b) breakdown by scenario to highlight difficult cases (c) breakdown by gaze span.

Single modality. We find that gaze and RGB are able to achieve reasonable performance individually,
and their performances are similar to each other (82.3% and 82.2% accuracy respectively). However,
as shown in the visualizations, they have different success and failure cases. IMU alone does not
perform very well, which is reasonable, as the problem becomes ill-posed, and the model can only
guess the lack of motion as not reading (and vice versa).

Combined modalities. We find that IMU monotonically improves upon gaze (+2.6%) or RGB
(+1.3%) as secondary modality, with small extra compute. Qualitatively, we see that IMU helps
improve several corner cases, and RGB is particularly strong for short texts. We also find that all
modalities combined yields the best performance of 86.9% in accuracy (+4.6% from best single-
modality model), validating the complementary roles of different modalities.

6.2 Results breakdown

We show the breakdown of results in Figure 6.

Scenario breakdown. We break down the results of the combined model. We find that the model
mostly succeeds in normal cases, but fails in cases where reading is atypical, such as reading non-texts
(maps, music sheets), or when reading while writing or typing. The model also struggles with hard
negative examples introduced in this dataset.

Gaze span breakdown. We also break down the results of reading sequences by the horizontal gaze
field of view, as it correlates with text size. We find that the accuracy is the highest (86.1%) for fields
of view of 5-20°, corresponding to 64-256 pixels, with accuracy dropping sharply for both below
(59.3%) and above (70.6%) this range.

6.3 Generalization

We use the model trained on the Seattle subset to evaluate on unseen scenarios, shown in Table 3.

Zero-shot generalization. To evaluate zero-shot capabilities, we test on the separately collected
Columbus subset. We show that the model performs reasonably zero-shot, and draw similar conclu-
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Gaze RGB IMU Acc F1 PR=.9

✓ 77.1 84.0 84.1
✓ 76.7 84.5 83.4

✓ ✓ 82.8 88.7 88.2
✓ ✓ ✓ 82.9 88.8 88.2

(a) Zero-shot on Columbus

Language Aug Acc F1

English→ - 81.2 87.0
Bengali→ - 93.0 95.9
Chinese ↓ - 35.5 51.6

rotate 85.1 (+49.6) 91.9 (+40.3)
Arabic← - 21.0 23.8

flip 51.5 (+30.5) 63.8 (+40.0)

(b) Cross-language (text direction)

Test Train Acc F1

Seattle Seattle 79.3 81.2
EGTEA 62.9 (-16.4) 56.9 (-24.3)

EGTEA EGTEA 89.6 70.6
Seattle 87.7 (-1.9) 63.4 (-7.2)

(c) Generalization to EGTEA

Table 3: Generalization results. Using model trained on Seattle subset, we test on (a) separately collected
Columbus subset; (b) different languages with different reading patterns and direction (despite only being
trained with English), where we explore using rotation and flipping augmentations; (c) cross-generalization with
EGTEA. The model generalizes one way (Seattle → EGTEA) but not the other.

Gaze RGB IMU Acc F1 Latency (s)

✓(1s) 77.1 75.6 0.526
✓(2s) 79.0 78.9 0.831
✓(3s) 79.3 77.8 1.013

✓ 73.8 68.7 0.321
✓(2s) ✓ 81.7 79.5 0.642
✓(2s) ✓ ✓ 82.7 81.0 0.720

(a) Latency (b) Visualization using Gaze+RGB+IMU model. [Prediction/GT]

Figure 7: Real-time detection. We evaluate our model on alternating sequences for real-time detection. In (a),
we show that (i) longer gaze sequences result in higher latency, (ii) RGB has lower latency than temporal signals
(iii) adding RGB to gaze reduces the latency compared to gaze alone. We illustrate the results in (b).

sions in terms of the complementary role between gaze and RGB, but IMU does not help as much
given that the dataset does not contain freeform daily activities where IMU helps the most.

Further, we also notice the differences in reading speed across different users, especially across
different languages. It is possible to personalize the model by scaling the gaze to the magnitude of
the reader, and empirically this solves some of the failure cases.

Cross-language generalization. While we only train the model on English, we find that our model
generalizes well towards non-English, left-to-right texts, but less well on other languages where the
reading direction is different. To circumvent this during inference, we perform 90° rotation to tackle
vertical texts, and horizontally flip the gaze for right-to-left texts. We show that using gaze-only
model solves the problem to a reasonable extent.

Cross-dataset generalization. To demonstrate the importance of collecting reading examples in
freeform settings, we conduct experiments to test for generalizability across datasets. For this, we
utilize EGTEA Gaze+ dataset [27], where we only use their ‘reading’ action labels, and treat other
labels as not reading. To match the data available in EGTEA, we use 2D gaze projection at 30Hz.
We conduct cross-generalization experiments where we train on one training set and evaluate on the
other test set. We show that training on EGTEA with limited training samples does not generalize to
in-the-wild scenarios, whereas the generalization gap for our dataset is much smaller.

6.4 Application: real-time reading detection

So far, we only consider atomic predictions to answer whether someone is reading. To extend to when,
we simply perform predictions over time. To evaluate this task, we use the alternating sequences
between reading and not reading with labeled timestamps, as shown in Figure 7. On top of the
evaluation metrics, we also evaluate the latency (i.e. the duration required for a state change to be
detected). Our results show that (i) there is a trade-off between gaze duration and latency; (ii) RGB
has lower latency as the predictions are instantaneous, and does not rely on past detections; and (iii)
combining gaze and RGB reduces the latency compared to gaze-only model.

Localization. To extend to where the user is reading, we can use the gaze point to locate the texts. As
such, OCR only needs to be performed around the gaze, which results in additional compute savings.
Also, the gaze scanpath can be used to estimate how much to crop the image for OCR.

Efficient interface for OCR. OCR comes in two phases: text detection and recognition. Using
reading recognition as a low-compute interface allows OCR to run not as often, and on a smaller
image each time. Furthermore, the reading detection model is designed to be small enough for
on-device compute, so that images need to be transferred off-device only when reading detected,
significantly reducing bandwidth requirements.
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Input Acc F1 PR=.9

Retina images 79.2 83.0 76.2
3D ray (d/dt) 82.1 84.2 78.4
3D point 80.8 83.3 77.9
3D point (d/dt) 82.3 84.5 79.8
2D projection 79.8 81.3 74.6
Gaze + IMU 83.9 85.7 80.0
Gaze + VIO 84.9 86.5 83.6

(a) Input representation

Freq Acc F1 Dur Acc F1

60 82.3 84.5 5 85.8 87.5
30 81.7 84.3 4 85.4 87.1
20 81.3 83.6 3 83.6 85.7
10 80.4 82.9 2 82.3 84.5
6 79.2 82.0 1 79.6 82.2

(b) Gaze frequency and duration

FoV Acc F1

14 83.5 85.1
10 82.9 84.6
7 82.9 84.3
5 82.2 83.7
3.5 79.5 80.6

(c) RGB crop size

Model Acc F1

XS (6k) 82.0 83.6
S (34k) 86.3 87.7
M (137k) 86.9 88.1
L (600k) 87.1 88.8
XL (1M) 88.5 90.1

(d) Model size

Table 4: Ablation studies. We show ablation studies for (a) the representations for gaze and IMU, (b) the gaze
frequency and duration, (c) RGB crop size, and (d) model size. We fix other experiments to 60Hz, 2s, and 5°
FoV using the M (137k) model, as underlined.

Figure 8: Noise robustness. Aug-
mentation (red) lowers degradation.

GT \Pred 1 2 3 4 5 6 7
1 No read 0.88 0.04 0.02 0.02 0.01 0.03 0.00
2 Walk 0.09 0.85 0.04 0.01 0.00 0.00 0.01
3 Out loud 0.13 0.02 0.64 0.17 0.02 0.01 0.01
4 Engaged 0.14 0.02 0.06 0.54 0.12 0.01 0.11
5 Scan 0.08 0.01 0.03 0.39 0.41 0.00 0.08
6 Write/type 0.49 0.01 0.03 0.02 0.05 0.39 0.01
7 Skim 0.13 0.04 0.05 0.47 0.15 0.00 0.16

Table 5: Reading mode classifica-
tion using Gaze, RGB and IMU.

GT \Pred 1 2 3 4 1 2 3 4
1 No read 0.77 0.07 0.04 0.12 0.83 0.04 0.03 0.10
2 Print 0.07 0.55 0.29 0.09 0.08 0.53 0.25 0.14
3 Digital 0.08 0.32 0.49 0.11 0.07 0.27 0.53 0.13
4 Objects 0.13 0.28 0.30 0.29 0.13 0.18 0.22 0.47

(i) Gaze-only (ii) Gaze+IMU

Table 6: Reading medium classifi-
cation using (i) gaze only (ii) gaze
and IMU.

Practical deployment. We also investigate whether model of such size can be run practically.
From parallel comparisons, the model can indeed comfortably run real-time on Aria Gen 2 glasses
on-device, without the need to off-load the model to online computation. Given the estimated power
consumption, the glasses can run for at least 4 hours continuously (inclusive of the base power
consumption for basic computation, power delivery and sensor suites, and the thermal constraints).
As the model runs on-device without having to send the model input and output back and forth to the
server (as would have been done with, say, VLMs), the latency is negligible.

6.5 Ablation studies

Table 4 summarizes our results for ablation studies.

Gaze representation. The gaze processing pipeline involves transforming the retina images into ray
angles for each eye, the intersection of which is the 3D gaze point in space, then projecting it onto the
2D image plane. We experiment using all these representations, and find that 3D gaze yields superior
results, and pre-differentiating the input with respect to time leads to better generalization.

Head pose representation. With SLAM camaras, we can calculate the visual-intertial odometry
(VIO) outputs using visual SLAM, which yields slightly better results compared to raw IMU sensors.

Input frequency and duration. We experiment with varying frequency and duration for eye gaze.
We find that higher frequency results in better performance, but also comes with compute tradeoffs.
We notice similar trends for IMU.

RGB crop size. While we know that human fovea only covers 2°, we find that a larger crop provides
context and covers for errors in gaze estimation. However, the compute also grows quadratically.

Model size. We experimented other model sizes, with XS, S, M, L having 8, 16, 32, and 64 latent
dimensions respectively. We also experimented with a pretrained image encoder (MobileNetV3-S)
in the XL variant. We find that stronger model results in better results, and notably the S model
performs surprisingly well with only 6k parameters.

Robustness to eye tracking precision. While our model is robust to fixed gaze offsets as we only
use relative positions, noisy gaze predictions can ruin the gaze pattern. We test for the robustness to
noise using our gaze-only model by adding Gaussian noise to the gaze inputs in two settings (i) only
at test time and (ii) both during training (as augmentation) and testing. Our results in Figure 8 show
the performance degrades with noise, and training with noise helps with robustness.

6.6 Extension: understanding types of reading

Many existing cognitive studies try to understand how humans read, as it is related to understanding
human behavior, comprehension, and health. As mentioned, current experiments and datasets are
unrepresentative of how we read. In contrast, our dataset extends to “in the wild” settings, and we
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hope that our dataset will be useful in advancing the understanding of reading in the real world. Note
that we use the same settings as previous experiments (2s time window), which may be limited in
such fine-grained classification tasks.

Reading mode classification. Many studies are interested in how people read [3, 42, 28]. We
conduct similar studies using our dataset. Specifically, we treat this as a 7-way classification problem
(not reading, reading while walking, reading out loud, engaged reading, scanning, reading while
writing/typing, skimming), and train the model for this task on our dataset. As shown in Table 5, we
find that walking is an obvious category to detect (perhaps due to IMU), followed by reading out loud.
Distinguishing between skimming, scanning, and engaged reading proved to be difficult.

Reading medium classification. Inspired by [25] that tries to answer “what" someone is reading, we
also conduct similar experiments. In this case, we do not use RGB as the solution would have been
trivial, and use the model to classify between four classes (not reading, print media, digital media,
objects). We find that the task is difficult, and IMU helps in this case, as shown in Table 6.

7 Broader Impact
Always-on smart glasses raise important questions about social acceptability, both for the wearer
and for the public, especially when such technologies are deployed at scale. We hope that the ideas
presented in this paper can also help mitigate such concerns.

Safety. Sensitive personal data, such as eye gaze, introduces unique risks. Our algorithm runs fully
on-device, which ensures that sensitive information does not need to leave the user’s device. This is a
step toward stronger privacy protections for wearers. At the same time, we acknowledge that using
eye gaze as a signal creates new challenges. Eye movement can reveal intentions, interests, and even
emotional states, which raises a distinct category of privacy concerns.

Surveillance. Our work aims to reduce reliance on invasive sensing. First, by leveraging eye gaze,
we minimize the required front-camera capture to a very small patch (0.2% of the full image) rather
than recording the entire scene. Second, our approach can operate solely on eye gaze data without
requiring any camera input. More broadly, eye gaze offers a powerful cue about where the user
is looking, which enables RGB capture to be more targeted. This reduces the risk of collecting
unintended or intrusive information about bystanders. We hope that future algorithms continue in this
direction.

Data Governance. We follow the Project Aria Research Guidelines and will release our system with
a Responsible Use Policy to promote ethical research practices and to support safe deployment.

8 Conclusion
Motivated by use cases in contextual AI and other applications, we explore the problem of reading
recognition in real-world scenarios, and present a dataset that reflects this nature. We then present a
method to solve the task using three modalities, and extend the studies towards reading understanding
tasks. There are vast opportunities for future work. Our dataset can be used to study the reading
behavior of people in realistic settings in greater detail which links to cognitive understanding.
Our proposed protocol allows for scalable future data collection using smart glasses. Additionally,
model personalization to address variations in reading speed and style, along with predicting optimal
modality activation for enhanced efficiency, represents another promising area for future work.
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NeurIPS Paper Checklist
The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The introduction makes four claims. The abstract summarizes these claims
and they are all prominently present in the paper in that order.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: While not a separate subsection, the limitations were thoroughly discussed
including in the dataset (where the training set only contains English language), modalities
(that IMU’s performance alone is limited), extensions (that the performance on fine-grained
classification is limited). We also provide several experiments to test on robustness (Fig. 8)
and generalizability (Sec 6.3) which reveals insights on where the model performs less well.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: No theoretical results

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
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Justification: As per computer vision models, it is difficult to release every single setting and
parameter, but every effort has been made to include implementation details (as in Sec. 5).
However we note that the main contribution is not the algorithm or new model architecture.
Also, code, model and data will also be released.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We will release code, data, and models to the public.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
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• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Provided under experimental details, and will be in code release.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Not common in vision tasks as std is small, though main experiments are
averaged over 3 runs.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Provided in Section 5.
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Guidelines:
• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Nothing to flag
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Included positive impacts, we do not see obvious negative impact of this new
task/dataset, but will welcome discussions.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
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Answer: [NA]

Justification: Not high risk

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: Dataset collected ourselves.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Assets will be released with proper guidelines and documentations.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

19

paperswithcode.com/datasets


Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [Yes]
Justification: Human subjects. Instructions included in Supplementary. Exact compensation
is not included but we confirm is above minimum wage (USA).
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [Yes]
Justification: IRB approved
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Not used.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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