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ABSTRACT

Optimization nondeterminism causes uncertainty when improving neural networks,
with small changes in performance difficult to discern from run-to-run variability.
While uncertainty can be reduced by training multiple copies of a model with dif-
ferent random seeds, doing so is time-consuming, costly, and makes reproducibility
challenging. Despite this, little attention has been paid towards establishing an
understanding of this problem. In this work, we establish an experimental protocol
for understanding the effect of optimization nondeterminism on model diversity,
which allows us to study the independent effects of a variety of sources of non-
determinism. Surprisingly, we find that each source of nondeterminism all have
similar effects on multiple measures of model diversity. To explain this intriguing
fact, we examine and identify the instability of model training, when taken as an
end-to-end procedure, as the key determinant. We show that even one-bit changes
in initial model parameters result in models that converge to vastly different values.
Last, we demonstrate that recent methods in accelerated model ensembling hold
promise for reducing the effects of instability on run-to-run variability.

1 INTRODUCTION

Consider this common scenario: you have a baseline “current best” model, and are trying to improve
it. Now, one of your experiments has produced a model whose metrics are slightly better than the
baseline. Yet you have your reservations — how do you know the improvement is “real”, and not due
to random fluctuations that create run-to-run variability?

Similarly, consider performing hyperparameter optimization, in which there are many possible values
for a set of hyperparameters, and you find minor differences in performance between them. How do
you pick the best hyperparameters, and how can you be sure that you’ve actually picked wisely?

In both scenarios, the standard practice is to perform multiple independent training runs of your
model to understand its variability. While this does indeed help address the problem, it can be
extremely wasteful, increasing the time required for effective research, using more computing power,
and making reproducibility more difficult, while still leaving some uncertainty.

Ultimately, the source of this problem is the nondeterminism in optimizing models — randomized
components of model training that cause each training run to produce different models with their own
performance characteristics. Nondeterminism itself occurs due to many factors: while the most salient
source is the random initialization of parameters, other sources exist, including random shuffling
of training data, per-example stochasticity of data augmentation, any explicit random operations
(e.g. dropout (Srivastava et al., 2014)), asynchronous model training (Recht et al., 2011), and even
nondeterminism in low-level libraries such as cuDNN (Chetlur et al., 2014), which are present to
improve throughput on hardware accelerators.

Despite the clear impact nondeterminism has on the efficacy of modeling, relatively little attention
has been paid towards understanding its mechanisms, even in the classical supervised setting. In
this work, we establish an experimental protocol for analyzing the impact of nondeterminism in
model training, allowing us to quantify the independent effect of each source of nondeterminism. In
doing so, we make a surprising discovery: each source has nearly the same effect on the variability
of final model performance. Further, we find each source produces models of similar diversity, as
measured by correlations between model predictions, functional changes in model performance while
ensembling, and state-of-the-art methods of model similarity (Kornblith et al., 2019). To emphasize
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one particularly interesting result: nondeterminism in low-level libraries like cuDNN can matter just
as much with respect to model diversity and variability as varying the entire network initialization.

We explain this mystery by demonstrating that it can be attributed to an inherent numerical instability
in optimizing neural networks — when training with SGD-like approaches, we show that small
changes to initial parameters result in large changes to final parameter values. In fact, the instabilities
in the optimization process are extreme: changing a single weight by the smallest possible amount
within machine precision (∼6 ∗ 10−11) produces nearly as much variability as all other sources
combined. Therefore, any source of nondeterminism that has any effect at all on model weights is
doomed to inherit at least this level of variability.

Last, we present promising results in reducing the effects of instability. While we find that many
approaches result in no apparent change, we demonstrate that methods for accelerated model ensem-
bling actually do reduce the variability of trained models without an increase in model training time,
providing the first encouraging signs for tractability of the problem.

2 RELATED WORK

NONDETERMINISM. Relatively little prior work has studied the effects of nondeterminism on
model optimization. Within reinforcement learning, nondeterminism is recognized as a significant
barrier to reproducibility and evaluating progress in the field (Nagarajan et al., 2018; Henderson et al.,
2018; Islam et al., 2017; Machado et al., 2018). In the setting of supervised learning, though, the
focus of this work, the problem is much less studied. Madhyastha & Jain (2019) aggregate all sources
of nondeterminism together into a single random seed and analyze the variability of model attention
and accuracy as a function of it across various NLP datasets. They also propose a method for reducing
this variability (see Sec. A for details of our reproduction attempt). More common in the field,
results across multiple random seeds are reported (see Erhan et al. (2010) for a particularly extensive
example), but the precise nature of nondeterminism’s influence on variability goes unstudied.

INSTABILITY. We use the term “stability” to refer to numerical stability, in which a stable algorithm
is one for which the final output (converged model) does not vary much as the input (initial parameters)
are changed. Historically, the term “stability” has been used both in learning theory (Bousquet &
Elisseeff, 2002), in reference to vanishing and exploding gradients (Haber & Ruthotto, 2017), and in
the adversarial robustness community for a particular form of training (Zheng et al., 2016).

3 NONDETERMINISM

Many sources of nondeterminism exist when optimizing neural networks, each of which can affect
the variability and performance of trained models. We begin with a very brief overview:

PARAMETER INITIALIZATION. When training a model, parameters without preset values are
initialized randomly according to a given distribution, e.g. a Gaussian with mean 0 and variance
determined by the number of input connections to the layer (Glorot & Bengio, 2010; He et al., 2015).

DATA SHUFFLING. In stochastic gradient descent (SGD), the overall gradient is approximated by
the gradient on a random subset of examples. Most commonly, this is implemented by shuffling the
training data, after which the data is iterated through in order. Shuffling may happen either once,
before training, or in between each epoch of training, the variant we use in this work.

DATA AUGMENTATION. A very common practice, data augmentation refers to randomly altering
each training example to artificially expand the training dataset. For example, in the case of images,
it is common to randomly flip an image, which encourages invariance to left/right orientation.

STOCHASTIC REGULARIZATION. Some forms of regularization, such as Dropout (Srivastava et al.,
2014), take the form of stochastic operations in a model during training. Dropout is the most common
instance of this type of regularization, with a variety of others also in relatively common use, such as
DropConnect (Wan et al., 2013), variational dropout (Gal & Ghahramani, 2016), and variable length
backpropagation through time (Merity et al., 2017), among many others.

LOW-LEVEL OPERATIONS. An underlooked source of nondeterminism, the very libraries that
many deep learning frameworks are built on, such as cuDNN (Chetlur et al., 2014) often are run
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nondeterministically for performance reasons. This nondeterminism is small in magnitude — in one
test we performed this caused a difference of roughly 0.003%. In the case of cuDNN, the library we
test with, it is possible to disable nondeterministic behavior, incurring a speed penalty typically on the
order of∼15%. However, unlike the other sources of nondeterminism, it is not possible to “seed” this
nondeterminism; it is only possible to turn it on or off, but not control its nondeterministic behavior.

3.1 PROTOCOL FOR TESTING EFFECTS OF NONDETERMINISM

DIVERSITY IN PERFORMANCE. Our protocol for testing the effects of sources of nondeterminism
is based on properly controlling for each source. In general, suppose there are N sources of
nondeterminism, with source i controlled by a seed Si. To test the effect of source i, we keep all
values Sj , j 6= i set to a constant, and vary Si with R different values, where R is the number of
independent training runs performed. For sources of nondeterminism which cannot be effectively
seeded, such as cuDNN, we indicate one of these values as the deterministic value, which it must be
set to when varying the other sources of nondeterminism.

For example, suppose that we wish to study three sources of nondeterminism, denoting S1 the seed
for random parameter initialization, S2 for training data shuffling, and S3 for cuDNN, where S3 = 1
is the deterministic value for cuDNN. To test the effect of random parameter initialization, with a
budget of R = 30 training runs, then we set S3 to the deterministic value of 1, S2 to an arbitrary
constant (also 1 for simplicity), and test 30 different values of S1. All together, this corresponds to
training models for (S1, S2, S3) ∈ {(i, 1, 1)}30i=1, producing a set of 30 models. To look at variability
according to a particular evaluation metric (e.g. cross-entropy or accuracy for classification), we
calculate the standard deviation (across all R = 30 models) of the metric. Note that it is also possible
to test the effects of several sources of nondeterminism in tandem this way. For example, to test all
sources of nondeterminism together, the set of models can be changed to (S1, S2, S3) ∈ {(i, i, 0)}Ri=1.

DIVERSITY IN REPRESENTATION. Beyond looking at diversity of test set generalization, though,
it is worth examining how different the representations of trained models actually are — even
though the diversity in performance might be similar between models trained with different types of
nondeterminism, it might be the case that one type of nondeterminism produces models that have
learned largely similar concepts, with the variance in generalization due to other factors. In order to
rigorously examine these, we consider four distinct analyses on the functional behavior of models:

The first and most straightforward metric we consider is the average disagreement between pairs
of models, where higher disagreement corresponds to higher levels of diversity. In contrast to our
other metrics, this considers only the argmax of a model’s predictions, which makes it both the most
limited and the most interpretable of the group. This metric has also been used recently to compare
network similarity in the context of network ensembles (Fort et al., 2019).

Second, we consider the average correlation between the predictions of two models, i.e. the expecta-
tion (across pairs of models from the same nondeterminism source), of the correlation of predictions,
calculated across examples and classes. For example, for a classification problem, the predicted
logits from each of R models are flattened into vectors of length N ∗ C (with N the number of test
examples and C the number of classes), and we calculate the mean correlation coefficient of the
predictions across all

(
R
2

)
pairs of models. We use Spearman’s ρ for the correlation coefficient, but

note that others such as Pearson’s r are possible and yield similar conclusions. For this metric, a
lower score indicates a more diverse set of models.

The third analysis we perform examines the change in performance from ensembling two models from
the same source of nondeterminism. The intuition is as follows: If a pair of models are completely
redundant, then ensembling them would result in no change in performance. However, if models
actually learn different representations, then we expect an improvement from ensembling, with a
greater improvement the greater the diversity in a set of models. Denoting by f(Si) some particular
evaluation metric f calculated on the predictions of model Si, this change is equivalent to:
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Nondeterminism Source Accuracy Cross-Entropy Pairwise Pairwise Ensemble
SD (%) SD Disagree (%) Corr. ∆ (%)

Parameter Initialization 0.22± 0.02 0.0080± 0.0005 10.7 0.872 1.82
Data Shuffling 0.25± 0.02 0.0087± 0.0005 10.6 0.871 1.81
Data Augmentation 0.22± 0.02 0.0075± 0.0005 10.7 0.872 1.83
cuDNN 0.21± 0.01 0.0087± 0.0007 10.5 0.873 1.76
Data Shuffling + cuDNN 0.21± 0.01 0.0083± 0.0006 10.6 0.871 1.80
Data Shuffling + Aug. + cuDNN 0.21± 0.01 0.0077± 0.0005 10.7 0.871 1.84
All nondeterminism sources 0.26± 0.02 0.0075± 0.0005 10.7 0.871 1.82

Table 1: The effect of each source of nondeterminism and several combinations of nondeterminism
sources for ResNet-14 on CIFAR-10. The second and third columns give the standard deviation of
accuracy and cross-entropy across 100 runs, varying only the nondeterminism source (700 trained
models total). Also given are error bars, corresponding to the standard deviation of the standard
deviation. The fourth, fifth, and sixth columns give the average percentage of examples models
disagree on, the average pairwise Spearman’s correlation coefficient between predictions, and the
average change in accuracy from ensembling two models, respectively (Sec. 3.1).
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Figure 1: Average representa-
tion similarity as determined by
CKA (Kornblith et al., 2019) for
ResNet-14 on CIFAR-10 across non-
determinism sources. Layers are se-
lected uniformly across the network,
ranging from the first convolutional
layer (Conv1), the output of each
residual block (ResBlock1,2,3), the
penultimate average pooling layer
(AvgPool), and the logits themselves
(Logits). Shown is the average CKA
value between pairs of models.

Last, for a more detailed view of learned representations within a network, we consider a state-
of-the-art method for measuring the similarity of learned neural network representations, centered
kernel alignment (CKA) (Kornblith et al., 2019), which has been used to analyze models trained with
different random initializations, widths, and even entirely different architectures. We use the linear
version of CKA, which Kornblith et al. (2019) found performed similarly to an RBF kernel.

3.2 EXPERIMENTS IN IMAGE CLASSIFICATION

We begin our study of nondeterminism with the fundamental task of image classification. We test
our protocol using CIFAR-10 (Krizhevsky et al., 2009), a 10-way classification dataset with 50,000
training images of resolution 32× 32 pixels and 10,000 for testing. In these initial experiments, we
use a 14-layer ResNet model (He et al., 2016), trained with a cosine learning rate decay (Loshchilov
& Hutter, 2016) for 500 epochs with a maximum learning rate of .40, three epochs of learning rate
warmup, a batch size of 512, momentum of 0.9, and weight decay of 5 · 10−4, obtaining a baseline
accuracy of 90.0%. Data augmentation consists of random crops and horizontal flips. All experiments
were done on two NVIDIA Tesla V100 GPUs with pytorch (Paszke et al., 2019).

We show the results of our protocol in this setting in Table 1. What we find is surprising — while
there are slight differences, each source of nondeterminism has very similar effects on the variability
of final trained models, measured across both accuracy and cross-entropy. In fact, random parameter
initialization, arguably the most salient form of nondeterminism, does not stand out based on any
of these metrics. Even when combining multiple sources of nondeterminism, there’s remarkably
little difference — nothing more than one or two standard deviations compared to any individual
source of nondeterminism. In short, each source of nondeterminism has roughly the same effect on
the variability in final model performance, with no combination of nondeterminism sources a factor
of even two more important than any other.
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Nondeterminism Source PPL SD Pairwise Disagree (%) Ensemble PPL ∆

Parameter Initialization 0.20± 0.01 17.3 -2.07
Stochastic Operations 0.19± 0.01 17.3 -2.08
All nondeterminism sources 0.18± 0.01 17.4 -2.07

Table 2: The effect of each source of nondeterminism for a QRNN on Penn Treebank; 100 runs per
row. Note that lower PPL is better, so changes in Ensemble PPL are negative.
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Figure 2: The effect of the onset of nondeterminism on the variability of accuracy and cross-entropy
in converged models. Each point corresponds to training a set of 20 models deterministically for a
certain number of epochs (x-axis), then enabling a source of nondeterminism by varying its seed
starting from that epoch and continuing through the end of training.

Turning toward representational diversity on a per-layer level, average CKA values across 6 rep-
resentative layers are shown in Fig. 1, done for pairwise combinations of 25 models (due to the
computational requirements of CKA). Consistent with other analyses, CKA reveals that while there
are some differences in representational similarity between models trained with different sources of
nondeterminism, especially the output of the first residual block, by and large these differences are
small, easily dwarfed in size by differences across layers.

3.3 EXPERIMENTS IN LANGUAGE MODELING

Here we show that this phenomenon is not unique to image classification, applying the same
experimental protocol to language modeling. For these experiments, we employ a small quasi-
recurrent neural network (QRNN) (Bradbury et al., 2016) on Penn Treebank (Marcus et al., 1993),
using the publicly available code of Merity et al. (2017). This baseline model uses a 256-dimensional
word embedding size, 512 hidden units per layer, and 3 layers of recurrent units, obtaining a perplexity
(PPL) of 75.49 on the Penn Treebank test set.

For this task, two sources of nondeterminism are relevant: the random parameter initialization, and
multiple stochastic operations including variations of dropout and variable length backpropagation
through time, which share a common seed. To measure diversity in performance, PPL is the most
widely-accepted metric, and for diversity in representation we focus on only two metrics (pairwise
disagreement and benefits from ensembling) because CKA was not designed for variable-length
input and common computing libraries (Virtanen et al., 2020) are not efficient enough to calculate
O(R2) correlation coefficients with such large inputs. We show results in Table 2, where we find
even less difference in variability between the two sources of nondeterminism considered across all
three diversity metrics, showing that the phenomenon isn’t unique to image classification or ResNets.

3.4 NONDETERMINISM THROUGHOUT TRAINING

One hypothesis for the cause of this phenomenon is that models are particularly sensitive to changes
in the initial phase of learning, which recent work has shown to be the case in other contexts (Achille
et al., 2019; Frankle et al., 2020). With our experimental protocol, this is straightforward to test: If
this were the case, then training networks identically for the first N epochs and only then introducing
these sources of nondeterminism would result in a significantly lower diversity in trained models,
measured across any metric of choice, e.g. variance in cross-entropy or accuracy. Furthermore, by
varying N , we can actually determine when in training each source of nondeterminism has its effect
(for sources that vary over the course of training, i.e. not random parameter initialization).
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Nondeterminism Source Accuracy Cross-Entropy Pairwise Pairwise Ensemble
SD (%) SD Disagree (%) Corr. ∆ (%)

Random Bit Change 0.21± 0.01 0.0070± 0.0004 10.6 0.874 1.82

Table 3: The effect of instability — randomly changing a single weight by one bit for ResNet-14 on
CIFAR-10. Also see Table 1 for comparison.

Nondeterminism Source PPL SD Pairwise Disagree (%) Ensemble PPL ∆

Random Bit Change 0.19± 0.01 17.7 -2.07

Table 4: The effect of instability for a QRNN on Penn Treebank. Also see Table 2 for comparison.

We do this experiment for the ResNet-14 model on CIFAR-10 in Fig. 2, where we find that it is not
only the beginning of training that is sensitive to changes in nondeterminism, refuting this hypothesis
about the onset of the effects of nondeterminism. Instead, the effect of nondeterminism is nearly as
high when enabling it even after 50 epochs (10% of the way through training), and we see only a
gradual reduction in final model variability as the onset of nondeterminism is moved later and later.

4 INSTABILITY

Why does each source of nondeterminism have a similar effect on model diversity? We answer this
question by finding the smallest possible change that produces as diverse a range of models, revealing
the instability in optimizing neural networks.

4.1 INSTABILITY AND NONDETERMINISM

To demonstrate, consider again a ResNet-14 trained on CIFAR-10, with a cross-entropy loss on
the test set of 0.3519 and accuracy of 90.0%. Now consider another model trained in an identical
fashion, with exactly equal settings for all sources of nondeterminism, but one extremely small
change: we randomly pick a single weight in the first layer and change its value by the smallest
amount possible in a 32-bit floating point representation, i.e. an addition or subtraction of a single bit
in the least-significant digit. As an example, in one model this changed a value from approximately
−0.0066514308 to −0.0066514313, a difference on the order of 5 · 10−10.

What happens when we optimize this model, which differs from the original only by a miniscule
amount, in a single weight, itself within a single layer? By the end of the first epoch of training, still
in a phase where the learning rate is warming up, the new model already differs in accuracy by 0.18%
compared to the original (25.74% vs 25.56%). With one more epoch of training the difference is a
larger 2.33% (33.45% vs 31.12%), and by the end of the third epoch, as the learning rate warmup
has just ended, the difference is a staggering 10.42% (41.27% vs 30.85%). Finally, at the end of
training, the differences shrink again, with the new model converged to an accuracy of 90.12% and
a cross-entropy of 0.34335. When viewing the optimization process end-to-end, with the initial
parameters as the input and a given performance metric as the output, this implies a condition number
‖δf‖
‖δx‖ of at least 1.8 · 107 for cross-entropy and 2.6 · 108 for accuracy.

To identify whether instability is the primary reason for why each source of nondeterminism appears
equally important, we can follow our testing protocol from Sec. 3 — this time, our source of
nondeterminism is randomly picking a different weight to change in each model training run, then
either incrementing or decrementing it to the next available floating-point value. We show the results
in Table 3 for image classification on CIFAR-10 (c.f. Table 1 for comparison) and Table 4 for language
modeling on Penn Treebank (c.f. Table 2), where we find that even this miniscule change produces
roughly as much variability in model performance as every other source of nondeterminism.

From this, it is easy to see why every other source of nondeterminism has similar effects — so long
as a nondeterminism source produces any change in model weights, whether by changing the input
slightly, altering the gradient in some way, or any other effect, it will incur at least as much model
variability as caused by instability of model optimization.

6



Under review as a conference paper at ICLR 2021

Ensemble Accuracy Cross-Entropy Pairwise Pairwise Ensemble
SD (%) SD Disagree (%) Corr. ∆ (%)

Snapshot 0.19± 0.02 0.0044± 0.0003 6.1 0.957 0.63
Vanilla (N = 1) 0.26± 0.02 0.0075± 0.0005 10.7 0.871 1.82
Vanilla (N = 2) 0.19± 0.02 0.0044± 0.0004 6.9 0.929 0.89
Vanilla (N = 3) 0.15± 0.02 0.0033± 0.0005 5.5 0.951 0.59
Vanilla (N = 4) 0.17± 0.02 0.0030± 0.0004 4.6 0.963 0.43
Vanilla (N = 5) 0.12± 0.02 0.0028± 0.0004 4.1 0.970 0.34

Table 5: Snapshot ensembles compared with regular ensembles for ResNet-14 on CIFAR-10, with all
nondeterminism sources enabled. N denotes the number of component models in a regular (“Vanilla”)
ensemble. The snapshot ensemble is based on 100 runs of model training, and all vanilla ensembles
are drawn from a pool of 100 independent model runs.

4.2 INSTABILITY IS DUE TO DEPTH

Instability is due to network depth, with any network greater than a single layer exhibiting instability.

Theoretically, a linear model, optimized with a cross-entropy and with an appropriate learning rate
schedule, should always converge to a global minimum due to convexity. In practice, we find an even
stronger property: when we modify the initial weights by a single bit, beyond simply converging to
the same weights, the entire optimization trajectory stays close to that of an unperturbed model, never
differing by more than a vanishingly small amount. At convergence, a set of linear models trained in
this way with only single random bit changes had a final accuracy SD of 0 (i.e. no changes in any test
set predictions) and cross-entropy SD of ∼3 · 10−8, far below that of any deeper model.

In contrast, instability occurred as soon as a single hidden layer was added, with an accuracy SD
of 0.28 and cross-entropy SD of 0.0055 for a model with a fully-connected hidden layer, and an
accuracy SD of 0.14 and cross-entropy SD of 0.0024 when the hidden layer is convolutional, both a
factor of 10,000 greater than the linear model. See Appendix Table 8 for full details and Appendix
Sec. C for a visualization of the effects of instability during training.

5 A PATH FORWARD

Here we identify and demonstrate a family of approaches that holds promise for reducing the
variability caused by nondeterminism and instability. For learnings on approaches which did not
reduce variability, we direct the reader to Appendix Sec. A.

As previously mentioned, the standard practice for mitigating run-to-run variability is to train multiple
independent copies of a model, gaining a more robust estimate for performance by considering an
aggregate measure of a metric of interest (e.g. the mean). An alternative approach is ensembling,
which shares the intuition of multiple independent training runs, but differs in that the predictions
themselves are averaged, after which only the performance of the ensembled model itself is compared.
By itself, ensembling does not substantially reduce the burden caused by nondeterminism and
instability, since it requires the same computation as training multiple copies of models. Despite this,
there’s a way out: recent works investigating accelerated ways of constructing ensembles, in which
only one training run is needed (Huang et al., 2017; Garipov et al., 2018; Wen et al., 2020). While
these approaches typically underperform ensembles composed out of truly independent models, the
nature of their accelerated training provides compelling motivation for reducing variability.

The approach we focus on is Snapshot Ensembles (Huang et al., 2017), which creates an ensemble of
models during the training of a single model. It does this via usage of a cyclic learning rate schedule,
where the members of the ensemble are drawn from instances during training when the learning rate
goes to 0 (before rising again due to the cyclic learning rate). We compare a snapshot ensemble
approach with 5 cycles in its learning rate (i.e. model snapshots are taken after every 100 epochs of
training) to ordinary ensembling, in which multiple models are trained entirely from scratch.

Results are shown in Table 5, where we focus on CIFAR-10 with all sources of nondeterminism
enabled. The snapshot ensemble we identified, despite training only a single model, had variability in
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Nondeterminism Source Accuracy Cross-Entropy Pairwise Pairwise Ensemble
SD (%) SD Disagree (%) Corr. ∆ (%)

CIFAR-10: ResNet-6

Parameter Initialization 0.50 ± 0.04 0.0123 ± 0.0011 20.0 0.925 2.17
All nondeterminism sources 0.43 ± 0.03 0.0111 ± 0.0007 20.1 0.924 2.17
Random Bit Change 0.41 ± 0.02 0.0100 ± 0.0006 19.8 0.925 2.12
Snapshot - All sources 0.45 ± 0.03 0.0104 ± 0.0007 14.0 0.963 0.99

CIFAR-10: ResNet-10

Parameter Initialization 0.23 ± 0.01 0.0064 ± 0.0004 13.7 0.912 2.13
All nondeterminism sources 0.23 ± 0.01 0.0068 ± 0.0005 13.6 0.911 2.13
Random Bit Change 0.25 ± 0.02 0.0068 ± 0.0005 13.5 0.913 2.08
Snapshot - All sources 0.22 ± 0.01 0.0047 ± 0.0003 8.8 0.962 0.96

CIFAR-10: ResNet-18

Parameter Initialization 0.15 ± 0.02 0.0078 ± 0.0012 4.7 0.805 0.67
All nondeterminism sources 0.17 ± 0.02 0.0078 ± 0.0006 4.8 0.809 0.76
Random Bit Change 0.13 ± 0.01 0.0067 ± 0.0006 4.7 0.830 0.73
Snapshot - All sources 0.14 ± 0.01 0.0040 ± 0.0003 2.9 0.884 0.31

CIFAR-10: ShuffleNetv2-50%

Parameter Initialization 0.22 ± 0.01 0.0119 ± 0.0008 8.4 0.696 1.38
All nondeterminism sources 0.22 ± 0.02 0.0131 ± 0.0008 8.4 0.692 1.40
Random Bit Change 0.21 ± 0.01 0.0115 ± 0.0007 8.3 0.695 1.36
Snapshot - All sources 0.18 ± 0.01 0.0067 ± 0.0005 5.0 0.930 0.52

CIFAR-10: VGG-11

Parameter Initialization 0.20 ± 0.01 0.0068 ± 0.0005 6.6 0.807 0.91
All nondeterminism sources 0.18 ± 0.01 0.0069 ± 0.0005 6.6 0.806 0.94
Random Bit Change 0.16 ± 0.01 0.0060 ± 0.0004 6.5 0.811 0.89
Snapshot - All sources 0.13 ± 0.01 0.0041 ± 0.0003 4.1 0.914 0.39

MNIST

Parameter Initialization 0.047 ± 0.0036 0.0025 ± 0.0002 0.54 0.941 0.064
All nondeterminism sources 0.046 ± 0.0032 0.0023 ± 0.0001 0.56 0.939 0.068
Random Bit Change 0.035 ± 0.0026 0.0011 ± 0.0001 0.30 0.989 0.011
Snapshot - All sources 0.050 ± 0.0031 0.0019 ± 0.0001 0.55 0.943 0.064

Table 6: Generalization experiments of nondeterminism and instability with other architectures on
CIFAR-10 and additional experiments on a high-accuracy dataset (MNIST). Each row is computed
from the statistics of 100 trained models (i.e. 2,400 models total for this table).

accuracy and cross-entropy comparable to an ensemble of 2, with other metrics comparable to those
of a vanilla ensemble with even more members. By reducing the variability in model performance
without increasing training time, this identifies accelerated model ensembling as a promising approach
for further reducing the trained model variability and mitigating the effects of instability.

6 GENERALIZATION EXPERIMENTS

In this section we detail additional experiments showing our nondeterminism and instability claims
generalize to other settings. For computational reasons (each result requires training the same model
end-to-end R = 100 times), we restrict our attention to modestly-sized datasets and models.

On CIFAR-10, in addition to the ResNet-14 experimented with in Sec. 3 and Sec. 4 and the linear
and single hidden layer models from Sec. 4.2, we experiment with 6-, 10-, and 18-layer ResNet
variants, VGG-11 (Simonyan & Zisserman, 2014), and a 50%-capacity ShuffleNetv2 (Ma et al.,
2018), allowing further exploration of the effect of model size and architecture on nondeterminism
and instability. As shown in Table 6, the observations around instability and its relationship to
nondeterminism generally hold for these architectures, with a close correspondence between the
magnitude of effects for a random bit change and each of the four metrics considered.
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We have also validated the benefits of accelerated ensembling via 5-checkpoint snapshot ensembles
with all nondeterminism sources enabled for each of the models, where we find large and consistent
reductions in run-to-run variability for pairwise disagreement, correlation, and changes from ensem-
bling. For variability in performance (Accuracy and Cross-Entropy SD), we found increasing benefits
as model size increased, where only for the smallest ResNet-6 was there no benefit.

We also perform experiments on MNIST (LeCun et al., 1998), allowing us to test whether our
observations hold for tasks with very high accuracy — 99.14% for our baseline model. As before, we
find similar effects of nondeterminism for parameter initialization and all nondeterminism sources,
including a comparable effect (albeit smaller) from a single random bit change, highlighting that the
instability of training extends even to datasets where the goal is simpler and model performance is
higher. Of note, though, is the relative smaller effect of a single bit change on pairwise metrics of
diversity, further suggesting that the magnitude of instability might be at least partially related to the
interplay of model architecture, capacity, and degree of overfitting. Snapshot ensembles, however,
did not result in improvements on MNIST. While this is not particularly important in practice (since
models on MNIST are fast to train), it is an interesting result, which we hypothesize is also related to
the degree of overfitting (similar to ResNet-6 on CIFAR-10).

7 CONCLUSION

In this work, we have shown two surprising facts: First, though conventional wisdom is that run-to-run
variability in model performance is primarily determined by random parameter initialization, many
sources of nondeterminism actually result in similar levels of variability. Second, a key driver of
this phenomenon is the instability of model optimization, in which changes on the order of 10−10 in
a single weight at initialization can have as much effect as reinitializing all weights to completely
random values. Model instability itself is a property of the depth of a model, with any model
with more than single layer suffering from it when optimized with SGD. Beyond identifying and
explaining this property of neural network optimization, we have also identified a promising direction
for reducing the variability in model performance and representation without incurring the cost of
training multiple copies of a model: accelerated model ensembling.

We hope that our work sheds light on a complex phenomenon that affects all deep learning researchers.
Ultimately, we also hope that, aided by this understanding, the field is able to improve the stability of
model training and accelerate progress in deep learning for all.
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Setting Accuracy Cross-Entropy Pairwise Pairwise Ensemble
SD (%) SD Disagree (%) Corr. ∆ (%)

All Sources/.40/50 (N=20) 0.31 ± 0.04 0.0074 ± 0.0007 11.4 0.922 1.54
All Sources/.40/100 (N=20) 0.26 ± 0.04 0.0072 ± 0.0014 10.8 0.909 1.71
All Sources/.40/250 (N=20) 0.19 ± 0.03 0.0060 ± 0.0009 10.7 0.889 1.78
All Sources/.40/500 (N=100) 0.26 ± 0.02 0.0075 ± 0.0005 10.7 0.871 1.82
All Sources/.40/2000 (N=20) 0.24 ± 0.02 0.0100 ± 0.0014 11.2 0.828 2.08
Shuffle/.40/500 (N=100) 0.25 ± 0.02 0.0087 ± 0.0005 10.6 0.871 1.81
Shuffle/.20/500 (N=100) 0.23 ± 0.02 0.0076 ± 0.0005 11.0 0.858 1.95
Shuffle/.20/1000 (N=100) 0.21 ± 0.02 0.0092 ± 0.0005 11.1 0.837 2.02
Shuffle/.10/500 (N=100) 0.20 ± 0.01 0.0080 ± 0.0006 11.6 0.845 2.08
Shuffle/.10/2000 (N=100) 0.24 ± 0.02 0.0106 ± 0.0007 11.6 0.801 2.19
Param. Init/.40/500 (N=100) 0.22 ± 0.02 0.0080 ± 0.0005 10.7 0.872 1.82
Param. Init/.20/500 (N=100) 0.23 ± 0.02 0.0089 ± 0.0005 11.0 0.859 1.97
Param. Init/.20/1000 (N=100) 0.25 ± 0.02 0.0102 ± 0.0007 11.1 0.836 2.06
Param. Init/.10/500 (N=100) 0.26 ± 0.02 0.0087 ± 0.0006 11.7 0.844 2.13
Param. Init/.10/2000 (N=100) 0.22 ± 0.01 0.0099 ± 0.0008 11.6 0.800 2.18
All Sources/.40/200 (N=100) 0.23 ± 0.02 0.0080 ± 0.0005 10.6 0.895 1.75
Random Bit/.40/200 (N=100) 0.21 ± 0.01 0.0071 ± 0.0004 10.3 0.897 1.70
Snapshot/All Sources/.40/200 (N=100) 0.21 ± 0.01 0.0046 ± 0.0003 6.6 0.963 0.68

Table 7: Experiments varying the learning rate and number of epochs for ResNet-14 on CIFAR-10. In
each row, the experimental setting is abbreviated by [sources of nondeterminism]/[maximum learning
rate]/[number of epochs] N=[number of models trained], with the exception of the last row, which is
a Snapshot ensemble but otherwise follows the same format.

A APPROACHES THAT DON’T REDUCE INSTABILITY

In the process of finding an approach that reduces run-to-run variability of models (Sec. 5), we
experimented with many approaches which all failed to make a dent in improving variability and
stability. For the benefit of the field, here we provide our experiences with these approaches which
did not succeed in improving stability, despite the intuitive arguments for why they might help.

LEARNING RATE AND DURATION OF TRAINING. Noticing that the effects of nondeterminism
seemed to accumulate during the course of training (Fig. 2), it seemed reasonable that varying the
learning rate or duration of training might have an effect. However, varying the duration of training
from anywhere between 50 and 2,000 epochs on CIFAR-10 all produced models with a similar
variance in performance as the results in the rest of this work (which used 500 epochs), even though
the absolute performance differed by up to ∼2%.

We show these results in Table 7. In general, increasing the number of epochs or changing the
learning rate did not change the variability in performance (Accuracy SD; Cross-Entropy SD) much,
with only a very slight increase in variability as the number of epochs grew to extremely large values
(i.e. 2,000 epochs). There were slightly larger changes in pairwise representation-based metrics,
where training longer again increased run-to-run variability. However, none of these attempts actually
reduced variability; they only served to potentially make it larger.

As part of these experiments, we also verified the instability behavior with only 200 epochs of training
and the effectiveness of accelerated ensembling techniques (“Snapshot”) with this reduced training
time.

USING A DIFFERENT OPTIMIZER. Since instability and nondeterminism are both a property of
optimization, it is conceivable that use of a different optimizer might be able to lessen the degree of
instability in model training. We experimented SGD with various values of momentum, ranging from
0 for pure SGD to 0.999 for a momentum-driven optimizer, but none succeeded in reduce instability.
In addition, we experimented with the Adam (Kingma & Ba, 2014), as a representative of the class of
adaptive learning rate algorithms, but this, too, had no effect on stability.

AGGRESSIVE STOCHASTIC WEIGHT AVERAGING. Inspired by the success found by Madhyastha
& Jain (2019), we tried using Aggressive Stochastic Weight Averaging (ASWA), a variant of SWA (Iz-
mailov et al., 2018). However, we could not get the model to converge to a reasonable degree of
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Nondeterminism Source Accuracy Cross-Entropy Pairwise Pairwise Ensemble
SD (%) SD Disagree (%) Corr. ∆ (%)

CIFAR-10: Linear model

Parameter Initialization 0.03± 2e-3 0.0002± 1e-5 0.5 0.997 -4e-3
All nondeterminism sources 0.10± 0.01 0.0007± 4e-5 5.5 0.996 0.06
Random bit change 0.00± 0.00 2e-8± 1e-9 0.0 1.000 0.00

CIFAR-10: One hidden layer (fully-connected)

Parameter Initialization 0.31± 0.02 0.0054± 0.0004 24.2 0.941 1.38
All nondeterminism sources 0.30± 0.02 0.0057± 0.0005 24.9 0.937 1.49
Random bit change 0.28± 0.02 0.0055± 0.0005 23.4 0.945 1.32

CIFAR-10: One hidden layer (convolutional)

Parameter Initialization 0.26± 0.02 0.0043± 0.0003 12.5 0.974 0.64
All nondeterminism sources 0.22± 0.01 0.0044± 0.0003 12.7 0.973 0.68
Random bit change 0.14± 0.01 0.0024± 0.0002 6.4 0.993 0.18

Table 8: Linear and 2-layer experiments on CIFAR-10

performance with the original formulation due to update sizes that decreased too rapidly, and though
we were able to modify it to converge successfully, the output variance remained as high as the other
models.

GRADIENT CLIPPING. With the intuition that instability might be caused by spurious gradients
of large magnitude, we experimented with clipping the norm of gradients (using pytorch’s im-
plementation of torch.nn.utils.clip_grad.clip_grad_norm_. Like other approaches,
though, this had no effect on model variability.

WEIGHT AUGMENTATION. A very experimental approach, to reduce instability we experimented
with taking an averaged gradient around the current set of parameters at each step, approximated
by sampling a random weight offset before doing a forward or backward pass through the model.
Intuitively, this would encourage optimization to not be too sensitive to the current value of weights;
however, in practice this simply didn’t affect the variance or stability of the model.

B ADDITIONAL LINEAR AND 2-LAYER RESULTS

In Table 8 we include results for linear networks and 2-layer networks (1 hidden layer) on CIFAR-10,
omitted from the main text due to space constraints. Of note in these results is the relative smaller
effect of a single bit change for a 2-layer network where the hidden layer is convolutional — still
much larger than for the linear model, but significantly smaller than for any other non-linear model.
This suggests a similar effect to what was previously observed on MNIST (Table 6) in that degree of
instability might be related to the interplay of model, dataset, and the degree of overfitting.

C IMPACT OF RANDOM BIT CHANGE OVER TIME

In Fig. 3 we plot the effect of a random bit change for a linear and single on CIFAR-10, illustrating
the effect of instability as described in Sec. 4. In the first few epochs of training, we observe that the
standard deviation and range of cross-entropy for the model with one hidden layer quickly grows,
only eventually decreasing much later in training as the model’s parameters converges toward their
final values. On the other hand, for linear models, the standard deviation consistently remains 5 or
more orders of magnitude lower throughout training.

D SUBTLETIES IN EVALUATION

While we have done our best to present our experimental protocol as plainly as possible, one subtlety
arises when interpreting results. First, recall that in our example from Sec. 3.1, testing the effects
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Figure 3: The impact of a random bit change during initialization for linear models vs 2-layer models
with a single fully-connected hidden layer, where row 1 considers the full 500 epochs of training, and
row 2 zooms in on the first 10 epochs. The left column of each row gives the range of cross-entropy
values for 100 models in the middle 95th percentile of cross-entropy, plotted at each epoch. The right
column of each row presents the standard deviation of these models.

of random initialization corresponded to training models for (S1, S2, S3) ∈ {(i, 1, 1)}Ri=1, where
S1 is the seed for random initialization, S2 is the seed for training data shuffling, and S3 is set to 1
to indicate the deterministic mode for cuDNN. The subtlety arises in that the resulting distribution
of (S1, S2, S3) ∈ {(i, 1, 1)}Ri=1 is not necessarily the same as the distribution where S2 is set to
a different arbitrary constant value, e.g. S2 = 2. Due to this, there may be minor discrepancies
when comparing the diversity in performance between two different sources of nondeterminism
(albeit nothing likely to change general conclusions). Combined with the natural sampling variability
implicit in only training a finite number of models, this can lead to paradoxical results such as the
standard deviation for a particular metric being slightly higher for a random bit change as compared
to an entirely different random parameter initialization. While we have separately validated that the
general conclusions of our results hold when varying a few of these constant factors (i.e. running
experiments where S2 is set to 2 and 3, in this example), it is difficult to resolve the discrepancy
entirely without models according to the full cross-product of random seeds, which is prohibitive due
to the exponential number of such models.
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