
Under review as a conference paper at ICLR 2024

PROMPTCCD: LEARNING GAUSSIAN MIXTURE
PROMPT POOL FOR CONTINUAL CATEGORY
DISCOVERY

Anonymous authors
Paper under double-blind review

ABSTRACT

In this paper, we address the challenging open-world learning problem of continual
category discovery (CCD). Initially, a labelled dataset consisting of known cate-
gories is provided to the model. Subsequently, unlabelled data arrives continuously
at different time steps, which may contain objects from known or novel categories.
The primary objective of CCD is to automatically assign labels to unlabelled ob-
jects, regardless of whether they belong to seen or unseen categories. However, the
crucial challenge in continual category discovery is to automatically discover new
categories in the unlabelled stream without experiencing catastrophic forgetting,
which remains an open problem even in conventional, fully supervised continual
learning. To address this challenge, we propose PromptCCD, a simple yet effective
approach that utilizes Gaussian mixture model as a prompting method for CCD. At
the core of PromptCCD is our proposed Gaussian Mixture Prompt Module (GMP),
which acts as a dynamic pool updating over time to provide guidance for embedding
data representation and avoid forgetting during continual category discovery. Addi-
tionally, our GMP provides the unique advantage of enabling on-the-fly estimation
of category numbers, which enables it to discover categories in the unlabelled
stream without prior knowledge of category numbers. Finally, we extend the stan-
dard evaluation metric for generalized category discovery to CCD and benchmark
state-of-the-art methods using different datasets. Our PromptCCD significantly
outperforms other methods, demonstrating the effectiveness of our approach.

1 INTRODUCTION

The human visual system has the remarkable ability to learn and reason about novel concepts over
time. For instance, humans can learn about newly discovered animals and extinct ones in different
timelines with ease. This ability also extends to other concept axes such as arts, products, and more.
Hence, the challenge of discovering novel visual concepts within unlabelled images over a period
while retaining previously seen visual concepts becomes a critical aspect in the design of artificial
visual systems. Continual category discovery (CCD) (Zhang et al., 2022) aims to empower artificial
visual systems with this ability by extending the challenging open-world learning problems of novel
category discovery (NCD) (Han et al., 2019) and generalized category discovery (GCD) (Vaze et al.,
2022) to a continual learning scenario (see Fig. 1). By enabling artificial visual systems to learn and
reason about novel concepts over time, CCD represents an essential step towards developing more
intelligent and adaptive visual systems that can operate effectively in dynamic environments.

Advancements in vision foundation models have shown promise in various computer vision tasks,
from image classification and object detection to more complex tasks like scene understanding (Caron
et al., 2021; Oquab et al., 2023). State-of-the-art models like transformers have demonstrated their
strong performance in static environments where they are trained on a fixed set of categories. Given
the progress and capabilities of these foundation models, we are interested in investigating how these
models can be repurposed to continually adapt to dynamic environments where they must discover
and learn from new visual data categories over time.
There are two major challenges in CCD. The first challenge is catastrophic forgetting, a well-known
issue in continual learning settings (De Lange et al., 2021). Traditional techniques for mitigating
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Figure 1: Overview of the Continuous Category Discovery task. In the initial stage, the model learns
from labelled data, while in the subsequent stages, the model learns from an unlabelled data stream
containing instances from known and novel classes.

forgetting, such as rehearsal-based (Rebuffi et al., 2017), distillation-based (Li & Hoiem, 2017),
architecture-based (Li et al., 2019), and prompting-based methods (Wang et al., 2022b;a), assume
fully labelled data at each stage, which is incompatible with the CCD framework where the goal is to
work with unlabelled data streams. The second challenge is the discovery of novel visual concepts.
While Generalized Category Discovery (GCD) is a related task, most existing methods focus mainly
on static unlabelled data, making them unsuitable for the continually evolving nature of CCD.

To tackle these challenges in adapting foundational vision models for CCD, we introduce a Gaussian
Mixture Prompt learning framework. This framework employs a Gaussian Mixture Model (GMM)
to model the data distribution at each learning stage dynamically. By enriching the visual feature
representation with adaptive queried Gaussian Mixture Prompts (GMP), our method excels at identi-
fying new visual concepts across successive learning stages. Concurrently, these prompts facilitate
the model’s seamless adaptation to emerging data while preserving its performance on previously
acquired categories, thus preventing catastrophic forgetting. In addition to outperforming existing
CCD solutions, our framework provides the unique advantage of enabling on-the-fly estimation of
category numbers — often assumed to be predetermined in prior works (Zhang et al., 2022).

We summarize our main contributions as follows: (1) We introduce Gaussian Mixture Prompt Module
(GMP), a new prompt learning technique that leverages Gaussian mixture component(s) to generate
better representation and mitigate the catastrophic forgetting problem on previously learned data. (2)
We propose the first prompt learning framework tailored for CCD, PromptCCD, which can be coupled
with our proposed GMP and existing prompt learning techniques for effective continual category
discovery. (3) We extensively experiment with benchmarking datasets and compared our method
with baseline methods under both known and unknown category number scenarios, significantly
outperforming the state-of-the-art.

2 METHOD

In GCD, given a labelled and unlabelled set of images, the task is to recognize and discover all known
and novel classes in the unlabelled set. The CCD task extends this task into the continual setup where
the unlabelled data stream keeps coming in different time steps. Thus, the main objective of CCD
task is to discover novel classes in a dynamic setting without forgetting learned knowledge from
the previous streamed data, i.e. a decrease in the model’s performance on known categories. In this
section, we briefly describe how CCD task is formulated.

Given dataset D = Dl ∪ Du consisting of labelled and unlabelled data respectively. Dl =
{(xi, yi)}Ni=1 contains tuples of the input xi ∈ X and its corresponding labels yi ∈ Y . The labelled
dataset of known categories will be used for the model to learn in the initial stage. In the subsequent
(discovery) stages, assuming the total number of stages is T , the unlabelled data stream Du is divided
into T subsets such that Du = {Du

t }Tt=1 where each unlabelled set at stage t, Du
t = {Duo

t , Dun
t },

consists of unlabelled instances from known and novel categories, respectively. Our goal in CCD is to
train a modelHθ : X → Z parameterized by θ that first, learns from labelled Dl and in the discovery
stages, learns from unlabelled data Du

t for time steps T such thatHθ can be used to discover novel
classes and assign class labels to all unlabelled instances utilizing representative feature zi ∈ Z
without forgetting previously learned knowledge from old streamed data.

In the following, we first elaborate on the design of our baseline and proposed methods, followed by
an explanation of how our model learns during the initial and continual discovery stages.
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Figure 2: Our baseline prompt-based CCD framework adopts a prompt-based continual learning
model that uses a prompt pool module to guide the self-supervised vision foundation model for CCD.

2.1 PROMPT POOL LEARNING FOR CONTINUAL CATEGORY DISCOVERY

Vision foundation models are pretrained representations trained on a large-scale dataset and are
task-agnostic. These models can achieve remarkable performance across certain downstream tasks
even with minimal fine-tuning. Prompt tuning (Wang et al., 2022a;b) has emerged as a powerful
method for adapting these foundation models to supervised continual learning settings. However,
directly utilizing these prompt learning techniques is unsuitable for CCD task, as all these works
assume the incoming data stream has label information.

We start our exploration by constructing a prompt learning baseline for CCD. Inspired by Wang et al.
(2022b;a), we design a baseline model for CCD that leverages a shared memory pool of prompts. The
model extracts a feature from a query example using a frozen pretrained model, and the feature will
be used to retrieve the top-k most relevant prompts from the fixed-size M prompts in the shared pool.
These prompts are then used to guide the model’s representation learning by prepending them with
the input’s embeddings, optimised with contrastive learning at each learning stage. The formulation
of the method is presented below (as depicted in Fig. 2).

Given a modelHθ : {ϕ, fθ}. ϕ is a MLP projection head, and fθ = {fe, fb} is the transformer-based
feature backbone which consists of input embedding layer fe and self-attention blocks fb. An
input image x ∈ RH×W×3 where H,W represent the height and width of the image, is first split
into L tokens (patches) such that xq ∈ RL×(h×w×3) where h,w represent the height and width
of the image patches. These patches are then projected to the input embedding layer such that
xe = fe(xq) ∈ RL×z . To construct the prompt learning technique, a learnable prompt pool is
initialized as V = {Vm}Mm=1 where Vm ∈ RL×z and M is the total number of prompts (which is
fixed, across stages). Additionally, a query function fθ∗ : RH×W×3 → Rz[CLS] is initialized to map
x→ classification token. To form the key-value memory query function, these prompts Vi are then
paired with learnable key ki so that, given query fθ∗(x) and {km}Mm=1 set of keys, we calculate their
similarity using cosine distance γ and take the top-k keys. With these selected keys, we can return the
set of associated prompts called Vtop-k. Then, a set of embeddings xtotal = [Vtop-k;xe] is formed by
prepending the selected prompts with the patch embeddings. Finally, we feed the embeddings to the
self-attention blocks fb(xtotal). As our baseline adopts the contrastive learning strategy, let {xi, x

′

i}
be the two views of randomly augmented image xi. These two pairs are then fed to Hθ such that
zi, z

′

i = ϕ(fθ(xi, x
′

i)). We optimize our baseline by combining contrastive learning losses, Sec. 2.3
and the surrogate loss, Eq. (1) to pull selected keys closer to corresponding query features. Finally,
when stage t training is finished, we transfer current prompt pool V to the next stage.

Lsurrogate(xi, km) = γ(fθ∗(xi), km). (1)

Although this prompt learning technique by design works in our baseline, several limitations arise
when applied to CCD task. First, The representation learning process only considers the unlabelled
data in the current time step, which can cause representation bias towards current data and disrupt
the representation learned for the previous data. Additionally, the category discovery process is
separate from the representation learning process, which means that there is no proper mechanism for
transferring knowledge from old classes to new classes. This transfer of knowledge is essential for
the category discovery task. Second, the fixed-size prompt module can lead to parameter inefficiency
and restrict the model’s ability to discover new categories and avoid forgetting.
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Figure 3: The design paradigm of our PromptCCD framework. PromptCCD continually discovers
new categories while retaining previously discovered ones by learning a dynamic Gaussian mixture
prompt (GMP) pool to guide the self-supervised vision foundation model for CCD. To prevent
catastrophic forgetting, we generate replay samples from the previously fitted GMM at time step
t− 1 and fit them into the current GMM at time step t.

2.2 GAUSSIAN MIXTURE PROMPT POOL LEARNING FOR CONTINUAL CATEGORY DISCOVERY

By referring to the aforementioned limitations, there is a need for a prompting technique that requires
minimal to almost zero supervision, and design-wise, its parameter has to be dynamic and flexible.
With that goal in mind, here we propose the Gaussian Mixture Prompt Module (GMP), a novel
prompt learning technique that uses the Gaussian mixture model (GMM) as a prompt pool. Here, we
listed several key advantages that our prompt module offers; First, GMP’s prompt serves a dual role,
namely (1) as a task prompt to instruct the model (like in Wang et al. (2022a;b)) and (2) as class
prototypes (see Appendix I for details) to act as parametric replay sample distribution for discovered
classes. The second role, which is unique and important for CCD/GCD, not only allows the model
to draw unlimited replay samples to facilitate the representation tuning and class discovery in the
next time step but also allows the model to transfer knowledge of previously discovered and novel
categories and incorporate this information when making the decision to discover a novel category.
Second, our GMP module enables easy adjustment of parameters and dynamic expansion across
stages. This flexibility is particularly valuable in CCD tasks where the number of classes can change
over time. Finally, GMP can be seamlessly combined with a category number estimator to tackle
the open-world nature of CCD, where the number of categories within the unlabelled data stream is
unknown. Next, we will show how we formulate our framework, Fig. 3 utilizing GMP, Fig. 4.
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Figure 4: Our proposed Gaussian mixture prompt module (GMP) estimates the probability of the input
query z[CLS] by calculating the log-likelihood of Eq. (2). We then use the top-k mean components
as prompts to guide our model for CCD.

Gaussian mixtures prompt module (GMP). We build a probabilistic multivariate GMM representing
the presence of a sub-population within an overall population. As the Gaussian Mixture distribution
is a linear superposition of Gaussian’s, thus we can formulate GMM as:

p(z) =

C∑
c=1

πcN (z|µc,Σc) s.t.
C∑

c=1

πc = 1. (2)

Eq. (2) represents the Gaussian probability density function in GMM, consisting of C Gaussian
components, a set of learnable mixture weights components {π1, π2, ..., πC}, component’s mean
{µ1, µ2, ..., µC}, and component’s covariance {Σ1,Σ2, ...,ΣC}. When we initialize our GMM, we
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assume that C is known (see Sec. 2.2 for the case when C is unknown). For every learning stage, we
do not directly use GMM for prompting as it needs to be fit using EM algorithm by strong features,
i.e., Z[CLS] =

∑|X |
i=1 fθ(xi) , where X is the set of images in Dt. Given feature z[CLS] = fθ(x)

i.e., the classification token queried by our model, to find the component πi, which is associated
with z[CLS], the model calculates the log probability density value, Eq. (2) and returns a set W of
log-likelihood probability value for different πi. Then, we pick the top-k component’s mean indexes
such that top-k = argmaxW′⊆W,|W′ |=k

∑
w∈W′ w. With these selected top-k indexes, we can return

the set of associated prompts as µtop-k mean components. Similar to our baseline, a set of embeddings
xtotal = [µtop-k;xe] is formed by prepending the selected prompts with the patch embeddings. As our
method adopts the contrastive learning strategy, let {xi, x

′

i} be the two views of randomly augmented
image xi. These two pairs are then fed to Hθ such that zi, z

′

i = ϕ(fθ(xi, x
′

i)). We optimize our
model with contrastive learning losses, Sec. 2.3. Since we aim to use GMM dynamically across
stages, once the training process is complete, we further make use of the learned GMM to draw a
set of random samples Zs

t by Eq. (2) where the set has S samples for each component c. This is
done to handle forgetting previously learned knowledge as the generated GMM samples Zs

t from the
current stage will be used to fit the next GMM. By combining samples from the previous stage and
the current features i.e., Z[CLS]t =

∑|X |
i=1 fθ(x) + Zs

t−1, GMM learns rich features, which leads to
better prompt embeddings. The pseudo-code of the overall method is provided in Appendix A.

Unknown number of classes in unlabelled data. In the real open-world scenario, the number
of categories C is often unknown. Estimating the number of categories from unlabelled data is
an important question. Existing work i.e., GPC (Zhao et al., 2023) has addressed this problem
using the Semi-Supervised Gaussian Mixture Model (SS-GMM) . As our prompt module is also
based on GMM, we can seamlessly combine our prompt learning method with the GPC category
estimator. In general, the GMM is first fit with Z[CLS] with an initial value of C, then an automatic
spliting-and-merging strategy based on the Metropolis-Hastings ratio framework is used to measure
the compactness and separability of clusters formed by the model. Clusters are split into two if they
are separable, and two clusters are merged into one if they are cluttered. This process will continue
until the optimization is finished. See Appendix D for details and experiment results.
2.3 OPTIMIZATION OBJECTIVES FOR DIFFERENT LEARNING STAGES

Both supervised, Eq. (3) and unsupervised, Eq. (4) contrastive losses are formulated as follows:

Ls
i = − 1

| N(i) |
∑

q∈N(i)

log
exp(zi · zq/τ)∑n

j=1 1[n ̸=i] exp(zi · z
′
j/τ)

,

(3)

Lu
i = − log

exp(zi · z
′
i/τ)∑n

j=1 1[n ̸=i] exp(zi · z
′
j/τ)

,

(4)

where 1[n ̸=i] is an indicator so that the same image index will not be considered a negative pair, τ is
the temperature value, and N(i) is the set of images with the same label y in a mini-batch B.

Optimization during initial learning from labelled data. Given labelled data stream Dl in the
initial stage, the model optimizes both supervised, Eq. (3) and unsupervised, Eq. (4) contrastive
losses. The total loss over the batch is formalized as Eq. (5), where BL denotes the labelled images
in B and λ is the weighting coefficient.

Optimization during class discovery from unlabelled data. After learning feature representation
in the initial stage, the model proceeds to the discovery stage, where the incoming data stream is
unlabelled Du

t = {Duo
t , Dun

t }. Similar to the initial stage, the model adopts the self-supervised
learning strategy, and we use unsupervised contrastive learning with a loss formulated in Eq. (4).
Thus, the loss over the batch is formalized as Eq. (5) without the supervised contrastive loss, Eq. (3).

Ltotal = (1− λ)
∑

i∈B
Lu
i + λ

∑
i∈BL

Ls
i . (5)

3 EXPERIMENTS

To assess the performance of our proposed framework compared with other models, we evaluate and
compare PromptCCD framework with the state-of-the-art continual category discovery, generalized
category discovery and continual learning models on generic image datasets and the more challenging
fine-grained image dataset. Thus, in this section, we describe our experimental setups in Sec. 3.1;
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then, we present our main experimental results in Sec. 3.2. Finally, ablation studies in Sec. 3.3 are
conducted to verify our model’s effectiveness.

3.1 EXPERIMENTAL SETUPS

Datasets. We conduct our experiments on various benchmark datasets, namely CIFAR-100 (C 100)
(Krizhevsky & Hinton, 2009), ImageNet-100 (IN 100) (Russakovsky et al., 2015), TinyImageNet
(Tiny 200) (Le & Yang, 2015), and the Caltech-UCSD Birds-200-2011 (CUB-200) (Wah et al., 2011).
(1) CIFAR-100 contains 100 classes with 600 images per class. It is divided into 500 training and
100 testing images per class. (2) ImageNet100, contains 100 classes with 1350 images per class. it is
divided into 1300 training and 50 testing images per class. (3) In TinyImageNet, there are 100,000
images divided into 200 classes. Each class has 500 training images, 50 validation images, and 50 test
images. We use its training and test images in our experiments. (4) Lastly, CUB-200 is a fine-grained
visual categorization dataset with 11,788 images of 200 bird species.

Algorithm 1 CCD evaluation metric
Input: f(.) models for each stage in {1, · · · , T} and datasets {DL, DU}.
Output: The ACC outputs for every stage.

1: Initialize set AL = {Dl}.
2: for t ∈ {1, · · · , T} do
3: ACCt = SS-Kmeans(Model: ft(.), Labelled set: AL, Unlabelled set: {Du

t })
4: Use labels assigned by SS-Kmeans such that Du∗

t ← Du
t

5: Append Du∗

t to AL

6: return {ACCt | t = 1, . . . , T}

Table 1: Data distribution in CCD task.
Class splits Stage 0 Stage 1 Stage 2 Stage 3

{yi | yi < 0.7 ∗ |Y|} 87% 7% 3% 3%

{yi | 0.7 ∗ |Y| ≤ yi < 0.8 ∗ |Y|} 0% 70% 20% 10%

{yi | 0.8 ∗ |Y| ≤ yi < 0.9 ∗ |Y|} 0% 0% 90% 10%

{yi | 0.9 ∗ |Y| ≤ yi < |Y|} 0% 0% 0% 100%

Implementation details. We use ViT-B/16 backbone (Dosovitskiy et al., 2021) initialized with
DINO self-supervised vision foundation features (Caron et al., 2021) for all experiments. Please
note that Wang et al. (2022b;a) utilized a well-pretrained model with supervision, which is suitable
for the standard supervised continual learning task. However, it is not allowed to use such models
for CCD task due to label information leakage. During training, only the final block of the vision
transformer is finetuned 200 epochs with a batch size of 128, using an SGD optimizer and a cosine
decay learning rate scheduler with an initial learning rate of 0.1 and minimum learning rate of 0.0001,
and weight decay of 0.00005. For the mixture prompt module, we optimize the GMM every 30
epochs and start the prompt learning when the epoch is greater than 30. We set top-k to be 5, and the
number of GMM samples to 100. We pick the final model by selecting the best performing model
on "old acc" using the validation set (evaluated every 10 epochs). All input images are resized to
224× 224 and normalized to match the DINO pretrained model settings. For our proposed method,
we follow the standard practice of self-supervised learning training procedure by training a base
encoder/backbone fb and a projection head ϕ to maximize the agreement using a contrastive loss
with λ = 0.35. For other compared methods, we chose the right hyper-parameters following their
original papers. Finally, for the class number estimation, we follow the procedures proposed by GCD
(Vaze et al., 2022) i.e., by utilizing GCD’s class number estimation method on DINO features with
a binary search algorithm within the range of [|YL|, 1000] across all datasets and GPC (Zhao et al.,
2023) dynamic class number estimation; We build our proposed framework with PyTorch library,
trained in a single NVIDIA RTX 3090 GPU.

Experiment settings and evaluation metrics. CCD task consists of several stages. We set the
number of stages to 4 with a specific CCD’s split ratio presented in Table 1 following the setup of
Zhang et al. (2022). The model is fine-tuned in each stage. During test time, the output classification
token [CLS] features are used for clustering. For the clustering algorithm and label assignment,
we use semi-supervised k-means (Vaze et al., 2022) on the training sets at stage t and measure the
clustering quality given the ground truth labels yi and the model’s clustering prediction ŷi such that:
ACC = maxgϵG(YU )

1
|Du

t |
∑|Du

t |
i=1 1{yi = g(ŷi)}, where G(YU ) represents set of all permutations of

class labels in the unlabelled set Du
t . For the evaluation metrics across stages, we use the clustering

accuracy ACC consisting of ’All’, ’Old’ and ’New’ sets of metrics. ’All’ indicates the overall accuracy
on the entire set DU

t , ’Old’ and ’New’ indicate the accuracy from instances of unlabelled data from
DL∗

t and DU
t respectively. To properly measure the performance on the CCD task, we extend the

commonly used ACC for static data into the CCD setting, as shown in Algorithm 1. Here, we use
labelled data from {Dl,Σt−1

i=1D
u∗

i } to help guide SS-Kmeans clustering algorithm. We set u∗ ← u
to indicate that we use predicted labels on previously unlabelled data Du

i from the previous stage.

Baselines. We compare our method with the other representative CCD, GCD and continual learning
models approaches, including 1) Grow and Merge (GM) (Zhang et al., 2022); 2) ORCA (Cao
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et al., 2022); 3) GCD (Vaze et al., 2022); 4) SimGCD (Wen et al., 2023); 5) L2P (Wang et al.,
2022b); and 6) DualPrompt (DP) (Wang et al., 2022a). As GM’s encoder is based on ResNet-
18 network (He et al., 2016), we re-implement their dynamic branch mechanism with the vision
transformer backbone network and observe improved performance for their method compared to
their original results; see Appendix E for details. We also re-implement GCD and SimGCD to suit
the continual learning settings further. We integrate a replay-based method into these model where,
for each stage, the model saves several samples for each discovered class and mix these samples with
the next incoming streamed images. Lastly, we adopt L2P’s and Dual Prompt’s prompt pool module
and their corresponding surrogate loss, for our baseline model and integrate it with our framework.

3.2 MAIN RESULTS

Table 2: Results on various coarse and fine-grained datasets where C is known in each unlabelled set.
Stage 1 ACC (%) Stage 2 ACC (%) Stage 3 ACC (%) Average ACC (%)

Model All Old New All Old New All Old New All Old New
ORCA (Cao et al., 2022) 62.05 71.55 55.40 63.21 67.14 62.45 55.79 65.05 54.17 60.35 67.91 57.34
GCD (Vaze et al., 2022) 85.11 88.61 82.66 72.18 69.33 72.73 63.59 63.14 63.67 73.62 73.69 73.02
SimGCD (Wen et al., 2023) 65.33 89.68 48.29 54.89 67.36 52.51 32.21 52.77 28.61 50.81 69.94 43.14
GCD w/replay 71.28 82.00 63.77 66.52 72.48 65.38 57.45 69.52 55.33 65.08 74.67 61.49
SimGCD w/replay 50.97 75.31 33.94 42.03 62.19 38.18 40.48 57.62 37.48 44.49 65.04 36.53
Grow and Merge (Zhang et al., 2022) 64.77 70.49 60.77 58.31 62.95 57.42 48.82 56.00 47.57 57.30 63.14 55.25
PromptCCD w/L2P 86.77 79.76 91.69 85.05 64.10 89.05 73.45 56.95 76.33 81.75 66.94 85.69
PromptCCD w/DP 76.55 82.98 72.06 65.05 75.33 63.09 61.08 73.53 58.90 67.56 77.26 64.68

C
IF

A
R

10
0

PromptCCD w/GMP (Ours) 90.20 90.73 92.51 85.83 75.62 87.78 76.64 67.14 78.30 84.22 77.83 86.20
ORCA (Cao et al., 2022) 79.03 78.29 79.54 71.53 77.05 70.47 68.77 77.33 67.27 73.11 77.56 72.43
GCD (Vaze et al., 2022) 82.45 83.51 81.71 82.27 78.57 82.98 81.39 79.14 81.78 82.03 80.40 82.15
SimGCD (Wen et al., 2023) 83.70 84.04 81.29 70.08 78.29 41.35 70.92 76.57 57.73 74.90 79.63 60.12
GCD w/replay 79.75 80.82 79.00 71.07 78.38 69.57 64.40 78.29 61.97 71.74 79.16 70.18
SimGCD w/replay 59.78 80.00 45.63 49.36 64.10 46.55 41.35 58.48 38.35 50.16 67.53 43.51
Grow and Merge (Zhang et al., 2022) 75.45 76.86 74.46 72.52 75.24 72.00 68.23 74.38 67.15 72.07 75.49 71.20
PromptCCD w/L2P 81.95 80.69 82.83 65.77 73.81 64.24 66.52 73.05 65.38 71.41 75.85 70.82
PromptCCD w/DP 77.87 84.57 73.17 70.17 83.43 67.64 66.38 84.10 63.28 71.47 84.03 68.03

Im
ag

eN
et

10
0

PromptCCD w/GMP (Ours) 84.62 84.29 84.86 80.06 79.62 80.15 82.75 77.62 83.65 82.47 80.51 82.88
ORCA (Cao et al., 2022) 59.98 66.90 55.14 53.69 60.52 52.39 55.51 55.95 55.43 56.39 61.12 54.32
GCD (Vaze et al., 2022) 65.81 70.73 62.36 59.34 58.00 59.59 51.01 54.52 50.39 58.72 61.08 57.44
SimGCD (Wen et al., 2023) 49.41 68.92 35.76 37.60 57.76 33.75 32.75 52.76 29.25 39.92 59.81 32.92
GCD w/replay 63.83 65.98 62.33 58.03 58.81 57.88 55.16 58.48 54.58 59.01 61.09 58.26
SimGCD w/replay 41.82 52.45 34.37 34.18 32.52 34.50 31.84 26.71 32.73 35.95 37.23 33.87
Grow and Merge (Zhang et al., 2022) 57.91 63.24 54.31 46.80 54.29 45.37 49.30 53.57 48.56 51.34 57.03 50.41
PromptCCD w/L2P 69.92 64.14 73.96 68.69 59.76 70.40 56.96 52.81 57.68 65.19 58.90 67.34
PromptCCD w/DP 69.36 69.31 69.40 67.57 60.48 68.93 56.08 57.71 55.79 64.33 62.50 64.71

Ti
ny

Im
ag

eN
et

PromptCCD w/GMP (Ours) 72.75 72.65 72.81 62.01 59.71 62.45 65.16 56.76 67.19 66.64 63.04 67.48
ORCA (Cao et al., 2022) 49.79 66.43 38.66 31.50 65.71 24.24 43.71 70.00 38.58 41.67 67.38 33.83
GCD (Vaze et al., 2022) 59.66 78.21 47.36 49.38 72.14 44.55 57.34 72.14 54.46 55.46 74.16 48.79
SimGCD (Wen et al., 2023) 44.06 65.00 30.07 32.50 63.57 25.91 33.80 65.71 27.58 36.79 64.76 27.85
GCD w/replay 56.71 82.14 48.21 48.63 77.14 42.58 53.81 67.50 48.47 53.05 75.59 46.42
SimGCD w/replay 38.82 62.86 30.79 34.88 52.14 31.21 38.08 46.79 34.68 37.26 53.94 32.23
Grow and Merge (Zhang et al., 2022) 38.64 70.71 27.92 29.25 65.71 21.52 44.29 56.07 39.69 37.53 64.16 29.71
PromptCCD w/L2P 50.63 73.57 42.96 52.38 72.14 48.18 60.12 69.29 56.55 54.38 71.67 49.23
PromptCCD w/DP 59.94 79.64 46.78 49.63 75.00 44.24 61.19 77.68 57.94 56.92 77.50 49.65

C
U

B
20

0

PromptCCD w/GMP (Ours) 59.39 82.86 51.55 56.25 79.29 51.36 65.43 73.21 62.40 60.36 78.45 55.10

Quantitative analysis. We evaluate our method in two scenarios: when the class number C, is
known (Table 2) in each unlabelled set at different stages, and when the class number is unknown
(Table 3). (1) Table 2 shows the CCD evaluation results on generic and fine-grained datasets where
each unlabelled set’s class number, C, is known at different stages. Overall, PromptCCD w/GMP
outperforms the other methods in all datasets across all instances (‘All’, ‘Old’, ‘New’) accuracy. As
our base model is based on GCD (Vaze et al., 2022), we show that simply integrating our Gaussian
mixture prompt module can sufficiently improve a static GCD model and can adapt in the CCD
setting. We argue that not all prompting techniques effectively solve CCD task. By comparing
our model with PromptCCD w/{L2P, DP} (our baselines), we observe that our model can handle
class scaling better, as shown in Table 2, where our model performs better in both ‘Old’ and ‘New’
accuracy while the baselines suffer from performance loss at the later stage. We hypothesize that this
performance drop is because their prompt pool parameters are not scalable, which limits the model’s
prompt technique to "instruct" the model when the number of parameters needed to learn or preserve
is growing over time. Unlike our baseline, our prompting technique is scalable as we build our pool
of prompts based on the Gaussian mixture models. To prevent forgetting, we can preserve previous
knowledge by sampling each learned mixture component and using these samples to fit the next
GMM. (2) To show the performance comparison for each model in a more realistic setting where C is
unknown, we also report the benchmark results in Table 3, where we only show three representative
models i.e., GCD, Grow and Merge, and our model. Our method consistently outperforms all other
methods by a large margin across the board, demonstrating the superior performance of our approach
in the more realistic case when the class number is unknown.
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Table 3: Results on various coarse and fine-grained datasets where C is unknown in each unlabelled
set. Here, we estimate C for all methods using (Vaze et al., 2022) C-est algorithm on DINO features.

Stage 1 ACC (%) Stage 2 ACC (%) Stage 3 ACC (%) Average ACC (%)
Model All Old New All Old New All Old New All Old New

Estimated C CEST: 84, CGT: 80 CEST: 84, CGT: 90 CEST: 84, CGT: 100
GCD (Vaze et al., 2022) 83.26 84.12 82.66 71.94 71.14 72.09 63.39 59.62 64.05 72.86 71.63 72.93
Grow and Merge (Zhang et al., 2022) 63.43 72.29 57.23 57.56 57.52 57.56 54.51 51.05 55.12 58.50 60.29 56.64

C
10

0

PromptCCD w/GMP (Ours) 90.13 90.45 91.60 78.32 73.81 79.18 75.89 64.76 77.83 81.44 76.34 82.87

Estimated C CEST: 90, CGT: 80 CEST: 90, CGT: 90 CEST: 91, CGT: 100
GCD (Vaze et al., 2022) 73.08 84.90 64.80 75.50 73.14 75.95 64.99 76.73 63.75 71.19 78.26 68.17
Grow and Merge (Zhang et al., 2022) 64.61 76.73 56.11 51.18 72.10 47.18 57.13 72.19 54.50 57.64 73.67 52.59

IN
10

0

PromptCCD w/GMP (Ours) 78.21 77.62 78.57 76.40 72.29 78.00 69.83 76.67 68.63 74.81 75.53 75.07

Estimated C CEST: 169, CGT: 160 CEST: 169, CGT: 180 CEST: 172, CGT: 200
GCD (Vaze et al., 2022) 65.00 73.10 60.14 57.18 58.71 56.89 48.82 53.67 47.97 57.00 61.83 55.00
Grow and Merge (Zhang et al., 2022) 57.77 63.00 54.11 41.16 53.57 38.00 51.00 50.43 51.10 49.98 53.43 47.74

Ti
ny

20
0

PromptCCD w/GMP (Ours) 66.96 72.86 63.43 61.96 59.14 62.50 58.94 58.14 59.08 62.62 63.38 61.67

Estimated C CEST: 166, CGT: 160 CEST: 192, CGT: 180 CEST: 220, CGT: 200
GCD (Vaze et al., 2022) 52.51 68.28 42.16 45.36 70.07 40.15 54.20 70.71 50.97 50.69 69.69 44.42
Grow and Merge (Zhang et al., 2022) 43.20 62.50 30.31 31.62 67.14 24.09 33.49 50.83 28.14 36.10 60.16 27.51

C
U

B
20

0

PromptCCD w/GMP (Ours) 57.94 77.50 44.87 53.00 76.43 48.03 63.99 77.14 61.42 58.31 77.02 51.44
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Figure 5: TSNE visualization of CIFAR100 with features from our model PromptCCD w/GMP and
Grow and Merge with DINO encoder in each stage following Table 1 distribution.

Qualitative analysis. Lastly, to visualize the feature representation generated by our method, we
use t-SNE algorithm (Van der Maaten & Hinton, 2008) to project the high-dimensional features of
{Dl, Du

t } in each stage into low-dimensional space. For the sake of comparison, we also provide the
visualization for the feature representation generated by Grow and Merge (Zhang et al., 2022). The
qualitative visualization can be seen in Fig. 5; nodes of the same colour indicate that the instances
belong to the same category. Moreover, for stage t > 0, we only highlight the feature’s node belonging
to unknown categories. It is observed that across stages, our cluster features are more discriminative.

3.3 ABLATION STUDIES

Table 4: Ablation study on different components of our approach
C100 Avg ACC (%) CUB200 Avg ACC (%)

Covariance Type No. Prompt No. GMM Sampling Sup.Contrastive All Old New All Old New

N/A 0 prompt 0 sample ✓ 73.62 73.69 73.02 55.46 74.16 48.79
Diagonal 5 prompts 100 samples 57.86 65.18 54.59 33.29 53.87 26.69

Diagonal 2 prompts 100 samples ✓ 79.02 75.21 80.00 57.24 77.26 51.50
Diagonal 5 prompts 100 samples ✓ 80.69 76.26 81.48 59.16 78.21 53.65
Diagonal 10 prompts 100 samples ✓ 80.54 73.92 83.56 60.28 77.73 54.06

Diagonal 5 prompts 0 samples ✓ 80.33 72.23 83.17 57.84 75.05 51.91
Diagonal 5 prompts 20 samples ✓ 80.18 73.89 80.60 58.87 76.67 52.44

Full 5 prompts 100 samples ✓ 78.59 76.81 78.56 60.36 78.45 55.10
Spherical 5 prompts 100 samples ✓ 84.22 77.83 86.20 60.06 75.71 54.01

To investigate the effectiveness of our Gaussian mixture-based prompt, we analyzed each component
in our prompt module and present the results in Table 4. The results show a clear advantage of
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adopting the Gaussian mixture prompt into our model. The number of prompts, type of covariance,
and number of GMM sampling are identified as important factors. For the CIFAR-100 and CUB-200
datasets, the optimal number of prompts is five, and the number of GMM samples is 100. Regarding
GMM’s covariance type, "Spherical" is found to be better for CIFAR-100, while "FULL" covariance
type is better for CUB-200. The default configurations are "Diagonal" for covariance type, top 5 for
prompt selection, and 100 samples for GMM sampling, which appears to be a good trade-off.

4 RELATED WORK

Novel / Generalized category discovery is proposed to address the setting where there could be novel
categories in the unlabelled dataset, and the goal is to automatically cluster those novel categories
together (Han et al., 2019; 2021). Novel category discovery (NCD) assumes no overlap between the
unlabelled and labelled data (Han et al., 2019; Zhao & Han, 2021; Fini et al., 2021), while generalized
category discovery (GCD) (Vaze et al., 2022) is proposed to consider the setting where the categories
in the unlabelled set can come from both the known and novel categories. It has been shown that
self-supervised pretrained representations (Caron et al., 2021) greatly aid category discovery (Vaze
et al., 2022). Vaze et al. (2022) further finetunes the model pretrained using one SSL contrastive
loss (Chen et al., 2020) and one supervised contrastive loss (Khosla et al., 2020). Label assignment
is done using a semi-supervised k-means algorithm. SimGCD (Wen et al., 2023) investigated the
performance of parametric classifiers of different design choices, providing a strong baseline for
GCD. Other works have proposed to focus on fine-grained categories (Fei et al., 2022), automatic
category estimation (Hao et al., 2023; Zhao et al., 2023) , and prompt learning (Zhang et al., 2023).

Continual learning aims to train models that can learn to perform on a sequence of tasks, with the
restriction of the model can only see the data for the current task it is trained on (De Lange et al.,
2021). Catastrophic forgetting (McCloskey & Cohen, 1989) is a phenomenon that when the model is
trained on a new task, it will quickly forget the knowledge on the task it has been trained on before,
resulting in a catastrophic reduction of performance on the old tasks. There exists a rich literature on
designing methods that enable the model to both learn to do the new task and maintain the knowledge
of old tasks (Rebuffi et al., 2017; Li & Hoiem, 2017; Li et al., 2019; Wang et al., 2022b; Graves
et al., 2016; Boschini et al., 2022; Buzzega et al., 2020). However, these works all assume that the
incoming tasks have all the labels for the data. In contrast, in our considered setting, we assume that
the new data is fully unlabelled and can have category overlap with previous tasks.

Continual category discovery (CCD) is a newly proposed setting with limited explorations (Zhang
et al., 2022; Joseph et al., 2022; Liu et al., 2023; Roy et al., 2022). A setting termed class-iNCD is
proposed by Roy et al. (2022), which is a two-stage setting where the model is first trained on a set
of labelled data and then a set of only unlabelled data is provided where there is no class overlap
between the two sets. Roy et al. (2022) proposed FRoST that performs replay using the feature
prototypes learned on the labelled data during the discovery phase to prevent forgetting. Feature
distillation and mutual information-based regularizers have also been shown to be effective for this
task in NCDwF (Joseph et al., 2022). MSc-iNCD (Liu et al., 2023) extends this setting to multiple
stages, and it is shown that a large pretrained model could greatly improve the performance of the
discovery performance of novel categories in each of the multiple stages. Grow and Merge (Zhang
et al., 2022) also tackles a similar multi-stage discovery setting, and a method containing a growing
phase and a merge phase is proposed; the growing phase will use novelty detection to detect the novel
categories and train the model to perform NCD; the merge phase combines the learned knowledge of
the novel categories with the previous categories into a single model. A recently proposed setting
termed IGCD (Zhao & Mac Aodha, 2023) considers a similar setting with MSc-iNCD, and a dataset
based on the iNaturalist website is created. The most related work to ours is Zhang et al. (2022). In
our paper, we adopt the data splits from Zhang et al. (2022) and propose a Gaussian mixture-based
prompt learning framework to handle the task of CCD, showing superior performance.

5 CONCLUSION

This paper proposes a novel approach for the continual category discovery task. Our proposed model
is prompt-based, utilizing Gaussian mixture components that act as an "instruction" for the model
to generate better representation features. We evaluate our approach on generic image recognition
and fine-grained datasets and show that it outperforms previous methods. Our experimental results
demonstrate the effectiveness of our approach in the open-world setting and showcase the potential
of prompt-based models for the CCD task.
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A PSEUDO CODE FOR PROMPTCCD W/GMP

Algorithm 2 PromptCCD w/GMP’s Pseudo code (see Sec. 2.2 for details)
Require: Hθ : {ϕ, fθ} where fθ : {fe, fb}.
Require: GMP(.) prompt module where it contains GMMt.

Require: Dataloader B for dataset Dt at stage t.
1: Set α← integer value for the incremental update epoch.
2: Set β ← integer value for the warmup epoch.
3: procedure PROMPTCCD(Hθ, GMP(.), B) at stage t
4: /* ***************************** Model training ******************************/
5: for e ∈ Epochs do
6:
7: /* fit GMMt every n increment of epoch */
8: if e (mod α) = 0 then
9: Z[CLS]t =

∑|X |
i=1 fθ(xi) // extract features from fθ(.) [gradient detached]

10: if t > 0 then
11: Z[CLS]t += Zs

t−1 // combine with generated samples from GMMt−1

12: OPTIMIZE(GMMt) by Fitting it with Z[CLS]t
13:
14: for B ∈ B do // for simplicity, assume B batch only contains single set{xi, x

′

i}
15:
16: /* the next lines covered in this box describe how to acquire µtop-k. */
17: if e > β then // when the model reaches the warm-up epoch
18: z[CLS] = fθ(xi) // extract features from fθ(.) [gradient detached]
19: µtop-k = GMP(z[CLS]|GMMt) // see Fig. 4 for details
20: else
21: µtop-k = None
22:
23: /* the next lines covered in this box describe how xi and µtop-k are projected into

the model [note: same operation for x
′

i]. */
24: xq = PATCHIFY(xi) // patchify image xi into L tokens
25: xe = fe(xq) // project to pretrained patch embedding layer
26: xtotal = [µtop-k;xe] // concatenate xe with the µtop-k prompts
27: zi = ϕ(fb(xtotal)) // project to self-attention blocks and projection head

28: /* to summarize above operations, fromHθ : {ϕ, fθ}, we got: */
29: zi, z

′

i = ϕ(fθ(xi, x
′

i))
30:
31: /* optimizeHθ by calculating L according Sec. 2.3 and do [gradient update]. */
32: OPTIMIZE(Hθ)
33: /* ***************************** End training ***************************** */
34:
35: /* generate random samples for C components using fitted GMM t */
36: Zs

t = GENERATE-RANDOM-SAMPLES(GMM t) by utilizing Eq.(2) and save it for stage t+1
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B TRANSDUCTIVE AND INDUCTIVE EVALUATION

In our main paper, we evaluate our method on the unlabelled data, which are from the train splits
of the original datasets. Indeed, the model has seen the data during training, though no labels are
used. Here, we further evaluate our method on the test splits of the original datasets, which were not
seen by the model during training. In other words, we consider two evaluation protocols, namely,
transductive evaluation and inductive evaluation. In transductive evaluation, the model is evaluated
on the unlabelled data that has been seen by the model during training, while in inductive evaluation,
the model is evaluated on the unlabelled data that has not been seen by the model during training.

Since we have reported the transductive evaluation results in the main paper, here, we further include
the inductive evaluation results in Table 5, based on the CCD evaluation metric introduced in the
main paper. Overall, we can see that our method is more robust to unseen data compared to other
models by a large margin as it consistently performs better in the (‘All’ and ‘New’) accuracy.

Table 5: Comparison using the CCD evaluation metric under the inductive protocol.
Stage 1 ACC (%) Stage 2 ACC (%) Stage 3 ACC (%) Average ACC (%)

Model All Old New All Old New All Old New All Old New
GCD (Vaze et al., 2022) 69.68 77.96 64.29 74.43 72.38 74.82 67.80 66.67 68.00 70.64 72.34 69.04
SimGCD (Wen et al., 2023) 64.03 77.96 54.29 57.86 70.95 55.36 45.25 68.57 41.17 55.71 72.97 50.27
GCD with replay 68.32 74.90 63.71 54.27 63.33 52.55 59.93 70.00 58.17 60.84 69.41 58.14
SimGCD with replay 54.29 77.55 38.00 45.80 70.00 41.18 44.54 65.24 40.92 48.21 70.93 40.03
Grow and Merge (Zhang et al., 2022) 56.05 66.53 48.71 58.63 65.71 57.27 53.62 63.33 51.92 56.10 65.19 52.63
PromptCCD w/L2P (baseline) 77.39 73.67 80.00 78.24 68.10 80.18 70.92 58.10 73.17 75.52 66.62 77.78

C
IF

A
R

10
0

PromptCCD w/GMP (Ours) 82.61 77.96 85.86 75.80 72.86 76.36 73.68 68.57 74.48 77.36 73.13 78.90
GCD (Vaze et al., 2022) 71.61 76.67 68.57 78.84 79.29 78.73 62.43 73.57 59.83 70.96 76.51 69.04
SimGCD (Wen et al., 2023) 75.83 75.24 80.00 67.86 70.71 57.89 73.26 73.57 72.53 72.32 73.17 70.14
GCD with replay 77.14 78.57 76.29 77.68 73.57 78.73 68.38 77.14 66.33 74.40 76.43 74.78
SimGCD with replay 56.43 74.29 45.71 57.25 65.71 55.09 46.22 61.43 42.67 53.30 67.14 47.82
Grow and Merge (Zhang et al., 2022) 68.57 70.95 67.14 76.38 72.14 77.45 61.08 72.14 58.50 68.67 71.74 67.69
PromptCCD w/L2P (baseline) 80.00 78.10 81.14 71.30 70.71 71.45 62.84 71.43 60.83 71.38 73.41 71.14

Im
ag

eN
et

10
0

PromptCCD w/GMP (Ours) 77.68 76.19 78.57 75.94 73.57 76.55 71.76 75.71 70.83 75.12 75.16 75.32
GCD (Vaze et al., 2022) 66.07 71.90 62.57 47.25 55.00 45.27 49.05 53.57 48.00 54.12 60.16 51.95
SimGCD (Wen et al., 2023) 49.46 70.00 37.14 39.49 61.07 34.00 37.84 55.71 33.67 42.26 62.26 34.94
GCD with replay 62.55 67.50 60.71 54.64 61.07 53.00 55.31 57.86 54.42 57.50 62.04 56.04
SimGCD with replay 44.64 57.38 37.00 36.01 34.64 36.36 34.26 36.43 33.75 38.30 42.82 35.70
Grow and Merge (Zhang et al., 2022) 56.43 64.29 51.71 45.22 50.71 43.82 45.20 53.93 43.17 48.95 56.31 46.23
PromptCCD w/L2P (baseline) 62.14 63.33 61.43 57.46 57.14 57.55 53.45 57.14 52.58 57.68 59.20 57.19

Ti
ny

Im
ag

eN
et

PromptCCD w/GMP (Ours) 62.77 71.43 57.57 57.88 58.21 57.55 57.03 55.36 57.42 59.23 61.67 57.51
GCD (Vaze et al., 2022) 61.09 74.63 52.21 61.86 66.17 60.21 59.54 64.40 58.04 60.83 68.23 56.82
SimGCD (Wen et al., 2023) 44.06 65.00 30.07 32.37 62.86 25.91 34.38 66.43 28.13 36.94 64.76 28.03
GCD with replay 60.07 80.47 53.68 46.46 77.14 39.85 60.61 72.56 55.93 55.71 76.72 49.82
SimGCD with replay 38.82 62.86 30.79 34.88 52.14 31.21 38.68 47.86 35.10 37.46 54.29 32.37
Grow and Merge (Zhang et al., 2022) 41.60 74.22 31.37 31.77 64.29 24.77 43.96 59.93 37.71 39.11 66.15 31.28
PromptCCD w/L2P (baseline) 52.61 76.56 45.10 53.16 72.14 49.08 57.56 66.43 54.10 54.44 71.71 49.43

C
U

B
20

0

PromptCCD w/GMP (Ours) 61.12 75.81 55.37 56.08 75.71 51.85 67.21 72.56 65.11 61.47 74.69 57.44
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C ADAPTING THE STANDARD GCD METRIC IN EACH TIME STEP OF CCD
In the main paper, when evaluating our method, at each time step t, we consider the previously
discovered categories as “known” (associated with the pseudo labels obtained by our method), which
are included in DL in the CCD evaluation algorithm. Here, we further consider the case of not
considering the discovered categories, but only using the actual labelled data DL as the labelled data
at each time step during evaluation following Vaze et al. (2022), as summarized in Algorithm 3 and
report the results in Table 6.

Overall, compared with the other models, our method outperforms the other methods in all datasets
across all instances (‘All’ and ‘New’) accuracy.

Algorithm 3 standard incremental GCD evaluation metric
Input: f(.) models for each stage in {1, · · · , T} and datasets {DL, DU}.
Output: The ACC outputs for every stage.

1: Initialize labelled set Dl.
2: for t ∈ {1, · · · , T} do
3: ACCt = SS-KMeans(Model: ft(.), Labelled set: Dl, Unlabelled set: {Du

t })
4: return {ACCt | t = 1, . . . , T}

Table 6: Comparison using the CCD evaluation metric using the adapted GCD evaluation metric in
Algorithm 3 under the transductive protocol.

Stage 1 ACC (%) Stage 2 ACC (%) Stage 3 ACC (%) Average ACC (%)
Model All Old New All Old New All Old New All Old New

GCD (Vaze et al., 2022) 85.11 88.61 82.66 63.05 69.43 61.84 51.32 62.57 49.35 66.49 73.54 64.61
SimGCD (Wen et al., 2023) 85.70 89.68 48.29 59.85 88.86 54.31 37.86 83.43 29.88 61.14 87.32 44.16
GCD with replay 71.28 82.00 63.77 60.81 71.05 58.85 49.74 64.86 47.10 60.61 72.63 56.57
SimGCD with replay 50.97 75.31 33.94 42.18 62.48 38.31 40.35 57.33 37.38 44.50 65.04 36.54
Grow and Merge (Zhang et al., 2022) 64.77 70.49 60.77 61.25 64.00 60.73 42.91 59.24 40.05 56.31 64.58 53.85
PromptCCD w/L2P (baseline) 86.13 79.13 90.91 73.83 66.10 75.31 57.38 62.86 56.02 72.44 69.36 74.08

C
IF

A
R

10
0

PromptCCD w/GMP (Ours) 87.03 88.24 84.57 83.22 76.86 78.33 58.16 69.14 56.42 76.14 78.08 74.11
GCD (Vaze et al., 2022) 82.45 83.51 81.71 72.49 80.95 70.87 60.04 77.52 56.98 71.66 80.66 69.85
SimGCD (Wen et al., 2023) 83.70 84.04 81.29 69.67 77.71 41.51 70.94 76.57 57.79 74.77 79.44 60.79
GCD with replay 79.75 80.82 79.00 62.23 78.86 59.05 56.78 78.48 52.98 66.25 79.39 63.68
SimGCD with replay 59.78 80.00 45.63 49.60 64.57 46.75 41.22 59.05 38.10 50.20 67.87 43.49
Grow and Merge (Zhang et al., 2022) 75.45 76.86 74.46 65.54 75.81 63.58 56.17 76.00 52.70 65.72 76.22 63.58
PromptCCD w/L2P (baseline) 81.95 80.69 82.83 59.25 74.38 56.36 60.62 73.71 58.33 67.27 76.26 65.84

Im
ag

eN
et

10
0

PromptCCD w/GMP (Ours) 84.62 84.29 84.86 82.34 81.81 82.44 60.57 78.29 57.47 75.84 81.46 74.92
GCD (Vaze et al., 2022) 65.81 70.73 62.36 58.61 61.05 56.00 48.99 54.24 48.08 57.80 62.01 55.48
SimGCD (Wen et al., 2023) 49.41 68.92 35.76 37.34 57.52 33.48 32.74 51.29 29.49 39.83 59.24 32.91
GCD with replay 63.83 65.98 62.33 55.75 61.62 54.63 49.51 58.90 47.87 56.36 62.17 54.94
SimGCD with replay 41.82 52.45 34.37 34.15 32.38 34.49 31.84 26.62 32.75 35.94 37.15 33.87
Grow and Merge (Zhang et al., 2022) 57.91 63.24 54.31 46.56 57.00 44.56 44.21 53.67 42.56 47.21 57.97 47.14
PromptCCD w/L2P (baseline) 69.92 64.14 73.96 63.87 59.43 64.72 50.41 55.62 49.50 61.40 59.73 62.73

Ti
ny

Im
ag

eN
et

PromptCCD w/GMP (Ours) 72.75 72.65 72.81 60.94 63.14 60.52 57.95 57.24 58.07 63.88 64.34 63.80
GCD (Vaze et al., 2022) 55.66 78.21 47.26 49.75 75.71 44.24 54.90 72.86 51.39 53.43 75.59 32.39
SimGCD (Wen et al., 2023) 44.06 65.00 30.07 32.37 62.86 25.91 34.38 66.43 28.13 36.94 64.76 28.04
GCD with replay 56.71 82.14 48.21 50.38 75.71 45.00 57.82 68.57 53.62 52.98 75.47 48.94
SimGCD with replay 38.82 62.86 30.79 34.88 52.14 31.21 38.68 47.86 35.10 37.46 54.29 32.37
Grow and Merge (Zhang et al., 2022) 38.64 70.71 27.92 30.50 68.57 22.42 41.88 59.64 34.96 37.01 66.31 28.43
PromptCCD w/L2P (baseline) 50.63 73.57 42.96 54.87 75.00 50.61 59.22 68.21 55.71 54.91 72.26 49.76

C
U

B
20

0

PromptCCD w/GMP (Ours) 59.39 82.86 51.55 56.50 79.29 51.67 64.03 77.86 58.64 59.97 80.00 53.95
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D DYNAMICALLY ESTIMATING UNKNOWN CLASS NUMBERS DURING
LEARNING

When the class numbers in the unlabelled data are unknown, one way to approach this problem is to
estimate it in an offline fashion using the method introduced in Vaze et al. (2022) at each time step, as
reported in the main paper. In CCD, due to the continual learning nature of the problem, it would be
more plausible to estimate the class numbers on the fly automatically. To do so, we draw inspiration
from GPC (Zhao et al., 2023), which introduces a semi-supervised GMM (SS-GMM) module that can
estimate class numbers dynamically during learning. SS-GMM performs the splitting and merging of
clusters during learning by assessing the cluster’s compactness and separability using a Markov chain
Monte Carlo (MCMC) algorithm. We integrate their class estimation approach seamlessly into our
framework, allowing our method to dynamically estimate the unknown class number in each time
step when the number is not given.

Specifically, to enable the split-and-merge operation of clusters, each of the Gaussian components of
the GMM is further decomposed into two sub-components with µc,1, µc,2 and Σc,1,Σc,2 With these
parameters, we can calculate the Hastings ratio which measures the compactness and separability of
the clusters. The Hastings ratio for splitting a cluster is defined as:

Hs =
Γ(Nc,1)h(Zc,1)Γ(Nc,2)h(Zc,2)

Γ(Nc)h(Zc)
, (6)

where Γ is the factorial function, h is the marginal likelihood function of the observed data Z , Zc,1

denotes the data points assigned to the subcluster {c, 1}, and Nc,1 is the number of data points in the
subcluster {c, 1}. Note that Hs is in the range of (0,+∞), thus we will use ps = min(1, Hs) as a
valid probability for performing the splitting operation.

We denote this extension as PromptCCD +, and report the results in Table 7, where we compare four
representative models, i.e., (Vaze et al., 2022; Zhang et al., 2022), with our method. We can see that by
incorporating the class number estimation module from Zhao et al. (2023) into our model, our method
still consistently outperforms other methods by a large margin across the board, demonstrating the
superior performance of our approach in the more realistic case when the class numbers are unknown
in each time step.

Table 7: Comparison when class numbers are unknown under the transductive protocol. Here, we
integrate the class number estimation module of GPC to our method to dynamically estimate the
class number C. The estimated Cs are applied to all other methods for comparison.

Stage 1 ACC (%) Stage 2 ACC (%) Stage 3 ACC (%) Average ACC (%)
Model All Old New All Old New All Old New All Old New

Estimated C CEST: 77, CGT: 80 CEST: 78, CGT: 90 CEST: 81, CGT: 100
GCD (Vaze et al., 2022) 88.44 84.61 91.11 81.33 63.71 84.69 73.74 55.99 76.87 81.17 68.10 84.22
Grow and Merge (Zhang et al., 2022) 58.17 68.82 50.71 56.93 58.67 56.60 54.92 54.38 55.02 56.67 60.62 54.11

C
10

0

PromptCCD+ w/GMP (Ours) 90.82 84.82 95.03 81.85 68.67 84.36 76.18 60.76 78.88 82.95 71.42 86.09

Estimated C CEST: 73, CGT : 80 CEST: 73, CGT : 90 CEST: 83, CGT : 100
GCD (Vaze et al., 2022) 78.69 79.96 77.80 69.07 68.10 69.52 80.71 66.86 83.13 76.16 71.64 76.82
Grow and Merge (Zhang et al., 2022) 53.70 75.84 38.20 41.13 71.81 35.27 64.70 69.24 63.90 53.18 72.29 45.79

IN
10

0

PromptCCD+ w/GMP (Ours) 82.82 80.61 83.71 67.98 71.62 67.42 86.27 70.95 88.95 79.02 74.39 80.03

Estimated C CEST: 158, CGT: 160 CEST: 164, CGT: 180 CEST: 168, CGT: 200
GCD (Vaze et al., 2022) 69.97 70.33 69.73 56.71 56.71 56.71 52.19 51.86 52.25 59.62 59.63 59.56
Grow and Merge (Zhang et al., 2022) 55.82 62.20 51.34 46.88 53.62 45.59 50.38 49.81 50.48 51.03 55.21 49.14

Ti
ny

20
0

PromptCCD+ w/GMP (Ours) 73.72 72.22 74.77 59.55 59.24 59.61 63.57 52.95 65.43 65.61 61.47 66.60

Estimated C CEST: 163, CGT: 160 CEST: 172, CGT: 180 CEST: 175, CGT: 200
GCD (Vaze et al., 2022) 59.23 78.57 46.30 47.00 70.71 41.97 49.65 62.86 47.08 51.96 70.71 45.12
Grow and Merge (Zhang et al., 2022) 42.49 63.57 28.40 27.50 61.43 20.30 40.91 64.29 36.35 36.97 63.10 28.35

C
U

B
20

0

PromptCCD+ w/GMP (Ours) 53.65 74.29 39.62 44.00 77.86 38.62 62.94 67.14 62.12 53.53 73.10 46.79
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E IMPLEMENTATION DETAILS FOR AUGMENTING GROW AND MERGE WITH
VIT

As the most relevant work Grow and Merge (Zhang et al., 2022) uses ResNet18 (He et al., 2016) as
the backbone and the Momentum Contrast (MoCo) (He et al., 2020) for representation learning, to
have a fair comparison, we augment Grow and Merge from two aspects, the pretraining strategy and
the dual branch network (static and dynamic branch), leveraging the more powerful ViT backbone.
First, we change the pretraining strategy MoCo to the joint supervised and unsupervised contrastive
learning with DINO features. Second, for the dual branch network in Zhang et al. (2022), originally,
the ResNet18 is divided into several layers (excluding the fully connected layers) where before the
last layer, Grow and Merge divides the last layer into two branches, i.e., the static branch and the
dynamic branch. By design, The static branch is the backbone’s last layer, while the dynamic branch
consists of several branches of T − 1 layers, where T is the number of stages. To maintain this
design, we accordingly implement a dual-branch architecture network based on ViT backbone. Given
that ViT backbone consists of several blocks, we freeze all blocks except the last block as the static
branch. Moreover, before the last block, we add another T − 1 blocks as the dynamic branches used
exclusively for each stage t. All the rest designs are the same as Zhang et al. (2022). At t = 0, i.e.,
during the initial stage, we optimize the static branch, and at t > 0, we freeze the static branch and
perform static-dynamic distillation while optimizing the dynamic branch t for novel class discovery
following Grow and Merge.

In Table 8, we compare our method with the improved Grow and Merge under both transductive and
inductive evaluation protocols, using the CCD evaluation metric. Our improved Grow and Merge
significantly outperforms the original implementation, leading to a fair comparison with our method.
However, our method still notably outperforms the improved Grow and Merge, demonstrating the
superiority of our approach. Moreover, to investigate the performance of Grow and Merge in the
initial learning stage, we further experiment with GM CCD training with only SSL methods in
the initial stage shown in the third row of Transductive Evaluation. This change leads to a small
improvement of around 1% for GM, with an overall ACC of 58.37%. However, our method obtains
an overall ACC of 84.22%, which is still substantially better.

Note: For experiments in main paper, we compare our model with the improved Grow and Merge.

Table 8: Comparison different Grow and Merge implementations with our method on CIFAR 100.
Stage 1 ACC (%) Stage 2 ACC (%) Stage 3 ACC (%) Average ACC (%)

Model All Old New All Old New All Old New All Old New
Transductive Evaluation

GM (Zhang et al., 2022) 22.91 30.20 17.80 21.47 25.71 20.65 24.91 24.00 27.25 23.10 26.64 21.90
GM (improved) 64.77 70.49 60.77 58.31 62.95 57.42 48.82 56.00 47.57 57.30 63.14 55.25
GM w/GCD initial pretrained 64.74 70.49 60.71 61.25 64.00 60.73 49.13 57.52 47.67 58.37 64.00 56.37
PromptCCD w/GMP 90.20 90.73 92.51 85.83 75.62 87.78 76.64 67.14 78.30 84.22 77.83 86.20

Inductive Evaluation

GM (Zhang et al., 2022) 38.32 60.61 22.71 29.62 60.48 23.73 31.91 60.95 26.83 33.28 60.68 24.42
GM (improved) 56.05 66.53 48.71 58.63 65.71 57.27 53.62 63.33 51.92 56.10 65.19 52.63
PromptCCD w/GMP 82.61 77.96 85.86 75.80 72.86 76.36 73.68 68.57 74.48 77.36 73.13 78.90
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F COMPARISON WITH RECENT WORKS ON CCD TASK

In this section, we further experiment on CCD concurrent works, which are "Proxy Anchor-based
Unsupervised Learning for Continuous Generalized Category Discovery" (Kim et al., 2023) and
"MetaGCD: Learning to Continually Learn in Generalized Category Discovery" (Wu et al., 2023).
We further compare our method with these methods in Table. 9 and Table. 10 following their settings
i.e., pretrained model, data distribution, evaluation protocols, dataset. Overall, our model still
outperforms their model in all metrics.

Table 9: Comparison with Proxy-Anchor based unsupervised learning Incremental GCD (PA) (Kim
et al., 2023) Table 4, DINO ViT-B-16 experiments on CUB200. For experiment settings and evaluation
metrics, please refer to the original paper section 4.2.

Model Mall ↑ Mo ↑ Mf ↓ Md ↑
GCD (Vaze et al., 2022) 62.70 71.40 09.57 56.01
Grow and Merge (Zhang et al., 2022) 42.12 60.21 23.24 27.63
PA (Kim et al., 2023) 72.51 74.28 09.49 65.60
PromptCCD w/GMP (Ours) 76.23 78.44 06.07 74.46

Table 10: Comparison with MetaGCD (Wu et al., 2023) on CIFAR100. For experimental settings and
evaluation metrics, please refer to the original paper section 4.

Stage 1 ACC (%) Stage 2 ACC (%) Stage 3 ACC (%) Stage 4 ACC (%) Average ACC (%)
Model All Old New All Old New All Old New All Old New All Old New

MetaGCD (Wu et al., 2023) 78.96 79.36 72.60 78.67 79.41 66.81 76.06 78.20 64.87 74.56 77.60 61.14 77.06 78.64 66.35
PromptCCD w/GMP (Ours) 90.06 90.50 89.47 82.67 88.80 76.23 81.48 84.60 78.80 70.30 75.87 67.64 81.13 84.94 78.04
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G ANALYSIS ON DIFFERENT CLASS SPLIT RATIO

In the main paper, we follow the same data split ratio introduced by Grow and Merge (Zhang et al.,
2022) i.e., 7:1:1:1, which contains 4 learning stages where the first stage is the initial learning on
labelled data. To further mimic the real-world scenario, which is characterized by an abrupt increase
or decrease in the number of classes of each stage, we experiment on another 3 different data split
scenarios i.e., scenario 1 (4:2:2:2) where the number of the unseen classes is greater than the seen
class, scenario 2 (4:3:2:1) where the number of the unseen classes is decreasing for each stage, and
finally scenario 3 (1:2:3:4) where the number of the unseen class is increasing for each stage. As
shown in Table. 11, we compare our model with 2 other representative models i.e., GCD and Grow
and Merge on the CIFAR100 dataset. In all these challenging cases, our model still substantially
outperforms other methods across the board.

Table 11: Experiments on different class split ratio on CIFAR 100.
Stage 1 ACC (%) Stage 2 ACC (%) Stage 3 ACC (%) Average ACC (%)

Model All Old New All Old New All Old New All Old New
Class Split Ratio: 4:2:2:2

GCD (Vaze et al., 2022) 78.25 55.36 80.54 65.79 39.83 66.98 38.72 39.83 38.50 60.92 45.01 62.01
Grow and Merge (Zhang et al., 2022) 51.17 41.86 52.10 45.90 31.50 46.57 34.72 45.17 32.63 43.93 39.51 43.77
PromptCCD w/GMP 78.53 50.50 81.34 74.22 59.67 74.89 52.64 43.50 54.47 68.46 51.22 70.23

Class Split Ratio: 4:3:2:1 (decreasing)

GCD (Vaze et al., 2022) 58.62 59.79 58.50 51.99 42.17 52.44 40.69 40.83 40.67 50.43 47.59 50.54
Grow and Merge (Zhang et al., 2022) 41.89 52.83 39.70 44.25 42.83 44.32 34.97 35.50 34.87 40.37 43.72 39.63
PromptCCD w/GMP 57.10 61.14 55.70 64.10 51.00 64.70 47.67 38.67 49.47 56.29 50.27 56.62

Class Split Ratio: 1:2:3:4 (increasing)

GCD (Vaze et al., 2022) 52.89 63.21 51.86 53.94 53.67 53.95 45.49 33.00 45.21 50.77 49.96 50.34
Grow and Merge (Zhang et al., 2022) 50.40 44.64 50.98 44.48 36.33 44.85 41.89 52.83 39.70 45.59 44.60 45.18
PromptCCD w/GMP 50.21 63.57 48.88 49.96 60.50 49.47 57.00 58.00 56.80 52.39 60.69 51.72
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H WHY FINETUNE THE FINAL BLOCK OF DINO FOR CCD?
We analyze the number of learning parameters for each compared model and explain why the final
block of our backbone is fine-tuned. Our motivation is to repurpose SSL vision foundation models
for CCD. We choose DINO (Caron et al., 2021) as our vision foundation model to tackle CCD.
DINO is a transformer-based vision foundation model pretrained on ImageNet 1K (Russakovsky
et al., 2015) with a resolution of 224 ∗ 224 pixels. The model is trained in a self-supervised manner
(no label information) with around 86M parameters. SSL models have been widely adopted and
justified in both NCD (Han et al., 2021) and almost all GCD literature so far. Thus, we use DINO’s
self-supervised pretrained model for all compared models. We finetune the final block of its backbone
and report the number of learnable parameters for each model in Table. 12. Our model’s learnable
parameters consist of two parts: the final block of the backbone and the parameter from GMP’s
GMM. The latter only accommodates {(2 ∗ |z| + 1) ∗ C} parameters, where C is the number of
components, |z| is the feature size of the z[CLS] tokens, which in this case is 768. Compared with
PromptCCD w/{ L2P, DP }, our model’s learnable parameters are only 0.33% higher when C = 100,
which is still efficient.

Table 12: Information on learnable parameters for each compared model
Model Learnable Parameters ≈ Total Parameters

Orca (Cao et al., 2022) 7.1M fb; 6.5M Classification head 13.6M
GCD (Vaze et al., 2022) 7.1M fb; 23.1M ϕ 30.2M
SimGCD (Wen et al., 2023) 7.1M fb; 6.5M Classification head 13.6M
GM (Zhang et al., 2022) 7.1M fb; 23.1M ϕ; 0.031M Cluster head 30.2M
PromptCCD w/L2P 7.1M fb; 23.1M ϕ; 0.046M L2P 30.2M
PromptCCD w/DP 7.1M fb; 23.1M ϕ; 0.045M DP 30.2M
PromptCCD w/GMP (Ours) 7.1M fb; 23.1M ϕ; {1537 ∗ C} GMP 30.3M @ C = 100

L2P and DualPrompt (Wang et al., 2022b;a) are prompt-based models designed for supervised
continual learning task. Both models freeze the backbone model and train the linear classifier in
a supervised manner. Our CCD model Hθ : {ϕ, fθ} consists of ϕ, an MLP projection head, and
fθ : {fe, fb} a transformer-based feature backbone that includes an input embedding layer fe and
self-attention blocks fb. During training, we optimize both the final block of fb and the projection
head ϕ. ϕ is used to optimize the model in a self-supervised manner by projecting high-dimensional
features to a simpler dimension before calculating the loss. Thus, it is not possible to completely
freeze the backbone as there will be no learnable parameters left for inference. To justify the reason
to fine-tune the final block of the backbone, we experiment with two frozen DINO models. The
first model is the default frozen DINO backbone with no prompt module. For this model, we do not
perform any training strategy and directly use it to extract z[CLS] tokens. The second model is the
frozen DINO backbone coupled with a learnable L2P prompt pool. For this model, we follow the
exact training procedure similar to the baseline model but keep the backbone frozen. We compare
these two frozen models with both our fine-tuned baseline and proposed models as shown in Table.
13. By comparing the performance of the frozen models and the fine-tuned models, we can see that
our fine-tuned model substantially outperforms the frozen models. Furthermore, if we observe the
performance of our fine-tuned models on C100 and CUB200 datasets, we can see that our models
generalized better to datasets that the DINO foundation model has not encountered before which
further justifies the design choice of our method for CCD.

Table 13: Comparison between the fully frozen models and the fine tuned (final block) models.
Stage 1 ACC (%) Stage 2 ACC (%) Stage 3 ACC (%) Average ACC (%)

Model All Old New All Old New All Old New All Old New
Frozen DINO (Caron et al., 2021) 64.87 71.43 60.29 55.42 66.67 53.27 49.08 66.19 46.08 56.45 68.10 53.21
Frozen DINO w/L2P 65.08 73.39 59.26 55.43 64.10 53.69 49.52 67.05 46.17 56.67 68.18 53.04
PromptCCD w/L2P 86.77 79.76 91.69 85.05 64.10 89.05 73.45 56.95 76.33 81.75 66.94 85.69

C
10

0

PromptCCD w/GMP (Ours) 90.20 90.73 92.51 85.83 75.62 87.78 76.64 67.14 78.30 84.22 77.83 86.20
Frozen DINO (Caron et al., 2021) 68.75 71.90 66.86 70.43 73.57 69.64 62.57 74.29 59.83 67.25 73.25 65.44
Frozen DINO w/L2P 76.71 77.80 75.77 64.33 67.05 63.24 63.70 76.86 61.40 68.24 73.90 66.80
PromptCCD w/L2P 81.95 80.69 82.83 65.77 73.81 64.24 66.52 73.05 65.38 71.41 75.85 70.82

IN
10

0

PromptCCD w/GMP (Ours) 84.62 84.29 84.86 80.06 79.62 80.15 82.75 77.62 83.65 82.47 80.51 82.88
Frozen DINO (Caron et al., 2021) 55.71 65.00 52.00 45.80 56.79 43.00 46.23 55.85 42.83 49.25 59.21 45.94
Frozen DINO w/L2P 62.02 66.31 59.01 52.20 61.00 50.52 46.42 54.81 44.95 53.54 60.70 51.49
PromptCCD w/L2P 69.92 64.14 73.96 68.69 59.76 70.40 56.96 52.81 57.68 65.19 58.90 67.34

Ti
ny

20
0

PromptCCD w/GMP (Ours) 72.75 72.65 72.81 62.01 59.71 62.45 65.16 56.76 67.19 66.64 63.04 67.48
Frozen DINO (Caron et al., 2021) 41.60 74.22 31.37 31.27 68.57 23.23 44.77 62.09 37.99 39.21 68.29 30.86
Frozen DINO w/L2P 40.25 75.71 28.40 30.63 73.57 21.52 45.99 65.36 38.44 38.95 71.54 29.45
PromptCCD w/L2P 50.63 73.57 42.96 52.38 72.14 48.18 60.12 69.29 56.55 54.38 71.67 49.23

C
U

B
20

0

PromptCCD w/GMP (Ours) 59.39 82.86 51.55 56.25 79.29 51.36 65.43 73.21 62.40 60.36 78.45 55.10
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I ABLATION STUDIES ON PROMPT MODULE DESIGN

We compare the clustering performance of our fitted GMM acquired after training our proposed
PromptCCD w/GMP with standard K-means clustering algorithm using labelled data DL belonging
to the CIFAR100 dataset. We use standard metrics such as normalized mutual information (NMI),
adjusted rand index (ARI), purity, and cluster accuracy to evaluate the clustering performance. We
also compare other features such as from GCD (Vaze et al., 2022) (trained in CCD setup) and frozen
DINO (Caron et al., 2021) backbones, in addition to z[CLS] features from our proposed model.
The graph in Figure 6 shows that our fitted GMM with PromptCCD features outperforms the other
models in all four metrics.

Figure 6: Comparison between GMM and K-means clustering performances.

In addition, we visualize the confusion matrix between the actual true class index from DL and the
predicted cluster assignment by our GMM for both coarse and fine-grained datasets as shown in
Figures 7 and 8 respectively. From these figures, we can see that our GMM clustering quality is
decent as each sample belonging to the same class is mostly grouped. Thus, from these observations,
we can conclude that our GMM learns class prototype which makes our hypothesis true. This means
that by prompting GMP prompts, GMP guides the model by giving some top-k class prototype (to
accommodate the absence of label information) which guides/enforces the model about the criteria
/ to look at (information/features that the model should care about) when making the decision to
discover a category.

Table 14: Study on the effectiveness of top-k prompts in CCD compared with randomly picked
prompts (random-k) from GMM.

Stage 1 ACC (%) Stage 2 ACC (%) Stage 3 ACC (%) Average ACC (%)
Model All Old New All Old New All Old New All Old New

PromptCCD w/GMP (random-k) 85.80 87.67 84.49 70.49 72.29 70.15 57.80 67.24 56.15 71.36 75.73 70.26

C
10

0

PromptCCD w/GMP (top-k) (Ours) 90.20 90.73 92.51 85.83 75.62 87.78 76.64 67.14 78.30 84.22 77.83 86.20

PromptCCD w/GMP (random-k) 78.47 82.61 75.57 74.41 79.43 73.45 58.82 77.52 55.55 70.46 79.85 68.19

IN
10

0

PromptCCD w/GMP (top-k) (Ours) 84.62 84.29 84.86 80.06 79.62 80.15 82.75 77.62 83.65 82.47 80.51 82.88

PromptCCD w/GMP (random-k) 59.39 70.71 54.86 47.42 56.43 44.61 47.84 49.49 47.30 51.55 58.88 48.92

Ti
ny

PromptCCD w/GMP (top-k) (Ours) 72.75 72.65 72.81 62.01 59.71 62.45 65.16 56.76 67.19 66.64 63.04 67.48

PromptCCD w/GMP (random-k) 39.91 53.93 30.55 27.00 55.00 21.06 33.57 55.00 29.39 33.49 54.64 27.00

C
U

B

PromptCCD w/GMP (top-k) (Ours) 59.39 82.86 51.55 56.25 79.29 51.36 65.43 73.21 62.40 60.36 78.45 55.10

Moreover, as shown in Table 14, we experiment on different datasets where instead of taking the “top-
k” mean components/prompts, we vary the prompts “random-k” to observe the effect of difference
prompt relevancy towards overall CCD performance. We can see that varying the prompt hurts the
model’s performance, especially for the "NEW" ACC i.e., novel categories.
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Figure 7: Confusion matrix on PromptCCD GMP’s GMM clustering performance on CIFAR100
labelled set DL. Please note that GMM assigned a sample to a cluster and we re-assigned the cluster
by relocating large values on the diagonal line. Note that our GMM failed to seperate class id: 47
"Oak Tree" and class id: 52 "Maple Tree".
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Figure 8: Confusion matrix on PromptCCD GMP’s GMM clustering performance on CUB200
labelled set DL. Please note that GMM assigned a sample to a cluster and we re-assigned the cluster
by relocating large values on the diagonal line.
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J ABLATION STUDIES ON THE INITIAL STEPS OF DISCOVERY

Here, we analyze the contribution of each component in the first timestep. The tables can be seen
below, which consist of the ablation studies on representation learning, the effectiveness of using
the GMP module, and finally, the ablation study on the GMP module itself. As shown in the
Table. 15, we show the performance of Grow and Merge (Zhang et al., 2022) and our proposed
method. Particularly for Grow and Merge, we study the model’s representation learning techniques
by ablating its pretrained backbone (ResNet18 vs DINO-ViT, all pretrained ImageNet1K) and the
feature training (finetuning) methods (CL vs MoCo). CL and MoCo differ because the latter requires
an EMA model.

As shown in Table. 15, by comparing rows 1,2, and 3, we can see that row 3 i.e., Grow and Merge
pretrained with DINO model + trained with unsupervised contrastive method (CL), yields the best-
performing results with an ‘ALL’ accuracy performance of 64.77

Moreover, we also show the experiment when GMP is used or not used in a model (see Table. 16).
As GMP is simple and can be integrated easily into a model, we experiment with GMP with Grow
and Merge, as shown in the second table. We see that the GMP module improves the performance of
GM substantially, but our PromptCCD w/GMP module still outperforms GM w/our GMP.

Lastly, to verify the effectiveness of our proposed method, we also show our model ablation study
in the first timestep. As shown in Table. 17, 5 prompts and 20 GMM samples lead to the best
performance of stage 1. However, the overall performance across stages, as shown in the main paper’s
ablation studies, shows that 5 prompts and 100 samples lead to the best “ALL” accuracy.

Table 15: Ablation study on the effectiveness of pretraining techniques in the initial step
Row ID Model Backbone Learning Methods All Old New

1 GM ResNet18 MoCo 22.91 30.20 17.80
2 GM ResNet18 CL 25.80 33.67 20.29

3 GM DINO MoCo 64.74 70.49 60.71
4 GM DINO CL 64.77 70.49 60.77

5 GCD DINO CL 85.11 88.61 82.66
4 PromptCCD w/GMP DINO CL 90.20 90.73 92.51

Table 16: Ablation study on the effectiveness of GMP module in the initial step
Row ID Model Prompt All Old New

1 GM w/o GMP 64.77 70.49 60.77
2 GM w/ GMP 77.53 82.86 73.80

3 PromptCCD w/o GMP 85.11 88.61 82.66
4 PromptCCD w/ GMP 90.20 90.73 92.51

Table 17: Ablation study on different components of our approach in the initial step
No. Prompt No. GMM Sampling Sup.Con All Old New

0 prompt 0 sample ✓ 85.11 88.61 82.66
5 prompts 100 samples 61.16 70.78 54.43

2 prompts 100 samples ✓ 88.34 87.55 88.89
10 prompts 100 samples ✓ 79.71 82.61 77.69

5 prompts 0 samples ✓ 88.96 86.33 90.80
5 prompts 20 samples ✓ 91.58 88.78 93.54

5 prompts 100 samples ✓ 90.20 90.73 92.51
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K ADDITIONAL ABLATION STUDIES

We provide another ablation table on the number of prompts and samples in Table. 18, where we
keep all covariance of GMMs spherical. The results show that 5 prompts and 100 samples lead to
the best “ALL” accuracy. With the same number of prompts, more samples lead to better results.
With the same number of samples, we found that 5 prompts work the best. Moreover, we would like
to clarify that our method’s supervised contrastive learning module is essential for learning general
representations for both labelled and unlabelled categories. Using this loss in the category discovery
process is a common practice, such as SimGCD (Wen et al., 2023), GCD (Vaze et al., 2022), and
IGCD (Zhao & Mac Aodha, 2023). On the other hand, our proposed GMP module prompts the CCD
model to avoid forgetting and guiding the representation learning process. From our ablation studies
in the main paper and Table. 18, we can see that without any of the GMP modules or the supervised
contrastive learning module, the performance drops, and the combination of both modules achieves
the best result, indicating that the two modules are orthogonal to each other.

Table 18: Ablation study on different components of our approach
C100 Avg ACC (%) CUB200 Avg ACC (%)

No. Prompt No. GMM Sampling Sup.Con All Old New All Old New

0 prompt 0 sample ✓ 73.62 73.69 73.02 55.46 74.16 48.79
5 prompts 100 samples 57.27 63.34 54.51 33.13 53.57 26.62

2 prompts 100 samples ✓ 82.29 75.66 83.64 59.88 72.50 54.60
10 prompts 100 samples ✓ 74.65 75.54 74.04 56.86 74.92 49.59

5 prompts 0 samples ✓ 79.67 76.42 80.72 57.58 75.71 51.06
5 prompts 20 samples ✓ 80.30 76.49 81.49 59.24 77.74 53.11

5 prompts 100 samples ✓ 84.22 77.83 86.20 60.06 75.84 54.01
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L MORE QUALITATIVE RESULTS

We further visualize the feature representation generated by our method on ImageNet100 (Rus-
sakovsky et al., 2015), TinyImageNet (Le & Yang, 2015), and CUB 200 (Wah et al., 2011) datasets ,
using t-SNE algorithm (Van der Maaten & Hinton, 2008) to project the high-dimensional features
of {Dl, Du

t } in each stage into low-dimensional space. The qualitative visualization can be seen in
Fig. 9; nodes of the same colour indicate that the instances belong to the same category. Moreover,
for stage t > 0, we only highlight the feature’s node belonging to unknown categories. It is observed
that across stages and datasets, our cluster features are discriminative.
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Figure 9: TSNE visualization of features of ImageNet100 , TinyImageNet, and CUB 200 datasets
learned by our PromptCCD w/GMP for every stage.
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M BROADER IMPACTS AND LIMITATIONS

Category discovery technologies significantly impact various industries and applications, such as drug
discovery and materials discovery. Our proposed framework has been shown to reduce forgetting
while being robust enough to discover new classes. However, there may be some potential negative
social impacts, such as when the model learns bad prior knowledge or the data contains unwanted
bias, leading to misinformation in society. Currently, we still do not have a mechanism to prevent
such situations from happening. Therefore, having proper priors and managing data distribution
is important to prevent the model from misclassifying objects. Additionally, like other efforts on
handling sequential unlabelled data, our system may accumulate errors over time as we do not have
any specific regulation when dealing with longer time steps and potential categories with few samples
at a given time step. Thus, more efforts are still needed to improve the capability of AI systems to
learn from unlabelled data reliably.

26


	Introduction
	Method
	Prompt pool learning for continual category discovery
	Gaussian mixture prompt pool learning for continual category discovery
	Optimization objectives for different learning stages

	Experiments
	Experimental setups
	Main results
	Ablation studies

	Related Work
	Conclusion
	bluePseudo Code for PromptCCD w/GMP
	Transductive and Inductive Evaluation
	Adapting The Standard GCD Metric in Each Time Step of CCD
	Dynamically Estimating Unknown Class Numbers During Learning
	Implementation Details For Augmenting Grow and Merge With ViT
	Comparison With Recent Works on CCD Task
	Analysis on Different Class Split Ratio
	blueWhy finetune the final block of DINO for CCD?
	blueAblation Studies on Prompt Module Design
	Ablation Studies on The Initial Steps of Discovery
	Additional Ablation Studies
	More Qualitative Results
	Broader Impacts and Limitations

