
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

EVERYTHING, EVERYWHERE, ALL AT ONCE: IS
MECHANISTIC INTERPRETABILITY IDENTIFIABLE?

Anonymous authors
Paper under double-blind review

ABSTRACT

As AI systems are increasingly deployed in high-stakes applications, ensur-
ing their interpretability is essential. Mechanistic Interpretability (MI) aims to
reverse-engineer neural networks by extracting human-understandable algorithms
embedded within their structures to explain their behavior. This work systemati-
cally examines a fundamental question: for a fixed behavior to explain, and under
the criteria that MI sets for itself, are we guaranteed a unique explanation? Draw-
ing an analogy with the concept of identifiability in statistics, which ensures the
uniqueness of parameters inferred from data under specific modeling assumptions,
we speak about the identifiability of explanations produced by MI. We identify
two broad strategies to produce MI explanations: (i) “where-then-what”, which
first identifies a subset of the network (a circuit) that replicates the model’s behav-
ior before deriving its interpretation, and (ii) “what-then-where”, which begins
with candidate explanatory algorithms and searches in the activation subspaces
of the neural model where the candidate algorithm may be implemented, relying
on notions of causal alignment between the states of the candidate algorithm and
the neural network. We systematically test the identifiability of both strategies us-
ing simple tasks (learning Boolean functions) and multi-layer perceptrons small
enough to allow a complete enumeration of candidate explanations. Our experi-
ments reveal overwhelming evidence of non-identifiability in all cases: multiple
circuits can replicate model behavior, multiple interpretations can exist for a cir-
cuit, several algorithms can be causally aligned with the neural network, and a
single algorithm can be causally aligned with different subspaces of the network.
We discuss whether the unicity intuition is necessary. One could adopt a prag-
matic stance, requiring explanations only to meet predictive and/or manipulability
standards. However, if unicity is considered essential, e.g., to provide a sense of
understanding, we also discuss less permissive criteria. Finally, we also refer to
the inner interpretability framework that demands explanation to be validated by
multiple complementary criteria. This work aims to contribute constructively to
the ongoing effort to formalize what we expect from explanations in AI.

1 INTRODUCTION

Interpretability in machine learning spans diverse goals and methods (Molnar, 2022; Carvalho et al.,
2019), from creating inherently interpretable models to applying post hoc techniques to explain
model decisions. Mechanistic interpretability (MI) aims to reverse-engineer models to reveal sim-
ple, human-interpretable algorithms embedded in neural network structure (Olah et al., 2020). MI
is focused on generating what we call computational abstractions, where complex neural networks’
behaviors are explained by simpler algorithms that track the internal computations (Olah et al.,
2020). A computational abstraction – a mechanistic explanation – has two components: (a) what
is the explanatory algorithm, and (b) where in the computational structure is this algorithm embed-
ded? Given the intractability of exhaustively searching all possible algorithms across all subsets of
a neural network, researchers have developed methods with different assumptions and trade-offs.
We categorize these methods into two broad strategies. The first, which we call where-then-what,
focuses on finding a subset of the network – a circuit – that captures most of the information flow
from inputs to outputs. Once this circuit is identified, typically using heuristics, the next step is to in-
terpret its components (features) to derive the explanatory algorithm (Dunefsky et al., 2024; Davies
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and Khakzar, 2024; Conmy et al., 2023a). The second approach, which we what-then-where, starts
by identifying candidate algorithms and then searches subspaces in the neural network where the
algorithm may be implemented. This is performed using causal alignment between the explanatory
algorithm’s states and the network’s internal states and typically requires approximation algorithms
(Geiger et al., 2022a;b). Each strategy relies on specific criteria to assess candidate explanations. For
instance, circuits can be evaluated by their circuit error, which quantifies how closely the circuit’s
predictions match the full model ones (Conmy et al., 2023a). In the what-then-where strategy, can-
didate algorithms are compared based on causal alignment measures like intervention interchange
accuracy (IIA), which assesses how well the algorithm’s states remain aligned with the network’s
internal states after counterfactual manipulations of the states.

In this work, we question a property of explanation that appears to be tacitly taken for granted: do
MI criteria guarantee a unique explanation of a fixed behavior? The concept of identifiability is
well-established in statistics, where a model is identifiable if its parameters can be uniquely inferred
from data under a given set of modeling assumptions (e.g., Rothenberg, 1971). By analogy, we
extend this terminology to interpretability, defining the identifiability of explanation as the property
where, under fixed assumptions of validity, a unique explanatory algorithm satisfies the criteria.

Specifically, we ask the following questions: In the where-then-what strategy, (i) is the circuit (the
“where”) unique? (ii) Is a given circuit’s grounding interpretation (the “what”)? In the what-then-
where strategy, (iii) is the causally-aligned algorithm (the “what”) unique? (iv) For a given algo-
rithm, is there a unique subspace of the neural network (the “where”) that is causally aligned?

We stress-test the identifiability properties of current MI criteria by conducting experiments in a
controlled, small-scale setting. Using simple tasks like learning Boolean functions and very small
multi-layer perceptrons (MLPs), we search for Boolean circuit explanations – aiming to discover
which succession of logic gates is implemented by the MLPs. This setup allows us to exhaustively
enumerate incompatible candidate explanations and test them with existing criteria. Our experiments
reveal non-identifiability at every stage of the MI process. Specifically, we find that: (i) Multiple
circuits can perfectly replicate the model’s behavior (with a circuit error of zero), (ii) for a given
circuit, multiple valid interpretations exist, (iii) several algorithms can be perfectly causally aligned
with the neural computation (IIA of one), and (iv) for a given causally aligned algorithm, multiple
subspaces of the neural network can be equally aligned (IIA of one).

In the discussion, we revisit whether the unicity intuition is necessary. We discuss alternative criteria
and perspectives that do not require modifying existing criteria. For example, one could adopt
a pragmatic stance, requiring explanations only to meet predictive and/or manipulability standards.
However, if unicity is considered essential, e.g., to provide a sense of understanding, we also discuss
less permissive criteria. Finally, we also refer to the inner interpretability framework Vilas et al.
(2024) that requires an explanation to be validated by multiple complementary criteria. We hope
our work contributes constructively to the ongoing effort to develop rigorous definitions for what it
means to explain a complex neural network.

2 BACKGROUND

2.1 MECHANISTIC INTERPRETABILITY

Mechanistic interpretability rests on the key assumptions that a neural network’s behavior can be
explained by a simpler algorithm than the full network, and that a sparse subset of the network
executes this algorithm. Previous research has given support to these assumptions: pruning studies
(Gale et al., 2019; Ma et al., 2023; Sun et al., 2024) and the lottery ticket hypothesis (Frankle and
Carbin, 2019; Liu et al., 2024) suggest that networks are often overparameterized, and only a fraction
of neurons and connections are critical to the final performance. Training sub-networks (Yuan et al.,
2019) to approximate the full model (Liao and Kyrillidis, 2022), similar to dropout (Srivastava et al.,
2014), supports the idea that sub-networks can approximate the full network’s behavior well.

This search for interpretable circuits is inspired by neuroscience, which has long sought to uncover
neural circuits that explain observed behaviors (Yuste, 2008). Once the neural circuit is discovered,
researchers focus on interpreting the functional roles of each component in the brain (Yuste, 2008).
Research in computer vision has already shown that some nodes within neural networks compute
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interpretable features (Olah et al., 2017). Connections between such features, also called circuits,
can be compact explanations of model behavior (Olah et al., 2020; Carter et al., 2019; Dreyer et al.,
2024). Finally, recent work has applied mechanistic interpretability to LLMs (Elhage et al., 2021),
especially in transformer models (Templeton et al., 2024; Bricken et al., 2023; Vilas et al., 2023). For
example, Wang et al. (2022) identified a circuit responsible for Indirect Object Identification (IOI)
in transformers, highlighting the potential for mechanistic explanations of complex LLM behaviors.

2.2 DEFINITIONS
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Figure 1: Illustration of the computational abstraction
components within a neural network. The circuit rep-
resents a subgraph, and the mapping specifies the high-
level features computed by the circuit, detailing how
their values arise from low-level neural activations. To-
gether, these form the computational abstraction (ex-
planation of the neural network). Here, feature F2 has
three possible values and is defined within the 2D ac-
tivation space of two neurons. Features F0 and F1 are
binary variables, each assigned to a single neuron. F0

covers the entire activation space and F1 only maps
specific intervals, leaving some activations unassigned.

A satisfactory mechanistic explanation of
a model’s behavior should consist of two
components: the what, a high-level al-
gorithm that closely approximates the
model’s behavior and tracks its internal
computation, and the where, specifying
how and where this algorithm is embed-
ded in the low-level neural computation of
the model.

We refer to the combination of an explana-
tory algorithm and the mapping between
the high- and low-level states as a compu-
tational abstraction. This is an abstraction
as it simplifies the neural network’s com-
putation, focusing on a subset of the com-
putational graph and abstracting neural ac-
tivations into simpler, high-level features.
For example, consider the mechanistic ex-
planation of how a vision algorithm recog-
nizes rectangles. We might identify a com-
putational abstraction where certain mod-
ules perform edge detection, others detect
right angles, and a final component applies
an AND logic gate to confirm the pres-
ence of four right angles. This abstraction
specifies the algorithm and how and where
low-level neural activations correspond to
high-level features of the algorithm. In
this work, we interchange the terms expla-
nation and computational abstraction.

Formally, we define a computational abstraction A as a tuple (S, τ), where S is the circuit, the
subset of the neural network’s computational graph responsible for the behavior of interest, and τ is
the mapping between the states of the circuit and the states of the variables of the algorithm. The
mapping τ specifies how to interpret the computational function of the circuit’s components.

We now proceed to define the circuit and mapping formally.

Definition 1 (Circuit). Let G = (V,E) represent the computational graph of a neural network,
where V is the set of nodes (neurons) and E ⊆ V × V is the set of edges (connections between
neurons). A circuit S = (VS , ES) is a subgraph of G that contains at least one path from a subset
of input nodes to a subset of output nodes.

Definition 2 (Mapping (τ )). A mapping between low-level values taken by neurons and high-level
values taken by the variables of the explanatory algorithm consists of a set of K surjective maps,
one for each high-level variable. Each associates the neural network activations with the values of
the corresponding high-level variable. For a group of neurons Vj in the neural network, mapped to a
high-level variable Aj with possible values {f0, . . . , fm}, the mapping τj : R|Vj | → {f0, . . . , fm}
assigns a vector of activations to one of the possible values of Aj . Each mapping should be sur-
jective

(
∀fi,∃h ∈ R|Vj | : τj(h) = fi

)
and with a non-empty pre-image

(
∀fi, τ−1j (fi) ̸= ∅

)
These

conditions ensure that all high-level values can be realized by some set of low-level activations.
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In practice, we are interested in mappings that satisfy a consistency requirement. Intuitively, consis-
tency means that if we first perform part of the computation using the neural network and then apply
the mapping to get the state of a high-level variable, the outcome should be identical to applying the
mapping and then performing the computation of the high-level algorithm. The computations in the
neural network and the high-level algorithm should align consistently according to the mapping.
Definition 3 (Consistent Mapping). Let τ be a mapping between groups of low-level neurons {Vj}
and their corresponding high-level variables {Aj}. The mapping τ is said to be consistent if for any
high-level variable Aj , with parents PAj , the following diagram commutes:

PAj Aj

R|VPAj
| R|Vj |

Alg.

NN

τPAi τj

Here: τPAj represents the application of τ to each variable in PAj; NN refers to the computation
between the low-level neural network states; and Alg. refers to the computation between high-level
variables governed by the explanatory algorithm.

Previous works have explored various types of high-level features and representational abstractions,
including mappings based on “directions in activation space” or specific points within activation
subspaces (Olah et al., 2020; 2018; Bereska and Gavves, 2024). This work focuses on explana-
tory algorithms represented as Boolean circuits, where high-level features are binary (0 or 1). The
mappings specify which activations correspond to 0 and 1. Boolean circuits are computationally
universal and thus sufficient to demonstrate identifiability issues in existing MI criteria.

2.3 APPROACHES TO CIRCUIT DISCOVERY

We identify and describe two strategies for reverse-engineering neural networks: the where-then-
what and what-then-where approaches.

WHERE-THEN-WHAT

Methods from this strategy first aim to identify a circuit that replicates the behavior of the full model
well. Once a circuit is found, the next step is to interpret its components to uncover the high-level
algorithm being implemented (Dunefsky et al., 2024; Davies and Khakzar, 2024). The evaluation
criteria for circuits is how well they replicate the full model’s behavior for the input of interest.
Definition 4 (Circuit Error). Let S be the function computed by a circuit and g the function computed
by the model on which the circuit is defined. For the input set x, the error of the circuit S is:
1− 1

|x|
∑

x∈x 1[S(x) = g(x)]

In the case of perturbed inputs, it can also be defined via the KL divergence between the logits of
the circuit and the model (Conmy et al., 2023a).

In practice, circuit search relies on causal mediation analysis, which seeks to isolate the subset of
the network that carries the information from the inputs to the output. Since it is computationally in-
tractable to enumerate all possible circuits in complex models (Adolfi et al., 2024), existing methods
focus on computing mediation formulas for individual components to decide their inclusion in the
circuit (Vig et al., 2020; Meng et al., 2022; Monea et al., 2024; Kramár et al., 2024; Conmy et al.,
2023a; Geva et al., 2023; Syed et al., 2023).

A combination of data analysis and human input is typically used to interpret candidate circuits.
For example, activation maximization identifies inputs that maximally activate a component, which
helps clarify its function (Zhou et al., 2016; Zeiler and Fergus, 2014; Simonyan et al., 2014). This
technique has been extended to modern LLMs (Peyrard et al., 2021; Jawahar et al., 2019; Dai et al.,
2022). However, polysemantic neurons, which encode multiple concepts simultaneously (Templeton
et al., 2024; Bricken et al., 2023), complicate the interpretation of LLMs components. For a broader
overview of these challenges, we refer readers to the following surveys: Sajjad et al. (2022); Khakzar
et al. (2021). In this work, we use the concept of consistent mapping as the objective evaluation of
the quality of an interpretation.
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WHAT-THEN-WHERE

Methods from this strategy first hypothesize a candidate high-level algorithm and then search for
mappings between the states of this algorithm and subspaces of the neural activations. The goal is
to identify mappings where the high-level and low-level states are causally aligned, meaning they
respond similarly under interventions.

Given a candidate high-level algorithm A, neural activations H , and a mapping τ defined between
them, counterfactual interventions are performed on the inner variables of A, and corresponding
interventions are applied to H via τ . Intervention interchange accuracy (IIA) (Geiger et al., 2022b)
is then defined for each high-level variable and measures the similarity of outputs in A and H after
intervening (metric for causal alignment). We give in Appendix A a complete, formal definition.

A perfect IIA score (1) for all variables indicates that all possible interventions produce the same ef-
fect in low-level and high-level models. In practice, exhaustive enumeration is often impractical, and
IIA is approximated using randomly sampled inputs (Geiger et al., 2022b). Similarly to the map-
ping consistency defined above, perfect causal alignment requires diagram commutation between
low- and high-level models under interventions.

Searching for causal alignment between high-level models and neural activations can be computa-
tionally expensive, as it often requires testing many potential mappings. The Distributed Align-
ment Search method (Geiger et al., 2024) addresses this challenge by employing gradient de-
scent to search for alignments efficiently. This approach also allows for distributed representa-
tions, where multiple neurons represent a single high-level variable. Indeed, an underlying assump-
tion of IIA is that the neural activations corresponding to distinct high-level variables are disjoint:
∀x, y ∈ V, τ−1(x) ∩ τ−1(y) = ∅, which may not occur in real-world examples (Olah et al., 2020).

Currently, no systematic method exists for choosing which candidate algorithms to test. Previous
work (Wu et al., 2023) has manually proposed a few candidates, but the vast space of possible
algorithms makes this an open challenge.

2.4 EXPLANATION “IDENTIFIABILITY”

The assumption of explanatory unicity – the idea that there exists a single, unique explanation for
a given phenomenon – is not only implicit in the practice of mechanistic interpretability (see rel-
evant citations in Appendix C) but also rooted in human cognitive and psychological tendencies
(Trout, 2007; Waskan, 2024; Gopnik, 2000). Humans demonstrate a cognitive preference for coher-
ent explanations that integrate disparate observations into a unified narrative (e.g., Friedman, 1974;
Kitcher, 1962; 1981; Schurz, 1999; Kveraga et al., 2007). This preference aligns with the psy-
chological need for cognitive closure, defined as the desire for a definitive conclusion (Kruglanski,
1989). Multiple incompatible explanations disrupt coherence, leading to ambiguity and a sense of
unresolved understanding.

In the philosophy of science, explanatory pluralism acknowledges that the world is too complex to be
fully described by a single comprehensive explanation (Kellert et al., 2006; Potochnik, 2017). Multi-
ple explanations often coexist without conflict because they address different explanatory goals (e.g.,
explaining distinct behaviors) or employ different simplification strategies (e.g., differing levels of
abstraction Marr and Poggio, 1976). However, in this work, we deliberately search for conflicting
explanations by fixing both the explanatory goal and the simplification strategies, as the ones defined
by MI criteria.

Identifiability and incompatible explanations.

As mentioned in Section 1, we borrow the term of identifiability from the field of statistics (Rothen-
berg, 1971), defining identifiability of explanation as the property where a unique explanation is
valid under fixed standards of validity. An MI strategy is not identifiable if its standards of validity
do not discriminate between two incompatible explanations.

We define two explanations as incompatible or conflicting if they share the same explanatory goal
and simplification strategy, but posit different computational abstractions. In our context, the ex-
planatory goal is fixed: explaining the specific input-output behavior of a trained MLP. The simplifi-
cation strategy is also fixed, corresponding to one of two predefined strategies to find computational
abstractions: the what-then-where or the where-then-what defined above.
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Base Neural Network

Train an MLP to implement XOR

𝐴 = 0|1 +𝒩(0, ℰ)	

𝐵 = 0|1 +𝒩(0, ℰ)	

𝐶 = 𝑟𝑜𝑢𝑛𝑑 𝐴 ⊕ 	𝑟𝑜𝑢𝑛𝑑(𝐵)	

𝐴

𝐵
𝐶

Where-then-what: searching circuits 
that support behavior and then 

interpreting their features via grounding
…

Circuits Computational Abstractions

…

85 unique circuits with perfect accuracy 25 unique abstractions with exact grounding 
between neural activations and gate definitions

What-then-where: searching for different 
candidate algorithms causally aligned in the 

activations of the base neural network

Candidate Algorithms

A
B

𝐀𝐍𝐃
𝐍𝐀𝐍𝐃

𝐎𝐑

𝐎𝐑A
B

¬𝐀	𝐀𝐍𝐃	𝐁

𝐀	𝐀𝐍𝐃	¬𝐁

2 candidates are tested

Computational Abstractions

159 perfect mappings (IIA=1)

…

Example of 2 perfect mappings for one algorithm

Figure 2: Illustration of identifiability problems using the XOR example. We train a small
MLP with two hidden layers of size 3 to compute the XOR function perfectly. The figure shows
the outcome of stress-testing the two reverse-engineering strategies: Top: For the what-then-where
strategy, we enumerate all subsets of neurons searching for subsets causally aligned with interme-
diate variables of candidate algorithms, with alignment measured by IIA. Even testing only two
candidate algorithms, we find perfect implementations of both in the model. Multiple mappings
(localizations) for each algorithm were identified, showing that neither the algorithm (what) nor its
location in the network (where) is unique. Bottom: For the where-then-what strategy, we enumerate
circuits (sub-networks) and test whether each computes the XOR independently. For each circuit,
we search for possible feature interpretations of the selected neurons, identifying intermediate logic
gates whose values can be mapped consistently with the neurons’ activations. Consistency is defined
as in 3. We find many different perfect circuits (the where is not unique) and for any given circuit,
we find multiple valid interpretations (the what is not unique).

Incompatibility of two computational abstractions can happen in two ways: (1) the two explanations
posit different algorithms for the same behavior, or (2) the same algorithm is embedded in different
subspaces of the neural network. Both scenarios entail different internal representations and causal
pathways linking inputs to outputs. In Figure 2, we report examples of incompatible computational
abstractions in trained MLP.

Our experiments show that even the strict causal criteria of MI allow many incompatible computa-
tional abstractions. In the discussion (Section 5), we revisit whether this expectation of unicity is
necessary or even achievable.

3 ILLUSTRATING POTENTIAL IDENTIFIABILITY ISSUES

This section highlights identifiability counter-examples for a small MLP trained to compute the XOR
function. It is well-known that an MLP requires at least two layers to compute the XOR function.
Once the network can do so, the interpretability exercise becomes: how is the XOR implemented?
For a mechanistic explanation, the answer must have two components: what algorithm is being used,
such as which combination of logic gates transforms the inputs into the XOR truth table, and where
these intermediate logic gates are located within the neural network’s computation—i.e., where the
algorithm is executed within the MLP.

To stress-test the two main MI strategies (where-then-what and what-then-where), we chose an MLP
small enough to allow exhaustive enumeration of all circuits and extensive search over mappings.
The MLP is trained on noisy binary inputs with a single logit output to produce the XOR behavior.
The inputs are 0 or 1 with a randomly sampled Gaussian noise of a fixed standard deviation.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Our methods to test the different criteria defined in the previous section are as follows:

Circuits search: We enumerate all possible circuits, and then execute the validation data of the XOR
on each circuit as if it were a standalone neural network, effectively removing from the computation
each node and edge that is not part of the circuit. If a circuit achieves perfect accuracy (zero circuit
error), we label it a perfect circuit, as it exactly replicates the model’s behavior. This search tests the
identifiability property of the circuit error criteria.

Interpretations search: For each perfect circuit, we attempt to interpret the activations of the in-
cluded neurons based on XOR validation data. As the scope of interpretations is limited to logic
gates, we search, for each neuron, a logic gate whose values are consistent with that neuron’s acti-
vation. The method proceeds recursively, layer by layer, based on a given neuron’s relationship with
its parents in the circuit. The parents already have an interpretation (mapping their activations to 0
or 1). We enumerate all possible inputs from the parents and examine how they are mapped into the
neuron’s activation by the model. We then list all possible ways to separate these inputs and label
the resulting logic gate. If we find no valid interpretation for a given neuron (e.g., all inputs overlap
in the output activation and no separation is possible), we end this candidate interpretation of the cir-
cuit. If we find multiple, we expand the tree of possible candidate interpretations for the circuit. To
avoid trivial over-counting, we ignore value relabeling (e.g., swapping 0 and 1) and, by convention,
assign 1 to the larger intervals and 0 to the smaller ones. The outcome is a computational abstrac-
tion, a Boolean circuit computing the XOR function whose internal logic gates are mapped to some
neural network components. Note that this method undercounts possible interpretations because it
does not consider cases where the high-level logic gates are mapped on multiple low-level neurons.
This search tests the identifiability property of the mapping consistency criteria.

Mappings search: For a given candidate algorithm with specified intermediate logic gates, we
explore all possible neuron subsets and mappings between these subsets and the algorithm’s in-
termediate gates. We then measure the causal alignment of the mapping using IIA. If a mapping
achieves perfect IIA, we call it a perfect mapping. If there is no other mapping with larger images
(set inclusion-wise), we also call this mapping minimal. In the example described in this section,
we manually test two candidate algorithms, while the next section enumerates algorithms that im-
plement the target function, excluding trivial variations (e.g., negating gates). This search tests the
identifiability property of the IIA criteria.

We depict in Figure 2 counter-examples for each criterion in one small MLP. In this example, for the
what-then-where strategy, we only test two candidate algorithms but find 159 perfect minimal map-
pings within the neural network activations, with perfect mappings for both algorithms. Therefore,
the algorithm is not unique and, for a given algorithm, its localization is not unique. For the where-
then-what strategy, we find 85 unique circuits with perfect accuracy, with an average of 535.8 logic
gate interpretations (consistent mappings) per circuit. Therefore, the localization is not unique, and
for a given circuit, the interpreted algorithm is not unique. Overall, in this example, we obtain 159 +
45,543 computational abstractions, most of which are incompatible. This is a serious identifiability
problem as there is no clear and consensual criterion to decide among all these explanations.

4 EXPERIMENTS

4.1 QUANTITATIVE ANALYSIS

We now repeat the experiment used for the XOR example with different seeds, while varying the
architecture size and the complexity of the global behavior.

The basic setup is consistent across all experiments. We choose n 2-input logic gates L1, . . . , Ln,
generate a multilayer perceptron (MLP) N with layer sizes (2, k, k, n), and train N to implement
the gates L1, . . . Ln. Similarly to the previous section, training is performed on binary samples with
added Gaussian noise and continues until the network’ mean squared loss is lower than n× 10−3.

We then quantify the identifiability issues again. For the circuit-first search (where-then-what strat-
egy), we count perfect circuits for L in N and valid interpretations for each circuit. For the
algorithm-first search (what-then-where strategy), we count perfectly aligned algorithms for L in
N and perfect minimal mappings for each algorithm.

7
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For the mappings search, the first step involves enumerating all algorithms that implement the de-
sired logic gate. To do so, we restrict ourselves to algorithms corresponding to the parse trees of
Boolean formulas. Assuming that each network activation can only implement the identity, AND
or OR gates (ignoring value relabeling), a network of depth d can only implement a formula for
which the parse tree’s depth is lower or equal to d. Accordingly, we recursively enumerate all
commutativity-wise unique formulas of depth d or less containing only AND and OR gates. For
each formula, we then negate combinations of nodes in the parsing tree until we obtain a Boolean
formula equivalent to the desired logic gate. For d = 3, this yields 86 valid algorithms for OR,
AND, IMP (logical implication) gates and their negations, and 56 for the XOR and XNOR gates.

In the circuit-first search, we only search for circuits containing two inputs and one output for each
target gate. Furthermore, due to the combinatorial explosion in circuit enumeration, we only test
circuits with a sparsity greater than 0.3, where sparsity is measured as the fraction of components
excluded from the circuit. This number is chosen as the smallest sparsity that remains manageable
for the size of MLPs that we consider. As a result, the reported number of circuits should be consid-
ered a lower bound. Furthermore, the number of potential interpretations for a single circuit grows
exponentially with its size. Since we count interpretations for only the sparser circuits, the reported
number of interpretations is also significantly lower than an exhaustive search would yield.

4.1.1 ARCHITECTURE SIZE

Increasing the neural network’s size may impact the number of computational abstractions found
in networks. Although a larger architecture may create more computational abstractions due to the
increased search space, it could also lead to greater overparameterization, meaning a smaller subset
of the network may suffice to implement the target gate. This, in turn, could reduce the number of
valid abstractions if most of the network is inactive during inference.

In the left side of Figure 3, we report the total number of explanations found when the architecture
size ranges from k = 2 to k = 5. We exclude from this figure the networks for which no valid
mapping or interpretation was found, which we give in Appendix D.2 along with additional plots.

Figure 3: Number of computational abstractions found in the circuit-first approach (circuit interpre-
tations) and the algorithm-first approach (perfect minimal mappings), as a function of architecture
size k (left) or of the number n of gates the model is trained on. One point per neural network.

In both cases, we observe that the number of computational abstractions found significantly in-
creases with network size, with median values growing from 38 to 910,000 in the circuit-first method
and from 8 to 3,700 in the algorithm-first approach. Less than 2% of the trained networks contain
exactly one valid minimal mapping, and no network contains exactly one circuit interpretation.

4.1.2 MULTIPLE TASKS

We also investigate the effect of global behavior complexity. The model is trained to implement
a single logic gate in the basic setup. What happens when the network is trained in a multi-task
setting? As the number of target tasks increases, we expect the network to use its activations more
efficiently, possibly relying on a smaller subset of its structure for each task. To explore this, we fix
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k = 3 and vary n from 1 to 6, sampling n logic gates (without replacement) from the same list as
above, extended to include the negation of the gates (NOR, NAND, NIMP, and XNOR). The neural
network N is then trained to implement these gates in parallel, using two shared input neurons and
n output neurons (one per gate). We repeat this procedure using different random seeds.

The right side of Figure 3 contains the total number of computational abstractions obtained when
training each neural network on a different number of logic gates in parallel, ranging from 1 to 6.
More detailed plots are available in Appendix D.3.

In both approaches, the number of interpretations significantly increases with the number of training
tasks (p = 0.05), up to 4 tasks. Past that point, the increase is no longer statistically significant.

4.2 TRAINING DYNAMICS

A possible explanation for the high number of computational abstractions we find in trained net-
works is that our networks do not perfectly implement the target logic gates, since training is stopped
when a low but non-zero loss value is reached. We explored this effect by varying the loss cutoff
in the basic setup. The results are given in Appendix D.4. More generally, the influence of the
training distribution on the number of valid computational abstractions is investigated in Appendix
D.5. In addition, we find that removing the noise from binary samples during training can increase
the number of mappings found by approximately 30% in the algorithm-first method, but does not
significantly affect the number of circuits or interpretations found in the circuit-first method. Train-
ing dynamics and generalization abilities of a model may therefore reduce the number of available
abstractions, but this effect alone is unlikely to mitigate the issue entirely.

4.3 TOWARDS LARGER MODELS

While enumerating circuits or mappings is infeasible in large networks, it is still possible to find
counterexamples in which multiple circuits exist. For example, we trained a larger MLP on a subset
of the MNIST dataset (Deng, 2012), filtered to contain only the digits 0 and 1. We obtained a
regression model with layer sizes (784, 128, 128, 3, 3, 3, 1). After training, we extracted the last
layers of the model to form two sub-networks: one of size (784, 128, 128, 3) and one of size (3, 3, 3,
1). We fed the training samples through the larger sub-network, generating a new dataset comprised
of partial computations of the overall model.

Applying the circuit search method to the smaller sub-network using this new dataset yielded 3,209
valid circuits. While we cannot enumerate circuits in the first half of the network, any such valid
circuit can include one of the circuits of the second half as its continuation. Two situations may
arise: If the first half of the MLP does not contain any valid circuits, then no valid circuit exists for
the full network; if valid circuits exist in the first half of the MLP, then a minimum of 3,209 valid
circuits exist in the full network. This shows, at least in the case of circuits, that the problem does
not seem to disappear with significantly larger scale and more complex data distributions.

5 WHAT DOES IT MEAN FOR INTERPRETABILITY?

Our findings challenge the strong intuition that a unique mechanistic explanation exists for a given
behavior under fixed explanatory goals and validity criteria. Even when employing the strict causal
requirements of MI, we find that many incompatible explanations can coexist. While predictive
of behavior and causally aligned with the neural network’s states, these explanations differ in the
computational algorithms they postulate or how they are embedded in the network’s subspaces. We
now discuss several ways to move forward from this striking observation.

5.1 DOES LACK OF UNICITY MATTER?

Whether multiple “valid” explanations pose a real problem is worth considering. From a pragmatic
stance, one could argue that unicity is not essential if the explanations meet functional goals such
as predictivity, controllability, or utility in decision-making (Van Fraassen, 1988; Achinstein, 1984).
This perspective emphasizes crafting practical criteria to evaluate explanations based on their utility,
rather than their ontological closeness to the truth. Stating explicitly the pragmatic goals of an
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explanation can also clarify what is expected of an explanation (Woodward and Ross, 2021). For
example, in the recent debate about interpretability illusion, Makelov et al. (2023) mention problems
about interventions that can potentially activate dormant pathways leading the resulting explanation
to misrepresent the mechanisms at play. In their response, one of the arguments advanced by Wu
et al. (2024) is to point out that the explanation produced by their method (DAS), still meets the
pragmatic goals of predictivity and manipulability, ensuring its usefulness. The debate is resolved
by clarifying the epistemic goals of the explanation.

5.2 IF YES, HOW CAN WE AIM TO RESOLVE IT?

If we decide that identifiability of explanations is important, our work demonstrates that current
MI criteria are insufficient to guarantee it. One potential approach to resolving this issue involves
introducing additional heuristics, such as prioritizing the sparsest circuits. However, Occam’s razor
alone is unlikely to solve the problem. Should we dismiss an entirely different candidate explanation
simply because it involves one additional node than another? In our experiments, simplicity or
sparsity cannot single out one explanation.

To address these challenges, we believe that ideas from causal abstraction (Beckers and Halpern,
2019; Beckers et al., 2020; Rubenstein et al., 2017) can be helpful (Geiger et al., 2022a). Although
IIA is directly inspired by causal abstraction, it does not fully implement it in its current form. Unlike
current MI frameworks, causal abstraction requires that all lower-level model states are accounted
for in higher-level representations. Furthermore, if components are excluded from an explanation,
their absence must be justified causally. This intuition has been formalized recently through the
concept of faithfulness, which evaluates how well a circuit replicates the model’s behavior and the
(lack of) impact of excluded elements (Hanna et al., 2024).

Alternatively, one can look at broader approaches and not focus on searching for explanations that
optimize a single criterion. Interestingly, Vilas et al. (2024) propose an inner interpretability frame-
work based on lessons from cognitive neuroscience. In this framework, the authors emphasize the
importance of building multi-level mechanistic explanations and stress-testing these explanations
with proper hypotheses testing. An explanation validated by many criteria and which exhibits differ-
ent properties (e.g., invariances) becomes more trustworthy. This framework provides a promising
path to establish MI as a natural science akin to neuroscience or biology.

5.3 IS IDENTIFIABILITY EVEN ACHIEVABLE?

In some domains of science, competing theories coexist despite being ontologically incompatible.
For instance, the Lagrangian and Hamiltonian formulations of classical mechanics posit different
underlying entities but yield identical experimental predictions. Such scenarios are examples of
contrastive underdetermination, a philosophical debate about whether empirical evidence can or
should uniquely determine scientific explanations (Stanford, 2023). The sheer complexity of inter-
pretability queries (Adolfi et al., 2024) might leave MI underdetermined.

5.4 FROM TOY MODELS TO REAL MODELS

Our experiments focus on toy MLPs trained on toy tasks, which differ drastically from large lan-
guage models (LLMs) trained on vast, complex datasets using Transformer architectures. This raises
the possibility that the issues in small models may not apply to larger, more sophisticated models.
However, if this is true, why the problems disappear at larger scales must be demonstrated. Under-
standing why current criteria function well in some regimes but not others would also lead to refined
criteria and definitions.

5.5 CONCLUSION

Our results should encourage the community to reflect on the role of unicity when searching for and
communicating about mechanistic explanations found in neural networks. We believe that exploring
stricter criteria based on causal abstraction, explicitly formulating pragmatic goals of explanations
and embracing broader frameworks such as the inner interpretability one are all promising directions.
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A FORMAL DEFINITION OF IIA

The definitions in this section are adapted from Geiger et al. (2022b). We begin by setting notation
conventions.

Let N be a neural network, and A be a high-level algorithm.
Let τ be a mapping between low-level neuron groups {Vj} of N and the values of their correspond-
ing high-level variables {Aj} in A.
Let Vin (resp. Vout) be the neuron groups corresponding to the inputs (resp. outputs) of N .
Let Ain (resp. Aout) be the variables in A with no parents (resp. no children).

Notation (Value reading). Let vin ∈ R|Vin| be some possible input values of the network N . We note
N [vin, Vj ] the values of the activations of Vj that are obtained when setting the values of Vin to vin
and running the computation graph of N .
Similarly, let ain ∈ R|Ain| be some possible values of the variables of A with no parents. We note
A[ain, Aj ] the values of the variable Aj that are obtained when setting the values of Ain to ain and
running the algorithm A.

Notation (Intervention). Let vj ∈ R|Vj | be some possible activations of the variable Vj in the
network N . We note NVj←vj a copy of N , in which the activations of Vj are forcibly set to the
value vj during the computation.
Similarly, let aj ∈ R|aj | be a possible value of the variable Aj in the algorithm A. We note AAj←aj

a copy of A, in which the value of Aj is forcibly set to the value aj when the algorithm is run.

This notion is aligned with the do-operator (Pearl, 2009).

Definition 5 (Intervention interchange). Let basel,in, sourcel,in ∈ R|Vj | be some possible input values
of the network N . We call low-level intervention interchange the quantity:

IIlow(N, basel,in, sourcel,in, Vk) = (NVk←N [sourcel,in,Vk])[basel,in, Vout]

Similarly, let baseh,in, sourceh,in ∈ R|Aj | be some possible values of the variables in A with no
parent. We call high-level intervention interchange the quantity:

IIhigh(N, baseh,in, sourceh,in, Ak) = (AAk←N [sourceh,in,Ak])[baseh,in, Aout]

This corresponds to the notion of counterfactual intervention: After running the algorithm (or net-
work) on a set of inputs (source) and recording the value of a given variable, we execute the algo-
rithm again on a different set of inputs (base) but restore the value of the variable from the first run
during the computation. The system is now in a counterfactual state, and we measure its new output.

Definition 6 (IIA). Let Val(Aj) be the set of possible values of Aj , and Val(Ain) =
∏

V ∈Vin
Val(V )

be the set of possible combinations of values of the variables in A with no parents. Let Ak be a
high-level variable of A.

The intervention interchange accuracy of the mapping τ for the variable Ak is the quantity:

IIA(N,A,Ak, τ) =
1

|Val(Ain)|2
∑

b,s∈Val(Ain)

1 [IIhigh(A, b, s, Ak) = IIlow(N, b, s, Vk)]

B OUTPUT EXAMPLES

This section contains additional examples of computational abstractions found by both strategies.
Specifically, we report abstractions found in a single neural network trained on the XOR gate with
k = 3 and n = 1 with a loss cutoff of 10−3.
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B.1 CIRCUIT-FIRST APPROACH

An exhaustive pass of the circuit-first approach (with no minimal sparsity threshold) yielded 59
circuits (*where*). We depict in Figure 4 the 12 most sparse circuits found.

Figure 4: The 12 most sparse circuits found in the example network.

When searching for interpretations (*what*) in all 59 circuits, we find 114,230 interpretations. We
then focus on circuit 8 (second row, last column in Figure 4, chosen for illustration purposes as it
yields 24 valid interpretations, which we fully list in Table 1. Each of these interpretations leads
to a different explanation of the network; for example, interpretation 1 corresponds to the formula
¬(¬(A ∧ B) → ¬(A ∨ B)), while interpretation 2 corresponds to ¬((¬(A ∧ B) ∨ ¬(A ∨ B)) →
(¬(A ∧B) → ¬(A ∨B))).

B.2 ALGORITHM-FIRST APPROACH

In the algorithm-first approach, exhaustive enumeration yields 56 possible logic formulas for the
XOR gate with a depth of 3 (excluding commutative-invariant formulas). Four of these formulas
produce valid mappings for the neural network. Those mappings are listed in Table 2.

C IDENTIFIABILITY IN CIRCUIT LITERATURE

Identifiability is, to the best of our knowledge, never stated as an explicit assumption in existing
works about circuits. In this section, we list examples from the literature that indicate that it is
nonetheless typically taken for granted:

• Cammarata et al. (2021): ”the curve circuit” (multiple occurrences)

• Wang et al. (2022): ”discover the circuit”, ”discovering the circuit”, ”uncover the circuit”

• Kramár et al. (2024): ”we investigate the circuit underlying multiple-choice question-
answering”

• Conmy et al. (2023b): ”Choosing a clearly defined behavior means that the circuit will be
easier to interpret than a mix of circuits corresponding to a vague behavior”, ”ACDC [...]
fully recovers the circuit of toy model”.

• Hanna et al. (2024): ”We next search for the circuit responsible for computing this task”

• Marks et al. (2024): ”The circuit for agreement across a prepositional phrase (Figure 12)”
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Neuron (1, 0) Neuron (1, 1) Neuron (2, 0) Neuron (2, 1) Neuron (3, 0)
# Gate Sep. Gate Sep. Gate Sep. Gate Sep. Gate Sep.
1 -0.003 NAND 0.693 NOR 0.151 IMP 0.777 OR 0.5 NOT A
2 -0.003 NAND 0.693 NOR 0.151 IMP 0.777 OR 0.5 RNIMP
3 -0.003 NAND 0.693 NOR 0.151 IMP 0.777 A 0.5 NOT A
4 -0.003 NAND 0.693 NOR 0.151 IMP 0.777 A 0.5 RNIMP
5 -0.003 NAND 0.693 NOR 0.151 IMP 0.987 NIMP 0.5 IMP
6 -0.003 NAND 0.693 NOR 0.151 IMP 0.987 NIMP 0.5 NOT A
7 -0.003 NAND 0.693 NOR 0.151 IMP 0.987 NIMP 0.5 B
8 -0.003 NAND 0.693 NOR 0.151 IMP 0.987 NIMP 0.5 RNIMP
9 -0.003 NAND 0.693 NOR 0.397 NOT A 0.987 NIMP 0.5 B
10 -0.003 NAND 0.693 NOR 0.397 NOT A 0.987 NIMP 0.5 RNIMP
11 -0.003 NAND 0.693 NOR 0.397 NOR 0.987 NIMP 0.5 B
12 -0.003 NAND 0.693 NOR 0.397 NOR 0.987 NIMP 0.5 RNIMP
13 0.321 NOR 0.230 NAND 0.151 RIMP 0.777 OR 0.5 NOT A
14 0.321 NOR 0.230 NAND 0.151 RIMP 0.777 OR 0.5 RNIMP
15 0.321 NOR 0.230 NAND 0.151 RIMP 0.777 B 0.5 NOT A
16 0.321 NOR 0.230 NAND 0.151 RIMP 0.777 B 0.5 RNIMP
17 0.321 NOR 0.230 NAND 0.151 RIMP 0.987 RNIMP 0.5 IMP
18 0.321 NOR 0.230 NAND 0.151 RIMP 0.987 RNIMP 0.5 NOT A
19 0.321 NOR 0.230 NAND 0.151 RIMP 0.987 RNIMP 0.5 B
20 0.321 NOR 0.230 NAND 0.151 RIMP 0.987 RNIMP 0.5 RNIMP
21 0.321 NOR 0.230 NAND 0.397 NOT B 0.987 RNIMP 0.5 B
22 0.321 NOR 0.230 NAND 0.397 NOT B 0.987 RNIMP 0.5 RNIMP
23 0.321 NOR 0.230 NAND 0.397 NOR 0.987 RNIMP 0.5 B
24 0.321 NOR 0.230 NAND 0.397 NOR 0.987 RNIMP 0.5 RNIMP

Table 1: The list of interpretations found for circuit 8 of 59 in the example network. For each
interpretation, the four intermediate neurons and the output one are assigned a logic gate and a
separation boundary. Each neuron is represented by its layer and position in the layer (indexed from
0), as read from left to right and from top to bottom in Figure 4. IMP refers to the implication gate
(A implies B), NIMP to its negation, and RIMP and RNIMP refer to the reversed implication gate
(B implies A) and its negation.

Formula 1: ¬(A ∧B) ∧ (A ∨B)
Mapping A ∨B ¬(A ∧B)
1 Neuron (1, 2) Neuron (1, 1)
2 Neuron (1, 0) Neuron (1, 1)

Formula 2: ¬((A ∧B) ∨ ¬(A ∨B))
Mapping A ∧B ¬(A ∨B)
1 Neuron (1, 1) Neuron (1, 2)
2 Neuron (1, 1) Neuron (1, 0)

Formula 39: ¬((A ∧B) ∨ ¬(A ∨B)) ∧ (A ∨B)
Mapping A ∧B A ∨B ¬((A ∧B) ∨ ¬(A ∨B)) ¬(A ∨B)
1 Neuron (1, 1) Neuron (1, 2) Neuron (2, 0) Neuron (1, 0)
2 Neuron (1, 1) Neuron (1, 2) Neuron (2, 1) Neuron (1, 0)
3 Neuron (1, 1) Neuron (1, 0) Neuron (2, 0) Neuron (1, 2)
4 Neuron (1, 1) Neuron (1, 0) Neuron (2, 1) Neuron (1, 2)

Formula 40: ¬(((A ∧B) ∨ ¬(A ∨B)) ∨ ¬(A ∨B))
Mapping (A ∧B) ∨ ¬(A ∨B) A ∧B ¬(A ∨B) (left) ¬(A ∨B) (left)
1 Neuron (2, 1) Neuron (1, 1) Neuron (1, 0) Neuron (1, 2)
2 Neuron (2, 1) Neuron (1, 1) Neuron (1, 2) Neuron (1, 0)
3 Neuron (2, 0) Neuron (1, 1) Neuron (1, 0) Neuron (1, 2)
4 Neuron (2, 0) Neuron (1, 1) Neuron (1, 2) Neuron (1, 0)

Table 2: The list of valid minimal mappings for the example network. For each intermediate node
of each formula, we specify which neuron corresponds to that node.
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D ADDITIONAL PLOTS

D.1 TARGET GATE VARIATION

Figure 5 contains the total number of computational abstractions obtained after fixing k = 3 and
n = 1 and sampling the target gate from the following list: AND, OR, XOR, IMP.

Figure 5: Total number of interpretations found in the circuit-first approach and of mappings found
in the algorithm-first approach, grouped by target gate.

Figure 6 contains the results of the same experiment but displays separate plots for the number
of circuits and interpretations per circuit (resp. algorithms and mappings per algorithm) for each
network.

Figure 6: Number of circuits and average interpretations per circuit found in the circuit-first ap-
proach (left) and number of algorithms and average mappings per algorithm found in the algorithm-
first approach (right), grouped by target gate. The text below each figure contains the ratio of net-
works for which at least one valid mapping was found overall.

D.2 ARCHITECTURE SIZE

Figure 7 contains additional plots for the experiment described in 4.1.1, in which we vary the archi-
tecture size.

D.3 MULTI-TASK TRAINING

We report in Figure 8 additional plots for the experiment in which we vary the number of gates the
model is being trained on (described in 4.1.2).
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Figure 7: Number of abstractions found in the circuit-first approach (left) and the algorithm-first
approach (right) as a function of the architecture size.

Figure 8: Number of abstractions found in the circuit-first approach (left) and the algorithm-first
approach (right) as a function of the number of training tasks.
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D.4 LOSS CUTOFF

We report in figure 9 plots for the experiment in which we apply the basic setup with n = 1 and k3
on a set of networks, trained while varying the loss cutoff from 10−1 to 10−6. For the algorithm-first
approach, a two-sample t-test indicates a modest but significant decrease in the number of algorithms
found when the loss cutoff is lower or equal to 10−5. In contrast, the number of mappings per
algorithm does not statistically vary. For the circuit-first approach, significantly fewer circuits and
interpretations per circuit are found when the loss cutoff is high (0.1), but values do not otherwise
vary for lower loss values. In addition, we found that multiple computational abstractions can still
be identified in randomly initialized networks that happen to implement a logic gate (i.e. without
training).

Figure 9: Number of abstractions found in the circuit-first approach (left) and the algorithm-first
approach (right) as a function of the neural network’s training loss cutoff.

D.5 TRAINING DISTRIBUTION

The influence of the training distribution was investigated through the following procedure:

1. Sample a random neural network NN and target gate with n = 1 and k = 3

2. Draw x1, . . . , x4 from U[0,1]

3. Train NN on a skewed input distribution, with weights xi∑
i xi

for each input i, and a loss
cutoff of 10−3.

4. Exhaustively enumerate all circuits, interpretations, algorithms, and mappings as in the
basic setup.

5. Repeat from step 1.

We repeated those steps 1,000 times, resulting in varying training distributions with joint entropy
varying from 0.8 to 2.0 bits. We then performed a linear regression of the resulting counts as a
function of the distribution’s joint entropy. We give in Table 3 the results for this experiment, which
show that the number of average minimal mappings per algorithm and the number of circuits may
increase with the training distribution entropy, but that the total number of interpretations is not
statistically dependent on the training distribution.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Criterion Slope Intercept p-value
Algorithms -0.73 11.63 0.596

Minimal mappings/algorithm (avg) 4.84 1.15 0.035
Total mappings 59.03 82.73 0.127

Circuits -328 813 < 0.001
Interpretations/circuit (avg) -404 1,349 0.284

Total interpretations -8,067 36,200 0.332

Table 3: Linear regression performed on the number of computational abstractions as a function of
the training distribution’s joint entropy (in bits).
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