
Under review as a conference paper at ICLR 2021

PARECO: PARETO-AWARE CHANNEL OPTIMIZATION
FOR SLIMMABLE NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Slimmable neural networks provide a flexible trade-off front between prediction
error and computational cost (such as the number of floating-point operations or
FLOPs) with the same storage cost as a single model. They have been proposed
recently for resource-constrained settings such as mobile devices. However, current
slimmable neural networks use a single width-multiplier for all the layers to arrive
at sub-networks with different performance profiles, which neglects that differ-
ent layers affect the network’s prediction accuracy differently and have different
FLOP requirements. Hence, developing a principled approach for deciding width-
multipliers across different layers could potentially improve the performance of
slimmable networks. To allow for heterogeneous width-multipliers across different
layers, we formulate the problem of optimizing slimmable networks from a multi-
objective optimization lens, which leads to a novel algorithm for optimizing both
the shared weights and the width-multipliers for the sub-networks. We perform
extensive empirical analysis with 15 network and dataset combinations and two
types of cost objectives, i.e., FLOPs and memory footprint, to demonstrate the
effectiveness of the proposed method compared to existing alternatives. Quan-
titatively, improvements up to 1.7% and 8% in top-1 accuracy on the ImageNet
dataset can be attained for MobileNetV2 considering FLOPs and memory footprint,
respectively. Our results highlight the potential of optimizing the channel counts
for different layers jointly with the weights for slimmable networks.

1 INTRODUCTION

Slimmable neural networks have been proposed with the promise of enabling multiple neural networks
with different trade-offs between prediction error and the number of floating-point operations (FLOPs),
all at the storage cost of only a single neural network (Yu et al., 2019). This is in stark contrast to
channel pruning methods (Berman et al., 2020; Yu & Huang, 2019a; Guo et al., 2020; Molchanov
et al., 2019) that aim for a small standalone model. Slimmable neural networks are useful for
applications on mobile and other resource-constrained devices. As an example, the ability to deploy
multiple versions of the same neural network would alleviate the maintenance costs for applications
which support a number of different mobile devices with different memory and storage constraints,
as only one model needs to be maintained. Similarly, one can deploy a single model which is
configurable at run-time to dynamically cope with different latency or accuracy requirements. For
example, users may care more about power efficiency when the battery of their devices is running
low while the accuracy of the ConvNet-powered application may be more important otherwise.

A slimmable neural network is trained by simultaneously considering networks with different widths
(or channel counts) using a single set of shared weights. The width of a child network is specified
by a real number between 0 and 1, which is known as the “width-multiplier” (Howard et al., 2017).
Such a parameter specifies how many channels per layer to use proportional to the full network. For
example, a width-multiplier of 0.35× represents a network that has channel counts that are 35% of
the full network for all the layers. While specifying child networks using a single width-multiplier for
all the layers has shown empirical success (Yu & Huang, 2019b; Yu et al., 2019), such a specification
neglects that different layers affect the network’s output differently (Zhang et al., 2019) and have
different FLOP requirements (Gordon et al., 2018), which may lead to sub-optimal results. In a
similar setting, as demonstrated in the model pruning literature (Gordon et al., 2018; Liu et al.,
2019b; Morcos et al., 2019; Renda et al., 2020), having different pruning ratios for different layers of

1

Under review as a conference paper at ICLR 2021

Conventional
Slimmable Training

TwoStage
Slimmable Training PareCO (Ours)

Weight Training
Sample

Data
Sample

Arch SGD

Arch Searching
Fixed weights, optimize arch

Weight Training
Sample

Data
Use 𝒄 as

arch SGD

Arch Searching

Fixed weights, optimize for 𝒄

Channel Pruning

Pruning and training

…

Shared weights, architectures
specified by a single global width

multiplier

Weight Training
Sample

Data
Sample

Arch SGD

…

Shared weights, architectures specified
by random layer-wise width multipliers

…

Shared weights, architectures
specified by joint optimization

One model for one
target sparsity

Figure 1: Schematic overview comparing our proposed method with existing alternatives and chan-
nel pruning. Channel pruning has a fundamentally different goal compared to ours, i.e., training
slimmable nets. PareCO jointly optimizes both the architectures and the shared weights.

the network can further improve results over a single ratio across layers. This raises an interesting
question: How should we obtain these non-uniform widths for slimmable nets?

To achieve non-uniform width-multipliers across layers, one can consider using techniques from
the neural architecture search (NAS) literature (Cai et al., 2020; Yu et al., 2020), which we call
TwoStage training. Specifically, one can first train a supernet with weight-sharing by uniformly
sampling width-multiplier for each layer. After this procedure converges, one can use multi-objective
optimization methods to search for width given the trained weights. However, width optimization has
a much larger design space than that considered in existing methods for NAS. Specifically, each layer
can have hundreds of choices (since there are hundreds of channels for each layer). This makes it
unclear if such a training technique is suitable for channel optimization1.

As an alternative to existing techniques, we take a multi-objective optimization viewpoint, aiming to
jointly optimize the width-multipliers for different layers and the shared weights in a slimmable neural
network. A schematic view of the differences among the conventional slimmable training, TwoStage
training, and our proposed method is shown in Figure 1. The contributions of this work are three-fold.
First, through a multi-objective optimization lens, we provide the first principled formulation for
jointly optimizing the weights and widths of slimmable neural networks. The proposed formulation
is general and can be applied to objectives other than prediction error and FLOPs (Yu & Huang,
2019b; Yu et al., 2019). Second, we propose Pareto-aware Channel Optimization or PareCO, a novel
algorithm which approaches the intractable problem formulation in an approximate fashion using
stochastic gradient descent, of which the conventional training method proposed for universally
slimmable neural networks (Yu & Huang, 2019b) is a special case. Finally, we perform extensive
empirical analysis using 15 network and dataset combinations and two types of cost objectives to
demonstrate the effectiveness of the proposed algorithm over existing techniques.

2 RELATED WORK

2.1 SLIMMABLE NEURAL NETWORKS

Slimmable neural networks (Yu et al., 2019) enable multiple sub-networks with different compression
ratios to be generated from a single network with one set of weights. This allows the FLOPs of network
to be dynamically configurable at run-time without increasing the storage cost of the model weights.
Based on this concept, better training methodologies have been proposed to enhance the performance
of slimmable networks (Yu & Huang, 2019b). One can view a slimmable network as a dynamic

1Both OFA (Cai et al., 2020) and BigNAS (Yu et al., 2020) mainly use the pre-defiend channel counts and
search for kernel sizes, depth, and input resolution. Specifically, channel counts refer to expansion ratios only
for OFA while BigNAS only considers a small range of channel counts near the pre-defined ones.

2

Under review as a conference paper at ICLR 2021

computation graph where the graph can be constructed dynamically with different accuracy and
FLOPs profiles. With this perspective, one can go beyond changing just the width of the network. For
example, one can alter the network’s sub-graphs (Ruiz & Verbeek, 2019), network’s depth (Bolukbasi
et al., 2017; Elbayad et al., 2019; Huang et al., 2017; Li et al., 2019a; Kaya et al., 2019), and network’s
kernel sizes and input resolutions (Cai et al., 2020; Yu et al., 2020). Complementing prior work
primarily focusing on generalizing slimmable networks to additional architectural paradigms, our
work provides the first principled multi-objective formulation for optimizing slimmable networks
with tunable architecture decisions. While our analysis focuses on the network widths, our proposed
formulation can be easily extended to other architectural parameters.

2.2 NEURAL ARCHITECTURE SEARCH

A slimmable neural network can be viewed as an instantiation of weight-sharing. In the literature for
neural architecture search (NAS), weight-sharing is commonly adopted to reduce the search cost (Liu
et al., 2018; Stamoulis et al., 2019; Guo et al., 2019; Bender et al., 2018; Berman et al., 2020; Yu
& Huang, 2019a). Specifically, NAS methods use weight-sharing as a proxy for evaluating the
performance of the sub-networks to reduce the computational cost of iterative training and evaluation.
However, NAS methods are concerned with the architecture of the network and the found network is
re-trained from scratch, which is different from the weight-sharing mechanism adopted in slimmable
networks where the weights are used for multiple networks during test time.

Multi-objective optimization has also been adopted in NAS literature (Dong et al., 2018; Cheng et al.,
2018; Iqbal et al., 2020; Lu et al., 2019; Elsken et al., 2018). However, a crucial difference of the
present work compared to these papers is that we are interested in learning a single set of weights
from which multiple FLOP configurations can be used (as in slimmable networks) rather than finding
architectures independently for each FLOP configuration that can be trained from scratch freely. Put
another way, in our setting, both the shared weights and the searched architectures optimized jointly,
whereas in prior work, only searched architectures were optimized.

2.3 CHANNEL PRUNING

Reducing the channel or filter counts for a pre-trained model is also known as channel pruning. In
channel pruning, the goal is to find a single small model that maximizes the accuracy while satisfying
some resource constraints. Several studies have investigated how to better characterize redundant
channels in a post-training fashion given a pre-trained model (Li et al., 2016; He et al., 2019; Liu et al.,
2017; Ye et al., 2018; Molchanov et al., 2016; 2019; Aflalo et al., 2020). Besides a post-processing
perspective to channel pruning, prior work has also investigated channel pruning via an optimization
lens. Specifically, channel pruning methods based on Lasso (Wen et al., 2016; Liu et al., 2017;
Gordon et al., 2018; Yun et al., 2019), stochastic `0 (Louizos et al., 2017), and ADMM (Li et al.,
2019b; Yang et al., 2020) have been developed. Liu et al. (Liu et al., 2019b) later show that channel
counts for different layers are more important for the performance of channel pruning. As a result,
several studies have investigated pruning via an architecture search perspective (Yu & Huang, 2019a;
Berman et al., 2020; Ma et al., 2019; Chin et al., 2020; Liu et al., 2019a).

While channel pruning also optimizes for non-uniform widths, the goal of channel pruning is crucially
different from ours. The key difference is that channel pruning is concerned with a single pruned
model while slimmable neural networks require a set of models to be trained using weight sharing. As
a result, it is not clear if those techniques are suitable for finding non-uniform widths for slimmable
nets. Moreover, using channel pruning to obtain a set of pruned models can be computationally
expensive. Specifically, the state-of-the-art differentiable pruning method takes roughly 2× the
training time for searching the channel counts for a given target FLOPs (Guo et al., 2020). That
is, if we want 20 uniformly distributed FLOPs between 20% and 100%, it takes roughly 24× the
training time of the 100% FLOPs network just to obtain architectures. In contrast, our formulation
is targeting slimmable nets directly with a training cost similar to that of conventional slimmable
networks, which is 4× the training time of a standalone model.

3

Under review as a conference paper at ICLR 2021

3 METHODOLOGY

In this work, we are interested in jointly optimizing the network widths and network weights.
Ultimately, when evaluating the performance of a slimmable neural network, we care about the
trade-off curve between multiple objectives, e.g., theoretical speedup and accuracy. This trade-off
curve is formed by evaluating multiple networks with width configurations sampled from a width
sampling distribution. Viewed from this perspective, the sampling distribution should be optimized
in such a way that the resulting networks have a better trade-off curve (i.e., larger area under curve),
which is a multi-objective optimization problem. This section formalizes this idea and provides an
algorithm to solve it in an approximate fashion.

3.1 PROBLEM FORMULATION

Intuitively, our goal is to optimize the shared weights to maximize the area under the best trade-off
curve between the accuracy and theoretical speedup obtained by optimizing network’s widths. Since
accuracy is not differentiable w.r.t. the shared weights, we switch objectives from accuracy and
theoretical speedup to cross-entropy loss and FLOPs, respectively. In this setting, the objective
becomes to minimize the area under curve. To arrive at such an objective, we start by defining the
notion of optimality in minimizing multiple objectives (such as the cross-entropy loss and FLOPs).

Definition 1 (Pareto frontier) Let f(x) = (f1(x), . . . , fK(x)) be a vector of responses from K
different objectives. Define vector inequality x < y as xi ≤ yi ∀ i ∈ [K] with at least one inequality
being strict. We call a set of points P a Pareto frontier if f(x) < f(y), for any x ∈ P and y /∈ P .

With this definition, we essentially want the loss for the shared weights to be the area under the curve
formed by the Pareto frontier. To do so, we need an actionable way to obtain the Pareto frontier and
we make use of the following Lemma:

Lemma 3.1 (Augmented Tchebyshev Scalarization (Section 1.3.3 in (Nakayama et al., 2009)))
Define a scalarization of K objectives as

Tλ(x) = max
i∈[K]

λi(fi(x)− f̄i) + β
∑
i∈[K]

λifi(x), (1)

where λ is weightings among objectives, f̄i is a baseline constant such that (fi(x)− f̄i) ≥ 0 ∀ x,
and β > 0, the Pareto frontier can be specified via P = {arg minx Tλ(x) ∀λ ∈ ∆K−1} where
∆K−1 is a K-1 simplex.

The second term of equation (1) is the commonly used weighted sum scalarization and it can be
depicted as a line in the objectives space. However, minimizing it alone is not sufficient if the Pareto
curve is non-convex (Nakayama et al., 2009). This calls for the first term, which can be depicted
as the axis-aligned lines of a non-positive orthant in the objectives space. With Lemma 3.1, one
can obtain the Pareto frontier by solving multiple augmented Tchebyshev scalarized optimization
problems with different λs. A λ vector can be interpreted as a weighting on the objectives, which is
used to summarize multiple objectives into a single scalar. For instance, consider the case in which the
cross-entropy loss and FLOPs are the two objectives of interest. If taking λCE → 1 and λFLOPs → 0,
the scalarized objective is then dominated by the cross-entropy loss and we are effectively seeking
width configurations that minimize the cross entropy loss. In contrast, if taking λCE → 0 and
λFLOPs → 1, we are then effectively seeking width configurations that minimize FLOPs. With the
scalarization, we have the following theorem for summarizing the area under curve quantitatively:

Theorem 3.2 Optimizing network weights θ to minimize area under Pareto curve formed by cross-
entropy loss (fCE) and FLOPs (fFLOPs) can be done approximately with the following objective:

arg min
θ

1

M

M∑
m=1

fCE(α(g(z(m))),θ,x, y), (2)

where x, y are the sampled training input and label, respectively; M is the number of Monte Carlo
sample; z(m) is a FLOPs target sampled uniformly between the lowest and the highest FLOPs, α(·)

4

Under review as a conference paper at ICLR 2021

maps a weighting λ to the corresponding Pareto channel configuration (i.e., α(λ) = arg minc Tλ(c)
where T and λ are defined in Lemma 3.1), and g(·) maps a certain FLOPs back to the corresponding
λ, (i.e., g = (fFLOPs ◦ α)−1).

The proof is in Appendix A. Intuitively speaking, the objective is to minimize the cross entropy
loss for the Pareto-optimal channel configurations (given the current θ,x, y) across different FLOPs
uniformly. While equation (2) precisely defines our goal, solving g(·) and α(·) can be intractable
since the functions are usually highly non-convex with respect to channel configurations and do not
have analytical gradient information that admits first-order optimization algorithms. To tackle these
challenges, we propose to model both fCE and fFLOPs via Gaussian Processes (GPs) (Rasmussen,
2003). This allows α(·) to be approximated via Bayesian Optimization (BO) (Srinivas et al., 2009)
with low overhead, which in turn enables g(·) to be implemented using binary search with fFLOPs ◦ α.
Concretely, binary search is done by repeating the following: start with λt, solve α(λt) using BO,
and decrease or increase λt+1 depending on the FLOPs of the current architecture fFLOPs(α(λ)).

Algorithm 1: PareCO
Input :Model parameters θ, lower bound for width-multipliers w0 ∈ [0, 1], number of full iterations F ,

number of gradient descent updates n, number of λ samples M
Output :Trained parameter θ, approximate Pareto frontN

1 H = {} (Historical minimizers ĉ)
2 for i = 1...F do
3 x, y = sample data()
4 fCE, fFLOPs = fCE(H;θ,x, y), fFLOPs(H) (Calculate the objectives for each ĉ ∈ H)
5 g = BuildGP-UCB(H, fCE, fFLOPs) (Build acquisition func. via BoTorch (Balandat et al., 2019))
6 widths = []
7 for m = 1...M do
8 ĉ,N = BOBS(g,H,fCE,fFLOPs) (Algorithm 2)
9 widths.append(ĉ)

10 end
11 H = H ∪ widths (update historical data)
12 widths.append(w0) (smallest width for the sandwich rule in (Yu & Huang, 2019b))
13 for j = 1...n do
14 SlimmableTraining(θ, widths) (line 3-16 of Algorithm 1 in (Yu & Huang, 2019b))
15 end
16 N=nonDominatedSort(H, fCE, fFLOPs)
17 end

3.2 APPROXIMATION VIA MULTI-OBJECTIVE BAYESIAN OPTIMIZATION

The goal is to approximate α(·) and g(·) quickly with good quality. In this realm, Bayesian Op-
timization is known to be sample-efficient for doing so. Specifically, we are hoping to solve
arg minc Tλ(c,θ,x, y) efficiently using Bayesian Optimization where c here denotes the chan-
nel configurations. Instead of modeling Tλ directly, we propose to model fCE and fFLOPs using two
GPs. This design choice is mainly based on the fact that we would like to solve g(·) using binary
search. More specifically, by having two GPs, the GPs can be reused across different λ. On the other
hand, if we directly model Tλ, we have to fit a GP for every λ, which can be costly.

Having a separate GP for each objective of interest turns out to have no regret for optimization
if a proper acquisition function is adopted (Paria et al., 2019). As a result, we follow Paria et al.
(2019) and adopt the Upper Confidence Bound (UCB) (Srinivas et al., 2009) acquisition function
for optimizing the problem of interest. To optimize the target objective, Bayesian Optimization
proceeds sequentially. To begin, we start with training data Ht−1 = {c̃1, . . . , c̃t+o} and their
function responses fi(c̃`) ∀ i ∈ {CE,FLOPs}, ` ∈ [t + o] where t denotes the current timestamp
in the sequential optimization and o is the initial size of the training data. Then, GPs are fitted
for both objectives and acquisition functions for both GPs are combined using the augmented
Tchebyshev scalarization with a specified λ, which is then optimized to obtain the next point
ct+o+1. This minimization is tractable because it minimizes the surrogate function instead of the
unknown function. Under properly set hyperparameters for UCB, it is known that this procedure
introduces no regret (Paria et al., 2019). In other words, if we allocate enough time for BO, i.e.,

5

Under review as a conference paper at ICLR 2021

t→∞, and set the output of BO to be ĉ def
= c̃t+o, the method provides a close approximation, i.e.,

Tλ(ĉ,θ,x, y) ≈ minc Tλ(c,θ,x, y).

3.3 APPROXIMATION VIA TEMPORAL SIMILARITY

Equipped with BO, solving equation (2) can be done by running the following three steps iteratively:
(1) sample M target FLOPs, (2) solve the corresponding channel configurations using BO with binary
search, and (3) perform a step of stochastic gradient descent. While BO provides a tractable mean for
us to solve for Pareto-optimal channel configurations, it is still computationally expensive to run BO
for every iteration of stochastic gradient descent. Thus, we propose to exploit temporal similarity for
making the optimization practical. Specifically, we notice that θ would not be drastically different
across a few iterations since gradient descent itself relies on first-order Taylor approximation. As
a result, we propose the following two approximations. First, instead of having many sequential
queries in one subroutine of Bayesian optimization, we only perform one query and store the query
toH for future Bayesian optimization. Note that for each query in BO, the cross-entropy loss will
be reevaluated for each c ∈ H to build faithful Gaussian Processes. Our second approximation is
to perform n SGD updates as opposed to one before another query for Bayesian optimization. We
further provide theoretical analysis for approximation via temporal similarity in Appendix E.

PareCO Based on this preamble, we present our algorithm, PareCO, in Algorithm 1. The proposed
algorithm is Pareto-aware as the derivation stems from minimizing area under the Pareto curve. In
short, PareCO has three steps: (1) build surrogate functions (i.e., GPs) and acquisition functions (i.e.,
UCBs) using historical dataH and their function responses, (2) sample M target FLOPs and solve
for the corresponding widths (i.e., ĉ) via binary search with one query of BO, and (3) perform n
gradient descent steps using the solved widths. One can recover slimmable training (Yu & Huang,
2019b) by replacing lines 8 with randomly sampling a single width-multiplier for all the layers and
setting n = 1 in line 13. The outputs of PareCO are both the shared weights and the Pareto-optimal
widths. To obtain the Pareto-optimal widths, we use non-dominated sort based on the training loss
and FLOPs for c ∈ H.

Algorithm 2: Bayesian Optimization with Binary Search (BOBS)
Input :Acquisition functions g, historical dataH, fCE, fFLOPs, search precision ε
Output :channel configurations ĉ

1 β = 10−6 (A small positive number according to (Nakayama et al., 2009))
2 f̃FLOPs = Uniform(fFLOPs,min, fFLOPs,max) (Sample a target FLOPs)
3 λFLOPs, λmin, λmax = 0.5, 0, 1

4 while | fFLOPs(ĉ)−f̃FLOPs
FullModelFLOPs | > ε do // binary search

5 ĉ = arg minc

[
maxi∈{CE,FLOPs} λi(gi(c)− ḡi) + β

∑
i∈{CE,FLOPs} λigi(c)

]
6 if fFLOPs(ĉ) > f̃FLOPs then
7 λmin = λFLOPs
8 λFLOPs = (λFLOPs + λmax)/2
9 else

10 λmax = λFLOPs
11 λFLOPs = (λFLOPs + λmin)/2
12 end
13 end

4 EXPERIMENTS

4.1 PERFORMANCE GAINS INTRODUCED BY PARECO

For all the PareCO experiments in this sub-section, we set n such that PareCO only visits 1000 width
configurations throughout the entire training (|H| = 1000). Also, we setM to be 2, which follows the
conventional slimmable training method (Yu & Huang, 2019b) that samples two width configurations
in between the largest and the smallest widths. As for binary search, we conduct at most 10 binary
searches with ε set to 0.02, which means that the binary search terminates if the FLOPs difference is

6

Under review as a conference paper at ICLR 2021

(a) ResNet20 C10 (b) ResNet32 C10 (c) ResNet44 C10 (d) ResNet56 C10

(e) ResNet20 C100 (f) ResNet32 C100 (g) ResNet44 C100 (h) ResNet56 C100

(i) 2×ResNet20 C100 (j) 3×ResNet20 C100 (k) 4×ResNet20 C100 (l) 5×ResNet20 C100

(m) MobileNetV2 ImageNet (n) MobileNetV3 ImageNet (o) ResNet18 ImageNet

Figure 2: Comparisons among PareCO, Slim, and TwoStage. C10 and C100 denote CIFAR-10/100.
For the CIFAR dataset, we perform three trials for each method and plot the mean and standard
deviation. PareCO is better or comparable to Slim. The numerical results for ImageNet are detailed
in Table 1 in Appendix G.

within a two percent margin relative to the full model FLOPs. On average, the procedure terminates
by using 3.4 binary searches for results on ImageNet. The dimension of c is network-dependent and
is specified in Appendix B and the training hyperparameters are detailed in Appendix D. To arrive at
the final set of architectures for PareCO, we use non-dominated sort based on the training loss and
FLOPs for c ∈ H.

We consider three datasets: CIFAR-10, CIFAR-100, and ImageNet. To provide informative com-
parisons, we verify our implementation for the conventional slimmable training with the reported
numbers in (Yu & Huang, 2019b) using MobileNetV2 on ImageNet. Our results follow closely to the
reported numbers as shown in Figure 2m, which makes our comparisons on other datasets convincing.

We compare to the following baselines:

• Slim: the conventional slimmable training method (the universally slimmable networks
by Yu & Huang (2019b)). We select 40 architectures uniformly distributed across FLOPs
and run a non-dominated sort using training loss and FLOPs to arrive at the points to be
plotted.

• TwoStage: disjoint optimization that first trains the model with weight sharing, then uses
search methods to find architectures that work well given the trained weights (similar to
OFA (Cai et al., 2020) and BigNAS (Yu et al., 2020)). To compare fairly with PareCO,

7

Under review as a conference paper at ICLR 2021

we use multi-objective Bayesian optimization for the search. After optimization, we run
a non-dominated sort for all the visited architectures H using training loss and FLOPs to
arrive at the points to be plotted.

Compared to Slim, the proposed PareCO has demonstrated much better results across various networks
and datasets. This suggests that channel optimization can indeed improve the efficiency of slimmable
networks. Compared to TwoStage, PareCO is better or comparable across networks and datasets.
This suggests that training network weights by uniformly sampling architectures regardless of Pareto-
efficiency can be sub-optimal. More importantly, we find that such a training techniques result in
low performances for all the sub-networks in MobileNetV3, which is potentially due to conflicts in
the optimization process with a large number of sub-networks and small network capacity. From the
perspective of training overhead, PareCO introduced minor overhead compared to Slim due to the
temporal similarity approximation. More specifically, on ImageNet, PareCO incurs approximately
20% extra overhead compared to Slim.

Note that the performance among these three methods are similar for the CIFAR-10 dataset. This
is plausible since when a network is more over-parameterized, there are many solutions to the
optimization problem and it is easier to find solutions with the constraints imposed by weight sharing.
In contrast, when the network is relatively less over-parameterized, compromises have to be made
due to the constraints imposed by weight sharing. In such scenarios, PareCO outperforms Slim
significantly, as it can be seen in CIFAR-100 and ImageNet experiments. We conjecture that this
is because PareCO introduces a new optimization variable (width-multipliers), which allows better
compromises to be attained. Along similar lines, from the experiments with ResNets on CIFAR-100
(Figure 2e to Figure 2h), we find that shallower models tend to benefit more from joint channel and
weight optimization than their deeper counterparts.

As FLOPs may not necessarily reflect latency improvements since FLOP does not capture memory
accesses, we in addition plot latency-vs.-error for the data in Figure 2m in Figure 3. The latency is
measured on a single V100 GPU using a batch size of 128. When visualized in latency, PareCO still
performs favorably compared to Slim and TwoStage for MobileNetV2 on ImageNet.

Lastly, to demonstrate the generality of PareCO, we consider another cost objective that is critical for
on-device machine learning, i.e., inference memory footprint (Yu et al., 2019). Inference memory
footprint decides whether a model is executable or not on memory-constrained devices. We detailed
the memory footprint calculation in Appendix F. Since PareCO is general, we can replace the FLOPs
calculation with memory footprint calculation to optimize for memory-vs.-error. As shown in Figure 4,
PareCO significantly outperform other alternatives. Notably, PareCO outperforms Slim by up to 8%
top-1 accuracy for MobileNetV2. Such a drastic improvement comes from the fact that memory
footpring depends only on the largest layer. As a result, slimming all the layers equally to arrive at
networks with smaller memory footprint (as done in Slim) is less than ideal since only one layer
contributes to the reduced memory.

Figure 3: A latency-vs.-error
view of Figure 2m.

Figure 4: Prediction error vs. inference memory footprint for
MobileNetV2 and ResNet-18 on ImageNet.

4.2 ABLATION STUDIES

In this subsection, we ablate the hyperparameters that are specific to PareCO to understand their
impact. We use ResNet20 and CIFAR-100 for the ablation with the results summarized in Figure 5.

Binary search Without binary search, one can also consider sampling λ uniformly from the ∆K−1,
which does not require any binary search and is easy to implement. However, the issue with this

8

Under review as a conference paper at ICLR 2021

(a) Impact of binary search
(BS).

(b) Histogram of FLOPs
forH w/ and w/o BS.

(c) Performance for differ-
ent n.

(d) Additional overhead
over Slim for different n.

Figure 5: Ablation study for binary search and the number of gradient descent updates per full
iteration using ResNet20 and CIFAR-100. Experiments are conducted three times and we plot the
mean and standard deviation.

sampling strategy is that uniform sampling λ does not necessarily imply uniform sampling in the
objective space, e.g., FLOPs. As shown in Figure 5a and Figure 5b, sampling directly in the λ space
results in non-uniform FLOPs and worse performance compared to binary search.

Number of samples in BO We reduce the number of samples in BO by increasing the number of
gradient descent updates. In previous experiments, we have n = 313, which results in |H| = 1000.
Here, we ablate n to 156, 626, 1252, 3128 such that |H| = 2000, 500, 250, 100, respectively. With
larger n, the algorithm introduce a worse approximation since there are overall less iterations put into
Bayesian optimization. As shown in Figure 5c, we observe worse results with higher n. On the other
hand, the improvement introduced by lower n saturates quickly. The training overhead of PareCO as
a function of n compared to Slim is shown in Figure 5d where the dots are the employed n.

5 CONCLUSION

In this work, we propose to tackle the problem of training slimmable networks via a multi-objective
optimization lens, which provides a novel and principled framework for optimizing slimmable
networks. With this formulation, we propose a novel training algorithm, PareCO, which trains
slimmable neural networks by jointly learning both channel configurations and the shared weights. In
our empirical analysis, we extensively verify the effectiveness of PareCO over existing techniques
on 15 dataset and network combinations and two types of cost objectives, i.e., FLOPs and memory
footprint. Our results highlight the potential of optimizing the channel counts for different layers
jointly with the weights and demonstrate the power of such techniques for slimmable networks.

REFERENCES

Yonathan Aflalo, Asaf Noy, Ming Lin, Itamar Friedman, and Lihi Zelnik. Knapsack pruning with
inner distillation. arXiv preprint arXiv:2002.08258, 2020.

Maximilian Balandat, Brian Karrer, Daniel R Jiang, Samuel Daulton, Benjamin Letham, Andrew Gor-
don Wilson, and Eytan Bakshy. Botorch: Programmable bayesian optimization in pytorch. arXiv
preprint arXiv:1910.06403, 2019.

Gabriel Bender, Pieter-Jan Kindermans, Barret Zoph, Vijay Vasudevan, and Quoc Le. Understanding
and simplifying one-shot architecture search. In Jennifer Dy and Andreas Krause (eds.), Proceed-
ings of the 35th International Conference on Machine Learning, volume 80 of Proceedings of
Machine Learning Research, pp. 550–559, Stockholmsmässan, Stockholm Sweden, 10–15 Jul
2018. PMLR. URL http://proceedings.mlr.press/v80/bender18a.html.

Maxim Berman, Leonid Pishchulin, Ning Xu, Gérard Medioni, et al. Aows: Adaptive and optimal
network width search with latency constraints. Proceedings IEEE CVPR, 2020.

Tolga Bolukbasi, Joseph Wang, Ofer Dekel, and Venkatesh Saligrama. Adaptive neural networks for
efficient inference. In Proceedings of the 34th International Conference on Machine Learning-
Volume 70, pp. 527–536. JMLR. org, 2017.

9

http://proceedings.mlr.press/v80/bender18a.html

Under review as a conference paper at ICLR 2021

Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and Song Han. Once-for-all: Train one
network and specialize it for efficient deployment. In International Conference on Learning
Representations, 2020. URL https://openreview.net/forum?id=HylxE1HKwS.

An-Chieh Cheng, Jin-Dong Dong, Chi-Hung Hsu, Shu-Huan Chang, Min Sun, Shih-Chieh Chang,
Jia-Yu Pan, Yu-Ting Chen, Wei Wei, and Da-Cheng Juan. Searching toward pareto-optimal device-
aware neural architectures. In Proceedings of the International Conference on Computer-Aided
Design, pp. 1–7, 2018.

Ting-Wu Chin, Ruizhou Ding, Cha Zhang, and Diana Marculescu. Towards efficient model compres-
sion via learned global ranking. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2020.

Jin-Dong Dong, An-Chieh Cheng, Da-Cheng Juan, Wei Wei, and Min Sun. Dpp-net: Device-
aware progressive search for pareto-optimal neural architectures. In Proceedings of the European
Conference on Computer Vision (ECCV), pp. 517–531, 2018.

Maha Elbayad, Jiatao Gu, Edouard Grave, and Michael Auli. Depth-adaptive transformer. arXiv
preprint arXiv:1910.10073, 2019.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Efficient multi-objective neural architecture
search via lamarckian evolution. arXiv preprint arXiv:1804.09081, 2018.

Ariel Gordon, Elad Eban, Ofir Nachum, Bo Chen, Hao Wu, Tien-Ju Yang, and Edward Choi.
Morphnet: Fast & simple resource-constrained structure learning of deep networks. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1586–1595, 2018.

Shaopeng Guo, Yujie Wang, Quanquan Li, and Junjie Yan. Dmcp: Differentiable markov channel
pruning for neural networks. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 1539–1547, 2020.

Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng, Zechun Liu, Yichen Wei, and Jian Sun. Single
path one-shot neural architecture search with uniform sampling. arXiv preprint arXiv:1904.00420,
2019.

Yang He, Ping Liu, Ziwei Wang, Zhilan Hu, and Yi Yang. Filter pruning via geometric median
for deep convolutional neural networks acceleration. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 4340–4349, 2019.

Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan, Weijun
Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, et al. Searching for mobilenetv3. In
Proceedings of the IEEE International Conference on Computer Vision, pp. 1314–1324, 2019.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

Gao Huang, Danlu Chen, Tianhong Li, Felix Wu, Laurens van der Maaten, and Kilian Q Wein-
berger. Multi-scale dense networks for resource efficient image classification. arXiv preprint
arXiv:1703.09844, 2017.

Md Shahriar Iqbal, Jianhai Su, Lars Kotthoff, and Pooyan Jamshidi. Flexibo: Cost-aware multi-
objective optimization of deep neural networks. arXiv preprint arXiv:2001.06588, 2020.

Yigitcan Kaya, Sanghyun Hong, and Tudor Dumitras. Shallow-Deep Networks: Understanding and
mitigating network overthinking. In Proceedings of the 2019 International Conference on Machine
Learning (ICML), Long Beach, CA, Jun 2019.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets. arXiv preprint arXiv:1608.08710, 2016.

Hao Li, Hong Zhang, Xiaojuan Qi, Ruigang Yang, and Gao Huang. Improved techniques for training
adaptive deep networks. In Proceedings of the IEEE International Conference on Computer Vision,
pp. 1891–1900, 2019a.

10

https://openreview.net/forum?id=HylxE1HKwS

Under review as a conference paper at ICLR 2021

Tuanhui Li, Baoyuan Wu, Yujiu Yang, Yanbo Fan, Yong Zhang, and Wei Liu. Compressing
convolutional neural networks via factorized convolutional filters. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 3977–3986, 2019b.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. arXiv
preprint arXiv:1806.09055, 2018.

Zechun Liu, Haoyuan Mu, Xiangyu Zhang, Zichao Guo, Xin Yang, Kwang-Ting Cheng, and Jian
Sun. Metapruning: Meta learning for automatic neural network channel pruning. In Proceedings
of the IEEE International Conference on Computer Vision, pp. 3296–3305, 2019a.

Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Changshui Zhang. Learn-
ing efficient convolutional networks through network slimming. In Proceedings of the IEEE
International Conference on Computer Vision, pp. 2736–2744, 2017.

Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and Trevor Darrell. Rethinking the value
of network pruning. In International Conference on Learning Representations, 2019b. URL
https://openreview.net/forum?id=rJlnB3C5Ym.

Christos Louizos, Max Welling, and Diederik P Kingma. Learning sparse neural networks through
l 0 regularization. arXiv preprint arXiv:1712.01312, 2017.

Zhichao Lu, Ian Whalen, Vishnu Boddeti, Yashesh Dhebar, Kalyanmoy Deb, Erik Goodman, and
Wolfgang Banzhaf. Nsga-net: neural architecture search using multi-objective genetic algorithm.
In Proceedings of the Genetic and Evolutionary Computation Conference, pp. 419–427, 2019.

Xingchen Ma, Amal Rannen Triki, Maxim Berman, Christos Sagonas, Jacques Cali, and Matthew B
Blaschko. A bayesian optimization framework for neural network compression. In Proceedings of
the IEEE International Conference on Computer Vision, pp. 10274–10283, 2019.

Bertil Matérn. Spatial variation, volume 36. Springer Science & Business Media, 2013.

Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. Pruning convolutional
neural networks for resource efficient inference. arXiv preprint arXiv:1611.06440, 2016.

Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri Frosio, and Jan Kautz. Importance estimation for
neural network pruning. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 11264–11272, 2019.

Ari Morcos, Haonan Yu, Michela Paganini, and Yuandong Tian. One ticket to win them all:
generalizing lottery ticket initializations across datasets and optimizers. In Advances in Neural
Information Processing Systems, pp. 4933–4943, 2019.

Hirotaka Nakayama, Yeboon Yun, and Min Yoon. Sequential approximate multiobjective optimization
using computational intelligence. Springer Science & Business Media, 2009.

Biswajit Paria, Kirthevasan Kandasamy, and Barnabás Póczos. A flexible framework for multi-
objective bayesian optimization using random scalarizations. In Amir Globerson and Ricardo Silva
(eds.), Proceedings of the Thirty-Fifth Conference on Uncertainty in Artificial Intelligence, UAI
2019, Tel Aviv, Israel, July 22-25, 2019, pp. 267. AUAI Press, 2019. URL http://auai.org/
uai2019/proceedings/papers/267.pdf.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style,
high-performance deep learning library. In Advances in Neural Information Processing Systems 32,
pp. 8026–8037. Curran Associates, Inc., 2019. URL http://papers.nips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf.

Carl Edward Rasmussen. Gaussian processes in machine learning. In Summer School on Machine
Learning, pp. 63–71. Springer, 2003.

11

https://openreview.net/forum?id=rJlnB3C5Ym
http://auai.org/uai2019/proceedings/papers/267.pdf
http://auai.org/uai2019/proceedings/papers/267.pdf
http://papers.nips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.nips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.nips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

Under review as a conference paper at ICLR 2021

Alex Renda, Jonathan Frankle, and Michael Carbin. Comparing rewinding and fine-tuning in
neural network pruning. In International Conference on Learning Representations, 2020. URL
https://openreview.net/forum?id=S1gSj0NKvB.

Adrià Ruiz and Jakob Verbeek. Adaptative inference cost with convolutional neural mixture models.
In Proceedings of the IEEE International Conference on Computer Vision, pp. 1872–1881, 2019.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
bilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 4510–4520, 2018.

Niranjan Srinivas, Andreas Krause, Sham M Kakade, and Matthias Seeger. Gaussian process opti-
mization in the bandit setting: No regret and experimental design. arXiv preprint arXiv:0912.3995,
2009.

Dimitrios Stamoulis, Ruizhou Ding, Di Wang, Dimitrios Lymberopoulos, Bodhi Priyantha, Jie Liu,
and Diana Marculescu. Single-path nas: Designing hardware-efficient convnets in less than 4
hours. arXiv preprint arXiv:1904.02877, 2019.

Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning structured sparsity in deep
neural networks. In Advances in neural information processing systems, pp. 2074–2082, 2016.

Haichuan Yang, Shupeng Gui, Yuhao Zhu, and Ji Liu. Learning sparsity and quantization jointly and
automatically for neural network compression via constrained optimization. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2020.

Jianbo Ye, Xin Lu, Zhe Lin, and James Z. Wang. Rethinking the smaller-norm-less-informative
assumption in channel pruning of convolution layers. In International Conference on Learning
Representations, 2018. URL https://openreview.net/forum?id=HJ94fqApW.

Jiahui Yu and Thomas Huang. Autoslim: Towards one-shot architecture search for channel numbers.
arXiv preprint arXiv:1903.11728, 8, 2019a.

Jiahui Yu and Thomas S Huang. Universally slimmable networks and improved training techniques.
In Proceedings of the IEEE International Conference on Computer Vision, pp. 1803–1811, 2019b.

Jiahui Yu, Linjie Yang, Ning Xu, Jianchao Yang, and Thomas Huang. Slimmable neural networks. In
International Conference on Learning Representations, 2019. URL https://openreview.
net/forum?id=H1gMCsAqY7.

Jiahui Yu, Pengchong Jin, Hanxiao Liu, Gabriel Bender, Pieter-Jan Kindermans, Mingxing Tan,
Thomas Huang, Xiaodan Song, Ruoming Pang, and Quoc Le. Bignas: Scaling up neural architec-
ture search with big single-stage models. arXiv preprint arXiv:2003.11142, 2020.

Jihun Yun, Peng Zheng, Eunho Yang, Aurelie Lozano, and Aleksandr Aravkin. Trimming the `1
regularizer: Statistical analysis, optimization, and applications to deep learning. In International
Conference on Machine Learning, pp. 7242–7251, 2019.

Chiyuan Zhang, Samy Bengio, and Yoram Singer. Are all layers created equal? arXiv preprint
arXiv:1902.01996, 2019.

12

https://openreview.net/forum?id=S1gSj0NKvB
https://openreview.net/forum?id=HJ94fqApW
https://openreview.net/forum?id=H1gMCsAqY7
https://openreview.net/forum?id=H1gMCsAqY7

Under review as a conference paper at ICLR 2021

A PROOF FOR THEOREM 3.2

Let θ be the network weights, D be the training data distribution, and x and y be the training input
and label. Furthermore, let α(·) be a function that maps from λ to the corresponding Pareto channel
configuration (i.e., α(λ) = arg minx Tλ(x)), g(·) be a function that maps a certain FLOPs back to
the corresponding λ, (i.e., g = (fFLOPs ◦ α)−1), and fCE be the cross entropy loss that takes channel
configuration, weights and data, one can further capture the area under curve by Riemann integration
over FLOPs:

A(θ,x, y) =

∫ b

a

fCE(α(g(z)),θ,x, y)dz

≈
r−1∑
i=0

fCE(α(g(zi)),θ,x, y)(zi+1 − zi),
(3)

where the approximation is done via Riemann sum with r uniform partitions over FLOPs. As a result,
our formal objective for optimizing a slimmable neural network is as follows:

arg min
θ

E(x,y)∼D[A(θ,x, y)] ≈ arg min
θ
A(θ,x, y) (4)

≈ arg min
θ

r−1∑
i=0

fCE(α(g(zi)),θ,x, y)(zi+1 − zi) (5)

= arg min
θ

r−1∑
i=0

fCE(α(g(zi)),θ,x, y) (6)

= arg min
θ

1

r

r−1∑
i=0

fCE(α(g(zi)),θ,x, y) (7)

= arg min
θ

Ez∼[a,b]fCE(α(g(z)),θ,x, y (8)

≈ arg min
θ

1

M

M∑
m=1

fCE(α(g(z(m))),θ,x, y), (9)

where equation 4 and equation 9 are done via Monte Carlo sampling and equation 5 is by equation 3.
As for equation 6, we make use that (zi+1 − zi) is a positive constant across i, which does not affect
arg min. Likewise, we can multiply a positive constant 1

r to arrive at equation 7.

B WIDTH PARAMETERIZATION

For ResNets with CIFAR, c has six dimensions and is denoted by c1:6 ∈ [0.316, 1], i.e., one parameter
for each stage and one for each residual connected layers in three stages. More specifically, the
network is divided into three stages according to the output resolution, and as a result, there are three
stages for all the ResNets designed for CIFAR. For example, in ResNet20, there are 7, 6, and 6 layers
for each of the stages, respectively. Also, the layers that are added together via residual connection
have to share the same width-multiplier, which results in one width-multiplier per stage for the layers
that are connected via residual connections.

For MobileNetV2, c1:25 ∈ [0.42, 1], and therefore there is one dimension for each independent
convolutional layer. Note that while there are in total 52 convolutional layers in MobileNetV2, not
all of them can be altered independently. More specifically, for layers that are added together via
residual connection, their widths should be identical. Similarly, the depth-wise convolutional layer
should have the same width as its preceding point-wise convolutional layers. The same logic applies
to MobileNetV3, which has 47 convolutional layers (excluding squeeze-and-excitation layers) and
c1:22 ∈ [0.42, 1]. In MobileNetV3, there are squeeze-and-excitation (SE) layers and we do not alter
the width for the expansion layer in the SE layer. The output width of the SE layer is set to be the
same as that of the convolutional layer where the SE layer is applied to. Note that there is no concept
of expansion ratio for the inverted residual block in MobileNets in our width optimization. More
specifically, the convolutional layer that acts upon expansion ratio is in itself just a convolutional layer

13

Under review as a conference paper at ICLR 2021

with tunable width. Also, we do not quantize the width to be multiples of 8 as adopted in the previous
work (Sandler et al., 2018; Yu & Huang, 2019b). Due to these reasons, our 0.42× MobileNetV2
has 59 MFLOPs, which has the same FLOPs as the 0.35×MobileNetV2 in (Yu & Huang, 2019b;
Sandler et al., 2018).

C WIDTH DIFFERENCES

In Figure 6, we visualize the widths learned by PareCO and contrast them with Slim for MobileNetV2
and MobileNetV3. Note that both PareCO and Slim are slimmable networks with shared weights and
from the top row to the bottom row represent three points on the trade-off curve for Figure 2m and
Figure 2o.

(a) MobileNetV2 ImageNet (b) MobileNetV3 ImageNet

Figure 6: Comparing the width-multipliers between PareCO and Slim. The title for each plot denotes
the relative differences (PareCO - Slim) and the numbers in the parenthesis are for PareCO.

D TRAINING HYPERPARAMETERS

We use PyTorch (Paszke et al., 2019) as our deep learning framework and we use BoTorch (Balandat
et al., 2019) for the implementation of MOBO-RS, which works seamlessly with PyTorch. More
specifically, for the covariance function of Gaussian Processes, we use the commonly adopted
Matérn Kernel (Matérn, 2013) without changing the default hyperparameters provided in BoTorch.
Similarly, we use the default hyperparameter provided in BoTorch for the Upper Confidence Bound
acquisition function. To perform the optimization of line 6 in Algorithm 2, we make use of the API
“optimize acqf ” provided in BoTorch. As a reference, with a single 1080Ti GPU, one can train a
PareCO-ResNet20 on CIFAR-100 with around 3 hours. On the other hand, with 8 V100 GPUs on a
single machine, one can train a PareCO-ResNet18 on ImageNet with 19 hours.

CIFAR The training hyperparameters for the independent models are 0.1 initial learning rate, 200
training epochs, 0.0005 weight decay, 128 batch size, SGD with nesterov momentum, and cosine

14

Under review as a conference paper at ICLR 2021

learning rate decay. The accuracy on the validation set is reported using the model at the final epoch.
For slimmable training, we keep the same exact hyperparameters but train 2× longer compared to
independent models, i.e., 400 epochs.

ImageNet Our training hyperparameters follow that of (Yu & Huang, 2019b). Specifically, we use
initial learning rate of 0.5 with 5 epochs linear warmup (from 0 to 0.5), linear learning rate decay (from
0.5 to 0), 250 epochs, 4e−5 weight decay, 0.1 label smoothing, and we use SGD with 0.9 nesterov
momentum. We use a batch size of 1024. For data augmentation, we use the “RandomResizedCrop”
and “RandomHorizontalFlip” APIs in PyTorch. For MobileNetV2 we follow (Yu & Huang, 2019b)
and use random scale between 0.25 to 1. For MobileNetV3, we use the default scale parameters, i.e.,
from 0.08 to 1. The input resolution we use is 224. Besides scaling and horizontal flip, we follow (Yu
& Huang, 2019b) and use color and lighting jitters data augmentataion with parameter of 0.4 for
brightness, contrast, and saturation; and 0.1 for lighting. These augmentations can be found in the
official repository of (Yu & Huang, 2019b)2. The entire training is done using 8 NVIDIA V100
GPUs.

E THEORETICAL ANALYSIS FOR TEMPORAL APPROXIMATION

The intuition behind the proposed approximation in Section 3.3 is the similarity for θ across train-
ing iterations. In an extreme case, if we hold θ constant throughout the training procedure, the
approximation is equivalent to the original multi-objective BO. With that said, θ changes gradually
throughout training. To proceed with further theoretical understanding, we assume the network
f(x,θ) is L-Lipschitz. More formally,

f(x,θt)− f(x,θt+1) ≤ L‖θt − θt+1‖1,∀θt,θt+1,x. (10)

Now, consider using stochastic gradient descent to update the weights θ, i.e., θt+1 = θt − αtgt

where gt is the gradient of loss with respect to the weights and αt is the learning rate at iteration
t. Since f is L-Lipschitz, we have ‖g‖1 ≤ L. Assuming using an exponential decaying learning
rate with a factor γ < 1, we can further upper bound the functional differences across n iterations of
gradient descents as follows:

f(x,θt)− f(x,θt+n) ≤
t+n∑
i=t

αi‖gi‖ ≤ nαtL. (11)

Aligning with our intuition, the analysis reveals that larger n implies poorer approximation. In multi-
objective Bayesian optimization (Paria et al., 2019), the hyperparameter is searched over stationary
objectives. In our case, due to temporal approximation, our cross entropy changes over time and
the change is upper-bounded by nαtL. As a result, we can plug such an upper bound in the regret
bound analysis of Bayesian optimization (Paria et al., 2019) to understand how n, α, and γ affect the
optimality of Bayesian optimization. Specifically, we upper bound f(x,θt) with f(x,θt+n) +nαtL
and use it in Lemma 2 and Lemma 3 from Paria et al. (2019) in Appendix B.1. With such a technique,
a regret bound will have the following overhead in addition to the original regret bound in equation
(14) of Paria et al. (2019):

2α1

1− γ
nLE[Lλ]K, (12)

where we have utilized the geometric progression of the exponential learning rate decay. In other
words, without a decaying learning rate, the overhead can be unbounded. This analysis reveals that
larger learning rate α1 and n results in a worse regret bound.

F INFERENCE MEMORY FOOTPRINT CALCULATION

To demonstrate the generality of proposed PareCO, we in addition consider optimizing for the trade-
off curve between prediction error and inference memory footprint. The inference memory footprint

2https://github.com/JiahuiYu/slimmable_networks/blob/master/train.py#
L43

15

https://github.com/JiahuiYu/slimmable_networks/blob/master/train.py#L43
https://github.com/JiahuiYu/slimmable_networks/blob/master/train.py#L43

Under review as a conference paper at ICLR 2021

is a critical factor when it comes to deploying deep CNNs onto resource-constrained devices such as
mobile phones or micro-controllers as motivated in the original slimmable neural network paper (Yu
et al., 2019). We use a single image per batch to calculate the memory footprint. Specifically the
inference memory footprint is characterized as follows:

FM l
in= W l

in ×H l
in × Cl

in

FM l
out= W l

out ×H l
out × Cl

out

Weightsl= Kl
w ×Kl

h × Cl
in × Cl

out/G
l

Skipl= W l
out ×H l

out × Cl
skip

MEM= max
l

(
FM l

in + FM l
out + Weightsl + Skipl

)
,

(13)

where FM l
in and FM l

out denote the input and output feature map sizes of layer l, Weightsl denotes
the size of the weights in layer l, and Skipl denotes the memory cost of storing the feature maps from
skip connections. W and H represent the width and height of the feature map. Kw and Kh denote
the kernel size. Lastly, Cin, Cout and G denote the input channel, output channel, and the number of
groups for convolutional layer l.

G NUMERICAL RESULTS FOR IMAGENET

We summarize the numbers from Figure 2m and Figure 2o in Table 1 for future work to compare
easily.

MobileNetV2 MobileNetV3
MFLOPs Independently trained (Sandler et al., 2018) Slim PareCO MFLOPs Independently trained (Howard et al., 2019) Slim PareCO

59 60.3 61.4 61.5 (+0.1) 40 64.2 - -
71 - 61.9 63.0 (+1.1) 42 - 65.8 65.9 (+0.1)
84 - 63.0 64.6 (+1.6) 51 - 66.3 66.6 (+0.3)
95 - 64.0 65.1 (+1.1) 60 - 67.2 67.7 (+0.5)
97 65.4 - - 69 68.8 - -

102 - 64.7 65.5 (+0.8) 73 - 68.1 68.8 (+0.7)
136 - 67.1 68.2 (+1.1) 84 - 69.0 70.0 (+1.0)
149 - 67.6 69.1 (+1.5) 118 - 71.0 71.4 (+0.4)
169 - 68.2 69.9 (+1.7) 121 - 71.0 71.6 (+0.6)
209 69.8 - - 155 73.3 - -
212 - 69.7 70.6 (+0.9) 168 - 72.7 72.8 (+0.1)
244 - 70.5 71.0 (+0.5) 183 - 73.0 73.2 (+0.2)
300 71.8 72.0 72.1 (+0.1) 217 75.2 73.5 73.7 (+0.2)

Table 1: MobileNetV2 and MobileNetV3 on ImageNet. The number in the parenthesis for PareCO
are the improvements compared to the corresponding Slim. Bold represents the highest accuracy of a
given FLOPs.

16

	Introduction
	Related work
	Slimmable neural networks
	Neural architecture search
	Channel pruning

	Methodology
	Problem formulation
	Approximation via multi-objective Bayesian optimization
	Approximation via temporal similarity

	Experiments
	Performance gains introduced by PareCO
	Ablation studies

	Conclusion
	Proof for Theorem 3.2
	Width parameterization
	Width differences
	Training hyperparameters
	Theoretical analysis for temporal approximation
	Inference memory footprint calculation
	Numerical results for ImageNet

