
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

THETAN BERSERKER: FAST AND STOCHASTIC
DISTANCE-BASED CLUSTERING

Anonymous authors
Paper under double-blind review

ABSTRACT

Clustering is a challenging NP-hard problem. Polynomial approximations are of
paramount importance for identifying intriguing hidden representations of data at
reasonable execution times. In this work, we propose a novel clustering algorithm
called Thetan Berserker (TB). TB is a centroid-based clustering method controlled
by a single distance parameter. TB revitalizes an old family of sequential algorithms,
which are adored for their speed but are known to be order-sensitive. In addition,
TB enables widely used algorithms such as KMeans and DBSCAN by improving
their initial conditions. Theoretical aspects are provided in detail, along with
extensive comparisons and benchmarks. Examples of real world applications
are provided using publicly available data of different dimensionalities. A wide
range of performance boosts in clustering accuracy, memory usage, and runtime
are reported. By dramatically reducing clustering ambiguities while staying at
incredibly low complexity, TB creates a new standard for clustering.

1 INTRODUCTION

Clustering has been the epitome of AI research for more than half a century because, when achieved,
it can infer the underlying structure of the data without any annotations, substantially improving
automation. It has a range of applications across the fields of science and medicine. For example,
collaborative filtering (Ungar & Foster, 1998), trend analysis (Aghabozorgi et al., 2015), LLMs
(Tirumala et al., 2023), computer vision (Caron et al., 2018), social networks (Mishra et al., 2007),
biological data analysis (Zhao & Karypis, 2005) and signal processing (Orhan et al., 2011). In
addition, inference based on clustering is of cardinal importance as it is often applied as the first step
in ML pipelines. Information retrieved from clustering is fed into subsequent learning algorithms
in many applications such as recommendation systems (Lu et al., 2015), medical analytics (Xu &
Wunsch, 2010), and detection of unexpected patterns (Agrawal & Agrawal, 2015).

At the same time, clustering still stands as an extremely hard algorithmic problem (NP-hard). Its
main challenges include: a) dealing with clustering ambiguity, e.g. clusters mixing; b) tackling order
sensitivity i.e. incorrect outputs that depend on data ordering; c) estimating the correct number of
clusters; d) long execution times, e) major memory needs, f) large number of hyper-parameters and f)
handling of outliers.

Our primary interest in proposing a new method stems from the fact that, in nature, we often have
some prior knowledge of the clusters we intend to find, such as the physical dimensions of atoms,
cells, animals, etc. In such cases, it is much more useful to infer the number of clusters rather
than setting a fixed limit on the number of clusters in the data. For this reason, we propose a new
approach, Thetan Berseker (TB), which uses a single hyperparameter. Nonetheless, TB outperforms
the state-of-the-art in accuracy, speed, and robustness in more than 30 experiments across dimensions
and domains.

2 RELATED WORK

Given the wide range of applications, the problem of clustering has been tackled using different
approaches such as dimensionality reduction, density estimation, probabilistic methods, spectral
methods, and distance-based techniques. Among all these methods, distance-based techniques have
been used extensively. Distance-based methods can be separated in four categories. Those that
cluster with assumptions concerning a) the maximum number of clusters (KMeans (Lloyd, 1982),

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

KMeans++ (Arthur & Vassilvitskii, 2007)), Bisecting KMeans (Steinbach & Karypis, 2000; Di &
Gou, 2018), b) a distance threshold (Hierarchical Clustering (HC) (Murtagh & Legendre, 2014)),
c) cluster density (MeanShift (Comaniciu & Meer, 2002), DBSCAN (Ester et al., 1996; Schubert
et al., 2017)) or d) any combination of the above (HDBSCAN (Campello et al., 2013; McInnes &
Healy, 2017)). Another separation can be due to the type of problems that they can try to solve:
a) Linearly-separable (KMeans), b) Nonlinearly-separable (DBSCAN), or c) both (Hierarchical
Clustering). A third divide can be due to the way they process the data: a) sequentially (process each
sample as they arrive) or b) offline (process the entire dataset).

Researchers have worked to figure out distance-based clustering for linearly separable problems
for more than 60 years. The idea that we may be able to approximate clustering solutions started
getting attention in the 1950s (due to KMeans) and HC in the 1960s. A few decades after sequential
algorithms such the Leader Algorithm (Rush & Russell, 1988), BIRCH (Zhang et al., 1996), BSAS
(Theodoridis & Koutroumbas, 2006), MBSAS, TTSAS (Real et al., 2014) and SL (Patra et al., 2011)
appeared. In addition, some of these methods, such as QuickBundles (Garyfallidis et al., 2012), were
successful in specialized domains but not used widely. The reason is that the results of these methods
depend heavily on the order of sampling, and therefore results can change drastically from one run to
the other. This is known as the ordering problem or order sensitivity. This is not an issue with only
sequential algorithms. Many others, including KMeans, suffer from this problem.

Thetan Berserker (TB) is introduced here to dramatically reduce this problem while sustaining low
complexity at the expense of a single parameter θ. In contrast, BSAS has two parameters, KMeans,
and MeanShift has three, etc.

In this paper, the focus will be primarily on TB tackling linearly separable problems, but TBSCAN
will also be introduced, which can tackle nonlinear problems. TB will be challenged and compared
across 30 experiments and more than 20 methods.

3 THETAN BERSERKER

The name Thetan Berserker (TB) is derived from the way the algorithm works with some inspiration
from history. Thetan stems from the algorithm’s single distance threshold θ. Berserkers, in the
context of this algorithm, are cluster modes that compete for spatial territory in data space.

TB’s foundation stone is Thetan Sequential (TS), a straightforward sequential clustering approach.
See Alg. 1. TS is in simple terms a simplified version of a basic sequential scheme. In short, TS will
visit each data point only once and if a distance metric between a sample and the centroid is less than
a threshold θ will enter the same cluster otherwise it will create a new cluster.

TS has multiple advantages: a) single pass - examining each feature only once, b) low time com-
plexity, c) use of a single hyper-parameter, d) minimal memory footprint in contrast, for example,
to Hierarchical Clustering, e) online execution - ideal for asynchronous or streaming systems and f)
easy implementation. However, a major disadvantage of TS is the lack of stability when the order of
selection changes in datasets with underlying dense clusters (manifestation of the ordering problem).

Figure 1: Geometric intuition. Assuming that each shape is filled with 2D points and an L2 distance threshold
matches the diameter of the 3rd shape. Alg. 1 will never mix the first two shapes due to an ordering issue. But it
will mix points from the last two shapes. Alg. 2 will be able to separate also the last two without being affected
by the ordering problem.

We propose a solution to this problem by studying the space around hypothetical clusters in our data
(see Fig. 1). Note that if the closest distance between two points belonging to two different clusters is
greater than θ, a single run of TS is sufficient for any order due to the clusters being simply said, far
enough from each other. But if that is not the case, then order sensitivity becomes important.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Definitions. We denote the number of samples N ∈ Z+, number of dimensions D ∈ Z+. The data
sets are denoted with X and contain feature vectors x ∈ RD. The Thetan threshold is denoted with
θ ∈ R≥0. The number of clusters is denoted with K ∈ Z+. A clustering result is denoted with
C and is represented with centroids µ and labels λ. Cξ denotes different clustering numbers (not
individual clusters). In a addition a clustering C contains clusters c1, c2, . . . , cK . For example, C2

means second clustering. But cluster c3 of C2 has a single centroid µ3. The description of Thetan
Sequential follows (see Alg. 1).

Algorithm 1 Thetan Sequential (TS)
Input: Data X of size N ×D with samples xi, i ∈ [0, N − 1] and hyper-parameter θ
Output: Clustering C of cardinality K with centroids µk and labels Λ
x0 ∈ c0, K ← 1 ▷ First feature starts first cluster

for i = 1 to N − 1 do
distance_buffer← infinity[K] ▷ Dynamic buffer holds distances from centroids

for k = 0 to K − 1 do
d← distance(xi,µk) ▷ This is were metric evaluation takes place

if d <= θ then
distance_buffer[k]← d

end
m← min(distance_buffer) ▷ Only the smallest distance is used
a← argmin(distance_buffer)

if m <= θ then
xi ∈ ca ▷ Assign to closest cluster and update centroid

else
K ← K + 1 ▷ Number of clusters grows
xi ∈ cK−1 ▷ Create a new cluster

end
end

In Thetan Berserker (see Alg. 2), the centroids of TS become an input to a second TS operating
directly on these initial centroids. Then this second round of modes (after a low complexity clean-up
- relabel function) is brought back to start a second iteration pre-pending the actual data X . This is a
key point of the innovation. Therefore data which was initially X becomes stack(M ,X) where M
contains previous centroids µk, k ∈ [0,K − 1]. TB converges very fast, and for this purpose, we use
only a fixed and small number of iterations (max of 2 is used everywhere in this work).

Algorithm 2 Thetan Berserker (TB)
Input: Data X of size N ×D, hyper-parameter θ, ITER = 2 fixed
Output: Clustering C of cardinality K with centroids µk saved in M of size K ×D
counter← 0

repeat
shuffle(X) ▷ Randomly sample from the data

if counter = 0 then
C ← TS(X, θ) ▷ TS runs for first time here

else
X ← stack(M ,X) ▷ Previous run centroids are placed in the beginning of X
C2← TS(X, θ, metric)
C ←C2

X ← destack(X,M) ▷ Remove extra Berserker centroids
end
C3← TS (M , θ) ▷ Cluster only new centroids M
C ← relabel(C,C3) ▷ Directly update labels providing a new clustering
counter← counter + 1

until counter = ITER;

Note that exactly the same parameter θ is used across Alg. 1 & 2. The function stack simply prepends
the Berserker centroids to data X . destack removes these centroids to return the original data X .
These added and removed centroids are the Berserker centroids because they have survived through
a heavily stochastic process (due to the shuffle of the data and the myriad distance pulls). relabel
updates the labels Λ of C using C3 results. The size of Λ is N . M of size size K ×D refers to a

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

matrix containing all centroids µk of clustering C. The default number of iterations is fixed to 2.
This decision is confirmed by the ablation and iterations study (see Fig. 3).

4 THEORETICAL ASPECTS

We postulate the following theorems assuming L2 is our norm of choice. First, let’s identify which
datasets would be exactly satisfied (reach a unique and global solution) by Alg. 1.

Theorem 1. Given a clustering problem C with clusters c1, c2, . . . , cK . If there are no pairs of
samples xi, xj from ci to cj , i ̸= j where xi ∈ ci and xj ∈ cj , that have a distance < θ, then Alg. 1
will never mix clusters with a threshold parameter θ at exactly one pass. The order of the selection of
the samples will have no effect on the final outcome as long as all features are used.

Proof. In Alg. 1. all the distances are computed either inside a cluster or between clusters. All the
inside cluster distances will be < θ, and all the distances between clusters will be > θ. Therefore,
there are no cases where clusters are created between the actual clusters given that there are no pairs
of samples xi, xj from cluster i to cluster j that have a distance < θ. ■

This brings us to an equivalence relationship between how the algorithm performs and how close the
hypothetical boundaries of the underlying clusters are.

Figure 2: Visual guides. l is the minimum distance between clusters. A) Under the condition above TS will
always converge at the global solution in a single pass. Insensitive to order and unaffected by size or geometry
(convex vs non-convex). B) Some orders are better than others. TB will resolve the correct clusters even in cases
where TS has generated more clusters than necessary (3 shown with blue, red, and green colors rather than 2).
Red dots represent TS centroids, black dots represent sampled points near the edges of two uniform distributions.

Lemma 1 If there are no pairs of samples xi,xj from cluster ci to cj , i ̸= j where xi ∈ ci and
xj ∈ cj that have a distance l < θ, then due to Theorem 1 the order of selection will not affect the
result. However, this also tells us that if the L2 diameter of the circumscribed hypersphere is < θ
then also the shape of the clusters will not affect the results. In other words, if the contours of the
clusters are convex or non-convex, the outcome will be the same.

Proof Imagine two clusters c1 and c2 bounded (circumscribed) in hyperspheres of diameters d1 and
d2. Assume that d2 > d1 (one hypersphere is larger than the other one). The clusters can contain any
shape of points x, convex or non-convex. The minimum distance between c1 and c2 is denoted with
l. The optimal result would be if Alg. 1 could exactly find the two clusters. Anything more or less
than two would be incorrect. Using proof by cases we can see that if l < d1, d2, and θ > d1, θ > d2
and θ > l. Alg. 1 will not generate two clusters missing the global solution. The same would happen
if l > d1, d2 and θ < l. However, if l > d1, d2, and θ = l then Alg. 1 is guaranteed to find the two
clusters. This is because all distances between points will be less than threshold θ only in the same
clusters. Similarly, we would reach a global solution if l > d1, d2 and θ < l but θ > d1, d2. In short,
we now have the following condition where l > θ > d2 > d1. In this condition, there is no point x
that can be assigned to the wrong cluster. ■.

Although the proof is demonstrated for two clusters, the argument holds for an arbitrary number of
clusters. There are specific sizes and interclass distances where the solution is exact, guaranteed, and
single pass. Given that clustering is an NP-hard problem with very few theoretically backed ideas,
we can agree that the fact that TS (Alg. 1) will always provide for these unique data sets for any order
of selection is an important observation. Clearly, there are types of datasets that are ideal for TS, and
some are not ideal. For example, those where the underlying clusters are close to each other. This is
an area that Alg. 2 (TB) shines.

This is because the nonlinear optimization problem that we are usually trying to solve in
centroid/distance-based clustering problems is expressed as minµ1,...,µk,zij

∑k
i=1

∑n
j=1 zij∥xj −

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

µi∥2 subject to
∑k

i=1 zij = 1,∀j ∈ {1, . . . , n}. zij = 1, if xj is assigned to cluster i or 0 otherwise.
KMeans, for example, is an approximate (heuristic) solution. TS provides a different solution to this
nonlinear problem by not using K but a distance threshold θ. Therefore, the assignments are not
violated, and still

∑k
i=1 zij = 1, ∀j ∈ {1, . . . , n}. However, K is inferred on the go, and it can

only grow at increments of one, K ∈ {1, . . . ,∞}. Similarly, there is an additional constraint that i
(index of data increases monotonically i ∈ [1, . . . , N] and stops at a single pass from the data.

Lemma 2 The centroids of a dataset are a reduced representation of the original data. Representing
data as their centroids increases empty space (a proxy for sparsity).

Proof Given that the centroids are local averages in an ideal scenario, they would exactly approximate
the data with one centroid for each sample or one centroid per two or more samples. In that way,
we always partition the space to be either equal or less than the data. In other words, the centroids
are like an infinite shrinkage of the clusters to a point. Moving from one representation to another
increases empty space between the clusters. ■

See Fig. 2A for a visual guide. At this stage, it is important to understand that some orders of
selection are better than others. Assume, for example, a grid of uniformly distributed clusters with
circumscribed diameters d at equal interclass distances l where l < d. We could simply sort the
coordinates x, y. That order would be preferred over a random order of selection because the first
order would allow Alg. 1 to converge to the global solution in one pass. A random order could
generate centroids appearing on empty space between the actual clusters simply because two boundary
points could be picked first.

Theorem 2 Starting with the centroids of Alg. 1 helps Alg. 2 reach an improved solution (less
incorrectly assigned samples).

Proof We will show this for two uniform distributions at distance l (see visual guide at Fig. 2B).
The sides of each distribution are equal to θ. Let’s assume that l < θ. A selection order where
the first points selected were x1,x2 and x3 (close to the edges of the two clusters) is guaranteed
to create unnecessary extra clusters. This is because Alg. 1 will create a new centroid at µ =
(x1 + x2 + x3)/3. However, if we start with c1, c2 and c3 Alg. 1 is forced to create two enduring
centroids µ1 = (c1 + c2)/2 or µ2 = (c2 + c3)/2. Note that the order of selection of centroids (123,
213, or 312) does not change the outcome. ■

This generalizes for an arbitrary number of clusters. See details in sections A.10-A.12. Due to
Theorems 1-2 and Lemmas 1-2, TB is adding a new constraint that TS cannot satisfy. The constraint
is ∥µi − µi∥ > θ. Centroids will be far from each other, providing better coverage and a reduced
number of clusters.

Complexity analysis. Alg. 1 has a worst-case time complexity (upper bound) O(NKD) that depends
on the number of samples N and the number of estimated clusters K and number of dimensions D.
We assume here that most of the computation is from the calculation of distances between samples
and centroids. The worst-case complexity takes place when every data point belongs to a different
cluster (all singleton clusters). In such an event, the worst time complexity is O(DN2). The best time
complexity is O(ND) when only one cluster. Assuming most memory is spent on saving centroids
and labels, Alg. 1 has a best case (lower bound) space complexity of O(N) and worst case (upper
bound) of O(N). The highest bound is when all clusters are singleton clusters. However, in most
cases K << N . Therefore, TS requires a remarkably small amount of memory. TB (Alg. 2) builds
on top of TS (Alg. 1), but now the time complexity also depends on the number of iterations I .
However, everywhere in this work, we fixed I = 2. Therefore, Alg. 2 is of the same complexity as
Alg. 1. In addition, TB’s cleanup operations work in the space of centroids or small label updates.
Therefore, they do not change the order of complexity. In short, TB’s time and space complexity is
the same as that of TS. This is also experimentally shown in Tab. 1. Proofs are available at A.8 and
A.9.

Other algorithmic contributions: I) In order to compare TB, we introduce a simple iterative version
of TS. TSR (Thetan Sequential Randomized) is a version where we simply run TS multiple times
(default 10) for different shuffles of the data, collect all their centroids, re-cluster them, and reassign
the data to the last round of centroids. II) In order to increase our understanding of the differences
between BSAS and KMeans, we introduced a new algorithm TBK (TB seeding + KMeans), which
starts with TB and then gets the centroids of the K biggest clusters and provides them as initialization

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 1: Comparisons between clustering algorithms. Highlight identifies top performers.
Method AC ↑ NMI ↑ SIL ↑ FMS ↑ ARS ↑ Clusters Runtime ↓ Memory ↓

mean std mean std mean std mean std mean std mean std mean std mean std
1 BIRCH 0.571 0.057 0.956 0.004 0.509 0.008 0.872 0.015 0.871 0.015 296.0 5.8 7.518 0.103 5.400 0.516
2 BSAS 0.155 0.020 0.949 0.003 0.502 0.008 0.857 0.012 0.857 0.012 300.0 0.0 5.999 0.065 155.000 0.000
3 CLARANS 0.012 0.008 0.877 0.003 0.282 0.008 0.574 0.010 0.568 0.010 300.0 0.0 5726.562 1632.025 27.000 0.000
4 CURE 0.814 0.026 0.964 0.001 0.542 0.001 0.920 0.002 0.919 0.002 300.0 0.0 2518.961 375.720 174.000 0.000
5 EM_GMM 0.931 0.008 0.971 0.001 0.536 0.002 0.927 0.003 0.927 0.003 300.0 0.0 138.870 9.507 1375.000 0.000
6 FCM 0.131 0.024 0.922 0.002 0.403 0.004 0.703 0.005 0.698 0.006 300.0 0.0 1014.085 366.602 3091.000 0.000
7 MBSAS 0.152 0.019 0.949 0.003 0.502 0.008 0.858 0.012 0.857 0.012 300.0 0.0 6.692 0.120 155.000 0.000
8 OPTICS 0.786 0.066 0.300 0.030 -0.628 0.027 0.067 0.001 0.003 0.000 63.3 5.8 739.002 94.169 188.000 0.000
9 TB 0.997 0.002 0.976 0.000 0.556 0.001 0.953 0.001 0.953 0.001 300.9 0.7 0.349 0.005 8.000 0.000
10 TBK 1.000 0.000 0.976 0.000 0.556 0.001 0.954 0.001 0.954 0.001 300.0 0.0 0.869 0.008 8.000 0.000
11 TS 0.862 0.023 0.971 0.001 0.530 0.005 0.938 0.004 0.937 0.004 320.7 4.3 0.161 0.002 1.000 0.000
12 TSR 0.994 0.005 0.976 0.001 0.555 0.001 0.953 0.001 0.953 0.001 301.5 1.4 7.829 0.056 4.000 0.000
13 TTSAS 0.145 0.027 0.949 0.004 0.482 0.014 0.861 0.014 0.861 0.014 318.7 5.6 6.444 0.127 156.000 0.000
14 BISECTING 0.218 0.014 0.931 0.000 0.436 0.002 0.778 0.001 0.776 0.001 300.0 0.0 0.787 0.030 13.000 0.000
15 DBSCAN 0.825 0.014 0.722 0.002 0.100 0.004 0.083 0.001 0.019 0.000 301.0 0.8 1.355 0.016 26.100 0.316
16 HDBSCAN 1.000 0.001 0.887 0.001 0.414 0.002 0.295 0.003 0.195 0.003 300.0 0.0 132.364 3.192 184.000 0.000
17 KMEANS 0.522 0.075 0.945 0.006 0.478 0.015 0.818 0.026 0.817 0.027 300.0 0.0 2.394 0.229 8.400 0.516
18 KMEANS++ 0.855 0.035 0.968 0.002 0.535 0.005 0.919 0.009 0.919 0.009 300.0 0.0 2.921 0.215 20.000 0.000
19 KMEDIANS 0.104 0.014 0.942 0.003 0.478 0.008 0.820 0.013 0.819 0.013 300.0 0.0 31.176 0.241 506.000 0.000
20 MEANSHIFT 0.999 0.002 0.976 0.001 0.556 0.001 0.954 0.002 0.953 0.002 299.9 0.3 1014.352 23.430 37.300 1.418
21 MEANSHIFT++ 0.033 0.009 0.720 0.000 0.312 0.003 0.291 0.000 0.166 0.000 33.1 0.3 3.802 0.059 8.000 0.000
22 XMEANS 0.591 0.037 0.951 0.003 0.494 0.007 0.846 0.012 0.845 0.013 300.0 0.0 76.938 4.836 158.000 0.000
23 TBSCAN 0.997 0.003 0.975 0.000 0.555 0.001 0.953 0.001 0.953 0.001 300.8 1.0 3.320 0.019 8.000 0.000

for KMeans. This is a task of improving KMeans seeding. III) Because TS and TB are primarily
focused on linearly separable problems, we introduce an algorithm to deal with density-based
nonlinear clustering problems. We call this algorithm TBSCAN. Basically, we start with TB, and then
the output centroids become input to a modified DBSCAN version (with additional parameters epsilon
and min_samples to control for nonlinear shapes). In summary, we introduce 1 major algorithm, TB,
and 4 supporting ones (TS, TSR, TBK, and TBSCAN). Extensive comparisons follow.

5 RESULTS

All results were performed on a single thread of a single CPU. No GPUs were used in this work.
We compare our methods with other well-known clustering methods. Various metrics are used
for evaluation including Normalized Mutual Information (NMI), Silhouette score (SIL), Fowlkes-
Mallows Score (FMS), and Adjusted Rand Score (ARS). Because clustering evaluation can often be
ambiguous, we also introduce a stricter metric, Apparent Centroid distance (AC) (see details in A.1).
All experiments, including the compared methods and the evaluation, were done using scikit-learn
(Pedregosa et al., 2011), pyclustering (Novikov, 2019), meanshift++ (directly from author’s GitHub)
and skfuzzy packages (for fuzzy-cmeans). Tracemalloc module was used to measure peak memory.
Runtime was reported with Python’s time package. The Thetan methods were developed in C (via
Cython). All methods have underlying C or C++ implementations via Pythonic interfaces. Due to the
large number of experiments, most of the results and details are available in Appendix A.

5.1 SIMULATION EXPERIMENTS

We randomly sample from multi-variate normal distributions with mean 0 and identity covariance
matrix. Each distribution contains 500 samples. The centers of the distributions are set on a 30× 10
grid. Therefore, we have a total of 300 ground truth clusters. Each distribution center is at a distance
of 5 units from its closest neighboring center. This creates a dense clustering setting which will be
challenging for most algorithms. The total number of points (samples) in this experiment is 150, 000.
Ablation Study. In Fig. 3A, we use the setup above to study if the different parts of the TB algorithm
are actually improving overall accuracy. As Alg. 2 suggests, TB is split into 4 parts: I) TS, II) CL, III)
TS2, and IV) CL2, where TS stands for Thetan Sequential and CL stands for cluster new centroids
and update labels. The experiment was repeated 20 times. As we can see in the boxplots of Fig. 3,
every part of the algorithm clearly improves overall accuracy. Convergence Study. In Fig. 3B, we
examine the hypothesis saying that TB may need only two iterations. In this experiment, we check if
repeating iterations can actually improve the results. As shown in the violin plot of Fig. 3B repeating
TB iterations does not improve NMI scores. TB01 is the default version with 2 iterations. The
experiment goes up to TB14, which has 15 iterations. The statistics shown are from 20 repetitions.
In short, TB does convergence in only 2 iterations for the experiment at hand. Inter-class distance
trade-off. In this experiment, we study how algorithms perform as the inter-cluster distances shrink
or grow. See Fig. 3C. Here the minimum distances across two clusters change from 3 to 10. As
expected, all methods have trouble when the distances between clusters are small, and that gradually

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

improves as the distances grow. The parameters used are TB (θ 3.6), HDBSCAN (min_samples 40),
KMeans++ (K 300, tol. 0.0001), and MeanShift (bandwidth 2.6).

Figure 3: Study of trade-offs. A) Ablation study shows that all parts of TB contribute to its performance. B)
Iteration study shows fast convergence. C) NMI improves as clusters become more distant from each other.

Large comparisons. We evaluated more than 20 methods in clustering the 300 clusters as described
above. All parameters used are in section A.3. The statistics shown are after 10 repetitions for each
method. Results are summarized on Tab. 1 and Fig. A4-A15. Thetan Berserker (TB) is one of the
best-performing methods. TS is only 2X faster than TB, but it identifies the wrong number of clusters
and has low evaluation scores. HDBSCAN generates comparable scores (AC) but is 200X slower.
KMeans++ takes 4X more time but makes estimation mistakes. MeanShift takes a lot longer, 1000X
more time. DBSCAN is only 2X slower than TB. However, it does not achieve high evaluation scores.
Therefore, we consider TB to perform well for such datasets. In addition, TSR has higher scores
than TS, but it generates a less accurate number of clusters than TB. TBK outperforms KMeans++
(stands for KMeans with KMeans++ seeding (Arthur & Vassilvitskii, 2007)). TBSCAN is faster than
HDBSCAN by 48X. BSAS, MBSAS, TTSAS, and BIRCH lose accuracy across many evaluation
metrics. In contrast, TB has a unique performance balancing memory, runtime, and accuracy. Visual
plots are available in Fig. A4-A15. TB continued performing at the highest level in experiments with
outliers and uniform distributions of equal or varying scales (see Fig. A31- A45).

Predicting θ. TB has only one parameter, while most of the methods have at least two or three param-
eters. Nonetheless, two important questions emerge: a) Would it be possible to find θ automatically
from the data? b) How fast? Finding θ often depends on what someone wants to do, and therefore, it
cannot always be found automatically. However, apart from established techniques such as the Elbow
method (Liu & Deng, 2021), researchers can use random walks effectively. In more detail, by storing
the distances between consecutive points we can create a footprint of the dataset. This is shown in
Fig. 4A. The distributions of the random walks can regress the distance across clusters. This is a
method that is highly efficient (O(ND)). Note that each distribution is clearly distinguishable from
another. Here the minimum interclass distance is from 5 to 45 units. Other more advanced methods
include the Auto Elbow Method (Onumanyi et al., 2022), Gap Statistic (Tibshirani et al., 2001) and
maximizing the Silhouette Score (Rousseeuw, 1987), but they require a larger number of samples.

Figure 4: Predicting θ and sub-sampling. A) Linear-time random walks can be used to infer good estimates for
hyper-parameter θ. Here are the distributions for growing inter-class distances of 5, 15, 25, 35, and 45 units. A
pattern emerges. Details at section A.13. B) TB seems robust in sampling parts of the data. Here we sample from
100% down to 1%. Accuracy stays high until after 4% while runtime is reduced. This is evidence of robustness.
Runtime is normalized by dividing with an initial runtime of 83ms at 100%.

Robustness in sub-sampling. Another important way to measure the robustness of an algorithm is
to see how stable it can be while reducing the actual data. In this experiment, we start with the same
setup as in the previous section, but now we measure accuracy after keeping from 100% down to 1%
of the data. See Fig. 4. Samples are removed randomly. Accuracy measured by AC metric stays high
until after 4% while runtime is reduced because less data are being used. Runtime is normalized to fit

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

the plot by dividing with an initial runtime of 83ms. Holding AC after removing 96% (100-4) of the
data is strong evidence of robustness to large density changes.

5.2 STANDARDIZED BENCHMARKS

The widely used and publicly available clustering benchmarks framework (Gagolewski, 2022) is
applied here. Eight linearly and eight nonlinearly-separable datasets have been processed using TB
and TBSCAN, respectively. As seen on Tab. A1, TB achieves high clustering performance on linearly
separable datasets with minimal runtime, while TBSCAN shows overall high accuracy on non-linear
datasets. Parameters used are reported on Tab. A4. For this evaluation, we used the 2D embedding of
the digits dataset from scikit-learn (Pedregosa et al., 2011), which consists of 1,797 samples, each
with 64 features. Tab. A3 presents a comparison of various clustering methods, with TB emerging
as the most efficient in terms of both runtime and peak memory usage. TB achieves the lowest
runtime (0.0008s) and requires no additional memory (<1 MB), making it highly resource-efficient
compared to the hierarchical clustering (HC) methods. While HC-WARD outperforms TB slightly in
terms of clustering accuracy metrics like RI (0.90499) and ARI (0.51293), TB maintains competitive
performance with respectable values across NCA (0.52226), RI (0.84255), and ARI (0.37490). Given
its efficiency, TB offers a significant advantage in scenarios where resource constraints are critical
while still delivering comparable clustering quality. More information is available in section A.6.

Figure 5: TB enables density-based approaches for nonlinearly-separable problems. Here shown with Spiral
and Circles benchmarks. TB reads the x and y coordinates in a completely random fashion, but it is still able to
evenly separate the clusters (A, C). TBSCAN is up to 5,000X faster than DBSCAN (B, D).

Nonlinearly-separable benchmarks. In this experiment, we used the benchmarks Spiral and Circles
from Scikit-Learn. We increased the number of points of the datasets to go up to the level of hundreds
of thousands. The purpose of this experiment is to examine the behavior of TB and TBSCAN on
testbed nonlinear datasets. In Fig. 5, we see that TB is building equivariant parts, and then TBSCAN
connects them to build the nonlinear parts. For the Spiral dataset, we used TB (θ 1.0) and TBSCAN
(eps 0.5, min_samples 1). Number of points is 375,000. For the Circles dataset (1 million points), we
used TB (θ 1.0) and TBSCAN (eps 0.8, min_samples 1). Additional details at A.6 and Fig. A24.

6 APPLICATIONS

6.1 SUPERPIXELS

Here we examine if TB can assist superpixel segmentation. NYUV2(Arbelaez et al., 2011) and
BSDS500(Nathan Silberman & Fergus, 2012) datasets are used. Fig. 6 shows qualitative results.
For TB, we assign the 2D spatial information and pixel intensity as features of each pixel for
clustering. Felzenszwalbs’ method (Felzenszwalb & Huttenlocher, 2004), SLIC(Achanta et al., 2012),
Quickshift(Vedaldi & Soatto, 2008) and Compact watershed(Neubert & Protzel, 2014) were selected
as a comparison method mainly for their availability. Despite the fact that our method is not tailored
for superpixel purposes, it creates object boundary-compliant superpixels compared to other methods.
All methods excluding TB were run using scikit-image(van der Walt et al., 2014), with the following
parameters: 1. BSDS500 dataset: scale 300, sigma 1.0, minimum size 30 for Felzenszwalbs’s method,
number of segments 200, compactness 0.1, sigma 1 with automatic parameter estimation for SLIC,
kernel size 7, maximum distance 30, ratio 0.5 for Quickshift and markers 125, compactness 0.00001
for Compact Watershed and θ 0.17 for TB. NYUV2 dataset: scale 75, sigma 1.0, minimum size 30
for Felzenszwalbs’s method, number of segments 400, compactness 0.1, sigma 1 with automatic
parameter estimation for SLIC, kernel size 5, maximum distance 30, ratio 0.5 for Quickshift and
markers 200, compactness 0.00001 for Compact Watershed. For TB θ 0.19. Grid search with
qualitative evaluation was used to select the optimal parameters. The input to TB was simply an array

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 6: Example results from the BSD500 (top two rows) and the NYUV2 (bottom two rows) datasets.

X holding the normalized position (x, y) and LAB space intensity features (weighted to balance
between spatial information) for each pixel in the image. Details are shown on Tab. 2. We calculate
metrics suggested by Stutz et al. (2018). More specifically, the table contains scores for Boundary
Recall (REC) (Martin et al., 2004), Normalized Undersegmentation Error and its variant (UE, UEB)
(Van den Bergh et al., 2015; Neubert & Protzel, 2012), Explained Variation (EV) (Moore et al., 2008)
and Compactness (CO) (Schick et al., 2012). Higher REC, EV, CO, and lower UE, UEB indicate
more appropriate superpixels. Runtime and the number of superpixels are indicated in the table as
well. As the BSDS500 dataset has multiple ground truth labels, the metric on each ground truth was
averaged first before averaging the results of all images in the dataset. In both datasets, TB is capable
of creating superpixels of reasonable quality and high average metrics. We want to emphasize that no
further processing was done to modify the method to be superpixel friendly (e.g. smoothing kernels,
connectivity regularizations). High metrics on the BSDS500, which had multiple ground truths, also
suggest our method is capable of creating superpixels that are generalizable between different goals.

Table 2: Comparisons between TB and superpixel algorithms.
Datasets Algorithms REC ↑ UEB ↓ UE ↓ EV ↑ CO ↑ Superpixels runtime (sec) ↓

mean std mean std mean std mean std mean std mean std mean std

BSDS500

Felzenszwalbs 0.420 0.091 0.969 0.0135 0.225 0.340 0.0506 0.0324 2.44e-03 6.43e-03 112 47.3 0.147 5.75e-03
SLIC 0.271 0.0592 0.980 8.06e-03 0.0112 0.0103 0.0648 0.0305 1.53e-05 1.06e-06 186 1.29 0.164 3.41e-03
Quickshift 0.291 0.0903 0.979 0.0103 0.0728 0.0854 0.0569 0.0309 2.63e-04 1.26e-04 39 6.39 3.64 0.0782
Compact Watershed 0.316 0.0829 0.977 0.0101 0.0565 0.0580 0.0566 0.0313 1.35e-04 4.01e-05 126 0.00 0.0736 4.55e-03
TB (Ours) 0.745 0.0972 0.944 0.0222 0.0344 0.0326 0.0811 0.0300 1.27e-05 2.26e-05 87.6 21.0 0.388 0.0642

NYUV2

Felzenszwalbs 0.540 0.0593 0.929 0.0175 1.41e-03 1.73e-03 0.0824 0.0159 5.18e-05 7.69e-05 580 178 0.334 0.0228
SLIC 0.193 0.0212 0.975 6.69e-03 2.23e-04 1.56e-04 0.0712 0.0168 3.56e-06 1.31e-07 388 2.36 0.338 6.71e-03
Quickshift 0.233 0.0349 0.970 7.93e-03 1.92e-04 1.76e-04 0.0756 0.0150 1.98e-05 4.67e-06 169 19.0 3.99 0.0647
Compact Watershed 0.242 0.0396 0.968 8.49e-03 2.78e-04 2.15e-04 0.0736 0.0160 4.37e-05 9.47e-06 192 0.00 0.154 7.28e-03
TB (Ours) 0.445 0.0800 0.941 0.0200 8.20e-04 6.60e-04 0.0872 0.0164 2.24e-05 2.07e-05 74.2 12.5 0.687 0.0942

6.2 PROCESSING 3D BRAINS

We examined if TB would be affected by the 3D structure of the brain. Here, we used T1 images
from HCP (Van Essen et al., 2013) containing 1,200 subjects, which are widely common in MR
experiments. These images can have millions of voxels and intricate underlying anatomy. HCP has
multi-modal neuroimaging and behavioral data of young adult subjects aged 22-35 at 3 Tesla (3T).
Dimensions are 260 × 311 × 260 with a voxel resolution of 0.7 mm3. The features used are the
x, y, z scanner coordinates of each voxel and intensity w of the image. To balance the features we
multiplied the ws by 3. Therefore, matrix X is now a 2D array of shape 21,023,600 ×4. θ value is
150. In Fig. 7, we see the results of this experiment. TB takes only, on average, 17.38 seconds to
cluster this dataset. The clustering labels match well with the underlying anatomy (A-C). In addition,
we built a new image from the labels where each voxel is replaced with its corresponding centroid w
value (B). The results match the original anatomy without blurring the edges. Notably, a single label

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 7: TB processing 1,000 3D brain images (θ150). A) Original HCP data, subject 102008, b) Reconstructed
image of the same from TB output (contains only 5 unique intensity values), c) Clusters found (5 clusters), D)
Statistical analysis and summary for all participants. TB consistently produces 5 clusters keeping the white
matter solid (87% overlap). Each image contains 21 million voxels and is clustered in 17.38 sec (avg).

is used for most of the white matter. The experiment shows that TB can process millions of features
in seconds, providing meaningful results. The compression ratio achieved is 26.6X. 160MB (original
size), 147 MB (GZip) and 6 MB (GZip after TB). More details, including results at different θ and
comparisons against other methods are available at section A.18 (see Fig. A46).

6.3 PATTERN RECOGNITION IN TIME AND HIGH DIMENSIONS

A series of experiments studying the ability of TB to find repeating patterns in familiar signals and
real publicly available ECG data (Wagner et al., 2020) is reported in section A.5. TB shows a striking
ability to find all sorts of patterns in the data unaffected by artifacts and noise, as shown in section
A.20. Another important experiment is to see how TB performs with high-dimensional data. For
this purpose, we used 100 thousand text embeddings with 1024 dimensions from Hugging Face see
details in section A.19. TB was able to achieve the highest scores while using the least amount of
memory.

7 DISCUSSION

In this work, a new algorithmic set around Thetan Berserker (TB) was introduced. TB demonstrates
an important advantage in terms of both speed and memory use. In addition, TB shows an increase
in accuracy across many evaluation metrics, simulations, benchmarks, and real data experiments.
Another surprising fact about TB is that it is able to provide highly accurate low-level segmentation.
This is indeed surprising because we simply provided the location and intensity of each pixel as input.
Usually, superpixel algorithms are specifically tailored for superpixel problems and highly optimized
for that specific purpose. However, TB does not have this requirement nor was it built for that task
in mind. Nonetheless, it generates useful superpixels at acceptable times. More importantly, the
results match well the underlying images simplifying the underlying representations in a meaningful
manner. Similarly, we achieve great overall segmentations for 3D imaging data. Both types of data
are remarkably hard to process. Nonetheless, TB identifies the relevant structures in the data without
compromising edges, which achieves an outstanding compression ratio (see Fig. 7). However, TB
is also anticipated to struggle with the curse of dimensionality as any other clustering method. We
were happy to report results in grouping text embedding of up to 1024 dimensions. TB is not bound
by density limits in the same way that MeanShift, HDBSCAN, and DBSCAN do, as distributions
become sparser when dimensions increase. It is also not bound to be affected by outliers as KMeans.
TB outperformed KMeans++ seeding. TB is still aimed for linearly separable clusters and it will not
perform well on nonlinearly separable clustering problems. In these cases, TBSCAN should be used
instead (see Tab. A3). The proposed approach is general purpose and can be used across data science.
More importantly, it provides some theoretical ground for the AI community to rethink and rework
unsupervised learning. The code will be available on GitHub upon acceptance for publication.

8 CONCLUSION

Thetan Berserker (TB) is as uniquely accurate as a fast clustering algorithm. In addition, TB
enables widely used algorithms by improving their conditioning and initialization. Important real-
world applications were demonstrated, such as the segmentation of natural images, edge-preserving
compression of magnetic resonance data, and grouping of text embeddings. TB outperformed more
than 20 methods across 30 experiments.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Radhakrishna Achanta, Appu Shaji, Kevin Smith, Aurelien Lucchi, Pascal Fua, and Sabine Süsstrunk.
Slic superpixels compared to state-of-the-art superpixel methods. IEEE transactions on pattern
analysis and machine intelligence, 34(11):2274–2282, 2012.

Saeed Aghabozorgi, Ali Seyed Shirkhorshidi, and Teh Ying Wah. Time-series clustering–a decade
review. Information Systems, 53:16–38, 2015.

Shikha Agrawal and Jitendra Agrawal. Survey on anomaly detection using data mining techniques.
Procedia Computer Science, 60:708–713, 2015.

Mihael Ankerst, Markus M Breunig, Hans-Peter Kriegel, and Jörg Sander. Optics: Ordering points to
identify the clustering structure. ACM Sigmod record, 28(2):49–60, 1999.

Pablo Arbelaez, Michael Maire, Charless Fowlkes, and Jitendra Malik. Contour detection and
hierarchical image segmentation. IEEE Trans. Pattern Anal. Mach. Intell., 33(5):898–916, May
2011. ISSN 0162-8828. doi: 10.1109/TPAMI.2010.161. URL http://dx.doi.org/10.
1109/TPAMI.2010.161.

David Arthur and Sergei Vassilvitskii. k-means++: the advantages of careful seeding. In Proceed-
ings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’07, pp.
1027–1035, USA, 2007. Society for Industrial and Applied Mathematics. ISBN 9780898716245.

James C Bezdek, Robert Ehrlich, and William Full. Fcm: The fuzzy c-means clustering algorithm.
Computers & geosciences, 10(2-3):191–203, 1984.

Ricardo JGB Campello, Davoud Moulavi, and Jörg Sander. Density-based clustering based on
hierarchical density estimates. In Pacific-Asia conference on knowledge discovery and data mining,
pp. 160–172. Springer, 2013.

Mathilde Caron, Piotr Bojanowski, Armand Joulin, and Matthijs Douze. Deep clustering for unsuper-
vised learning of visual features. In Proceedings of the European Conference on Computer Vision
(ECCV), pp. 132–149, 2018.

Dorin Comaniciu and Peter Meer. Mean shift: A robust approach toward feature space analysis.
IEEE Transactions on pattern analysis and machine intelligence, 24(5):603–619, 2002.

Jian Di and Xinyue Gou. Bisecting k-means algorithm based on k-valued selfdetermining and
clustering center optimization. J. Comput., 13(6):588–595, 2018.

Jiangyong Duan and Lili Guo. Variable-length subsequence clustering in time series. IEEE Trans-
actions on Knowledge and Data Engineering, 34(2):983–995, 2022. doi: 10.1109/TKDE.2020.
2986965.

Delbert Dueck. Affinity propagation: clustering data by passing messages. University of Toronto
Toronto, ON, Canada, 2009.

Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. A density-based algorithm for
discovering clusters in large spatial databases with noise. In Kdd, volume 96(34), pp. 226–231,
1996.

Pedro F Felzenszwalb and Daniel P Huttenlocher. Efficient graph-based image segmentation. Inter-
national journal of computer vision, 59:167–181, 2004.

Marek Gagolewski. A framework for benchmarking clustering algorithms. SoftwareX, 20:101270,
2022. ISSN 2352-7110. doi: https://doi.org/10.1016/j.softx.2022.101270. URL https://www.
sciencedirect.com/science/article/pii/S2352711022001881.

Eleftherios Garyfallidis, Matthew Brett, Marta Morgado Correia, Guy B Williams, and Ian Nimmo-
Smith. Quickbundles, a method for tractography simplification. Frontiers in neuroscience, 6:175,
2012.

Sudipto Guha, Rajeev Rastogi, and Kyuseok Shim. Cure: An efficient clustering algorithm for large
databases. ACM Sigmod record, 27(2):73–84, 1998.

11

http://dx.doi.org/10.1109/TPAMI.2010.161
http://dx.doi.org/10.1109/TPAMI.2010.161
https://www.sciencedirect.com/science/article/pii/S2352711022001881
https://www.sciencedirect.com/science/article/pii/S2352711022001881

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Fan Liu and Yong Deng. Determine the number of unknown targets in open world based on elbow
method. IEEE Transactions on Fuzzy Systems, 29(5):986–995, May 2021. ISSN 1941-0034. doi:
10.1109/TFUZZ.2020.2966182.

Stuart Lloyd. Least squares quantization in pcm. IEEE transactions on information theory, 28(2):
129–137, 1982.

Jie Lu, Dianshuang Wu, Mingsong Mao, Wei Wang, and Guangquan Zhang. Recommender system
application developments: a survey. Decision Support Systems, 74:12–32, 2015.

Nicos Maglaveras, Telemachos Stamkopoulos, Konstantinos Diamantaras, Costas Pappas, and
Michael Strintzis. Ecg pattern recognition and classification using non-linear transformations and
neural networks: A review. International journal of medical informatics, 52(1-3):191–208, 1998.

David R Martin, Charless C Fowlkes, and Jitendra Malik. Learning to detect natural image boundaries
using local brightness, color, and texture cues. IEEE transactions on pattern analysis and machine
intelligence, 26(5):530–549, 2004.

Leland McInnes and John Healy. Accelerated hierarchical density based clustering. In 2017 IEEE
international conference on data mining workshops (ICDMW), pp. 33–42. IEEE, 2017.

Nina Mishra, Robert Schreiber, Isabelle Stanton, and Robert E Tarjan. Clustering social networks. In
International Workshop on Algorithms and Models for the Web-Graph, pp. 56–67. Springer, 2007.

T.K. Moon. The expectation-maximization algorithm. IEEE Signal Processing Magazine, 13(6):
47–60, 1996. doi: 10.1109/79.543975.

Alastair P Moore, Simon JD Prince, Jonathan Warrell, Umar Mohammed, and Graham Jones.
Superpixel lattices. In 2008 IEEE conference on computer vision and pattern recognition, pp. 1–8.
IEEE, 2008.

Kasper Overgaard Mortensen, Fatemeh Zardbani, Mohammad Ahsanul Haque, Steinn Ymir Agusts-
son, Davide Mottin, Philip Hofmann, and Panagiotis Karras. Marigold: Efficient k-means clustering
in high dimensions. Proc. VLDB Endow., 16(7):1740–1748, March 2023. ISSN 2150-8097. doi:
10.14778/3587136.3587147. URL https://doi.org/10.14778/3587136.3587147.

Michal Moshkovitz, Sanjoy Dasgupta, Cyrus Rashtchian, and Nave Frost. Explainable k-means and
k-medians clustering. In International conference on machine learning, pp. 7055–7065. PMLR,
2020a.

Michal Moshkovitz, Sanjoy Dasgupta, Cyrus Rashtchian, and Nave Frost. Explainable k-means
and k-medians clustering. In Hal Daumé III and Aarti Singh (eds.), Proceedings of the 37th
International Conference on Machine Learning, volume 119 of Proceedings of Machine Learning
Research, pp. 7055–7065. PMLR, 13–18 Jul 2020b. URL https://proceedings.mlr.
press/v119/moshkovitz20a.html.

Fionn Murtagh and Pierre Legendre. Ward’s hierarchical agglomerative clustering method: which
algorithms implement ward’s criterion? Journal of classification, 31:274–295, 2014.

Pushmeet Kohli Nathan Silberman, Derek Hoiem and Rob Fergus. Indoor segmentation and support
inference from rgbd images. In ECCV, 2012.

Peer Neubert and Peter Protzel. Superpixel benchmark and comparison. In Proc. Forum Bildverar-
beitung, volume 6, pp. 1–12, 2012.

Peer Neubert and Peter Protzel. Compact watershed and preemptive slic: On improving trade-offs of
superpixel segmentation algorithms. In 2014 22nd international conference on pattern recognition,
pp. 996–1001. IEEE, 2014.

Raymond T. Ng and Jiawei Han. Clarans: A method for clustering objects for spatial data mining.
IEEE transactions on knowledge and data engineering, 14(5):1003–1016, 2002.

Andrei V Novikov. Pyclustering: Data mining library. Journal of Open Source Software, 4(36):1230,
2019.

12

https://doi.org/10.14778/3587136.3587147
https://proceedings.mlr.press/v119/moshkovitz20a.html
https://proceedings.mlr.press/v119/moshkovitz20a.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Adeiza James Onumanyi, Daisy Nkele Molokomme, Sherrin John Isaac, and Adnan M. Abu-Mahfouz.
Autoelbow: An automatic elbow detection method for estimating the number of clusters in a
dataset. Applied Sciences, 12(15), 2022. ISSN 2076-3417. doi: 10.3390/app12157515. URL
https://www.mdpi.com/2076-3417/12/15/7515.

Umut Orhan, Mahmut Hekim, and Mahmut Ozer. Eeg signals classification using the k-means
clustering and a multilayer perceptron neural network model. Expert Systems with Applications,
38(10):13475–13481, 2011.

Bidyut Kr Patra, Sukumar Nandi, and P Viswanath. A distance based clustering method for arbitrary
shaped clusters in large datasets. Pattern Recognition, 44(12):2862–2870, 2011.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

Eduardo Machado Real, Maria Do Carmo Nicoletti, and Osvaldo Luiz De Oliveira. A closer look into
sequential clustering algorithms and associated post-processing refinement strategies. Int. J. Innov.
Comput. Appl., 6(1):1–12, August 2014. ISSN 1751-648X. doi: 10.1504/IJICA.2014.064214.
URL https://doi.org/10.1504/IJICA.2014.064214.

Peter J Rousseeuw. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis.
Journal of computational and applied mathematics, 20:53–65, 1987.

Michael C Rush and Joyce EA Russell. Leader prototypes and prototype-contingent consensus in
leader behavior descriptions. Journal of Experimental Social Psychology, 24(1):88–104, 1988.

Alexander Schick, Mika Fischer, and Rainer Stiefelhagen. Measuring and evaluating the compact-
ness of superpixels. In Proceedings of the 21st international conference on pattern recognition
(ICPR2012), pp. 930–934. IEEE, 2012.

Erich Schubert, Jörg Sander, Martin Ester, Hans Peter Kriegel, and Xiaowei Xu. Dbscan revisited,
revisited: why and how you should (still) use dbscan. ACM Transactions on Database Systems
(TODS), 42(3):1–21, 2017.

M Steinbach and G Karypis. V. kumar,“a comparison of document clustering techniques”. In
Proceeding of Text Mining Workshop, KDD, 2000.

David Stutz, Alexander Hermans, and Bastian Leibe. Superpixels: An evaluation of the state-of-the-
art. Computer Vision and Image Understanding, 166:1–27, 2018.

Sergios Theodoridis and Konstantinos Koutroumbas. Pattern Recognition. Elsevier Science Limited,
2006.

Robert Tibshirani, Guenther Walther, and Trevor Hastie. Estimating the number of clusters in
a data set via the gap statistic. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 63(2):411–423, 2001. doi: https://doi.org/10.1111/1467-9868.00293. URL https:
//rss.onlinelibrary.wiley.com/doi/abs/10.1111/1467-9868.00293.

Kushal Tirumala, Daniel Simig, Armen Aghajanyan, and Ari Morcos. D4: Improving llm pretraining
via document de-duplication and diversification. Advances in Neural Information Processing
Systems, 36:53983–53995, 2023.

Lyle H Ungar and Dean P Foster. Clustering methods for collaborative filtering. In AAAI workshop
on recommendation systems, volume 1, pp. 114–129. Menlo Park, CA, 1998.

Michael Van den Bergh, Xavier Boix, Gemma Roig, and Luc Van Gool. Seeds: Superpixels extracted
via energy-driven sampling. International Journal of Computer Vision, 111:298–314, 2015.

Stéfan van der Walt, Johannes L. Schönberger, Juan Nunez-Iglesias, François Boulogne, Joshua D.
Warner, Neil Yager, Emmanuelle Gouillart, Tony Yu, and the scikit-image contributors. scikit-
image: image processing in Python. PeerJ, 2:e453, 6 2014. ISSN 2167-8359. doi: 10.7717/peerj.
453. URL https://doi.org/10.7717/peerj.453.

13

https://www.mdpi.com/2076-3417/12/15/7515
https://doi.org/10.1504/IJICA.2014.064214
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/1467-9868.00293
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/1467-9868.00293
https://doi.org/10.7717/peerj.453

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

David C Van Essen, Stephen M Smith, Deanna M Barch, Timothy EJ Behrens, Essa Yacoub, Kamil
Ugurbil, Wu-Minn HCP Consortium, et al. The wu-minn human connectome project: an overview.
Neuroimage, 80:62–79, 2013.

Andrea Vedaldi and Stefano Soatto. Quick shift and kernel methods for mode seeking. In Computer
Vision–ECCV 2008: 10th European Conference on Computer Vision, Marseille, France, October
12-18, 2008, Proceedings, Part IV 10, pp. 705–718. Springer, 2008.

Ulrike Von Luxburg. A tutorial on spectral clustering. Statistics and computing, 17:395–416, 2007.

Patrick Wagner, Nils Strodthoff, Ralf-Dieter Bousseljot, Dieter Kreiseler, Fatima Lunze, Wojciech
Samek, and Tobias Schaeffter. Ptb-xl, a large publicly available electrocardiography dataset.
Scientific Data, 7:154, 2020. doi: 10.1038/s41597-020-0495-6. URL https://doi.org/10.
1038/s41597-020-0495-6.

Rui Xu and Donald C Wunsch. Clustering algorithms in biomedical research: a review. IEEE reviews
in biomedical engineering, 3:120–154, 2010.

Tian Zhang, Raghu Ramakrishnan, and Miron Livny. Birch: an efficient data clustering method for
very large databases. ACM sigmod record, 25(2):103–114, 1996.

Ying Zhao and George Karypis. Data clustering in life sciences. Molecular biotechnology, 31:55–80,
2005.

14

https://doi.org/10.1038/s41597-020-0495-6
https://doi.org/10.1038/s41597-020-0495-6

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 APPARENT CENTROID METRIC

In this work, Apparent Centroid distance (AC) was introduced as a strict criterion to evaluate
clustering results using the predicted centroids.

The metric is calculated as follows. The complete distance matrix between all estimated and ground
truth centroids is created. We count the number of centroids close to the ground truth as being less
than a pre-specified threshold. AC is bounded between 0 and 1. The recommended threshold is at
10% of the circumscribed radius of size θ. 0.1 is used for all relevant experiments. AC drops quickly
when even a small number of incorrect centroids are found. This is not the case with other metrics
that were reported. This allows a quantifiable identification of issues that are rather easy for humans
but hard for other metrics to catch. See Fig. A4-A15 and corresponding Tab. 1.

A.2 HYPER-PARAMETER SELECTION AND SENSITIVITY

Figure A1: θ is often easier to find than K. The correct number of clusters and corresponding θ ranges were
identified in the highlighted regions.

In this experiment, two-dimensional normal distributions of identity covariance matrices are added in
a grid of either axes of dimensions -22 to 22 separated in 5 equal spaces (see Fig. A1-Left) or -15 to
15 at 5 equidistant spaces (see Fig. A1-Right). The left has clusters with more space in between them,
and the right has less, i.e., clusters are closer. 100 points were sampled from each distribution in each
grid position. Note that the true number of clusters is 25, and in both cases, it is easy to find just by
looking at the plateaus of Fig. A1. Therefore, θ can be robust in areas capturing the correct number
of clusters (see highlight). In summary, there are only 4-5 plateaus in both diagrams. The alternative
would be to search K in a brute-force manner. Such plots as that of Fig. A1 can be further improved
by calculating the sum of intra-class differences. This allows us to even separate between the few
plateaus. For example, the best plateau will also have the minimum sum of intra-class distances (also
known as WCSS, within-cluster sum of squares).

A.3 LARGE SIMULATION EXPERIMENT - PARAMETERS

The following parameters were used for each method of the large comparisons experiment. Most
methods have many parameters. For parameters not reported it means that the default options were
used. Gaussian Mixture Models (tied covariance, maxiter=200, 5 initializations) (Moon, 1996), TB
(θ 3.6), TS (θ 3.6), (θ 3.6), TSR (θ 3.6, R 10), TBSCAN (θ 3.6, eps 2, min_samples 1), Bisecting
KMeans (I 1, K 300), DBSCAN (eps 0.5 and min_samples 40), HDBSCAN (min_samples 40),
KMeans++ (I 1, K 300), MeanShift (bandwidth 2.6), TBK (θ 3.6, K 300), FCM (n_clusters 300,
expon 2, error 0.005, maxiter 1000) (Bezdek et al., 1984), MeanShift++ (bandwidth 3.4, threshold
0.00001, I 1000), OPTICS (min_samples 40, xi 0.05, min_cluster_size=5) (Ankerst et al., 1999),
BSAS(theta 3.6, K 300), MBSAS (theta 3.6, K 300), TTSAS (threshold1 3.6, threshold2 4), BIRCH
(threshold 2.5, branching_factor 500, n_clusters=K), CURE(n_clusters K, rep_points 1, compression
1) (Guha et al., 1998), KMedians (K 300) (Moshkovitz et al., 2020b), CLARANS (K 300, numlocal
6, maxneighbor 4) (Ng & Han, 2002). Note that KMedoids (Moshkovitz et al., 2020a), Affinity
Propagation (Dueck, 2009), Spectral Clustering (Von Luxburg, 2007) and Hierarchical Clustering
cannot run in this experiment due to extensive memory requirements (> 100 GBytes of RAM).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Figure A2: Summary plots with notable observations. Reporting AC, NMI, SIL, FMS, #clusters, runtime
(duration in seconds), and peak memory (MBytes). Comparisons between families of algorithms that are
distance-based and have common ground with TB. Note that TB has the highest scores while having the second
fastest runtime after TS. For a complete list of comparisons, see Table 1.

Figure A3: Comparisons between the 6 top performing algorithms in regards to AC. Note that TB
matches the performance of algorithms while being 2484X faster and using 5X less memory than
MeanShift and 342X faster and using 23X less memory than HDBSCAN. For a complete list of
comparisons, see Table 1.

A.4 LARGE SIMULATION EXPERIMENT - VISUALS

In support of the large comparisons experiment of section 5.1, we present visual results of a range of
algorithms. Different colors encode different clusters. Blue crosses ground truth centroids, and red
crosses encode estimated centroids (see Fig. A4-A15).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Figure A4: BIRCH (threshold 2.5, branching_factor 500, n_clusters 300)

Figure A5: Bisecting KMeans (1 random initialization, K 300)

Figure A6: CLARANS (K 300, numlocal 6, maxneighbor 4)

Figure A7: CURE (n_clusters 300, rep_points 1, compression 1)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Figure A8: DBSCAN (eps 0.5, min_samples 40)

Figure A9: KMeans (K 300, 1 random initialization)

Figure A10: MeanShift (bandwidth 2.6)

Figure A11: MeanShift++ (bandwidth 3.4, threshold 0.00001, iterations 1000)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Figure A12: TB (θ 3.6)

Figure A13: TBK (θ 3.6)

Figure A14: TBSCAN (θ 3.6, eps 2, min_samples 1)

Figure A15: BSAS (θ 3.6, K 300)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

A.5 SIGNAL PROCESSING OF TIME SERIES

The ability of TB to identify patterns in one-dimensional signals that change over time is demonstrated
here. For this purpose, common signals such as sine, pulses, or combined sine and pulse signals are
used. In addition, real publicly available PTB-XL Electrocardiography (ECG) datasets (Wagner et al.,
2020) are used. Fig. A16 to A23, show results obtained using TB. For Figs. A16 to A18, a small
sliding window of 3, 5, and 3 is used, respectively. This sliding window becomes TB’s feature space.
The signal is normalized so that the two axes are relevant. Therefore, we move from a 1D signal to a
2D array X where the number of rows is as many as the samples of the signal and the number of
columns is the size of the sliding window. TB is then applied to this 2D array with θ values of 90,
130, and 95, respectively. Note that TB is identifying accurately the patterns in the signal. The colors
correspond to different clustering labels.

For ECG Signals, two types of pre-processing were performed. In the first type of pre-processing, a
Gaussian filter was used with σ = 9 (see Fig. A19), σ = 6 (see Fig. A20) and σ = 11 (see Fig. A21).
Sliding windows of sizes 3, 7, and 3 were used, respectively. In the second type of pre-processing,
i.e., for Fig. A22 and Fig. A23, the entire dataset is used along with time as the feature space. Sliding
windows and Gaussian filter were not used in this method. The θ values that were used are 1, 6, 26,
90, and 50, respectively. The signal was normalized in both cases by scaling the data by 100. As
shown in Fig. A16 to A23, TB with L2 is able to identify the patterns in the signal without needing
to calculate the derivatives (Duan & Guo, 2022). In the case of the PTB-XL ECG dataset, TB is able
to identify the QRS and T-wave together (Fig. A19) or as QR, RS, and T-wave separately (Fig. A20)
or as QRS and T-wave separately (Fig. A21) (Maglaveras et al., 1998). Alternatively, the full cardiac
cycles are also captured as discrete groups (see Fig. A22 and Fig. A23).

Figure A16: Patterns in Sine wave identified with TB.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Figure A17: Patterns in Pulse signals identified with TB

Figure A18: Patterns in Combined signal identified with TB

Figure A19: QRS and T-wave patterns identified together in ECG signals using TB

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Figure A20: QR, RS, and T-wave patterns identified separately in ECG signals using TB

Figure A21: QRS and T-wave patterns identified together in ECG signals using TB

Figure A22: Full cardiac cycles in ECG signals identified with TB

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Figure A23: Full cardiac cycles in ECG signals identified with TB

A.6 ADDITIONAL INFORMATION ON BENCHMARKS

The experimental setups are shown in Fig. A24. In addition, the official benchmarking scores are
provided in Tab. A1, Tab. A2 and Tab. A3. The parameters used for the linearly and non-linearly
separable datasets shown in section 5.2 are summarized in the tables below.

Tab. A1 demonstrates exceptional performance across all metrics (NCA, RI, FM, ARI, NMI) by TB
method, achieving nearly perfect clustering results with remarkably low runtime compared to K-
means, Birch, and Meanshift. TB consistently outperforms the other algorithms in efficiency, making
it ideal for real-time or resource-constrained scenarios. However, TB may not inherently support
non-linear separability, which could limit its application to datasets with more complex structures.
TBSCAN has been introduced for this exact reason. As we can observe on table A2, TBSCAN stands
out by maintaining excellent clustering performance (NCA, RI, FM, ARI, NMI), rivaling HDBSCAN
and Agglomerative Clustering (single linkage), but with significantly lower runtime. A small note
that other linkage type (ward, complete, average) has been tested with Agglomerative Clustering.
However, we could not achieve excellent clustering so they had to be disclosed for a fair comparison.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Figure A24: Linear and Non-Linear datasets used for the benchmark experiments

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Table A1: Performance Comparisons of Linear benchmarks.
TB on Linearly Separable Datasets

Dataset Clusters Runtime ↓ NCA ↑ RI ↑ FM ↑ ARI ↑ NMI ↑
circles 4/4 0.00091 1.0 1.0 1.0 1.0 1.0
z3 4/4 0.00053 1.0 1.0 1.0 1.0 1.0
birch1 101/100 0.07872 0.97 0.99 0.97 0.96 0.98
mk1 3/3 0.00017 0.99 0.99 0.99 0.98 0.98
trajectories 4/4 0.00219 0.99 0.99 0.99 0.99 0.99
x1 3/3 0.00013 1.0 1.0 1.0 1.0 1.0
a1 24/20 0.00091 0.81 0.99 0.99 0.95 0.96
r15 8/8 0.00031 1.0 1.0 1.0 1.0 1.0

K-means on Linearly Separable Datasets
Dataset Clusters Runtime ↓ NCA ↑ RI ↑ FM ↑ ARI ↑ NMI ↑
circles 4/4 0.00634179 1.0 1.0 1.0 1.0 1.0
z3 4/4 0.00363559 1.0 1.0 1.0 1.0 1.0
birch1 100/100 0.53998762 0.95681 0.99888 0.96278 0.94378 0.97568
mk1 3/3 0.00116613 0.99502 0.99556 0.99668 0.98998 0.98299
trajectories 4/4 0.01502252 0.99987 0.99990 0.99993 0.99973 0.99936
x1 3/3 0.00089175 1.0 1.0 1.0 1.0 1.0
a1 25/20 0.00624223 0.98282 0.99682 0.99833 0.96634 0.97381
r15 8/8 0.00212648 1.0 1.0 1.0 1.0 1.0

Birch on Linearly Separable Datasets
Dataset Clusters Runtime ↓ NCA ↑ RI ↑ FM ↑ ARI ↑ NMI ↑
circles 4/4 0.01960280 1.0 1.0 1.0 1.0 1.0
z3 4/4 0.01141702 1.0 1.0 1.0 1.0 1.0
birch1 100/100 1.69575003 0.89768 0.91556 0.9602470 0.95321 0.966945
mk1 3/3 0.00366206 0.99502 0.99556 0.99668 0.98998 0.98299
trajectories 4/4 0.04717597 1.0 1.0 1.0 1.0 1.0
x1 3/3 0.0028004 1.0 1.0 1.0 1.0 1.0
a1 23/20 0.0196028 0.79705 0.99222 0.99591 0.91804 0.95122
r15 8/8 0.00667788 1.0 1.0 1.0 1.0 1.0

Meanshift on Linearly Separable Datasets
Dataset Clusters Runtime ↓ NCA ↑ RI ↑ FM ↑ ARI ↑ NMI ↑
circles 4/4 2.64446 1.0 1.0 1.0 1.0 1.0
z3 4/4 1.54018 1.0 1.0 1.0 1.0 1.0
birch1 101/100 228.76032 0.96543 0.981043 0.960004 0.957838 0.9785959
mk1 3/3 0.49402 0.99 0.99 0.99 0.98 0.98
trajectories 4/4 6.36414 0.99 0.99 0.99 0.99 0.99
x1 3/3 0.37778 1.0 1.0 1.0 1.0 1.0
a1 25/20 2.64446 0.86 0.98 0.97 0.96 0.97
r15 8/8 0.90086 1.0 1.0 1.0 1.0 1.0

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Table A2: Performance Comparisons of Non-Linear benchmarks.
TBSCAN on Non-Linearly Separable Datasets

Dataset Clusters Runtime ↓ NCA ↑ RI ↑ FM ↑ ARI ↑ NMI ↑
windows 5/5 0.007092875 1.0 1.0 1.0 1.0 1.0
square 2/2 0.001162792 1.0 1.0 1.0 1.0 1.0
wingnut 2/2 0.001298250 1.0 1.0 1.0 1.0 1.0
zigzag 3/3 0.000820125 1.0 1.0 1.0 1.0 1.0
target 6/6 0.002047375 1.0 1.0 1.0 1.0 1.0
lsun 3/3 0.001416042 1.0 1.0 1.0 1.0 1.0
mk2 2/2 0.003112458 1.0 1.0 1.0 1.0 1.0

HDBSCAN on Non-Linearly Separable Datasets
Dataset Clusters Runtime ↓ NCA ↑ RI ↑ FM ↑ ARI ↑ NMI ↑
windows 5/5 0.038237875 1.0 1.0 1.0 1.0 1.0
square 2/2 0.016157084 1.0 1.0 1.0 1.0 1.0
wingnut 2/2 0.019175417 1.0 1.0 1.0 1.0 1.0
zigzag 3/3 0.002936958 1.0 1.0 1.0 1.0 1.0
target 3/6 0.006192208 0.50000 0.99982 0.99982 0.99963 0.98602
lsun 3/3 0.004924541 1.0 1.0 1.0 1.0 1.0
mk2 2/2 0.017242167 1.0 1.0 1.0 1.0 1.0

Agglomerative Clustering (Single Linkage) on Non-Linearly Separable Datasets
Dataset Clusters Runtime ↓ NCA ↑ RI ↑ FM ↑ ARI ↑ NMI ↑
windows 5/5 0.029719333 1.0 1.0 1.0 1.0 1.0
square 2/2 0.005899709 1.0 1.0 1.0 1.0 1.0
wingnut 2/2 0.006111000 1.0 1.0 1.0 1.0 1.0
zigzag 3/3 0.001121333 1.0 1.0 1.0 1.0 1.0
target 6/6 0.004177458 1.0 1.0 1.0 1.0 1.0
lsun 3/3 0.002066667 1.0 1.0 1.0 1.0 1.0
mk2 2/2 0.005654750 1.0 1.0 1.0 1.0 1.0

Spectral Clustering on Non-Linearly Separable Datasets
Dataset Clusters Runtime ↓ NCA ↑ RI ↑ FM ↑ ARI ↑ NMI ↑
windows 5/5 3.573450375 0.76499 0.56371 0.68490 0.08047 0.36880
square 2/2 0.568301875 0.61350 0.56802 0.47644 0.13638 0.25496
wingnut 2/2 0.374673375 0.86220 0.87157 0.87170 0.74314 0.63820
zigzag 3/3 0.023156958 0.47152 0.70699 0.80126 0.30452 0.46853
target 6/6 0.502081875 0.28023 0.69488 0.67860 0.39250 0.48070
lsun 3/3 0.296371333 0.87513 0.89550 0.91390 0.78268 0.80938
mk2 2/2 0.460497625 0.08236 0.50286 0.50228 0.00573 0.00488

Table A3: Performance Comparisons on Digits dataset between TB and HC.
Methods Clusters Runtime ↓ Peak Memory ↓ NCA ↑ RI ↑ FM ↑ ARI ↑ NMI ↑
HC-Ward 10/10 0.028286958 13.8585 0.5896 0.9049 0.9467 0.5129 0.6291
HC-Average 10/10 0.027868458 13.8541 0.5383 0.8526 0.9151 0.4179 0.6139
HC-Complete 10/10 0.025582417 13.8534 0.4858 0.8589 0.9194 0.3844 0.5702
HC-Single 10/10 0.014241500 13.8534 0.1960 0.2801 0.4478 0.0447 0.2418
TB 10/10 0.000827417 0.1469 0.5222 0.8425 0.9092 0.3749 0.5752

Table A4: TB/TBSCAN Parameters for Linearly/Non-Linearly Separable Datasets experiments

Linear
Dataset θ

Non-Linear
Dataset θ

Min
Samples EPS

circles 1.2 trajectories 0.1 1 0.3
z3 1.1 windows 0.1 1 0.3
birch1 0.25 square 0.2 1 0.4
mk1 1.5 wingnut 0.25 1 0.42
unbalance 0.35 zigzag 0.25 1 0.5
x1 1 target 0.1 1 0.5
a1 0.3 lsun 0.1 1 0.35
r15 1 mk2 0.05 1 0.35

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

A.7 ADDITIONAL SUPERPIXEL EXPERIMENTS

Additional information on superpixel segmentation is provided here. Fig. A25 compares TB against
KMeans++, MeanShift and MeanShift++. Superpixel labels and the averaged images are shown
using two examples from the BSD500 (first and second row) and NYUV2 dataset (third and fourth
row).

Fig. A26 presents how the change in number of superpixels (or clusters) affects established superpixel
segmentation scores. Here, SLIC with different parameters is compared against TB, MeanShift, and
MeanShift++. KMeans++ was excluded from this experiment due to the long runtime of the method.
The metrics were evaluated on the BSD500 dataset. Since the dataset contains multiple labels per
image, the metrics were first calculated for all labels of the image and averaged. The value on the
plot shows the average of such values from 500 images of the dataset.

Figure A25: Superpixel comparison against other clustering methods

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Figure A26: The plot shows how methods perform on superpixel tasks across different metrics.

A.8 PROVING RUNTIME

Theorem 3 The runtime complexity of Thetan Berseker (TB) in regards to distance calls is in the
range of O (n) to O (n2).

Figure A27: Thetan Berserker’s runtime complexity is bounded between O(n) and O(n2).

Proof Thetan Berserker (TB) consists of 4 steps as described in the ablation study (see Fig. 3A).
Two of the steps run Thetan Sequential (TS steps), and two-run centroid updates and relabeling (CL

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

steps). We define N as the total number of samples and K as the total number of clusters. In order to
connect to the previous definitions, we will use T (N)/O(N) rather than T (n)/O(n). In addition, we
will omit D (feature space size) for now, given that we look at complexity in regard to distance calls.

The worst Big-O time complexity for Thetan Sequential is O (N2). This is because most of the
compute time is spent on distance computations. Therefore in the case where each sample is a
different cluster, we obtain a total of 1 + 2 + 3 + ... + N − 1 = N(N − 1)/2 = N2/2 − N/2
distances. This will run in length two times for TB.

The second time, the centroids are pre-pended to the sample datasets; therefore, the total number of
distance computations will be 1 + 2 + 3 + ...+N¯1.

The CL steps of TB allow the merging of centroids and update labels. The first part of CL involves
running TS only on the M generated centroids. This will merge any centroids that have a neighbor
centroid at a distance closer than θ. The relabel step (RE) will update the final labels to account for
the centroid updates. There are as many labels as the number of samples N . However, unique labels
are only M . Putting all these together, we can study the best, worst, and average time complexity.

In the worst case, every sample is a singleton cluster, and for this reason, K = N . We can now
separate the distance calls for each step of the algorithm.

Worst case K = N ,

T (N) =

1 + 2 + · · ·+ (N − 1) TS1(X)

+ 1 + 2 + · · ·+ (N − 1) TS1(M)

+ 0 RE1(N)

+ 1 + 2 + · · ·+ (N − 1)

+N +N + · · ·+N

+ 1 + 2 + · · ·+ (N − 1) TS2(M)

+ 0 RE2(N)

CL1

TS2(M +X)

CL2

]

]

]

]
]
]

]

]

Because there is nothing to relabel, the number of distance calls is 0. Therefore T (N) = 4N2/2−
4N/2 +N2 = 3N2 − 2N which means that worst case Big-O for runtime is O (N2). The best case
takes place when the data is represented by a single cluster. Best case K = 1,

T (N) =

1 + 1 + · · ·+ 1 TS1(X)

+ 1 + 1 + · · ·+ 1 TS1(M)

+ 0 RE1(N)

+ 1 + 1 + · · ·+ 1

+ 1 + 1 + · · ·+ 1

+ 1 + 1 + · · ·+ 1 TS2(M)

+ 0 RE2(N)

CL1

TS2(M +X)

CL2

]

]

]

]
]
]

]

]

There is also no need for relabeling here as long as no new clusters are created. In other words,
T (N) = 5N , which means that the best case has complexity O (N).

We should also look at the average case. In most clustering problems, the number of clusters is at
least one order or many orders of magnitude less than the data samples. For example, for 1 million
samples is not uncommon to search for 1 thousand clusters. Therefore, it is reasonable to assume that
for an average case, K is assumed to be smaller than N .

Average case, for K << N ,

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

T (N) =

1 + 2 + · · ·+ (K − 1) + (N −K − 1)K TS1(X)

+ 1 + 2 + · · ·+ (K − 1) TS1(M)

+ 1 + 2 + · · ·+ (K − 1) RE1(N)

+ 1 + 2 + · · ·+ (K − 1) +NK TS2(M +X)

+ 1 + 2 + · · ·+ (K − 1) TS2(M)

+ 1 + 2 + · · ·+ (K − 1) RE2(N)

CL1

CL2

]

]

]

]
]

]

]

]
Which is equal to T (N) = 2NK +2.5K2 −K − 3.5. Therefore, the average case is O (NK +K2).
Given that K is much less than N the runtime will be closer to linear than quadratic. This completes
the proof. ■

High dimensional data with a large number of features D are expected to delay each distance
computation in a constant matter. TB is used with I = 2 everywhere in this work. Given its fast
convergence, as shown in Fig. 3B, we do not expect to see any surprises in regard to time complexity.

A.9 PROVING MEMORY

Lemma 3 The spatial complexity of Thetan Berserker is linear.

Proof The only memory generated is centroids and labels. Those are produced in a constant
amount. Therefore, the spatial complexity is best case T (N) = cN , i.e. O(N) and worst case i.e.
T (N) = 2cN , i.e. O(N). Where c is a constant. ■

A.10 MERGING SAMPLES VIA THETAN SEQUENTIAL

Clarifications on Algorithm 2. As Theorem 1 suggests, TS works well when the clusters have
inter-class distances greater than hyper-parameter θ. In other words, when there is plenty of empty
space between the clusters. However, the first TS in TB generates centroids. These according to
Theorem 2 are reduced representation of the original data. Due to TS being order-sensitive, it could
be that some of the centroids might be closer than theta. Nonetheless, they will be sparser than the
original data if a reasonable θ has been chosen. Therefore, the second TS that acts on the centroids
(output of the first TS) will merge together any centroids that are closer than θ. See Fig. A28.

Proposition 1 The output centroids of TS of hyper-parameter θ will be merged by a second TS on
the centroids only if the centroids have in-between distances less than θ.

Proof Due to Theorem 1, any order of selection will lead to singleton clusters of points that are far
from each other by a distance that is greater than θ. TS will generate such points, but due to its
order sensitivity, it may generate a few centroids that are also close to each other. Therefore, we
have a scenario such as that of Fig. A28. In that case, in order to prove this, we need to look at all
pairwise distances and order selections. For example, if TS processes points in this order 1, 2, 3, 4.
The distances between 1 and 2 are greater than the threshold (2 clusters), 2 and 3 are less than the
threshold (2 and 3 get merged), and 3, and 4 are greater than the threshold (a new cluster). If we take
any other ordering, for example 3, 1, 2, 4 we will conclude on the same result. Merging of 2 & 3.
This is because the only small pairwise distance is between 2 and 3. This generalizes to any number
of TS output centroids. ■

Overall, this is an efficient way to merge close points without calculating all pairwise distances.

Figure A28: If distance θ has the size shown above, any order of selection of the points will allow TS
(Algorithm 1) to merge samples 2 and 3.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

A.11 EFFICIENTLY UPDATING CENTROIDS

The centroids are updated on the fly using the following idea. The sum of samples for each cluster
and the number of clusters are kept as different variables. To insert a new point xi to a cluster, we
simply need to

∑
k =

∑
k +xi for each dimension D and then update nk = nk + 1. The centroid

evaluation is then performed only when needed by dividing the sums by their corresponding nk.

A.12 FURTHER CLARIFICATIONS ON TB’S FAST CONVERGENCE

This section is expanding on the proof of Theorem 2. In Fig. A29, we see two square regions
representing two uniform distributions that are close to each other by distance l. In the diagram, l is
set to be at θ/2.

Figure A29: Two square uniform distributions (blue and green) of size θ × θ containing an undetermined
number of samples are at a distance l = θ/2. Greek letters separate the squares in equal bands.

Let µ1, µ2, and µ3 represent undesired centroids obtained from the initial clustering process using
TS (due to a bad order). Upon applying a further clustering process, i.e, TS (M ,X), we encounter
three possible cases:

Case 1: If the distance between µ1 and µ2 is less than the threshold θ, this results in two
clusters:

– Cluster 1 has a new centroid at position: (µ1 + µ2)/2

– Cluster 2 has an updated centroid at position: µ′
3

Case 2: If the distance between µ2, and µ3 is less than θ, µ1 is far from µ2, this results in
two clusters:

– Cluster 1 has an updated centroid at position: µ′
1

– Cluster 2 has a new centroid at position: (µ2 + µ3)/2

Case 3: If all in between distances are greater than θ then 3 clusters are obtained:

– Cluster 1 has centroid at position: µ1

– Cluster 2 has centroid at position: µ2

– Cluster 3 has centroid at position: µ3

The index here corresponds to the actual order. Meaning that µ1 is the first point to be processed
by TS(M ,X). µ2 is the second etc. It is important to note that these cases assume the distances
between centroids are calculated using Euclidean distance.

The first two cases are highly desirable because they will help TB keep the two clusters separate
and never provide three clusters. Therefore, cases 1 and 2 clearly improve order sensitivity. Even if
an upcoming point is at the edge of each distribution, it will be pulled to the correct centroids and
assigned to the correct cluster.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

The third case is problematic because it may continue supporting the idea that there may be three
(incorrect) rather than two clusters (clusters). We can prove by contradiction that case 3 is highly
unlikely. This also further explains why TB converges as fast as it does.

Proposition 2 Case 3 is not possible with the current setup.

Each uniform distribution (square) has θ sides. Let’s assume that the origin of the coordinate system
is at the bottom left corner of the blue square. Then µ2 = (θ + θ/4, θ/2). Let’s also assume that all
three samples are at the same height (y value). Therefore we can reduce this to look only at the x
axis.

As discussed in case 3, the distance between µx
1 and µx

2 is greater than θ. Therefore,

||µx
2 − µx

1 || > θ
θ + θ/4− µx

1 > θ
µx
1 < θ/4

Also the distance between µx
2 and µx

2 is greater than θ, which means that

||µx
3 − µx

2 || > θ
µx
3 − θ − θ/4 > θ

µx
3 > 2θ + θ/4

So if 3 centroids appear (rather than 2), two of them (µx
1 and µx

3) will be forced to be at the bands A
and Θ respectively. But if this is the case, then µx

2 will be representing bands B,Γ,∆,E,Z,H and
the empty space of width θ/2. But this is a contradiction because the threshold is only θ, not 7θ/2. In
other words there is no ordering that can allow TS to generate centroids that will be at such distances
apart. This completes the proof. ■

Here, we showed this contradiction with two clusters, but it is trivial to show the same for any number
of uniform densities at θ/2. The example shown here cannot cover all possible datasets, but it gives a
good idea of why the Berserker centroids help create more accurate upcoming centroids.

A.13 USING RANDOM WALKS FOR PREDICTING THE HYPER-PARAMETER

The approach in regards to Fig. 4A is elaborated in this section. A random walk, in this case, is
accessing random samples from the available data matrix X .

For example, one random walk will visit samples x0,x10,x12 and x35. Another random will visit
samples x30,x11,x2 and x0. The same number of jumps for the two random walks is kept.

Figure A30: The lengths of the vectors of the same random walk can change as inter-cluster distances change.

Next, the lengths of the difference vectors between subsequent jumps are calculated. For example,
from the first random walk we keep ||x10 − x0||, ||x12 − x10|| and ||x35 − x12|| and from the
second ||x11 −x30||, ||x2 −x11|| and ||x0 −x2||. Here only 4 samples were used. But in the actual
experiment, we used N samples for each random walk, and we repeated 100 times. Then, if we
calculate the histogram of these lengths for datasets of different levels of sparsity, we obtain results
such as those of Fig. 4A. Now each histogram vector is fed to a regressor to predict a single value
θ. A straightforward 1D CNN provides 0.99 accuracy in predicting the correct θ in this example.
Calculating the random walks takes only a few seconds because the complexity of calculating

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

the lengths is O(N). The histogram calculation for N of 1 million takes only 12 ms for 100 bins.
Therefore, it does not delay execution. Finally, in order to understand why the lengths of these
random walks become a signature of the underlying distribution, please see Fig. A30.

A.14 ON THE STOCHASTICITY OF THETAN BERSERKER

An algorithm is said to be stochastic if it incorporates randomness in its process or decision-making.
This means that the algorithm’s behavior or output may or not vary between executions, even when
given the same input. More importantly, stochastic algorithms use random variables or probabilistic
components as part of their logic. Thetan Berseker (TB) arrives at similar conclusions given the
random orderings of the data samples. In addition, TB employs randomness to avoid repeating the
same ordering in Algorithm 2. This acts as an extra safety measure to ensure robustness.

A.15 GAUSSIAN DISTRIBUTIONS OF VARYING SCALE

The clusters here were generated by sampling from multivariate normal distributions with varying
scales and with a mean of 0. Each distribution contains 500 samples. The centers of the distributions
are set on a 30× 10 grid with the neighboring centers separated by a distance of 5 units. Random
scaling factors are applied to the cluster centers to introduce variability, ensuring that each cluster
exhibits slightly different spreads. The total number of points is 150,000. Here, the blue crosses
indicate the ground truth centroid and the red crosses indicate the estimated centroids. When the red
crosses are not visible, it means that they exactly match the ground truth (blue crosses), i.e., they are
under the blue crosses.
Figures A32-A36 highlight the performance of various clustering methods in predicting the centroids
in Gaussian distributions of varying sizes. The results indicate that TB, HDBSCAN, and Meanshift
accurately identified the centroids, while KMeans++ and DBSCAN had minor inaccuracies, misiden-
tifying only a few centroids or adding some extra ones.
Here, the parameters used were θ 3.6 for TB, K 300 for KMeans++, eps 0.5 and min_samples 40 for
DBSCAN, min_samples 40 for HDBSCAN and bandwidth 2.6 for MeanShift.

Figure A31: TB (θ 3.6)

Table A5: Comparisons between clustering algorithms on Gaussian Distribution of Varying Scale.
Highlight identifies top performers.

AC NMI SIL FMS ARS Clusters Duration Memory

mean std mean std mean std mean std mean std mean std mean std mean std
CURE 0.999 0.0016 0.9963 0.0002 0.7419 0.0053 0.9927 0.0005 0.9926 0.0005 300 0 2238.3480 184.0060 174 0
TB 0.9993 0.0021 0.9965 0.0002 0.7435 0.0053 0.9937 0.0005 0.9936 0.0005 300.2 0.6325 0.3270 0.0017 9 0
TBK 1 0 0.9965 0.0003 0.7436 0.0053 0.9938 0.0005 0.9938 0.0005 300 0 0.8437 0.0035 18 0
HDBSCAN 1 0 0.9817 0.0017 0.7209 0.0072 0.9036 0.0144 0.9017 0.0151 300 0 130.8935 0.5245 184 0
KMEANS++ 0.9377 0.0144 0.9927 0.0012 0.7300 0.0074 0.9763 0.0051 0.9762 0.0052 300 0 2.3644 0.1082 20 0
MEANSHIFT 1 0 0.9965 0.0003 0.7436 0.0053 0.9938 0.0005 0.9938 0.0005 300 0 582.3422 12.8045 40.3 2.7101

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

Figure A32: KMeans++ (K 300)

Figure A33: DBSCAN (eps 0.5, min_samples 40)

Figure A34: HDBSCAN (min_samples 40)

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

Figure A35: MeanShift (bandwidth 2.6)

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

A.16 UNIFORM DISTRIBUTIONS

Here, clusters were created by sampling points uniformly within a bounded region around predefined
centers. The position of each point in a cluster was determined by adding random noise to the cluster
center. The noise was generated within a square region centered on each cluster, with the size of the
region controlled by a scaling factor. Here, a scaling factor of 7 is used. The noise for each point
was scaled by a factor alpha, which is set to 1 here, and the points were randomly distributed within
the region, where the x and y coordinates of each point varied uniformly in both directions by a
random value between -0.5 and 0.5. Each distribution contains 500 samples. The cluster centers are
arranged on a 30× 10 grid, with adjacent centers spaced 10 units apart. Therefore, the total number
of ground truth clusters is 300. The total number of points in this experiment is 150,000. Here also,
the blue crosses represent ground truth centroids while red crosses represent centroids obtained from
the clustering method.
Figures A37 to A41 demonstrate the performance of various clustering methods in predicting the
centroids of uniform distributions. The results show that TB, MeanShift, and DBSCAN accurately
identified the centroids, whereas HDBSCAN and KMeans++ misidentified some of them.
The parameters used were θ 5.6 for TB, K 300 for KMeans++, eps 0.5 and min_samples 40 for
DBSCAN, min_samples 40 for HDBSCAN and bandwidth 4.6 for MeanShift.

Figure A36: TB (θ 5.6)

Figure A37: KMeans++ (K 300)

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

Figure A38: DBSCAN (eps 0.5, min_samples 40)

Figure A39: HDBSCAN (min_samples 40)

Table A6: Comparisons between clustering algorithms on Uniform Distribution. Highlight identifies
top performers.

AC↑ NMI↑ SIL↑ FMS↑ ARS↑ Clusters Duration↓ Memory↓
mean std mean std mean std mean std mean std mean std mean std mean std

CURE 0.998 0.004499657 1.0000 7.64591E-05 0.5443 0.0012 0.9999 0.0002 0.9999 0.0002 300 0 12.3378 0.2174 36 0
TB 0.999 0.00225 0.9999 0.000057 0.5436 0.0011 0.9998 0.000139 0.9998 0.00014 300 0 0.04172 0.000961 1 0
TS 0.7528 0.0216 0.9895 0.00107 0.5164 0.00281 0.9678 0.0035 0.9675 0.0035 317.5 1.7795 0.0165 0.0001 0 0
TBK 0.6047 0.0227 0.9730 0.002006185 0.4839 0.0046 0.8824 0.0095 0.8815 0.0097 300 0 0.2031 0.0077 3 0
HDBSCAN 0.1023 0.0211 0.7621 0.004299786 0.1303 0.0086 0.1029 0.0025 0.0297 0.0015 300 0 2.9633 0.0146 36 0
KMEANS++ 0.8353 0.0264 0.9899 0.001685206 0.5208 0.0030 0.9561 0.0072 0.9558 0.0072 300 0 0.2792 0.0327 4 0
MEANSHIFT 0.946 0.0110 1 0 0.5444 0.0012 1 0 1 0 300 0 49.2709 0.5843 7.9 0.3162

Figure A40: MeanShift (bandwidth 4.6)

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

A.17 LARGE SIMULATION EXPERIMENT ON VARYING UNIFORM DISTRIBUTIONS

Similar to section A.16, the clusters were created by sampling points uniformly within a bounded
region. The only difference is that the noise for each point was randomly scaled by factor alpha,
which was uniformly sampled from the range of

0.2, 1

. This controls the spread of the cluster. The grid of 30× 10 remained the same along the distance
between the adjacent centers being 10 units apart. The total number of clusters was 300, and the
number of samples per distribution was still 500, thus making the total number of points 150,000.
Here also the blue crosses represent ground truth centroids while red crosses represent centroids from
clustering methods.
Figures A42 to A46 illustrate the performance of various clustering methods in predicting centroids
in varying uniform distribution. The results indicate that TB, DBSCAN, and HDBSCAN successfully
identified the correct centroids, whereas KMeans++ and Meanshift misidentified some centroids.
Similar to section A.16, the parameters used were θ = 5.6 for TB, K 300 for K-Means++, eps 0.5 and
min_samples 40 for DBSCAN, min_samples 40 for HDBSCAN and bandwidth 2.6 for MeanShift.

Figure A41: TB (θ 5.6)

Figure A42: KMeans++ (K 300)

Table A7: Comparisons between clustering algorithms on Uniform Distribution of Varying Scale.
Highlight identifies top performers.

AC↑ NMI↑ SIL↑ FMS↑ ARS↑ Clusters Duration↓ Memory↓
mean std mean std mean std mean std mean std mean std mean std mean std

CURE 1 0 1 0 0.7427 0.0044 1 0 1 0 300 0 12.2249 0.2217 36 0
TB 1 0 1 0 0.7423 0.0068 1 0 1 0 300 0 0.0363 0.0006 1 0
TS 0.9756 0.0140 0.9991 0.0005 0.7376 0.0096 0.9972 0.0018 0.9972 0.0018 302.2 1.8135 0.0160 0.0002 0 0
TBK 0.9263 0.0328 0.9952 0.0023 0.7294 0.0092 0.9790 0.0097 0.9789 0.0097 300 0 0.0907 0.0043 3 0
HDBSCAN 0.9470 0.0088 0.9935 0.0016 0.7284 0.0064 0.9713 0.0112 0.9712 0.0113 299.8 0.421637021 2.9937 0.0187 36 0
KMEANS++ 0.9313 0.0188 0.9957 0.0011 0.7283 0.0050 0.9802 0.0045 0.9801 0.0045 300 0 0.2180 0.0286 4 0
MEANSHIFT 0.9973 0.0021 1 0 0.7427 0.0044 1 0 1 0 300 0 27.5586 0.3935 6.7 0.4830

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

Figure A43: DBSCAN (eps 0.5, min_samples 40)

Figure A44: HDBSCAN (min_samples 40)

Figure A45: Meanshift (bandwidth 2.6)

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

A.18 WHITE MATTER RECONSTRUCTION

Building on the discussion in 6.2, this section presents a processed slice from the T1-weighted images.
The preprocessing steps and dimensions remain consistent with the earlier approach. Here, we used
TB, KMeans, and SLIC.
In the A46, A is the original T1 slice, B is the image obtained using TB with θ 220, C is the image
obtained using KMeans with K 4, D is the image obtained using SLIC with n_segments 10 and
compactness 0.1, E is TB with θ 50, F is KMeans with K 310, and G is SLIC with n_segments 100
and compactness 0.1.
TB does an excellent job in reconstructing the original T1 image for both values of θ, outperforming
both KMeans and SLIC. Interestingly, KMeans with K 310 produces results very similar to TB with
θ 50. However, for a lower number of clusters, KMeans is not performing too well. It reconstructs
most of the image but with some loss of information (e.g. edge loss). The number of clusters for
KMeans was taken directly from TB’s output. On the other hand, SLIC is not performing too well; it
is losing contrast in a lower number of segments, and the loss of information is high when the number
of segments is 100 (high loss of contrast and edges).

Figure A46: White Matter Reconstruction using Different Methods A) Original T1 Slice, B) TB (θ 220), C)
KMeans (K 4), D) SLIC (n_segments 10), E) TB (θ 50), F) KMeans (K 310), G) SLIC (n_segments 100). The
number of generated clusters is shown with red. TB is reconstructing the image more faithfully to the original
image than KMeans and SLIC 3D.

A.19 TEXT EMBEDDINGS

Here, TB was used for clustering in high-dimensional spaces, using text embeddings from the “Per-
sonaHub FineWeb-Edu 4 Clustering 100k" dataset available on HuggingFace. The dataset comprises
100,000 samples, each represented by embeddings of dimensionality 1024. The performance of TB
was benchmarked against KMeans++ and Marigold (Mortensen et al., 2023).
Tab. A8 highlights that TB requires less memory compared to both KMeans++ and Marigold when
clustering the same number of clusters. In terms of execution time, TB outperforms KMeans++ but is
marginally slower than Marigold. However, TB demonstrates superior clustering quality, achieving
higher NMI and V-Measure scores than both KMeans++ and Marigold, while Marigold lags behind
in these metrics.
For TB, the parameters used were θ = 0.48, and the number of clusters derived from TB was applied
to both KMeans++ and Marigold to ensure a fair comparison across methods.

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

Table A8: Comparisons between clustering algorithms for Text Embeddings

Method Clusters Memory (MB) ↓ Time (s) ↓ NMI ↑ V-Measure ↑
TB 5641 156 85.9667 0.5252 0.5252
KMeans++ 5641 166 89.2508 0.5239 0.5239
Marigold 5641 312 82.2857 0.5130 0.5130

A.20 1D SIGNAL DENOISING

Here, we demonstrate the use of TB in denoising one-dimensional signals. For this purpose, a
synthetic signal consisting of a sine wave and random Gaussian noise was used. The signal, which
became the feature space, was given a sliding window of 98. The signal was then normalized by
scaling the data. Fig. A47, shows the results obtained after TB was used to denoise the signal. The
reconstructed sine wave is nearly identical to the clean, noise-free sine wave. The parameter that was
used is θ 174.

Figure A47: A sine wave denoised using TB clustering.

A.21 GAUSSIAN DISTRIBUTIONS WITH OUTLIERS

In this experiment, TB was given a Gaussian distribution with 300 clusters and 150,000 data points.
An additional 15,000 random outliers were added, bringing the total number of data points to 165,000.
For each centroid, the frequency of the corresponding label was checked to see if it exceeded a certain
threshold (300 in this case). These centroids are shown as red crosses on the plot, while the ground
truth is indicated by blue crosses.

Figures A48 to A50 present the results when different clustering algorithms were applied to this
dataset. TB performed exceptionally well on all metrics, requiring the least time and memory
compared to KMeans++ and MeanShift. KMeans++ was tested with two versions: one using the
correct K value (300), and the other with K set to the total number of clusters identified by TB.
KMeans++, using the total number of clusters from TB, performed the worst in comparison and did
not identify any correct centroids, as shown by the absence of red crosses in Fig. A50. KMeans++
with K 300 identified very few of the clusters correctly while taking half the time of TB but consuming
more memory for fewer clusters.

MeanShift almost identified the correct number of centroids. However, with an acceptance criterion
(AC) threshold of 0.1, it appears that the correct centroids were found in Fig. A51, but the AC

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

remained low for MeanShift, as most of the centroids were not within the threshold. Additionally,
MeanShift required significantly more time and memory compared to the other algorithms.

The parameters used were θ = 3.6 for TB, K = 300 and 4782 for KMeans++, and a bandwidth of
2.6 for MeanShift.

Table A9: Comparisons between clustering algorithms on Gaussian distribution with outliers. High-
light identifies top performers.

AC↑ NMI↑ SIL↑ FMS↑ ARS↑ Clusters Duration↓ Memory↓
mean std mean std mean std mean std mean std mean std mean std mean std

TB 0.9957 0.0045 0.9961 0.0002 0.4967 0.0153 0.9921 0.0005 0.9920 0.0005 4781.4 24.0933 3.2588 0.02357 10 0
KMEANS++(1) 0.4553 0.0256 0.9935 0.0007 0.8563 0.0053 0.9497 0.0052 0.9482 0.0055 300 0 1.6798 0.1723 22 0
KMEANS++(2) 0.0091 0.0018 0.8668 0.0006 0.3216 0.0014 0.4279 0.0017 0.3089 0.0022 4782 0 57.6736 2.6415 30 0
MEANSHIFT 0.0554 0.0004 0.9293 0.0001 0.5914 0.0027 0.4933 0.0001 0.3937 8.55997E-05 5420.1 48.4113 307.8093 3.5689 40.1 0.8755

Figure A48: TB correctly finds the clusters in the presence of outliers. θ 3.6 and Duration 3.26s

Figure A49: KMeans++ is not able to find all of the clusters in the presence of outliers. K 300 and Duration
1.68s

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2025

Figure A50: KMeans++ is not able to find the clusters in the presence of outliers. KMeans++ K 4782 and
Duration 57.67s

Figure A51: Meanshift is able to find most of the clusters in the presence of outliers. Meanshift bandwidth 2.6
and Duration 307.81s.

A.22 SUMMARY OF CONTRIBUTIONS

I. Remarkably fast clustering algorithm guaranteed to be between O(n) and O(n2).
II. Exceptionally memory efficient with best and worst case at O(n).

III. Outperforming in 30 experiments across datasets, dimensions and evaluation metrics.
IV. Highly interpretable consisting primarily of two compact algorithms.
V. Easy to use with only one and easy to set hyper-parameter.

VI. Used as a standalone or as a way to improve other known methods.
VII. Exceedingly robust to small samples and outliers.

43

	Introduction
	Related Work
	Thetan Berserker
	Theoretical Aspects
	Results
	Simulation Experiments
	Standardized Benchmarks

	Applications
	Superpixels
	Processing 3D brains
	Pattern recognition in time and high dimensions

	Discussion
	Conclusion
	Appendix
	Apparent Centroid metric
	Hyper-parameter selection and sensitivity
	Large Simulation Experiment - Parameters
	Large Simulation Experiment - Visuals
	Signal Processing of time series
	Additional information on benchmarks
	Additional superpixel experiments
	Proving runtime
	Proving memory
	Merging samples via Thetan Sequential
	Efficiently updating centroids
	Further clarifications on TB's fast convergence
	Using random walks for predicting the hyper-parameter
	On the stochasticity of Thetan Berserker
	Gaussian Distributions of Varying Scale
	Uniform Distributions
	Large Simulation Experiment on Varying Uniform Distributions
	White Matter Reconstruction
	Text Embeddings
	1D Signal Denoising
	Gaussian Distributions with Outliers
	Summary of contributions

