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Abstract
Out-of-distribution (OOD) detection task plays
the key role in reliable and safety-critical appli-
cations. Existing researches mainly devote to de-
signing or training the powerful score function but
overlook investigating the decision rule based on
the proposed score function. Different from pre-
vious work, this paper aims to design a decision
rule with rigorous theoretical guarantee and well
empirical performance. Specifically, we provide a
new insight for the OOD detection task from a hy-
pothesis testing perspective and propose a novel
generalized Benjamini Hochberg (g-BH) proce-
dure with empirical p-values to solve the testing
problem. Theoretically, the g-BH procedure con-
trols false discovery rate (FDR) at pre-specified
level. Furthermore, we derive an upper bound of
the expectation of false positive rate (FPR) for
the g-BH procedure based on the tailed general-
ized Gaussian distribution family, indicating that
the FPR of g-BH procedure converges to zero in
probability. Finally, the extensive experimental
results verify the superiority of g-BH procedure
over the traditional threshold-based decision rule
on several OOD detection benchmarks.

1. Introduction
Deep Neural Networks (DNNs) have attained remarkable
achievements in a broad range of challenging problems
from image classification (He et al., 2016b), speech recogni-
tion (Amodei et al., 2016), to machine translation (Dankers
et al., 2022). The excellent performance of these models
lie in the promising generalization on the in-distribution
(ID) inputs that are drawn from the same distribution as the
examples used to train the model. Nevertheless, in the open
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real-world scenarios, these models often struggle with out-
of-distribution (OOD) inputs from a different distribution
that the network has not been exposed to during training.
To ensure the reliability and safety of sensitive applications,
such as medical diagnosis (Frolova et al., 2022) and finance
(Özbayoglu et al., 2020), the OOD inputs should be identi-
fied and not be predicted with high confidence during testing
time (Nguyen et al., 2015). Such a task is referred to as OOD
detection (Hendrycks & Gimpel, 2017).

OOD detection has gained significant attention recently and
a plethora of literature has emerged to address this issue (Liu
et al., 2020; Yang et al., 2021; Wang et al., 2022; Hendrycks
et al., 2022; Djurisic et al., 2023; Liu et al., 2023). In the
current literature, the OOD detection task is formulated as
the following decision problem. For an input x, the decision
rule is:

ϕ(x) =

{
ID, if s(x) ≥ s∗

OOD, if s(x) < s∗
(1)

where s(·) denotes the score function and the threshold s∗ is
empirically selected so that the ture positive rate (TPR) on
ID validation set 1 is 95% before testing. Given the choice
of threshold s∗, we call the decision rule in Eq. (1) empiri-
cal decision rule (e-DR). Existing OOD detection methods
mainly devote to obtaining a powerful score function and
then apply the e-DR in Eq. (1) to identify the OOD examples
directly. Factually, the decision rule is extremely significant
for the OOD detection task, since it may be directly used
in sensitive applications such as self-driving (Huang et al.,
2020; Li et al., 2022). However, these state-of-the-art ap-
proaches are lack of the systematic investigation into the
decision rule. Besides, the e-DR is empirical, thus its out-
puts are not covered by any rigorous theoretical guarantee.
Then a natural question arise:

How to design an decision rule with rigorous the-
oretical guarantee and superior empirical perfor-
mance?

This paper aims to systematically study the above question.
Different from previous OOD detection literature, we in-
vestigate the OOD detection problem from the statistical

1In practical application, the testing data is unknown and we
can not guarantee that the TPR on test set is 95%. Therefore, the
threshold is selected using the ID validation set.
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perspective. Specifically, we consider the OOD detection
task as a multiple hypothesis testing problem. It is known
that Benjamini Hochberg (BH) procedure is one of the most
popular and widely used algorithms for multiple hypothe-
sis testing (Benjamini & Hochberg, 1995). To control the
false discovery rate (FDR) 2, the BH procedure demands
that the p-values corresponding to different null hypotheses
are mutually independent or follow certain patterns of de-
pendence, such as the positive regression dependence on
subset (PRDS) (Benjamini & Yekutieli, 2001) or the depen-
dency control (DC) condition (Blanchard & Roquain, 2008).
Following these literature, we propose a novel generalized
BH (g-BH) procedure with empirical p-values to solve the
OOD detection problem, which can control FDR at pre-
specified level. Moreover, we derive an upper bound of the
false positive rate (FPR) expectation for the g-BH procedure
based on the tailed generalized Gaussian distribution family.
This upper bound indicates that the FPR of g-BH procedure
converges to 0 in probability.

Extensive experiments demonstrate the superiority of the g-
BH procedure over the traditional threshold-based decision
rule from practical perspective (focusing on TPR, FPR and
F1 -score) and classical perspective (focusing on FPR95,
AUROC and AUPR). For example, using CIFAR-10 as ID
and Place365 as OOD, our method reduces the FPR from
48.21% to 16.79%, and improves the F1-score from 49.83%
to 67.86% compared with the e-DR based on KNN (Sun
et al., 2022), a direct improvement of 31.43% and 18.03%.
In addition, combining the MSP (Hendrycks & Gimpel,
2017) with the g-BH procedure, the FPR95 is reduced by
13.65% on average compared with the vanilla MSP.

Overall, the g-BH procedure achieves promising perfor-
mance on OOD detection and it is easily adopted based
on the existing score functions, without any sophisticated
changes to the loss or training scheme. We summarize our
contributions below:

(1) We frame the OOD detection task as the multiple hy-
pothesis testing problem and propose a novel g-BH
procedure to solve it. Our method is distribution-free,
easy to implement, and does not rely on the extra infor-
mation of OOD data. Besides, any score-based methods
can be plugged in the g-BH procedure.

(2) We develop the theoretical results of classical BH pro-
cedure about FDR control. Besides, we derive an upper
bound of the FPR expectation for the g-BH procedure
based on the tailed generalized Gaussian distribution
family. This indicates that the FPR of g-BH procedure

2FDR is related to the concept of Precision (see Section 2.2),
and can be considered as the generalization of type-I error for
single hypothesis testing. Therefore, the FDR should be first
controlled for a hypothesis testing algorithm.

converges to zero in probability.

(3) Finally, we conduct extensive experiments to demon-
strate the superiority of the g-BH procedure over tradi-
tional threshold-based decision rule on several OOD de-
tection benchmarks. The results show that our method
improves the OOD detection performance of the exist-
ing methods.

The rest of this paper is organized as follows. Section 2 in-
troduces the background of OOD detection and related con-
cepts. Section 3 proposes the g-BH procedure and proves
that it controls FDR at a prescribed level. Next, Section
4 derives an upper bound of the FPR expectation for the
g-BH procedure under the tailed generalized Gaussian dis-
tribution family. The experimental results are presented at
Section 5. We discuss the related works in Appendix A. Be-
sides, the omited proofs and in main context are presented
in Appendices B.

2. Preliminaries
2.1. Background

We donote by X ⊆ Rd the feature space and Y =
{1, 2, 3, . . . , L} the label space with the joint distribution
PX×Y , and X has marginal distribution Pin. Let (x, y)
be the feature-label pair, where instance x ∈ X and label
y ∈ Y . Let f(θ;x) : X → R|Y| be a neural network, which
is parameterized by θ and outputs a logit vector used to pre-
dict the label of an input sample. For simplicity, we denote
ℓ(θ, x, y) = ℓ(fθ(x), y) where ℓ(·) is a loss function. We
attain a perform-well multi-class classifier by minimizing
the following risk:

R(f) = E(x,y)∼PX×Y [ℓ (θ, x, y)].

In practice, we generally use cross-entropy loss with the
softmax activation function:

ℓ(θ, x, y) = − log p(y|x) = − log
efy(θ;x)∑L
j=1 e

fj(θ;x)
,

where p(y|x) is the softmax probability and fj(θ, x) denotes
the j-th element of f(θ; , x) corresponding to the ground-
truth label j.

During the prediction phase, we usually assume that the test
data are drawn from the same distribution Pin as the training
data. Nevertheless, practical situations may introduce inputs
from unfamiliar distributions, with label space potentially
lacking any intersection with Y . These inputs are referred
to as OOD data and should not be predicted. The goal of
OOD detection is to identify the OOD examples in testing
set. Existing literature for OOD detection mainly devotes to
obtaining a powerful score function and directly applies the
e-DR in (1) to determine whether a input is ID or OOD.
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2.2. A Perspective of hypothesis testing for OOD
Detection

Different from existing OOD detection methods which di-
rectly apply e-DR in Eq. (1), we aim to design a new
decision rule with rigorous theoretical guarantee and su-
perior empirical performance. Firstly, we provide a new
insight for the OOD detection problem from a hypoth-
esis testing perspective. Specifically, for a testing set
T test = {Xtest

1 , Xtest
2 , . . . , Xtest

n }, OOD detection task
can be formulated as the following hypothesis testing prob-
lem:

H1;0 : Xtest
1 ∼ Din, H1;1 : Xtest

1 ≁ Din

H2;0 : Xtest
2 ∼ Din, H2;1 : Xtest

2 ≁ Din

...

Hn;0 : Xtest
n ∼ Din Hn;1 : Xtest

n ≁ Din

(2)

where Hi;0 and Hi;1 are called null hypothesis and alterna-
tive hypothesis, respectively. If Hi;0 is rejected, we declare
that Xtest

i is OOD.

Whether we reject null hypothesis Hi;0 or not depends on
the significant concepts: p-value, defined as follows.

Definition 2.1 (p-value (Casella & Berger, 2002)). Given
a sample X̃ 3. A statistic p(X̃) is called p-value correspond-
ing to the null hypothesis H0, if 0 ≤ p(X̃) ≤ 1, and for
every 0 ≤ t ≤ 1,

P[p(X̃) ≤ t|H0] ≤ t (3)

Usually, a small p-value means strong evidence against the
null hypothesis.

Another critical concept is false discovery rate (FDR), which
can be considered as the generalization of the probability of
type-I error. Denote by R the set of indices for the rejected
hypotheses. Let N0 and N1 be the set of indices for the
true null hypotheses and false null hypothesis, respectively.
Denote n0 = |N0| the number of true null hypotheses. The
hypotheses in Eq. (2) rejected by the detection algorithms
are called discoveries. The FDR is the expected proportion
of erroneous discoveries among all discoveries. Its rigorous
definition is as follows.

Definition 2.2 (FDR (Benjamini & Hochberg, 1995)).
False discovery proportion (FDP) is the ratio of the number
of false discoveries to that of all claimed discoveries:

FDP =
|R ∩ N0|

max{|R|, 1}
.

The FDR is the expectation of FDP, namely FDR =
E(FDP) where the expectation is taken over the true proba-
bility distribution.

3A sample means a sequence of examples.

Denote by Rc the complement of set R. Using the con-
fusion matrix notations 4, the FDP can be also expressed
as FDP = FN

FN+TN , which is the “dual” concept of the
Precision, where

Precision =
TP

TP + FP
=

|Rc ∩N0|
max{|Rc|, 1}

.

2.3. BH Procedure

We first introduce the classical BH procedure, which is
one of the most popular and heavily studied algorithms for
problem (2) (Benjamini & Hochberg, 1995; Benjamini &
Yekutieli, 2001; Blanchard & Roquain, 2008; Basu et al.,
2018).

Definition 2.3 (BH Procedure (Benjamini & Hochberg,
1995)). Given the p-values p1, p2, · · · , pn corresponding
to the null hypotheses H1;0, H2;0, · · · , Hn;0, and let p(i) be
the i-th order statistics from the smallest to the largest. For
a pre-specified level α ∈ (0, 1), define

i∗BH = max{i ∈ [n] : p(i) ≤
i

n
α}. (4)

Then, the null hypothesis H(i);0 is rejected if i ≤ i∗BH .

In statistics, α is usually specified as 0.05.Similar to the
type-I error in single hypothesis testing, a testing algorithm
for problem (2) should make as many discoveries as possible
while maintaining the FDR at a prescribed level. We present
some known theoretical results of the BH procedure under
the dependence between p-values below.

Theorem 2.4. (Benjamini & Yekutieli, 2001) Given the de-
pendent p-values p1, p2, . . . , pn, the BH procedure applied
at level α ∈ (0, 1) controls the FDR at level αCn:

FDRBH ≤ αCn. (5)

where Cn = 1 + 1
2 + 1

3 + · · · + 1
n . Particularly, there

exists a joint distribution of dependent p-values for which
FDRBH = min{αCn, 1} .

Note that Cn is monotonically increasing and converges to
∞ as n → ∞. In many applications, the number of ex-
amples in the test set T test is large, then αCn > 1 when
Cn > 1

α , implying that FDRBH = 1 > α. Hence, the
BH procedure can not control FDR at level α for arbitrarily
dependent p-values. Then, many researches (Benjamini &
Hochberg, 1995; Benjamini & Yekutieli, 2001; Blanchard
& Roquain, 2008) have established various conditions on
p-values to control FDR for BH procedure. Besides, Clarke
& Hall (2009) investigated the difficulties caused by depen-
dence of p-values for FDR control.

4Based on the notations of R, N0 and N1, we have the
following relations: TP = |Rc ∩ N0|, FN = |R ∩ N0|,
FP = |Rc ∩N1| and TN = |R ∩ N1|.
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3. Generalized BH Procedure
In this section, we modify the BH procedure and then pro-
pose a novel generalized BH (g-BH) procedure as the deci-
sion rule for the OOD detection problem. We first denote
f+(0) = limx→0+ f(x), and define two function classes:

F1 = {f(x) : f+(0) = 0, f ′(x) > 0,

∫ 1

0

1

f(x)
dx ≤ 1}

F2 = {f(x) : f+(0) = 0, f ′(x) ≥ 1},

for x ∈ (0, 1). The g-BH procedure is defined as follows:

Definition 3.1 (g-BH Procedure). Given the p-values
p1, p2, · · · , pn corresponding to the null hypotheses
H1;0, H2;0, · · · , Hn;0, let p(i) be the i-th order statistics
from the smallest to the largest. For a pre-specified level
α ∈ (0, 1), define

i∗g−BH = max{i ∈ [n] : f(p(i)) ≤
i

n
α}, (6)

where f(·) ∈ F1 ∪ F2. Then, the null hypothesis H(i);0 is
rejected if i ≤ i∗g−BH .

Eq. (6) indicates that the g-BH procedure rejects the null
hypothesis Hi,0 if f(pi) ≤ α

n i
∗
g−BH and |R| = i∗g−BH .

We first investigate the theoretical properties of the g-BH
procedure about FDR control. It is well known that if p-
values p1, p2, . . . , pn are mutually independent or PRDS,
the BH procedure can control FDR at level n0

n α. Factually,
the g-BH procedure also enjoys this theoretical results. We
begin with the following definitions.

Definition 3.2 (Increasing Set). A subset D ⊂ Rn is said
to be increasing if for all x ∈ D, x ≤ y implies y ∈ D,
where the comparison of x and y is component-wise.

Definition 3.3 (PRDS(Benjamini & Yekutieli, 2001)). A
family of random variables {X1, X2, . . . , Xn} is said to
be PRDS on a subset I0 ⊂ {1, 2, . . . , n} if for all i ∈
I0, the function P((X1, X2, . . . , Xn) ∈ D|Xi = x) is an
increasing function in x for any increasing subset D.

According to the definition of PRDS, we obtain two useful
propositions.

Proposition 3.4. Suppose that the p-values p1, p2, . . . , pn
are PRDS on N0 and denote p∗i := f(pi) for all i ∈
{1, 2, . . . , n} where f(·) is strictly increasing or decreasing.
Then {p∗1, p∗2, . . . , p∗n} is PRDS on N0 as well.

Proposition 3.5. If the p-values p1, p2, . . . , pn are PRDS
on the set N0, then for any i ∈ N0, the function

P((p1, p2, . . . , pn) ∈ D | pi ≤ x)

is increasing in x for any increasing set D.

Proposition 3.4 indicates that PRDS is invariant for mono-
tonic transformation. Proposition 3.5 gives another form
of PRDS in some degree. Then, the first core theorem is
presented as follows:

Theorem 3.6. Given the p-values p1, p2, . . . , pn corre-
sponding to various null hypotheses H1;0, H2;0, · · · , Hn;0

and level α ∈ (0, 1).

(1) For f(·) ∈ F1 ∪ F2, if p1, p2, . . . , pn are mutually
independent, then the g-BH procedure satisfies

FDRg-BH ≤ n0

n
α ≤ α.

(2) For f(·) ∈ F2, if p1, p2, . . . , pn are PRDS on N0, then
the g-BH procedure satisfies

FDRg-BH ≤ n0

n
α ≤ α.

The proof of Theorem 3 is presented in Appendix B.1. The-
orem 3.6 indicates that the g-BH procedure controls FDR at
a prescribed level for at least one function class. Therefore,
we can choose appropriate function in F1 or F2 for different
OOD detection task according to the condition of p-values.
Note that if we choose f(x) = x ∈ F2, the g-BH proce-
dure degenerates to the classical BH procedure. Hence, our
proposed method is called the generalized BH procedure.

4. FPR Control of g-BH Procedure
False positive rate (FPR) is a significant evaluation criterion
for OOD detection. Using the notations R and N1, the
FPR can be expressed as Although FDR control has been
widely studied, relatively little is known about the theoreti-
cal properties of FPR. For example, for a pre-specified FDR
control level, what is the worst expectation of FPR attain-
able with finite samples? In this section, we investigate the
nonasymptotic behavior of FPR for the g-BH procedure.
Our analytical framework is similar to that of Donoho & Jin
(2004); Neuvial & Roquain (2012).

4.1. Analytical Framework

Many theoretical studies (Benjamini & Hochberg, 1995;
Benjamini & Yekutieli, 2001; Storey, 2002; Blanchard &
Roquain, 2008) assume that p-values are available, implying
that the null distribution of test statistic is known. In this
case, p-values can be expressed as pi = Ψ(Ti), where Ψ(·)
is the survival function of test statistic and Ti is the observa-
tion of test statistic corresponding to Hi. For mathematical
convenience, we impose that T1, T2, . . . , Tn are indepen-
dent continuous random variables. Reasonably, working
with p-values p1, p2, . . . , pn is equivalent to working with
observations T1, T2, . . . , Tn.
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In this section, we describe the distribution of the observa-
tion Ti in terms of the tailed generalized Gaussian model,
which is a variant of the generalized Gaussian model.

Definition 4.1 (Tailed Generalized Gaussian Distribution
Family). A random variable X is said to follow the tailed
generalized Gaussian distribution family with the location
µ and the degree λ > 1, denoted by X ∼ G(µ, λ), if
its cumulative distribution function F (·) and the survival
function Ψ(·) satisfy F (0) = Ψ(0) = 1

2 , and for constants
Cl > Cu > 0, we have

i, there exists the positive real number Xl such that

e
−|x−µ|λ

λ

Cl
≤ F (x− µ) ≤ e

−|x−µ|λ
λ

Cu

for x− µ < −Xl.

ii, there exists the positive real number Xu such that

e
−|x−µ|λ

λ

Cl
≤ Ψ(x− µ) ≤ e

−|x−µ|λ
λ

Cu

for x− µ > Xu.

It is easy to verify that Gaussian distribution satisfies these
conditions. Note that Ψ(0) = 1

2 implies that Cl ≥ 2 and
Cu ≤ 2. Since Ψ(·) is a decreasing function, Ψ(x− µ) >
F (x− µ) for x < µ.

Our inspiration for considering the tail generalized Gaussian
distribution comes from the previous works (Donoho & Jin,
2004; Ingster & Suslina, 2012) on global testing. In terms
of the notation G(µ, λ), we assume that the observation Ti

is distributed as

Ti ∼

{
G(0, λ) if i ∈ N0

G(µ, λ) if i ∈ N1,
(7)

where µ > 0 is allowed to vary with the number of hy-
potheses n. Eq. (7) shows that the non-null hypothesis is
distinguished frome null hypothesis by a positive mean shift
µ. In Donoho & Jin (2004), µ is set to

√
2r log(n). In this

section, µ is parameterized as µ =
(
λr log n

)1/λ
where

r > 0.

In Donoho & Jin (2004), we find that if r < ρ, where

ρ(β) =

{
β − 1

2
1
2 < β ≤ 3

4

(1−
√
1− β)2 3

4 < β < 1
, (8)

then the sum of probability of type-I error and type-II error
for likelihood ratio test is at least 1 in asymptotic regime
(non-null hypothesis can not be detected reliably), while
if r > ρ, the sum of type-I error and type-II tends to 0

(non-null hypothesis can be detected reliably). Therefore,
this paper considers the pair (r, β), where β < r < rmax

for some positive constant rmax < 1.

Following the past works (Donoho & Jin, 2004; 2006; Jin
& Ke, 2016), we focus on so-called sparse regime in which
the number of non-null hypotheses |N1| is relatively smaller
than that of the null hypotheses |N0|. Thus, we set |N1| =
n1 = n1−β < n

2 , suggesting that β > log 2
logn .

Recall the g-BH procedure, the set of indices of rejected
hypotheses R can be expressed as:

R = {i ∈ [n] : i ≤ i∗(p1, p2, . . . , pn)},

where

i∗(p1, p2, . . . , pn) = max{i ∈ [n] : ν · pδ(i) ≥
iα

n
}.

For any i ∈ [n], denote by T(i) the i-th order statistic of
T1, T2, . . . , Tn from the largest to the smallest. Following
Barber & Candès (2015), in terms of the survival function
Ψ(Ti) = pi, i∗(p1, p2, . . . , pn) can be presented as

i∗(T1, T2, . . . , Tn) = max{i ∈ [n] : f(Ψ(T(i))) ≥
n

αi
}

= max{i ∈ [n] :
1

f(Ψ(T(i)))
≤ i

n
α}.

Further, we have R = {i ∈ [n] : Ti ≥ T ∗}, where

T ∗ := min{T(i) : i ∈ [n], f(Ψ(T(i))) ≤
iα

n
}. (9)

Obviously, T ∗ is a data-dependent threshold. For simplicity,
we denote by FDR(T ∗) the FDR of g-BH procedure.

4.2. Upper Bound of Expectations of FPR for g-BH
Procedure

In this section, we derive an upper bound of the FPR ex-
pectation for g-BH procedure based on the settings and
assumptions in Section 4.1. First, we define some critical
notations as follows:

rmin(kα) := β +
log 1

12Clkα

log n
,

and ζ(kα) =
log 1

kα

logn . Besides, we define nkα : =

( 1
kα )

1
rmax−β and

nmin := min
{
n ∈ N : n ≥ [36 log(Cun

2)]
1

1−rmax

}
.

For simplicity, we denote dλ(x, y) :=
∣∣x1/λ − y1/λ

∣∣λ and
ω will be used to simplify the upper bound of Ψ(η(ωα)) in
the proof of Theorem 4.2.

Then, we show the upper bound of the expectation of FPR
for g-BH procedure.

5



A Provable Decision Rule for Out-of-Distribution Detection

Theorem 4.2. Given the p-values p1 = Ψ(T1), p2 =
Ψ(T2), . . . , pn = Ψ(Tn) satisfing the condition (7). For
rmin(ωα) < r < rmax, if n ≥ max{nωα, nmin} , then the
FPR expectation for the g-BH procedure satisfies

E[FPRg−BH] ≤
2( 108Cl

C2
u

)(
β

rmax−β )
1−λ
λ

Cu
· n−dλ(β+ζ(α),r).

The proof of Theorem 4.2 is presented in Section B.2. Note
that r > β and ζ(α) → 0 as n → ∞, then we have
n−dλ(β+ζ(α),r) < n−dλ(β,r)/2 → 0 as n → ∞. There-
fore, Theorem 4.2 indicates that the FPR expectation for the
g-BH procedure tends to zero as n → ∞. Based on this
conclusion, we obtain the following corollary.
Corollary 4.3. Under the conditions in Theorem 4.2, the
FPR of g-BH procedure satisfies

FPRg−BH → 0 in probability

The proof of Corollary 4.3 is presented in Appendix B.3
Corollary 4.3 shows that large-scale test set is beneficial for
reducing the FPR of g-BH procedure under the conditions
in Theorem 4.2.

In many literature (Benjamini & Hochberg, 1995; Benjamini
& Yekutieli, 2001; Blanchard & Roquain, 2008), the p-
values corresponding to various null hypotheses are assumed
to be accessible. However, in practice, often we have little
information about potential marginal distribution Pin of ID
data and thus we cannot obtain the precise p-values. Instead,
we just compute the empirical p-values. Specifically, given a
calibrated set T cal = {Xcal

1 , Xcal
2 , . . . , Xcal

m } consisting of
ID data, the empirical p-value corresponding to the testing
example Xtest

i is defined as

pi = p(Xtest
i ) =

|{j ∈ [m] : ŝ(Xcal
j ) ≤ ŝ(Xtest

i )}|+ 1

m+ 1
,

where ŝ(·) is a certain score function. Yu et al. (2023)
demonstrate that the empirical p-values based on neural net-
works are PRDS. Then, the practical g-BH procedure with
the empirical p-values is presented in Algorithm 1, called
g-BH. Obviously, Algorithm 1 does not rely on any extra
information of OOD data and enables to directly utilities
the existing score functions.

In a nutshell, our method has two compelling strengths.
First, Algorithm 1 is distribution-free and all score-based
methods can be plugged into our proposed algorithm. Be-
sides, many theoretical results provide rigorous statistical
guarantee for Algorithm 1. We examine the performance of
Algorithm 1 in Section 5.

5. Experiment
In this section, we conduct extensive experiments to demon-
strate the superiority of the g-BH procedure over traditional

Algorithm 1 g-BH
1: Input: Training set T , calibrated set

T cal = {Xcal
1 , Xcal

2 , . . . , Xcal
m } testing set

T test = {Xtest
1 , Xtest

2 , . . . , Xtest
n }, prescribed

level α ∈ (0, 1).
2: Train the score function ŝ(x) on T .
3: Calculate the p-values corresponding to Xtest

i :

pi = p(Xtest
i ) =

|{j ∈ [m] : ŝ(Xcal
j ) ≤ ŝ(Xtest

i )}|+ 1

m+ 1
.

4: Compute i∗g−BH = max{i ∈ [n] : f(p(i)) ≤ i
nα}.

5: Output: Declare that Xtest
(i) is OOD if i ≤ i∗g−BH , and

the rests are ID.

threshold-based decision rule from two perspectives: practi-
cal perspective (focusing on TPR, FPR and F1-score) and
classical perspective (focusing on FPR95, AUROC and
AUPR). The experimental results show that our method
enables to improve the OOD detection performance of the
existing methods.

5.1. Experimental Settings

We mainly follow the experimental settings in Yang et al.
(2022); Zhang et al. (2023b), and our codes are based on
Zhang et al. (2023b). We next introduce some necessary
settings in our experiments.

Baselines. We choose eight popular OOD detection meth-
ods as our baselines, including MSP (Hendrycks & Gimpel,
2017), KLM (Hendrycks et al., 2022), KNN (Sun et al.,
2022), LogitNorm (Wei et al., 2022), RankFeat (Song et al.,
2022), ASH (Djurisic et al., 2023), Cider (Ming et al., 2023)
and GEN (Liu et al., 2023).

Benchmarks. We use CIFAR-10 (Krizhevsky et al., 2009)
as ID data, and use CIFAR-100, TinyImageNet (Krizhevsky
et al., 2017), SVHN (Netzer et al., 2011), Texture (Kylberg,
2011), Places365 (Zhou et al., 2018) and MNIST (Deng,
2012), as OOD data.

Metrics. For the comparison between e-DR in (1) and
g-BH from practical perspective, we report the following
metrics: (1) ture positive rate ( TPR), (2) false positive rate
(FPR), (3) F1-score. For the comparison between e-DR and
g-BH from classical perspective, we report the following
metrics: (1) the FPR of OOD samples when the TPR of ID
samples is at 95% (FPR95), (2) the area under the receiver
operating characteristic curve (AUROC), (3) the area under
the Precision-Recall curve (AUPR). In this paper, we regard
ID as positive 5.

Models. We train a ResNet-18 (He et al., 2016a) to construct
5In the code of (Zhang et al., 2023b), OOD is set to positive
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Table 1. Experimental results (%) of practical perspective on CIFAR-10 as ID data. We compare the performance between e-DR and
g-BH based on the same trained score function. For each baseline method, we report results after using our framework in the next line.
Due to the space limitations, the results of MNIST are presented in Appendix E. ↑ indicates larger values are better and vice versa.

Model CIFAR-100 TinyImageNet SVHN Texture Place365
TPR ↑ FPR↓ F1 ↑ TPR↑ FPR↓ F1↑ TPR ↑ FPR ↓ F1 ↑ TPR ↑ FPR↓ F1 ↑ TPR ↑ FPR ↓ F1 ↑

ASH 95.16 63.61 73.58 95.16 60.11 77.01 95.16 65.68 49.86 95.16 59.56 81.9 95.16 55.71 46.11
ASH + g-BH 92.51 51.51 79.71 92.96 47.96 82.56 93.04 49.24 60.19 92.89 53.68 88.11 92.37 44.98 53.18

Cider 93.27 86.8 64.39 93.27 74.16 75.51 93.27 22.8 81 93.27 70.3 78.6 93.27 76.63 38.79
Cider + g-BH 90.58 80.35 65.29 91.27 68.91 78.39 91.56 18.79 86.68 90.91 59.69 86.74 90.35 69.51 42.77

GEN 95.5 57.78 75.42 95.57 52.91 79.16 95.5 48.49 57.08 95.5 51.28 83.92 95.5 51.62 48.1
GEN + g-BH 90.68 31.01 82.03 90.56 25.65 85.35 90.18 21.49 75.43 89.71 25.54 89.12 91.05 26.76 66.12

KLM 94.79 59.45 74.59 94.79 55.47 78.1 94.79 54.88 53.72 94.79 53.62 76.02 94.79 54.2 46.66
KLM + g-BH 90.42 38.51 78.67 90.74 33.76 82.19 90.21 31.72 63.54 90.38 31.34 86.75 90.72 32.12 57.81

KNN 93.67 55.17 76.29 93.67 50.59 79.91 93.67 52.75 54.97 93.67 45.98 77.25 93.67 48.21 49.83
KNN + g-BH 90.26 28.32 85.33 89.74 21.11 86.28 88.47 14.26 79.32 89.58 19.55 90.28 90.13 16.79 67.86
LogitNorm 94.83 45.3 78.98 94.83 34.88 84.28 94.83 16.68 78.03 94.83 27.66 84.4 94.83 27.57 62.67

LogitNorm + g-BH 93.21 38.43 81.32 93.72 25.92 87.39 91.49 10.06 82.66 93.28 22.49 89.72 92.41 16.53 71.39
MSP 95.27 62.83 73.87 95.27 59.25 77.3 95.27 55.45 53.7 95.27 57.28 82.45 95.27 58.86 44.87

MSP + g-BH 90.64 35.81 83.61 90.72 34.05 85.11 91.16 32.46 76.79 92.01 40.44 88.24 91.24 37.56 62.26
RankFeat 95.15 75.26 63.23 95.15 71.77 72.72 95.15 72.94 41.02 95.15 69.87 75.68 95.15 74.29 34.73

RankFeat + g-BH 93.69 70.55 65.25 92.72 68.87 74.71 92.49 67.75 45.88 93.29 64.53 78.28 92.38 69.84 37.77

Table 2. The Experimental results (%) of classical perspective on CIFAR-10 as ID data. We compare the performance between e-DR and
g-BH procedure based on the same score function. For each baseline method, we report results after using our framework in the next line.
Due to the space limitations, we simplify AUROC as AUC and the results of MNIST are presented in Appendix E. ↑ indicates larger
values are better and vice versa.

Model CIFAR-100 TinyImageNet SVHN Texture Place365
FPR95↓ AUC↑ AUPR↑ FPR95↓ AUC↑ AUPR↑ FPR95↓ AUC↑ AUPR↑ FPR95↓ AUC↑ AUPR↑ FPR95↓ AUC↑ AUPR↑

ASH 63.15 74.11 68.56 59.75 76.44 73.51 65.21 73.46 46.14 59.27 77.45 79.66 59.23 79.89 45.79
ASH + g-BH 60.12 74.58 68.72 55.21 77.65 74.23 57.18 77.21 49.12 53.58 77.58 79.74 50.67 80.42 45.73

Cider 56.18 89.19 90.58 46.76 92.04 94.01 19.14 98.25 96.21 42.06 92.73 94.59 38.49 93.18 85.27
Cider + g-BH 53.02 89.78 90.68 43.84 92.69 94.64 18.73 98.58 96.21 37.82 93.39 95.24 32.63 93.77 86.04

GEN 54.85 87.21 84.99 49.95 88.2 88.82 45.4 91.87 82.31 48.06 90.14 92.02 48.66 89.46 67.54
GEN + g-BH 43.87 88.59 85.31 38.97 89.84 89.16 36.78 92.92 82.98 33.48 91.88 92.25 40.48 89.99 67.97

KLM 60.21 77.89 69.2 56.47 80.49 75.14 55.97 84.99 63.52 54.75 82.35 82.33 55.11 78.37 36
KLM + g-BH 50.96 78.56 69.59 47.76 81.12 74.71 46.53 85.78 63.48 45.96 81.97 81.64 45.54 77.86 35.69

KNN 51.96 89.73 90.15 50.92 91.56 93.3 49.5 92.67 88.47 47.46 93.16 96.13 49.8 91.77 80.39
KNN + g-BH 46.76 90.46 90.75 41.92 91.63 93.23 44.07 92.75 88.36 38.08 93.42 95.93 40.65 92.49 80.87
LogitNorm 45.93 90.86 91.39 35.62 93.68 95.03 17.08 96.93 93.51 28.12 94.89 96.89 28.15 95.14 89.07

LogitNorm + g-BH 43.58 90.94 91.37 33.09 93.76 95.34 15.47 97.23 93.76 26.11 95.19 96.85 25.95 95.34 89.47
MSP 60.83 87.19 85.85 57.39 88.87 89.27 53.22 91.46 83.37 55.11 89.89 92.5 56.71 88.92 68.86

MSP + g-BH 47.73 88.97 86.96 43.79 89.87 90.17 38.75 92.35 84.34 41.49 90.44 93.47 43.24 90.51 70.84
RankFeat 78.41 77.98 79.11 75.56 80.94 84.25 94.86 68.15 57.04 89.47 73.46 84.15 65.71 85.99 71.68

RankFeat g-BH 72.84 78.96 79.85 68.08 81.92 84.94 87.45 69.28 57.91 85.26 74.51 84.87 57.77 86.08 72.73

the score function. More details of the experimental settings
can be found in Zhang et al. (2023b).

5.2. Comparison between e-DR and g-BH: Practical
Perspective

In this experiment, we apply the e-DR and g-BH to identify
the OOD examples from practical perspective, respectively.
The experimental results on CIFAR-10 as ID data are pre-
sented in Table 1. As the Table 1 shows, the g-BH dramat-
ically improves the FPR and F1-score of OOD detection
in all cases, despite a slight decrease in TPR. For example,
using CIFAR-10 as ID and Place365 as OOD, our method
reduces the FPR from 48.21% to 16.79%, and improves the
F1-score from 49.83% to 67.86% compared to the e-DR
based on KNN (Sun et al., 2022), a direct improvement of

31.43%and 18.03% at the cost of 3.54% decrease in TPR.
Similarly, using TinyImageNet as OOD data, our method
reduces the FPR from 52.91% to 25.65$, and improves the
F1-score from 79.16% to 85.35% at the cost of 5.01% de-
crease in TPR based on GEN (Liu et al., 2023).

g-BH procedure is free from the distribution assump-
tions and the type of score function. As can be seen from
Table 1, the g-BH consistently achieves superior perfor-
mance under the different OOD data set and various type
of score functions. For example, using Texture as OOD
data, our method reduces the FPR by 22.19%, 26.43% and
16.87% based on KLM, KNN and MSP, compared with
the e-DR. Simultaneously, corresponding F1-scores are im-
proved by 10.73%, 13.03% and 5.78%, respectively. This
observation suggests that the g-BH does not depend on the
distributional assumptions of OOD data and the types of
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Figure 1. The comparison of threshold between e-DR and g-BH based on the same trained score function in GEN Liu et al. (2023). ID
data is CIFAR-10.

score function.

Why does the g-BH performs better than e-DR? To ex-
plore the underlying reasons of the superior performance
of g-BH, we compare the thresholds determined by e-DR
and g-BH based on the score function in GEN. The results
are presented in Figure 1. As is shown in Figure 1, the
thresholds of e-DR for different OOD data are fixed because
they rely on the ID validation set and can not be adjusted
for the coming OOD data. Besides, the e-DR prefers to
guarantee the performance in ID data (high TPR) but sacri-
fices the performance in OOD data (high FPR). Thus, the
e-DR can not trade off between TPR and FPR well (low
F1-score). By contrast, our method enables to adaptively
modify thresholds in response to the various OOD data. fur-
thermore, our method can control FDR. To control FDR, the
g-BH tends to reject more null hypotheses (to classify more
testing example as OOD) while maintaining small false re-
jections of the null hypothesis (to control the number of
falsely classifying the ID as the OOD). Hence, as is shown
in Table 1, our method achieves the smaller FPR and the
larger F1-score than e-DR. The above analysis demonstrates
that our method enables to achieve a better tradeoff between
TPR and FPR.

5.3. Comparison between e-DR and g-BH: Classical
Perspective

In this experiment, we compare the OOD detection perfor-
mance in FPR95, AUROC and AUPR between the e-DR
and g-BH. The experimental results on CIFAR-10 as ID

data are presented in Table 2. From the table, we find that
after adding g-BH to the existing methods, the AUROC
and AUPR achieve a certain degree of improvement or are
comparable with the vanilla methods. What’s even more
exciting, combining the existing methods with g-BH im-
proves the FPR95 obviously. For example, plugging the
MSP into g-BH and using SVHN as OOD data, the FPR95
is reduced from 53.22% to 38.75% compared with the MSP,
a direct improvement of 14.47% while maintaining the im-
provements of 0.89% and 0.97% in terms of AUROC and
AUPR, respectively. Averaged over a diverse collection of
OOD datasets, our method reduces the FPR95 by 13.65%
compared with the MSP. When using Texture as OOD data,
our method reduces the FPR95 by 14.58% compared with
the GEN. Notably, these improvements consistently exist
for different OOD data and various type of score functions.
Therefore, our proposed method enables to enhance the
OOD detection performance of the existing methods with-
out the dependence on the distribution assumptions of OOD
data and the type of the score functions.

6. Conclusion
In this paper, we systematically investigate the decision rule
for OOD detection, which is overlooked by the existing
literature. Concretely, we formulate the OOD detection
task as the multiple hypothesis testing problem and propose
a novel g-BH procedure to solve it. Theoretically, g-BH
procedure controls FDR at pre-specified level. Besides, we
derive an upper bound of the expectation of FPR under the
tailed generalized Gaussian distribution family. Finally, we
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conduct the extensive experiments to verify the superiority
of g-BH over the traditional score-based decision rule.
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pact. This work mainly provides a solid theoretical support
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Özbayoglu, A. M., Gudelek, M. U., and Sezer, O. B. Deep
learning for financial applications : A survey. Applied
Soft Computing, 93:106384, 2020.

Shi, L. and Liu, W. Adversarial self-training improves
robustness and generalization for gradual domain adapta-
tion. In NeurIPS, 2023.

Song, Y., Sebe, N., and Wang, W. Rankfeat: Rank-1 feature
removal for out-of-distribution detection. In NeurIPS,
2022.

Storey, J. D. A direct approach to false discovery rates. Jour-
nal of the Royal Statistical Society: Series B (Statistical
Methodology), 64(3):479–498, 2002.

Storey, J. D., Taylor, J. E., and Siegmund, D. Strong con-
trol, conservative point estimation and simultaneous con-
servative consistency of false discovery rates: a unified
approach. Journal of the Royal Statistical Society: Series
B (Statistical Methodology), 66(1):187–205, 2004.

Sun, Y., Ming, Y., Zhu, X., and Li, Y. Out-of-distribution
detection with deep nearest neighbors. In ICML, volume
162, pp. 20827–20840, 2022.

Wang, H., Li, Z., Feng, L., and Zhang, W. Vim: Out-of-
distribution with virtual-logit matching. In CVPR, pp.
4911–4920, 2022.

Wei, H., Xie, R., Cheng, H., Feng, L., An, B., and Li,
Y. Mitigating neural network overconfidence with logit
normalization. In ICML, volume 162, pp. 23631–23644,
2022.

Yang, J., Wang, H., Feng, L., Yan, X., Zheng, H., Zhang,
W., and Liu, Z. Semantically coherent out-of-distribution
detection. In ICCV, pp. 8281–8289, 2021.

Yang, J., Wang, P., Zou, D., Zhou, Z., Ding, K., Peng, W.,
Wang, H., Chen, G., Li, B., Sun, Y., Du, X., Zhou, K.,
Zhang, W., Hendrycks, D., Li, Y., and Liu, Z. Openood:
Benchmarking generalized out-of-distribution detection.
In NeurIPS, 2022.

10



A Provable Decision Rule for Out-of-Distribution Detection

Yu, C., Ma, X., and Liu, W. Delving into noisy label detec-
tion with clean data. In ICML, volume 202, pp. 40290–
40305, 2023.

Zhang, J., Fu, Q., Chen, X., Du, L., Li, Z., Wang, G., Liu,
X., Han, S., and Zhang, D. Out-of-distribution detection
based on in-distribution data patterns memorization with
modern hopfield energy. In ICLR, 2023a.

Zhang, J., Yang, J., Wang, P., Wang, H., Lin, Y., Zhang,
H., Sun, Y., Du, X., Zhou, K., Zhang, W., Li, Y., Liu, Z.,
Chen, Y., and Li, H. Openood v1.5: Enhanced benchmark
for out-of-distribution detection. CoRR, abs/2306.09301,
2023b.
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A. Related Work
OOD Detection AI safety has become critical in machine learning community (Ma et al., 2022; Chen & Liu, 2023; Shi &
Liu, 2023), in which OOD detection and generalization are two hot topics (Zou & Liu, 2024; 2023). Lots of algorithms
(Hendrycks & Gimpel, 2017; Liu et al., 2020; Huang et al., 2021; Hendrycks et al., 2022; Djurisic et al., 2023; Zhang
et al., 2023a) have been proposed to solve these problem. Existing methods for OOD detection can be roughly divided
into two categories: post-hoc and training-based. Post-hoc methods (Liang et al., 2018; Liu et al., 2020; 2023) directly
obtain confidence from the classifier with some beneficial design to OOD detection. These designs mainly focus on the loss
function (Liu et al., 2020; Huang et al., 2021; Liu et al., 2023), classifier architecture (Lee et al., 2018b; Djurisic et al., 2023),
and some post-hoc processing techniques (Hendrycks & Gimpel, 2017; Liang et al., 2018). The distance-based methods
(Lee et al., 2018a; Hendrycks et al., 2022; Sun et al., 2022), which usually compute distance in the high-dimension space
such as feature space and gradient space to distinguish ID and OOD example, also belongs to this category of methods.
Training-based methods (DeVries & Taylor, 2018; Liang et al., 2018; Wei et al., 2022) are allowed to specifically retrain
new auxiliary networks specifically for OOD detection rather than directly using already trained models. Additionally,
some methods need access to the OOD example to train the new networks (Yang et al., 2021; Ming et al., 2022). All these
researches focus on designing or training a powerful score functions but overlook the systematic investigation of decision
rule. Different from previous literature, this paper aims to design a new decision rule with rigorous theoretical guarantee and
well empirical performance.

FDR Control Similar to control type-I error in single hypothesis testing, how to control FDR is the core problem for
multiple hypothesis testing algorithms. For this purpose, early work (Benjamini & Hochberg, 1995; Benjamini & Yekutieli,
2001; Storey, 2002; Storey et al., 2004) assumes that the p-values corresponding to the hypotheses are mutually independent
or follow certain patterns such as PRDS (Benjamini & Yekutieli, 2001), self-consistent condition and dependency control
condition (Blanchard & Roquain, 2008). Besides, Clarke & Hall (2009) show that the difficulties caused by dependence
of p-values are less serious than in classical cases when the null distributions of testing statistics are relatively light-tailed.
Based on the thought of variable selection, Barber & Candès (2015) use knockoff filter to controls FDR. Recently, Yu et al.
(2023) utilities the BH procedure with empirical p-values to tackle the noisy label detection problem and achieves SOTA
performance.

B. Omited Proof in Main Context
B.1. Proof of Theorem 3.6

Proof. We will prove Theorem 3.6 in two cases.

Case 1: p-values are mutually independent.

Recall the definition of FDP, we have

|R ∩ N0|
max{|R|, 1}

=
∑
i∈N0

Ri

max{|R|, 1}
=
∑
i∈N0

n∑
j=1

Ri1{|R|=j}

j
.

where Ri = 1{Hi;0 is rejected}.

Define |R(pi → 0)| to be the number of rejected hypotheses from g-BH procedure if we changed pi to 0, keeping all
the rest the same. If Ri = 1, denote |R| = m where m ∈ [n], then we have

∑n
j=1

Ri1{|R|=j}
j = 1

m . According to the
definition of Ri, for f(·) ∈ F1 ∪ F2, Ri = 1 means Hi,0 is rejected, and further f(pi) already is below the rejection
threshold. Hence, changing pi to 0 (equivalently, changing f(pi) to 0) does not increase the number of rejected hypotheses
and |R(pi → 0)| = |R| = m. We conclude

n∑
j=1

Ri1{|R|=j}

j
=

n∑
j=1

Ri1{|R(pi→0)|=j}

j
. (10)

If Ri = 0, Eq. (10) still holds. Let σi be the σ-algebra generated by p1, . . . , pi−1, pi+1, . . . , pn. Recall the g-BH procedure,
if |R| = j, then rejecting Hi,0 is equivalent to f(pi) ≤ jα

n . Since |R(pi = 0)| is σi-measurable and Ri is independent of

12
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σi, we have
E(Ri1{|R(pi=0)|=j}|σi) = E(1{f(pi)≤ jα

n }1{|R(pi=0)|=j}|σi)

= 1{|R(pi=0)|=j}P(f(pi) ≤
jα

n
)

We now consider the situation where f(·) ∈ F1. Recall that the definition of p-value, for any c ∈ (0, 1), we have
P(pi ≤ c) ≤ c. Denote by X the random variable uniformly distributed on (0, 1). If c ≥ 1, then P(pi ≤ c) = P(X ≤ c) = 1.
Otherwise, if 0 < c < 1, we get P(pi ≤ c) ≤ c = P(X ≤ c). Therefore, we have

P(pi ≤ c) ≤ P(X ≤ c).

for c > 0. Then, it follows that

P
(

1

f(pi)
> c

)
≤ P

(
1

f(X)
> c

)
.

Note that for any non-negative random variable Y , its expectation satisfies

E(Y ) =

∫ ∞

0

yf(y) dy =

∫ ∞

0

P(Y > y) dy.

Then we obtain

E
[

1

f(pi)

]
=

∫ ∞

0

P
(

1

f(pi)
≥ x

)
dx ≤

∫ ∞

0

P
(

1

f(X)
≥ x

)
dx

= E
[

1

f(X)

]
=

∫ 1

0

1

f(x)
· 1 dx ≤ 1.

(11)

By Markov’s inequality, we have

P(f(pi) ≤
jα

n
) = P(

1

f(pi)
≥ 1

jα
n

) ≤ E
[

1

f(pi)

]
· jα
n

≤ jα

n
. (12)

It is easy to verify that the argument in Eq. (12) is still valid if f(·) ∈ F2. The above analysis demonstrates that

E
[ Ri

max{|R|, 1}
|σi

]
=

n∑
j=1

E
[Ri1{|R(pi=0)|=j}

j
|σi

]
=

n∑
j=1

E
[1{f(pi)≤ jα

n }1{|R(pi=0)|=j}

j
|σi

]
=

n∑
j=1

1{|R(pi=0)|=j}

j
P(f(pi) ≤

jα

n
)

≤ α

n

n∑
j=1

1{|R(pi=0)|=j} =
α

n
.

Note that n0 = |R| and Ri

max{|R|,1} are identically distributed for all i ∈ N0 since the null p-values have the same distribution
under the null hypotheses in Eq. (2). Then we have

E(
|R ∩ N0|

max{|R|, 1}
) =

∑
i∈N0

E
[
E
[ Ri

max{|R|, 1}
|σi

]]
≤ n0α

n
.

Case 2: p-values are PRDS.

Since p-values p1, p2, · · · , pn are PRDS, then f(p1), f(p2), · · · , f(pn) are still PRDS according to Proposition 3.4. Ac-
cording to the definition of g-BH procedure, we have |R| = i∗g−BH . Without loss of generality, we assume that i∗g−BH ≥ 1.

13
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Using the notation i∗g−BH , the FDR can be expressed as

E(
|R ∩ N0|

max{|R|, 1}
) = E

[∑
i∈H0

1(f(pi) ≤
i∗g−BH

n α)

i∗g−BH

]

= E

[∑
i∈H0

1(f(pi) ≤
i∗g−BH

n α)
i∗g−BH

n α
· α
n

]

For simplicity, we denote ϖg−BH =
i∗g−BH

n α. Obviously, ϖg−BH is the function with respect to f(p1), f(p2), · · · , f(pn)
and ϖg−BH < 1.

For a positive number ϵ ∈ (0, 1), we choose a positive integer m such that ϖg−BH > ϵm. Denote sj = ϵm+1−j for
j ∈ [m+ 1]. Note that

P (f(pi) ≤ ϖg−BH) = P
(
f(pi) ≤ ϖg−BH , ϖg−BH ∈ ∪m

j=1(sj , sj+1]
)
.

Then, for i ∈ H0, the following chain of inequities hold:

E
[
1(f(pi) ≤ ϖg−BH)

ϖg−BH

]
≤

m∑
j=1

P(f(pi) ≤ sj+1, ϖg−BH ∈ (sj , sj+1])

sj

=

m∑
j=1

P(f(pi) ≤ sj+1) · P(ϖg−BH ∈ (sj , sj+1]|f(pi) ≤ sj+1)

P(f(pi) ≤ sj+1)
· P(f(pi) ≤ sj+1)

sj

≤
m∑
j=1

P (ϖg−BH ∈ (sj , sj+1]|f(pi) ≤ sj+1) ·
sj+1

sj

≤ ϵ−1
m∑
j=1

(P(ϖg−BH ≤ sj+1|f(pi) ≤ sj+1)− P(ϖg−BH ≤ sj |f(pi) ≤ sj+1))

= ϵ−1
m−1∑
j=1

(P(ϖg−BH ≤ sj+1|f(pi) ≤ sj+1)− P(ϖg−BH ≤ sj+1|f(pi) ≤ sj+2))

+ ϵ−1 (P(ϖg−BH ≤ sm+1|f(pi) ≤ sm+1)− P(ϖg−BH ≤ s1|f(pi) ≤ s2))

≤ ϵ−1 · P(ϖg−BH ≤ sm+1|f(pi) ≤ sm+1) (by Proposition 3.5)

≤ ϵ−1.

Letting ϵ → 1 and applying the monotone convergence theorem, we have

E
[
1(f(pi) ≤ ϖg−BH)

ϖg−BH

]
≤ 1.

Then, we have

E(
|R ∩ N0|

max{|R|, 1}
) =

α

n

∑
i∈H0

E
[
1(f(pi) ≤ ϖg−BH)

ϖg−BH

]
≤ n0α

n
.

which completes the proof of Theorem 3.6.

B.2. Proof of Theorem 4.2

Before our proofs, we first recall some important notations. Motivated by Donoho & Jin (2004), we define a critical threshold

rmin(kα) := β +
log 1

12Clkα

log n
, (13)

14
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where k > 0. Denote ζ(kα) =
log 1

kα

logn . In terms of the notation ζ(kα), we have kα = n−ζ(α) and rmin(kα) can be
expressed as

rmin(kα) := β + ζ(kα) +
log 1

12Cl

log n
. (14)

For analytical simplicity, we denote nkα : = ( 1
kα )

1
rmax−β . If n ≥ nkα, then we have β + ζ(kα) < rmax. Associated with

T ∗, we define another important threshold:

η(kα) := (λrmin (kα) log n)
1/λ

. (15)

More generally, for a testing procedure g(·), if R corresponding to g can be expressed as:

Rg = {i ∈ [n] : Ti ≥ t},

where t is a positive threshold (data-dependent or fixed ), we use the notations FDP(t), FDR(t) and FPR(t) to denote the
metrics associated with the procedure g. In our proof, the following lemmas are used.

Note that µ = (λr log n)
1/λ. As n → ∞, then η(kα) → ∞ and η(kα) − µ → −∞ if r > rmin(kα). Therefore, for

sufficiently large n, we have η(kα) > Xu and η(kα)− µ < −Xl.

Lemma B.1. Suppose random variable X follows the binomial distribution B(n, p). For any 0 < γ < 1, we have

i. Upper tail bound:

P (X ≥ (1 + γ)E(X)) ≤ exp

(
−δ2E(X)

3

)
;

ii. Lower tail bound:

P (X ≤ (1− γ)E(X)) ≤ exp

(
−δ2E(X)

2

)
;

Lemma B.2. Suppose that the observations T1, T2, . . . , Tn satisfy the condition in Eq. (7). For rmin(kα) < r < rmax and
n ≥ nkα, if threshold t ≤ η(kα), we have E[FPR(t)] ≤ E[FPR(η(kα))]. and

E[FPR(η(kα))] ≤ ρ(
β

rmax−β )
1−λ
λ

Cu
· n−dλ(β+ζ(α),r),

where

ρ =


1

12Clk2 0 < k < 1
12Cl

12Cl
1

12Cl
≤ k < 1

12Clk
2 k ≥ 1.

The proof of Lemma B.2 is presented in Appendix C.3.

Proof of Theorem 4.2. In order complete our proof, we need following argument:

P
(
T ∗ > η(ωα)

)
≤ exp

(
− n1−rmax

24

)
. (16)

We now prove the bound (16). we define the empirical survival function Ψ̂ of survival function Ψ as

Ψ̂
(
t
)
=
(
1− 1

nβ

)
· Ψ̂0

(
t
)
+

1

nβ
· Ψ̂1

(
t
)
, (17)

where
Ψ̂0

(
t
)
=

1

n− n1−β

∑
i∈N0

1
(
Ti ≥ t

)
and Ψ̂1

(
t
)
=

1

n1−β

∑
i∈N1

1
(
Ti ≥ t

)
.

15
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According to the settings in Section 4.1, we have

p(i) = Ψ
(
T(i)

)
and Ψ̂

(
T(i)

)
=

i

n
, (18)

and p(1) ≤ p(2) ≤ · · · ≤ p(n). Then, the hypothesis Hi is rejected by g-BH procedure if Ti ≥ T ∗ = T(i∗) (For simplicity,
we use i∗ to represent i∗g−BH ), where

i∗ = max
{
i ∈ [n] : f(Ψ

(
T(i)

)
) ≤ αΨ̂

(
T(i)

) }
. (19)

We define A = {T ∗ ≤ η(ωα)}. Recall the definition of rmin(ωα), we have

logΨ
(
η(αω)

)
≤ −rmin (αω) log n+ log

1

Cu
≤ log

α

3nβ

namely, Ψ
(
η(αω)

)
≤ α

3nβ . Since f(·) in g-BH procedure is increasing, we get

f(Ψ
(
η(αω)

)
) ≤ f(

α

3nβ
).

Without loss of generality, we assume that f(x) ≤ 9x for 0 ≤ x ≤ 1. It follows that

A = {T ∗ ≤ η(αω)} ⊃
{
f(Ψ

(
η(αω)

)
) ≤ αΨ̂

(
η(αω)

)}
⊃
{
f(Ψ

(
η(αω)

)
) ≤ α

nβ
· S1

n1−β

}
⊃

{
f( α

3nβ )
9α
3nβ

≤ 9

3
· S1

n1−β

}

⊃
{
n1−β

3
≤ S1

}
, (20)

where S1 =
∑

i∈N1
1
(
Ti ≥ η(αω)

)
∼ B

(
Ψ
(
η(αω)− µ

)
, n1−β

)
. Hence, we have

P(A) ≥ P
(
S1 >

n1−β

3

)
.

Further, we conclude

P (T ∗ > η(αω)) ≤ 1− P
(
S1 >

n1−β

3

)
= P

(
S1 ≤ n1−β

3

)
.

Since r > rmin(ωα), then we have η(αω) ≤ µ, Ψ(η(αω)− µ) ≥ 1
2 and E(S1) ≥ n1−β

2 . By Lemma B.1, we obtain

P
(
S1 ≤ n1−β

3

)
≤ P

(
S1 ≤ 2

3
E(S1)

)
≤ exp

(
− E(S1)

18

)
≤ exp

(
− n1−β

36

)
≤ exp

(
− n1−rmax

36

)
,

Therefore, we have established the required claim (16).

Now we derive the upper bound of expectation of FPR for g-BH procedure. Denote E(FPR(· | A)) and E(FPR(· | Ac))
the conditional expectations of FPR on A and its complement Ac, respectively. Observe that

ω =
Cu

36Cl
<

1

12Cl
(Cu ≤ 2), (

108Cl

C2
u

)(
β

rmax−β )
1−λ
λ ≥ 1, dλ(β + ζ(ωα), r) ≤ 2.

Then, if n ≥ nmin, we have

( 108Cl

C2
u

)(
β

rmax−β )
1−λ
λ

Cu
· n−dλ(β+ζ(α),r) ≥ 1

Cun2
≥ exp

(
− n1−rmax

36

)
.

16
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Based on the bound (16) and Lemma B.2, we have

E(FPR(T ∗)) = P
(
A
)
· E(FPR(T ∗)|A) + P

(
Ac
)
· E(FPR(T ∗)|Ac)

≤ P
(
A
)
· E(FPR(η(ωα))|A) + P

(
Ac
)
≤ E(FPR(η(ωα))) + P

(
Ac
)

≤ E(FPR(η(ωα))) + exp
(
− n1−rmax

36

)
≤

( 108Cl

C2
u

)(
β

rmax−β )
1−λ
λ

Cu
· n−dλ(β+ζ(α),r) + exp

(
− n1−rmax

36

)
≤

2( 108Cl

C2
u

)(
β

rmax−β )
1−λ
λ

Cu
· n−dλ(β+ζ(α),r),

which completes the proof.

B.3. Proof of Corollary 4.3

Proof. Theorem 4.2 shows
lim
n→∞

E(FPRg−BH) = 0.

By Markov’s inequality, for any ϵ > 0, we have

P(FPRg−BH > ϵ) ≤ E(FPRg−BH)

ϵ
→ 0

as n → ∞, namely
FPRg−BH → 0 in probability.

C. Proof of Propositions and Lemmas
C.1. Proof of Proposition 3.4 and 3.5

Proof. (proof of Proposition 3.4) Without loss of generality, we assume that f(·) is strictly increasing. For any strictly
increasing set D, denote f−1(D) = {f−1(x) : x ∈ D}. We claim that f−1(D) is increasing set. Given a, b satisfying a ≤ b
and a ∈ f−1(D), we have f(a) ∈ D and f(a) ≤ f(b). Since D is increasing, then f(b) ∈ D and b ∈ f−1(D). Hence,
f−1(D) is increasing. If p1, p2, . . . , pn is PRDS on N0, it follows that

P((p∗1, p∗2, . . . , p∗n) ∈ D | p∗i = x) = P((p1, p2, . . . , pn) ∈ f−1(D) | pi = f−1(x))

is increasing in x. Therefore, {p∗1, p∗1, . . . , p∗n} is PRDS on N0.

Proof. (proof of Proposition 3.5) Denote p = {p1, p2, . . . , pn}. For any x, P(p ∈ D|pi ≤ x) = P(p∈D,pi≤x)
P(pi≤x) . For y > x,

we have

P (p ∈ D | pi ≤ y) =
P (p ∈ D, pi ≤ x) + P (p ∈ D, pi ∈ (x, y])

P (pi ≤ x) + P (pi ∈ (x, y])
.

It suffices to show that
P (p ∈ D, pi ≤ x)

P (pi ≤ x)
≤ P (p ∈ D, pi ∈ (x, y])

P (pi ∈ (x, y])
. (21)

Denote Fi the cumulative distribution function of pi, then

P (p ∈ D, pi ≤ x) =

∫ x

0

P (p ∈ D | pi = s) dFi(s)

≤
∫ x

0

P (p ∈ D | pi = x) dFi(s)

= P (p ∈ D | pi = x)P (pi ≤ x)

=⇒ P (p ∈ D, pi ≤ x)

P (pi ≤ x)
≤ P (p ∈ D | pi = x) .

(22)

17
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Similarly, we have

P (p ∈ D, pi ∈ (x, y]) =

∫ y

x

P (p ∈ D | pi = s) dFi(s)

≥
∫ y

x

P (p ∈ D | pi = x) dFi(s)

= P (p ∈ D | pi = x)P (pi ∈ (x, y])

=⇒ P (p ∈ D, pi ∈ (x, y])

P (pi ∈ (x, y])
≥ P (p ∈ D | pi = x) ,

(23)

which completes the Proof.

C.2. The proof of Lemma B.1

Proof. For simplicity, we denote X =
∑n

i=1 XI where X1, . . . , Xn are i.i.d. and Xi ∼ Ber(p) for i ∈ [n]. Besides, let
µ = E(X)np. The moment-generating function (MGF) of Xi is

MXi
(t) = E(etXi) = pet + 1− p = 1 + p(et − 1) ≤ ep(e

t−1).

Then, we have

MX(t) =

n∏
i=1

MXi
(t) ≤ enp(e

t−1).

For any t > 0, a = (1 + γ)µ, by Markov’s inequality, we have

P(X ≥ a) = P(etX ≥ eta) ≤ E(etX)

eta
=

MX(t)

eta
.

It follows that

P(X ≥ (1 + γ)µ) ≤ min
t>0

eµ(e
t−1)

eta
≤ eµ(log(1+γ)−1)

e(1+γ)µ log(1+γ)

=
eµγ

(1 + γ)µ(1+γ)
≤ exp(

−γ2µ

2 + γ
)

≤ exp(
−γ2µ

3
),

where we use the fact that (2 + γ) log(1 + γ) > 2γ. The proof of lower tail bound is analogous. Let t = log(1− γ), then
we have

P(X ≤ (1− γ)µ) ≤ e−µγ

(1− γ)µ(1−γ)
≤ e−µγ

e−µγ+µγ2

2

= exp(
−γ2µ

2
),

which completes teh proof.

C.3. Proof of Lemma B.2

Proof. Since FPR(·) is increasing, then for any t ≤ η(kα), we have E(FPR(t)) ≤ E(FPR(η(kα))). Hence, our gaol
is to seek upper bound of E(FPR(η(kα))). We first consider E(FPR(η(α))). Recall that FPR at threshold η(α) can be
expressed as

FPR(η(α)) =

∑
i∈N1

1 (Ti < η(α)− µ)

n1−β

To simplify notations, we denote S1 =
∑

i∈N1
1 (Ti < η(α)− µ). It is easy to verify that

S1 ∼ B(n1−β , 1−Ψ(η(α)− µ))

18
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and further we have

E(FPR(η(α))) = E
(∑

i∈N1
1 (Ti < η(α)− µ)

n1−β

)
= 1−Ψ(η(α)− µ).

If rmin(α) < r < rmax, in terms of the definitions of η(α) and µ, we have

µ− η(α) = (λ log n)1/λ
(
r1/λ − r

1/λ
min(α)

)
= (λdλ(r, rmin(α)) log n)

1/λ
.

According to the assumption about Ψ(·), we have

1−Ψ(η(α)− µ) ≤ 1

Cu
exp (−dλ(r, rmin(α)) log n)

=
n−dλ(r,rmin(α))

Cl
.

The definition of rmin(α) implies that rmin(α) < β + ζ(α). Now we consider the function g(t) = dλ(rmin(α) + t, r) and
its derivative

g′(t) =

−
(
rmin(α) + t

) 1−λ
λ dλ(rmin(α) + t, r)

λ−1
λ 0 < t ≤ r − rmin(α),(

rmin(α) + t
) 1−λ

λ dλ(rmin(α) + t, r)
λ−1
λ t > r − rmin(α).

When t ∈ (0, β + ζ(α)− rmin(α)), the simple calculation gives

(rmin(α) + t
) 1−λ

λ ≤ β
1−λ
λ

and

dλ(rmin(α) + t, r)
λ−1
λ ≤ |r − rmin(α)− t|

λ−1
λ ≤ (rmax − β)

λ−1
λ

It follows that
|g′(t)| ≤ β

1−λ
λ · (rmax − β)

λ−1
λ = (

β

rmax − β
)

1−λ
λ

for t ∈ (0, β + ζ(α)− rmin(α)). According to Lagrange mean value theorem, we conclude

|dλ(rmin(α), r)− dλ(β + ζ(α), r)| ≤ (
β

rmax − β
)

1−λ
λ |rmin(α)− β − ζ(α)|

= (
β

rmax − β
)

1−λ
λ

log 12Cl

log n
.

Therefore, we obtain

n−dλ(r,rmin(α)) ≤ n−dλ(r,β+ζ(α)) · n( β
rmax−β )

1−λ
λ

log 12Cl
log n

= (12Cl)
( β
rmax−β )

1−λ
λ

n−dλ(r,β+ζ(α)).

For α′ = kα, we impose n > (min{α, kα}
−1

rmax−β ), implying β +max{ζ(kα), ζ(α)} < rmax. If rmin(kα) < r < rmax,
the same reasons above shows

|dλ(rmin(kα), r)− dλ(β + ζ(α), r)| ≤ (
β

rmax − β
)

1−λ
λ

| log 12Clk| · | log k|
log n

.

It follows that

n−dλ(r,rmin(kα)) ≤ n−dλ(r,β+ζ(α)) · n( β
rmax−β )

1−λ
λ

| log 12Clk|·| log k|
log n

= ρ(
β

rmax−β )
1−λ
λ · n−dλ(r,β+ζ(α)),
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where

ρ =


1

12Clk2 0 < k < 1
12Cl

12Cl
1

12Cl
≤ k < 1

12Clk
2 k ≥ 1,

which completes the proof.

D. Some Known Results
Lemma D.1. (Bernstein’s inequality). Let X1, X2, · · · , Xn be independent zero-mean random variables.Suppose |Xi| ≤
M almost surely, then for all positive t,

P

(
n∑

i=1

Xi ≥ t

)
≤ exp

(
−

1
2 t

2∑n
i=1 E [X2

i ] +
1
3Mt

)
. (24)

E. Additional Experimental Results

Table 3. Additional experimental results (%) of practical perspective on CIFAR-10 as ID data and MNIST as OOD data. We compare the
performance between e-DR and g-BH based on the same trained score function. For each baseline method, we report results after using
our framework in the next line. ↑ indicates larger values are better and vice versa.

ID CIFAR-10
OOD MNIST
Model TPR↑ FPR↓ F1↑
ASH 95.16 48.59 33.39

ASH + g-BH 93.23 35.37 41.34
Cider 93.27 88.99 21.07

Cider + g-BH 91.77 74.06 27.45
GEN 95.5 37.83 39.67

GEN + g-BH 91.01 9.32 67.23
KLM 94.79 46.58 34.04

KLM + g-KNN 90.88 23.68 48.27
KNN 93.67 40.86 37.27

KNN + g-BH 89.43 18.69 58.24
LogitNorm 94.83 24.62 82.2

LogitNorm + g-BH 91.49 19.51 83.49
MSP 95.24 40.41 38.69

MSP + g-BH 90.53 23.98 52.75
RankFeat 95.15 95.54 20.29

RankFeat + g-BH 91.49 82.58 26.33
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Table 4. Additional experimental results (%) of classical perspective on CIFAR-10 as ID data and MNIST as OOD data. We compare the
performance between e-DR and g-BH based on the same trained score function. For each baseline method, we report results after using
our framework in the next line. ↑ indicates larger values are better and vice versa.

ID CIFAR-10
OOD MNIST
Model FPR95↓ AUC↑ AUPR↑
KLM 47.55 85 36.57

KLM + g-KNN 38.45 86.02 36.98
KNN 36.96 94.26 83.73

KNN + g-BH 31.79 94.88 83.76
LogitNorm 24.83 94.91 96.02

LogitNorm + g-BH 15.64 95.58 96.87
ASH 48.08 83.16 40.64

ASH + g-BH 42.82 84.48 41.84
Cider 38.32 93.99 83.56

Cider + g-BH 29.37 94.95 84.46
GEN 35.49 92.83 76.04

GEN + g-BH 22.96 94.52 77.33
RankFeat 85.1 75.87 43.91

RankFeat + g-BH 83.49 75.98 43.98
MSP 47.29 90.63 75.57

MSP + g-BH 33.41 92.43 76.28
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