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ABSTRACT

Multiobjective reinforcement learning (MORL) poses significant challenges due
to the inherent conflicts between objectives and the difficulty of adapting to dy-
namic environments. Traditional methods often struggle to generalize effectively,
particularly in large and complex state-action spaces. To address these limita-
tions, we introduce the Latent Causal Diffusion Model (LacaDM), a novel ap-
proach designed to enhance the adaptability of MORL in discrete and continu-
ous environments. Unlike existing methods that primarily address conflicts be-
tween objectives, LacaDM learns latent temporal causal relationships between
environmental states and policies, enabling efficient knowledge transfer across
diverse MORL scenarios. By embedding these causal structures within a diffu-
sion model-based framework, LacaDM achieves a balance between conflicting
objectives while maintaining strong generalization capabilities in previously un-
seen environments. Empirical evaluations on various tasks from the MOGymna-
sium framework demonstrate that LacaDM consistently outperforms the state-of-
art baselines in terms of hypervolume, sparsity, and expected utility maximization,
showcasing its effectiveness in complex multiobjective tasks.

1 INTRODUCTION

Multiobjective reinforcement learning (MORL) Felten et al. (2024a; 2023a); Hayes et al. (2022);
Yang et al. (2019); Lu et al. (2023) has become a prominent research area due to its ability to address
real-world problems where multiple, often conflicting objectives must be optimized simultaneously.
In contrast to traditional reinforcement learning, where a single objective is maximized, MORL
requires to balance and optimize multiple objectives, often in dynamic and uncertain environments
Gu et al. (2025). This adds significant complexity to the learning process, especially when the
objectives conflict with each other or change over time. Moreover, large, high-dimensional state-
action spaces in many MORL tasks pose scalability challenges to existing algorithms, making it
difficult for MORL to generalize across different tasks Felten et al. (2024b).

Traditional approaches to MORL have primarily focused on scalarization methods Van Moffaert
et al. (2013); Zheng & Wang (2023), Pareto-based methods Cai et al. (2023); Liu et al. (2025a);
Van Moffaert & Nowé (2014); Zheng & Wang (2022). While these methods show impressive suc-
cess in solving multiobjective problems, they often struggle to generalize, particularly in complex
environments where the relationships between objectives are nonlinear and the state-action space are
subject to changes. Scalarization methods Agarwal et al. (2022); Gu et al. (2024) combine objectives
into a weighted sum or other forms of aggregation, but the choice of weights often requires prior
knowledge of the relative importance of each objective, which may not be available in real-world
scenarios Xia et al. (2021). Pareto-based methods Tian et al. (2022), which rank solutions based on
their dominance relationships, often require to maintain a set of nondominated solutions, which can
be computationally expensive, especially in high-dimensional spaces. Furthermore, Pareto-based
approaches struggle when objectives conflict in complex ways or when the set of nondominated
solutions becomes large and difficult to manage Lin et al. (2022). Additionally, both scalarization
and Pareto-based methods Zhang et al. (2024b) typically assume that the objectives remain rela-
tively stationary, which is not always the case in dynamic or uncertain environments. Therefore,
these methods often struggle with generalization, particularly in complex environments where the
relationships between the objectives are nonlinear, and the state-action space is highly time-varying.
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Recently, diffusion models Ho et al. (2020); Sanokowski et al. (2024); Song et al. (2020) have
demonstrated attractive generalization abilities and been applied to various types of optimization
problems. For example, EmoDM Yan & Jin (2024) adopts a diffusion model to solve multi-objective
optimization problems (MOPs) that considers the evolutionary search process as a reverse diffusion
process. By pretraining on previously solved MOPs, EmoDM can generate a set of nondominated
solutions for a new MOP through reverse diffusion, without the need to perform additional evolu-
tionary search. A generative diffusion model, called GDMTD3 Zhang et al. (2024a), was proposed
to solve the aerial collaborative secure communication optimization problem in multiobjective re-
inforcement learning. While these diffusion models have advanced the field of multiobjective op-
timization Li et al. (2024); Zhang et al. (2024a), they still require substantial training on past op-
timization tasks to generalize effectively. This reliance on extensive pretraining limits the model’s
adaptability to new, unseen environments, hindering its scalability and applicability to complex,
real-world MORL problems Zeng et al. (2024). Furthermore, most of these diffusion models fail to
account for the temporal and latent dependencies that arise from the interaction between the agent’s
actions and the evolving environment, which are critical for robust decision-making in dynamic
settings and also significantly impact generalization performance Zhang et al. (2024a).

Fortunately, we find that the interactive mechanism between the agent and the environment can be
characterized by causality. Causal inference is a useful tool for modeling the generative mecha-
nism behind the agent’s actions. Inspired by this, we propose a Latent Causal Diffusion Model
(LacaDM) for MORL, which incorporates causal relationships between objectives and the environ-
ment directly into its latent space, enabling more structured and data-efficient policy generation.
In the forward diffusion process, LacaDM learns to approximate the reserved search process of a
deep reinforcement learning algorithm, such as Pareto Conditioned Networks (PCN) Reymond et al.
(2022), starting from the optimal policy and gradually evolving toward a random initial policy. In
the reverse diffusion process, noise is progressively removed from the random policy, incrementally
refining it into an optimal policy approximation. The main contributions of this work are as follows:

• We propose a latent causal diffusion model to solve MORL problems. The key idea is to
integrate causal representation learning into the diffusion process to enhance generalization
across a wide range of MORL tasks. LacaDM can be used as a general diffusion model
applicable to both continuous and discrete MORL environments.

• We optimize the policy by learning the latent causal dynamics during the reverse diffusion
process, thereby improving LacaDM’s ability to adapt to dynamic environments. This strat-
egy enables LacaDM to continuously learn and adapt to new tasks without the requirement
for exhaustive pretraining on previous problems.

• Extensive experiments conducted across a variety of environments from MOGymnasium
demonstrate the superiority of LacaDM over existing baseline methods in terms of hyper-
volume, sparsity and expected utility maximization across a wide range of MORL tasks.

2 PRELIMINARIES

2.1 DIFFUSION PROBABILISTIC MODELS

Diffusion models Yang et al. (2023) are generative frameworks that refine noise-corrupted samples to
generate high-quality data. They consist of two phases: the forward process, which adds noise, and
the reverse process, which removes it to recover the original sample. These models Nie et al. (2025);
Guo et al. (2024); Ye et al. (2022) are classified into two types: continuous diffusion models, for
continuous data (e.g., images, audio), and discrete diffusion models, for discrete data (e.g., binary,
categorical). While both follow similar principles, they differ in how noise is added and removed.

Continuous diffusion models. For continuous data, the forward process corrupts the initial sam-
ple x0 by adding Gaussian noise over T steps, forming a Markov chain {xt}Tt=0. Each step intro-
duces noise based on a variance schedule βt:

q(xt | xt−1) = N (xt;
√

1− βt · xt−1, βt · I), (1)

where βt ∈ (0, 1). As t increases, the sample becomes increasingly indistinguishable from pure
noise. The noise is gradually accumulated, and we can express the relation between xt and the
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original sample x0 as:
q(xt | x0) = N (xt;

√
ᾱt · x0, (1− ᾱt) · I), (2)

where ᾱt =
∏t
s=1(1− βs) represents the cumulative noise added up to time t. This relation shows

that as the forward process progresses, the data becomes more corrupted, with ᾱt diminishing over
time. The reverse process aims to denoise the final noisy sample xT and recover the original sample
x0. This process learns a parameterized distribution:

pθ(xt−1 | xt), (3)
which is typically modeled as a Gaussian distribution with learnable mean µθ and variance Σθ:

pθ(xt−1 | xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)). (4)
During training, µθ is optimized to effectively remove noise at each step, while Σθ is often fixed
or simplified for stability. By iteratively ”denoising” xt, the model can recover the original data
distribution.

Discrete diffusion models. For discrete data, the forward process corrupts the initial sample x0

using Bernoulli noise over T steps, forming a Markov chain {xt}Tt=0. Each step flips the values of
the data with a probability βt:

q(xt | xt−1) = Bernoulli
(
xt; (1− βt)xt−1 +

βt
2

)
. (5)

As t increases, xt becomes increasingly uniform over the discrete space. The distribution of xt is
gradually smoothed, with the relationship between xt and x0 given by:

q(xt | x0) = Bernoulli
(
xt; γt · x0 +

1− γt
2

)
, (6)

where γt =
∏t
s=1(1−βs). As γt → 0, xt approaches a uniform distribution over the discrete space.

The reverse process seeks to denoise xT back to x0 by learning the distribution:
pθ(xt−1 | xt), (7)

which is parameterized as a discrete distribution:
pθ(xt−1 | xt) = Bernoulli (xt−1; fθ(xt, t)) . (8)

During training, the model minimizes the cross-entropy loss between the predicted distribution pθ
and the true posterior q(xt−1 | xt,x0), analogous to noise prediction in continuous diffusion models.

2.2 MULTIOBJECTIVE REINFORCEMENT LEARNING

In many real world scenarios, decision-making involves optimizing multiple, often conflicting ob-
jectives. Multiobjective reinforcement learning (MORL) Hayes et al. (2022) extends the standard
RL framework by utilizing a vector-valued reward signal

rt = [r
(1)
t , r

(2)
t , . . . , r

(m)
t ], (9)

where each component r(i)t corresponds to a distinct objective. Improving one objective can degrade
performance in another, so specialized algorithms are required to handle these trade-offs effectively.

Formally, an MORL environment is typically represented by a Markov Decision Process (MDP)
⟨S,A,P, r, γ⟩. Here, S is the state space, A is the action space, P(s′ | s, a) defines the transition
probabilities, and γ ∈ [0, 1) is the discount factor. The vector reward function r : S × A → Rm
provides different reward signals for each objective. The goal is to learn a policy π : S → A that
balances multiple objectives as encoded in the vector-valued return:

Gt =

∞∑
k=0

γkrt+k, (10)

where Gt = [G
(1)
t , G

(2)
t , . . . , G

(m)
t ] accumulates the rewards for each objective. Because no sin-

gle solution can optimize all objectives simultaneously, Pareto optimality is often used to evaluate
policies that cannot be improved in one objective without sacrificing another. Managing these high-
dimensional, conflicting objectives remains a significant challenge. In MORL Liu et al. (2025b);
Zhu et al. (2023), an agent must handle multiple, often conflicting objectives which can be viewed
as different dimensions or “channels” of a complex decision space. By leveraging diffusion-based
methods, the proposed LacaDM can generate candidate policies that systematically explore and
refine this high-dimensional space, potentially yielding a diverse set of Pareto optimal solutions.
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3 CAUSAL REPRESENTATION LEARNING FOR MORL

In nonstationary environments, reward dynamics and objective trade-offs may shift over time due to
latent factors, making it increasingly challenging for the agent to balance multiple, often conflicting
objectives. Effectively modeling the underlying causal structure over these latent factors is essential
for achieving robust, generalizable, and adaptive policy behavior.

Temporally causal representation modeling. We model the causal representation based on latent
temporally causal processes Yao et al. (2021), which aims to recover latent factors driving tempo-
ral dynamics. Formally, let xt denote the observed state-action-reward tuple at time t. The data
generating mechanism can be modeled as:

xt = g(zt), zt ∈ Rk (11)

where zt = (z1,t, . . . , zk,t) are latent variables evolving via a delayed causal process:

zi,t = fi
(
{zt−τ}Lτ=1, ϵi,t

)
, ∀i ∈ {1, . . . , k} (12)

Here, fi captures nonlinear causal influences from past latent states, and ϵi,t represents exogenous
noise due to unobserved environment shifts. This is corresponded to a temporal causal structure:
{zt−τ}Lτ=1 → zt → xt. Under this model, zt encodes latent task preferences and environmental
dynamics influencing observed behaviors.

Policy adaptation via causal inference. To enable policy adaptation, we use an encoder-decoder
architecture to infer latent variables zt and model their dynamics. When a shift ∆zi,t is detected
due to environmental perturbations, the policy input is adjusted proactively:

at = πθ
(
{zt−τ}Lτ=1 +∆zi,t

)
. (13)

This allows counterfactual reasoning, i.e., simulating actions under altered causal contexts.

Agent and environment effects disentanglement. To separate external environment drift from
internal policy effects, we model the conditional distribution of the noise term:

p(ϵi,t) =
∂si(ϵi,t)

∂ϵi,t
· N (si(ϵi,t)), (14)

where si(·) is a normalizing flow transforming ϵi,t into a standard distribution. This helps identify
whether observed deviations stem from environmental shifts or policy deficiencies.

In summary, causal representation learning (CRL) equips the MORL agent with essential reason-
ing capabilities that are difficult to achieve with conventional methods. These include the ability
to intervene on latent task or environmental factors to synthesize adaptive policies, reason coun-
terfactually about hypothetical situations, and model temporally delayed causal effects in dynamic
environments. Together, these capabilities provide a principled and actionable foundation for en-
hancing generalization, robustness, and adaptability in multi-objective reinforcement learning.

4 METHODOLOGY

In this section, we first introduce the overview of the proposed LacaDM, and then detail the key
components of the LacaDM framework, including forward diffusion for noise estimation, and gen-
eration of optimal policies via reverse diffusion.

4.1 OVERVIEW

Figure 1 illustrates the overall architecture of the proposed LacaDM, which integrates latent causal
modeling with a bidirectional diffusion process to enable robust policy learning in MORL environ-
ments. The framework comprises a forward diffusion that progressively injects noise into the policy
space to promote exploration and diversity, and a reverse diffusion that iteratively removes noise
to recover high-quality policies. To guide the forward diffusion during action generation, we con-
struct an inverse reinforcement learning (IRL) context embedding with historical trajectories from
PCN Reymond et al. (2022); Beliaev & Pedarsani (2025). This embedding captures temporal de-
pendencies within state-action-reward sequences and provides a compact summary of the agent’s
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Figure 1: Overview of the proposed LacaDM. Inverse RL-guided context embeddings derived from
PCN-generated trajectories guide the forward diffusion from optimal solutions to random noise.
Latent causal variables zt, learned via CRL, support reverse denoising to recover high-quality policy
solutions.

past behaviors under varying objective trade-offs. CRL serves different purposes across the two pro-
cesses: during forward diffusion, it extracts latent causal variables from observed trajectories, while
during reverse diffusion, these variables are used to guide denoising and policy reconstruction. By
modeling causal relationships between extracted latent causal variables, CRL improves LaCaDM’s
ability to generalize across nonstationary tasks with shifting preferences and dynamics.

4.2 FORWARD DIFFUSION FOR NOISE ESTIMATION

In the proposed LacaDM, we use a reinforcement learning context embedding to guide the diffusion
process, as illustrated in Fig. 1. Specifically, the policy at each time step, along with the changes
in cumulative rewards, serves as a reinforcement signal that helps LacaDM capture the implicit
optimization behavior of different RL algorithms. We begin by solving N distinct MORL problems
to convergence and recording the resulting policy πT and cumulative reward sequences RT :

πT = {π1, π2, . . . , πt} , RT = {R1, R2, . . . , Rt} , (15)

where πt = {πt(s1), πt(s2), . . . , πt(sn)} denotes the policy at time step t, and T is the total number
of time steps used in the diffusion process. These sequences form the conditioning input to our
diffusion model.

The forward diffusion process progressively estimates a noise distribution from the policy sequence
πT , refining it to match a predefined target distribution. We use a Gaussian noise model in con-
tinuous action spaces and a Bernoulli model in discrete environments. At each step t, the noise is
injected and updated depending on the environment characteristics, starting from an initial time step
t = 0. To go beyond pure stochastic degradation and capture environment-specific structure in pol-
icy evolution, we introduce a sequence of latent variables {zt}, inferred from the joint trajectories
of πt and Rt. These variables follow a causal generative process:

zt = f(Pa(zt), εt), (16)

where Pa(zt) are the causal parents from previous steps and εt represents diffusion noise. These la-
tent variables capture both environment-specific semantics and temporal dependencies. An encoder
is trained to infer these latent embeddings based on CRL, allowing LacaDM to model not only noise
but also the underlying causal dynamics of policy transitions.

This iterative procedure continues until the noise model converges. The outcome is a pretrained
LacaDM model that has internalized both the stochastic degradation and the latent causal structure
of MORL processes, enabling effective policy generation in the reverse diffusion phase.

5
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4.3 GENERATION OF OPTIMAL POLICIES VIA REVERSE DIFFUSION

The reverse diffusion process in LacaDM aims to recover the optimal policy π̂0 from noise-corrupted
inputs by progressively denoising a sequence of latent policy representations π̂t. This process is
governed by the following transition model:

p(π̂t|π̂t−1) =

{
N (π̂t;µ(π̂t−1), σ

2), if continuous
Bernoulli(π̂t;π(π̂t−1)), if discrete

(17)

Here, µ(·), σ2, and π(·) are predicted by a denoising network, modeling the policy transition dynam-
ics for both continuous and discrete environments. The process proceeds iteratively until a denoised
policy π̂0 is obtained.

Incorporating causal learning. To enhance adaptability across diverse MORL environments, we
introduce CRL in our LacaDM. At each reverse diffusion step, the denoised policy π̂t is not only
conditioned on its previous state π̂t−1, but also influenced by a latent variable zt that encodes un-
derlying causal structure, which can be formalized as

π̂t = f(π̂t−1, zt, επ̂t
), (18)

where επ̂t
is stochastic noise from the forward diffusion process.

Based on Eq. (12) and Eq. (18), an encoder network is trained to infer zt from observed noisy
policy trajectories. It maps local segments of policy history to compact latent embeddings, which
then guide the reverse diffusion process. The paired decoder d(zt, π̂t−1) predicts the denoised policy
step, enforcing consistency between causal latent variables and policy evolution. This mechanism
enables LacaDM to model not just statistical transitions, but also the structural and temporal causal
dynamics behind policy evolution.

CRL-guided policy update. Rather than treating reverse diffusion purely as a sampling proce-
dure, we interpret each step as a local policy optimization guided by both denoising accuracy and
causal coherence. Specifically, we define a composite loss:

Ltotal(π̂t−1, π̂t, zt) = ∥µθ(π̂t)− π̂t−1∥2︸ ︷︷ ︸
denoising loss

+β · ∥d(π̂t−1, zt)− π̂t∥2︸ ︷︷ ︸
causal consistency

+λ · ∥π̂t−1∥1.
(19)

The first term ensures accurate denoising from the noisy trajectory, the second term enforces consis-
tency with the latent causal dynamics via a learned decoder d, and the third introduces L1 regular-
ization to encourage sparsity for improved generalization. We then update the policy using gradient
descent:

π̂CRL
t−1 = π̂t−1 − α · ∇π̂t−1Ltotal(π̂t−1, π̂t, zt). (20)

By embedding this loss-guided update into each reverse diffusion step, LacaDM refines policies
not only based on statistical reconstruction but also on latent causal structure. This hybrid learning
mechanism improves robustness and adaptability, particularly in scenarios involving domain shifts
or temporally evolving objectives.

5 EXPERIMENTS

5.1 EXPERIMENT SETUP

MORL environments. To evaluate the performance of LacaDM, we adopt the MOGymnasium
framework Felten et al. (2023b), a standardized benchmark suite for MORL. Built on Gymnasium,
it supports a wide range of environments with multiple objective functions. We select eight discrete
and eight continuous environments from MOGymnasium. The discrete environments include Deep
Sea Treasure, HighwayEnv, ResourceGathering, FourRoom, FruitTree, Breakable Bottles, Fish-
wood, and MOLunarLander. The continuous environments include MountainCar, WaterReservoir,
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HopperEnv, MOHalfCheetah, MOAnt, MOSwimmer, MOHumanoid, and MOWalker2D. This di-
verse selection enables a comprehensive evaluation of LaCaDM’s performance across both discrete
and continuous MORL tasks.

Training datasets and Baselines. To construct the training dataset for LacaDM, we use the PCN
Reymond et al. (2022) to solve four MORL environments: Minecart, MOSuperMario, MOReacher,
and DeepSeaTreasureMirrored. During agent-environment interaction, we record the state, action,
reward, and policy at each time step, resulting in a rich trajectory dataset that captures the temporal
dynamics and optimization behavior of multiobjective tasks. This dataset is used to supervise the
forward diffusion process in LaCaDM, enabling the model to capture underlying patterns in policy
evolution and multiobjective decision-making.

We compare LacaDM against a diverse set of baselines across both continuous and discrete MORL
tasks, using their default hyperparameters. The baselines include two reinforcement learning meth-
ods (DQN Mnih (2013), PCN Reymond et al. (2022)), two evolutionary algorithms (NSGA-III-
EHVI Pang et al. (2022), ANSGA-II Liu et al. (2022)), and three diffusion-based models (EmoDM
Yan & Jin (2024), MTDiff He et al. (2023), DMBP Zhihe & Xu (2023)). These baselines cover tradi-
tional, evolutionary, and generative approaches, offering a comprehensive benchmark for evaluating
LacaDM.

Table 1: Comparison of average HV results in discrete and continuous MORL environments.
MORL Environment Env. Type Deep Qlearning PCN ANSGAII NSGAIIIEHVI EmoDM MTDiff DMBP LacaDM (Ours) p-value

Deep Sea Treasure Discrete 2.63e+2 3.02e+2 2.56e+2 3.34e+2 2.63e+2 3.48e+2 3.52e+2 3.50e+2 0.000
HighwayEnv Discrete 1.08e+4 1.31e+4 9.84e+3 2.40e+4 9.90e+3 2.49e+4 2.44e+4 2.51e+4 0.000

ResourceGathering Discrete 3.83e+0 4.74e+0 3.94e+0 4.70e+0 3.95e+0 4.80e+0 4.81e+0 4.82e+0 0.003
FourRoom Discrete 2.13e+1 2.25e+1 2.24e+1 2.56e+1 2.18e+1 2.55e+1 2.72e+1 2.60e+1 0.000
FruitTree Discrete 3.34e+4 3.31e+4 2.98e+4 3.45e+4 2.84e+4 3.57e+4 3.61e+4 3.64e+4 0.000

BreakableBottles Discrete 2.54e+4 2.34e+4 2.65e+4 2.81e+4 2.67e+4 2.81e+4 2.79e+4 2.82e+4 0.100
Fishwood Discrete 3.12e+3 3.03e+3 2.84e+3 3.02e+3 2.98e+3 3.17e+3 3.05e+3 3.15e+3 0.000

MOLunarLander Discrete 8.21e+8 8.15e+8 8.10e+8 8.13e+8 8.08e+8 8.22e+8 8.20e+8 8.23e+8 0.000

MountainCar Continuous 4.53e+6 4.61e+6 4.50e+6 4.80e+6 4.64e+6 4.97e+6 5.00e+6 5.02e+6 0.000
Water Reservoir Continuous 3.12e+5 3.24e+5 3.06e+5 3.08e+5 3.07e+5 3.18e+5 3.42e+5 3.44e+5 0.000

HopperEnv Continuous 6.82e+4 8.36e+4 6.77e+4 9.12e+4 6.76e+4 9.87e+4 9.84e+4 9.84e+4 0.000
MOHalfcheetah Continuous 6.26e+4 6.30e+4 6.11e+4 6.32e+4 6.21e+4 6.47e+4 6.48e+4 6.50e+4 0.000

MOAnt Continuous 1.21e+7 1.29e+7 1.02e+7 1.28e+7 1.15e+7 1.29e+7 1.29e+7 1.31e+7 0.000
MOSwimmer Continuous 1.24e+4 1.26e+4 9.98e+3 1.31e+4 1.02e+4 1.48e+4 1.50e+4 1.53e+4 0.000
MOHumanoid Continuous 2.00e+5 1.92e+5 1.65e+5 2.02e+5 1.74e+5 2.26e+5 2.24e+5 2.21e+5 0.000
MOWalker2D Continuous 5.44e+4 5.42e+4 5.01e+4 5.51e+4 5.05e+4 5.48e+4 5.55e+4 5.67e+4 0.001

5.2 RESULTS AND PERFORMANCES

Hypervolume performances. Table 1 shows the Hypervolume (HV) values of LacaDM and base-
line models in discrete and continuous MORL environments, respectively. The HV metric measures
the accuracy and diversity of the solution set, by calculating as the volume of the hypercube be-
tween the Pareto Front (PF) and a reference point. We use the default reference points provided by
the MOGymnasium framework. A higher HV value indicates better overall algorithm performance.

In Table 1, LacaDM achieved the highest average HV values in five out of eight scenarios in the
discrete environments, and in six out of eight scenarios in the continuous environments. The re-
sults are based on the average of 10 independent runs, with statistical tests confirming that LacaDM
outperformed the baseline models at a significance level of p < 0.05 after 10 runs. In the discrete
environments, LacaDM particularly excelled in complex scenarios such as Breakable Bottles and
MOLunarLander, where it significantly outperformed the baseline models. These results under-
score LacaDM’s ability to handle environments with intricate reward structures and sparse objective
distributions. Similarly, in the continuous environments, LacaDM achieved optimal performance
in high-dimensional tasks like MOHalfcheetah, MOSwimmer and MOWalker2D, showcasing its
capability to manage the challenges of continuous action spaces and dynamics. The superior HV
values achieved by LacaDM across various environments validate its potential for solving complex
MORLs. Notably, when compared to MTDiff and DMBP, two reinforcement learning diffusion-
based models, LacaDM exhibited clear advantages in both continuous and discrete MORL tasks.
This further underscores the effectiveness of our causal representation learning mechanism in en-
hancing the diffusion process and improving optimization performance across diverse MORL sce-
narios.
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Sparsity performances. To further evaluate the performance of our LacaDM, we assess sparsity,
which measures how evenly the solutions are distributed across the objective space. Lower sparsity
values indicate better performance. The p-values in Table 2 further confirm the statistical signifi-
cance of these results. As shown in Table 2, LacaDM achieved the lowest average sparsity values
in five out of eight discrete environments and six out of eight continuous environments, based on
the average of 10 independent runs. These results highlight the effectiveness of LacaDM’s diffu-
sion process in generating evenly distributed solutions. Notably, LacaDM performed exceptionally
well on high-dimensional continuous tasks, such as MO-Halfcheetah and MO-Walker2D, and com-
plex discrete tasks like MO-Lunar-Lander, where capturing causal dynamics is critical for balancing
solution distribution. Overall, LacaDM consistently maintains low sparsity values, demonstrating
that causal representation learning, combined with the diffusion process, plays a key role in produc-
ing diverse and evenly distributed solution sets, a critical requirement for effective multi-objective
optimization.

Table 2: Comparison of average Sparsity across discrete and continuous MORL environments.
MORL environments Env. Type Deep Qlearning PCN ANSGAII NSGAIIIEHVI EmoDM MTDiff DMBP LacaDM (Ours) p-value

Deep Sea Treasure Discrete 1.53e+1 1.45e+1 2.01e+1 1.35e+1 1.97e+1 1.34e+1 1.28e+1 1.24e+1 0.000
HighwayEnv Discrete 1.83e+1 1.67e+1 2.15e+1 1.94e+1 2.20e+1 1.41e+1 1.68e+1 1.65e+1 0.000

ResourceGathering Discrete 8.09e+2 6.42e+2 1.25e+1 8.02e+2 1.03e+1 6.42e+2 6.35e+2 6.33e+2 0.000
FourRoom Discrete 3.37e+2 3.42e+2 5.21e+2 3.30e+2 5.17e+2 3.18e+2 3.11e+2 3.15e+2 0.000
FruitTree Discrete 2.40e+1 2.41e+1 3.17e+2 2.35e+2 3.26e+2 2.08e+2 1.98e+2 2.02e+2 0.000

BreakableBottles Discrete 3.54e+1 3.65e+1 4.02e+1 3.55e+1 4.00e+1 3.29e+1 3.27e+1 3.26e+1 0.000
Fishwood Discrete 1.58e+0 1.66e+0 2.21e+0 1.54e+0 2.18e+0 1.48e+0 1.52e+0 1.43e+0 0.000

MOLunarLander Discrete 1.25e+1 1.26e+1 1.45e+1 1.22e+1 1.48e+1 1.19e+1 1.18e+1 1.18e+1 0.001

MountainCar Continuous 7.57e+1 6.12e+1 9.04e+1 7.51e+1 8.97e+1 6.21e+1 6.18e+1 6.02e+1 0.000
Water Reservoir Continuous 2.14e+0 1.95e+0 3.45e+0 2.01e+0 3.33e+0 1.88e+0 1.94e+0 1.92e+0 0.000

HopperEnv Continuous 1.46e+0 1.24e+0 3.14e+0 1.20e+0 3.24e+0 1.11e+0 1.08e+0 1.03e+0 0.000
MOHalfcheetah Continuous 9.36e+0 9.42e+0 1.26e+1 9.23e+0 1.22e+1 9.21e+0 9.18e+0 9.15e+0 0.000

MOAnt Continuous 2.66e+2 2.48e+2 3.54e+2 2.40e+2 3.28e+2 2.17e+2 2.20e+2 2.15e+2 0.000
MOSwimmer Continuous 9.16e+0 9.23e+0 1.54e+1 9.02e+0 1.02e+1 8.45e+0 8.57e+0 8.77e+0 0.000
MOHumanoid Continuous 5.72e+1 5.87e+1 6.25e+1 5.69e+1 6.11e+1 5.67e+1 5.87e+1 5.55e+1 0.002
MOWalker2D Continuous 2.31e+2 2.28e+2 2.94e+2 2.22e+2 2.88e+2 2.04e+2 2.11e+2 2.01e+2 0.000

Expected utility maximization performances. We also use Expected Utility Maximization
(EUM) as an evaluation metric. EUM reflects the decision-maker’s preferences by calculating a
weighted average of utility values across all possible outcomes, where larger values indicate better
performance. For each environment, we use the default implementation from the MO-Gymnasium
framework to compute EUM values. Figure 2 illustrates the trends of expected utility over train-
ing steps for HighwayEnv and Deep Sea Treasure (discrete environments) and MO-Ant and MO-
Walker2D (continuous environments). The results consistently show that LacaDM outperforms
baseline models across all tasks. In discrete environments, LacaDM demonstrates rapid conver-
gence, achieving higher EUM values than baselines within the first 1000 steps and maintaining its
lead throughout training. In continuous environments, LacaDM achieves superior performance by
consistently reaching higher EUM values earlier in training. Its performance stabilizes near the
optimal solution after 1500 steps, highlighting its ability to efficiently explore and converge in chal-
lenging continuous control tasks.

These results reflect LacaDM’s advantages in both discrete and continuous settings, where faster
convergence and better stability stem from its key mechanisms. Specifically, causal representation
learning captures causal relationships between objectives, guiding the reverse diffusion process for
more efficient exploration and convergence. Meanwhile, the diffusion process achieves a balance
between solution diversity and optimization through the stepwise introduction and removal of noise,
enabling LacaDM to generate high-quality strategies more effectively than other methods.
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Figure 2: Expected utility of baseline models and LacaDM across four MORL problems as the
number of solving steps increases.
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5.3 EFFECT OF LATENT CASUAL LEARNING

In this section, we conduct experiments on a variant of LacaDM, LacaDM-CRL (which re-
moves the CRL component), to analyze and validate the effectiveness of causal representa-
tion Learning (CRL). To evaluate its performance, we selected four environments: Fishwood
and HighwayEnv from the discrete set, and HopperEnv and MountainCar from the continu-
ous set. All other experimental settings remain consistent with the original LacaDM configura-
tion. To isolate the impact of the CRL component in LacaDM, we compared the results of La-
caDM with those of LacaDM-CRL. Table 3 presents the comparative results in these four en-
vironments, demonstrating the critical role of CRL in the policy generation process. Without
CRL, LacaDM loses the ability to capture the potential relationships between the new environ-
ment and the predicted noise during strategy generation. Consequently, the reverse diffusion
process fails to converge effectively, preventing the model from reaching the optimal strategy.

Table 3: Hypervolume (HV) results of LacaDM
with and without the CRL component across four
MORL environments.

Environment LacaDM-CRL LacaDM
Fishwood 2.42e+3 3.15e+3
HighwayEnv 9.87e+3 2.51e+4
MountainCar 4.24e+6 5.02e+6
HopperEnv 6.38e+4 9.84e+4

In addition, to investigate whether CRL is the
key factor contributing to this phenomenon,
we generated cosine similarity heatmaps of
noise inference and training at T

2 , with and
without the CRL component. In our exper-
iment, T = 1500, the training environment
for the sampled data was MO-SuperMario, and
the reasoning environment was MO-Walker2D.
The resulting heatmaps are shown in Figure
3. As illustrated in Figure 3, the overall
color of the heatmap is noticeably darker when
the CRL component is included compared to when it is not. This indicates that our pro-
posed model with the CRL component is better able to generalize from the training environ-
ment to an unseen reasoning environment. These results highlight the critical role of CRL in
improving the model’s ability to adapt and transfer knowledge across different environments.

6 CONCLUSION

Figure 3: Cosine similarity heatmaps comparing
noise inference and training between LacaDM-
CRL and LacaDM at the midpoint of the diffusion
process.

In this paper, we proposed LacaDM, a novel
diffusion model enhanced with CRL to tackle
complex MORL problems. LacaDM combines
the strengths of diffusion models for effective
exploration and convergence with the power
of CRL to capture dynamic relationships be-
tween objectives and environments. This inte-
gration enables LacaDM to produce diverse and
high-quality solutions across discrete and con-
tinuous MORL environments. Through exten-
sive experiments on MO-Gymnasium environ-
ments, we demonstrated that LacaDM consis-
tently outperforms baseline methods , including
reinforcement learning algorithms, evolution-
ary algorithms, and existing diffusion-based ap-
proaches, in both discrete and continuous tasks. These results highlight the effectiveness of CRL
in improving the diffusion model’s ability to generalize across environments and optimize strate-
gies efficiently. In the future, we plan to explore more advanced causal inference techniques for the
diffusion model to further enhance the scalability and generalization capabilities of LacaDM. Ad-
ditionally, we also aim to explore the integration of other advanced techniques such as multi-agent
collaboration and transfer learning to further push the boundaries of LacaDM in solving even more
complex MORL tasks.
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preprint arXiv:2204.05036, 2022.

Mathieu Reymond, Conor F Hayes, Lander Willem, Roxana Rădulescu, Steven Abrams, Diederik M
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A APPENDIX

A.1 EXPERIMENT DETAILS

We provide key implementation settings used for training LacaDM across all experiments. These
configurations ensure stability, efficiency, and reproducibility of results across different MORL en-
vironments. The training was conducted using PyTorch on a single NVIDIA RTX 4090 GPU. All
experiments use a fixed random seed of 42 unless otherwise specified. Table 4 summarizes the core
training and model parameters.

Table 4: Summary of core implementation configurations.
Component Setting Description

Optimizer Adam Learning rate 1× 10−4

Batch size 256 Number of samples per update
Epochs 500 Full training passes
Diffusion steps (T ) 100 Reverse denoising steps
Network layers 3 Fully connected layers in denoiser
Hidden units 512 Per layer, with ReLU activations
Latent dim (z) 64 VAE latent space dimension
Regularization λ = 0.01 L1 regularization on policies

A.2 ADDITIONAL EXPERIMENT RESULTS

A.2.1 DIFFUSION TIME STEPS ANALYSIS

For LacaDM, the setting of the time step of diffusion is crucial because it is related to the speed
of reasoning and the consumption of computing resources. For this reason, we selected three envi-
ronments, Breakable Bottles, FruitTree and MOHalfcheetah respectively, and drew the curve of HV
finger change with the increase of the number of denoising steps in Figure 4.

As observed in Figure 4, the HV stabilizes when the number of steps reaches 1500, indicating that
setting the time step to 1500 yields a more optimal tradeoff between performance and computational
cost.

A.2.2 EXPECTED UTILITY MAXIMIZATION PERFORMANCES

Figure 5 shows the change trend of expected utility with the increase of steps when LacaDM and
baseline model solve Fishwood, ResourceGathering in discrete environment and MOHalfcheetah,
MOHumanoid in continuous environment respectively.

It can be seen from the Figure 5 that although the Expected Utility obtained from LacaDM solution
increases slowly in the initial stage, it presents a stable and continuous rising trend with the progress
of steps. This shows that the model has effective learning ability and can be continuously optimized
and improved in the process. When the step approaches 1500, the LacaDM model becomes stable,
indicating that the performance of LacaDM model is gradually stable in the later stage. In addition,
the EUM value obtained after the curve converges is better than that of other baseline models.

A.2.3 EFFECTIVENESS OF THE DIFFUSION PROCESS IN MULTIOBJECTIVE LEARNING

Before evaluating LaCaDM’s generalization ability across environments, we first assess whether
the diffusion process alone can effectively model multiobjective policies in a single-task setting.
To isolate the effect of the diffusion mechanism, we construct a simplified version of LaCaDM by
removing the causal module and training and testing within the same environment.

As shown in Table 5, even under this minimal setup, the diffusion-based model consistently out-
performs a standard Pareto-conditioned network (PCN) baseline across multiple environments, as
measured by hypervolume (HV) and expected utility maximization (EUM). These results demon-
strate that the diffusion process alone is sufficient to capture meaningful multiobjective trade-offs,
forming a solid foundation for the full model’s causal and generalization capabilities.
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Figure 4: HV indicator versus the number of denoising steps for LacaDM across three distinct
environments: Breakable Bottles, MOHalfcheetah and FruitTree.
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Figure 5: Expected utility vs Steps

A.3 RATIONALE FOR CHOOSING PCN

We select PCN Reymond et al. (2022) as the reinforcement learning algorithm for generating train-
ing data due to its strong alignment with the goals of multiobjective policy modeling. PCN explicitly
models Pareto frontiers and adapts to varying preference vectors via conditional networks, enabling
the generation of diverse and high-quality policy trajectories. Its conditional mechanism is also
well aligned with the stepwise structure of diffusion models, making it suitable for capturing policy
evolution over time. Empirically, PCN provides stable and informative trajectories that facilitate
effective learning in our diffusion-based framework.

Compared to standard RL methods such as PPO Yu et al. (2022) or SAC Chavali et al. (2022), PCN
offers several advantages in multiobjective settings. Traditional RL methods typically optimize
scalarized objectives and require retraining when preferences change. In contrast, PCN conditions
on preference vectors directly, allowing flexible generation of policies in a single training run Del-
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Table 5: Performance of LaCaDM trained and evaluated in the same environment, compared to a
Pareto-conditioned network (PCN). Results are averaged over three runs. Higher is better.

Environment Baseline (PCN) LaCaDM
HV ↑ EUM ↑ HV ↑ EUM ↑

MOHalfCheetah 6.30e+4 5.10e+3 6.42e+4 5.65e+3
Fishwood 3.03e+3 6.95e+2 3.11e+3 7.70e+2
FruitTree 3.31e+4 9.84e+3 3.60e+4 1.08e+4

grange et al. (2023). This improves data efficiency and better supports the conditional generation
paradigm required by our diffusion model.

A.4 RELATED WORK

A.4.1 MULTIOBJECTIVE REINFORCEMENT LEARNING AND DIFFUSION MODELS

MORL aims to optimize policies under conflicting objectives, where trade-offs must be learned
rather than predefined. Classical approaches, such as scalarization techniques Roijers et al. (2015);
Yang et al. (2019), and Pareto-based solutions Reymond et al. (2024); Roijers et al. (2013); Van Mof-
faert & Nowé (2014), typically require to retrain when objectives or environments change. These
methods often assume a static task distribution, limiting their applicability in real-world scenarios
with nonstationary dynamics. Recent toolkits such as MOGymnasium Felten et al. (2024a) highlight
the need for MORL algorithms capable of adapting to dynamic and uncertain environments. At the
same time, diffusion models have gained traction in reinforcement learning due to their ability to
generate diverse and coherent action sequences by reversing a noise process Janner et al. (2022); Liu
et al. (2024a). While effective in single-objective offline RL and planning, these models typically
lack mechanisms for modeling evolving task structures or latent environmental factors Zhang et al.
(2024c). Our work addresses this gap by integrating diffusion-based policy generation with latent
causal modeling for dynamic MORL.

A.4.2 CAUSAL REPRESENTATION LEARNING

Causal representation learning aims to uncover latent factors that govern observable dynamics, offer-
ing a principled framework for improving generalization and robustness Liu et al. (2024b); Yao et al.
(2021); Tian et al. (2024). Such representations can disentangle exogenous environment shifts from
endogenous agent behavior, which is particularly important in nonstationary settings with delayed or
indirect effects. In reinforcement learning, causal reasoning supports interventions, counterfactual
predictions, and long-term credit assignment Wang et al. (2024).

Although causal modeling has been explored in domains such as domain generalization and im-
itation learning, its integration into multiobjective RL remains limited Zeng et al. (2024). Most
existing works Joshi et al. (2024); Schulte & Poupart (2024) treat causal inference and policy learn-
ing as independent components, without leveraging the potential synergy between structured causal
modeling and adaptive decision-making. In contrast, our approach embeds a latent temporal causal
model directly into the diffusion process, enabling the policy to proactively adapt to shifts in objec-
tives or environment dynamics via causal interventions.

A.5 DERIVATION OF THE CRL FRAMEWORK

A.5.1 PROBLEM FORMULATION

Let xt ∈ Rd represent the observed temporal data at time t. This data is generated by latent causal
processes zt ∈ Rn (n ≤ d) via an injective mixing function g : Rn → Rd:

xt = g(zt) (21)

The latent processes zt evolve according to causal relationships, where the value of each latent
variable zt at time t depends on the values of its parent variables Pa(zt) at the previous time steps,
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and a noise term ϵt that introduces uncertainty:

zt = f (Pa(zt), ϵt) , ϵt ∼ pϵt|u (22)

where Pa(zt) represents the parent variables of zt, and f is a nonparametric function that captures
the causal influence of the parents on the current latent variable. The noise ϵt is assumed to follow a
distribution modulated by the regime variable u, which may depend on the environment or system
dynamics.

A.5.2 FORWARD DIFFUSION PROCESS

The forward process introduces Gaussian noise over T steps to corrupt the latent variables zt:

q(zt|zt−1) = N
(
zt;

√
1− βtzt−1, βtI

)
(23)

The marginal distribution of zt after t steps is:

q(zt|z0) = N
(
zt;

√
ᾱtz0, (1− ᾱt)I

)
, ᾱt =

t∏
s=1

(1− βs) (24)

A.5.3 REVERSE DIFFUSION WITH CAUSAL CONSTRAINTS

The reverse process learns to denoise the latent variables while preserving causal structure:

pθ(zt−1|zt) = N (zt−1;µθ(zt, t),Σθ(zt, t)) (25)

The latent temporally causal processes Yao et al. (2021) enforces three key constraints:

1. Independent Noise (IN): ϵit ⊥⊥ Pa(zit)

2. Nonstationary Noise: pϵit|u varies across regimes u
3. Sufficient Variability: For any zt, ∃2n+ 1 regimes uj such that:

rank
(
[w(zt,uj+1)w(zt,uj)]

2n
j=0

)
= 2n (26)

A.5.4 OPTIMIZATION FRAMEWORK

The complete objective combines:

LELBO = Eqϕ [log pθ(x|z)]−DKL(qϕ∥pψ) (27)

LTC = Eϵ̂ log
D(ϵ̂)

1−D(ϵ̂perm)
(28)

LTotal = LELBO + λLMask + σLTC (29)

A.5.5 IDENTIFIABILITY PROOF SKETCH

The latent mapping h = g−1 ◦ ĝ reduces to permutation and componentwise invertible transforms.
Key steps:

1. Observational Equivalence:

p(zt|{zt−τ},u) = p(h−1(zt)|{h−1(zt−τ )},u)
∏
i

∣∣∣∣∂h−1
i

∂zit

∣∣∣∣ (30)

2. Jacobian Constraints: ∑
i

aiq
11
i + biq

1
i = c (31)

3. Identifiability Result:

h(z) = π ◦ T (z), T (zi) is invertible, π is a permutation (32)
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