
Unlocking Parameter-Efficient Fine-Tuning for
Low-Resource Language Translation

Anonymous ACL submission

Abstract

Parameter-efficient fine-tuning (PEFT) meth-001
ods are increasingly vital in adapting large-002
scale pre-trained language models for diverse003
tasks, offering a balance between adaptability004
and computational efficiency. They are impor-005
tant in Low-Resource Language (LRL) Neural006
Machine Translation (NMT) to enhance trans-007
lation accuracy with minimal resources. How-008
ever, their practical effectiveness varies signif-009
icantly across different languages. We con-010
ducted comprehensive empirical experiments011
with varying LRL domains and sizes to evalu-012
ate the performance of 8 PEFT methods with in013
total of 15 architectures using the SacreBLEU014
score. We showed that the Houlsby+Inversion015
adapter outperforms the baseline, proving the016
effectiveness of PEFT methods.017

1 Introduction018

Advances in large-scale pre-trained language mod-019

els have transformed the field for high-resource020

languages (Min et al., 2023), but these data and021

compute-hungry models are not viable for the022

more-than-7000 low-resource languages (LRLs)023

in the world (Stap and Araabi, 2023; Robinson024

et al., 2023; Zhang et al., 2023). Ideal for the lim-025

itations of LRLs, parameter-efficient fine-tuning026

(PEFT) methods (Houlsby et al., 2019; Pfeiffer027

et al., 2020b; Hu et al., 2021) are designed to strate-028

gically update a small number of parameters within029

a pre-trained model to be more efficient and adapt-030

able without the need to retrain the entire model.031

Their architecture resulted in significant savings in032

computational resources and storage space while033

achieving results comparable to full fine-tuning in034

downstream tasks (Ruder et al., 2022).035

While the above PEFT methods showed their036

advantages for fine-tuning specific tasks, domains,037

and languages, the effectiveness of this collection038

of PEFT methods for LRL translation has not been039

systematically examined.040

In this paper, we explored different PEFT archi- 041

tectures’ performance in the LRL Neural Machine 042

translation (NMT) by comparing in-domain test, 043

out-of-domain test, and training time. We also 044

investigated how PEFT methods can succeed in 045

translating LRLs, specifically their structure and 046

how they performed across different datasets. 047

The contributions of our paper are 1) compre- 048

hensive experimentation of PEFT architectures to 049

reveal the suitability of translating non-Latin scripts 050

and LRL pairs; 2) systematic study of experimen- 051

tal settings such as dataset domains and size for 052

generalization. As the field continues to advance 053

rapidly, these PEFT guidelines provide practical 054

recommendations for improving LRL translations, 055

thus narrowing the language gap. 056

Figure 1.1: Full list of 8 PEFT methods and 15 archi-
tectures. Each color box represents a specific structure
appearing in the PEFT methods. The same color repre-
sents the PEFT methods share similar sturcture

2 The PEFT Methods 057

We focus on the comparative performance of an 058

extensive list of PEFT methods for LRL NMT un- 059

der various settings (Figure 1.1), offering a broader 060

and distinctive understanding of adapter utility. 061

Among all the PEFT methods, some share 062

the same structure. For example, the bottleneck 063
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adapters include bottleneck feed-forward layers in064

each layer of a transformer model. These layers can065

be added to various positions within transformer066

blocks. The Houlsby adapter (Houlsby et al., 2019)067

adds the layers after both the multi-head atten-068

tion and feed-forward blocks. The Pfeiffer adapter069

(Pfeiffer et al., 2020b) only adds the layers after the070

feed-forward block. The Parallel adapter (He et al.,071

2021) deploys the layers parallel to the transformer072

layers. Similarly, the invertible adapters share a073

similar architecture with bottleneck adapters but074

with an added invertible adapter layer to the lan-075

guage model embedding layer. The Compacter076

architecture replaces only the linear down- and up-077

projection with a parameterized hypercomplex mul-078

tiplication layer (Karimi Mahabadi et al., 2021).079

In addition, Prefix Tuning is a lightweight alter-080

native inspired by prompting (Li and Liang, 2021)081

that introduces additional parameters in the multi-082

head attention blocks of each transformer layer.083

The LoRA method allows the training of specific084

dense layers in a neural network indirectly by opti-085

mizing the rank-decomposition matrices of specific086

dense layers during adaptation with the pre-trained087

weights frozen (Hu et al., 2021). (IA)3 was built to088

improve LoRA with modifications. While LoRA089

uses additive composition, (IA)3 uses element-wise090

multiplication (Liu et al., 2022).091

Some PEFT methods combine multiple methods.092

The Mix-and-Match (MAM) Adapter combines093

LoRA, Prefix Tuning, and Parallel adapter to form094

a new adapter (He et al., 2021). Similarly, UniPELT095

integrates bottleneck adapters, Prefix Tuning, and096

LoRA into a unified setup (Mao et al., 2021).097

Lastly, the language adapter captures language-098

specific knowledge for application in various down-099

stream tasks. It is not a distinct adapter architec-100

ture; rather, it represents a method of utilizing pre-101

existing architectures. We expected that this ap-102

proach would enhance the model’s performance,103

given its preexisting familiarity with the language104

in question. We employed a pre-existing bottleneck105

adapter for diverse language datasets, training it106

with Masked Language Modelling on an extensive107

collection of articles (Pfeiffer et al., 2020c).108

3 Experimental Setup109

LRLs Selection We chose Sinhala (SI), Tamil110

(TA), Hindi (HI), and Gujarati (GU) as our primary111

languages to run our translation task (See Table 1).112

SI and TA were paired to run the translation task in113

both directions, and HI and GU were paired. 114

Language Family Joshi mBART coverage
class in Tokens (M)

Hindi (HI) Indo Aryan 4 1715
Gujarati (GU) Indo Aryan 1 140
Sinhala (SI) Indo Aryan 1 243
Tamil (TA) Dravidian 3 595

Table 1: Language details. The smaller the value of
the Joshi et al. (2020) class, the more low-resource the
language is.

Data Collection The data summary is given in 115

Table 2. More details about the datasets can be 116

found in Appendix A. Note that No Language Left 117

Behind (NLLB) (Costa-jussà et al., 2022) corpora 118

lacks coverage and human quality control, and is 119

only suitable for training purposes. Therefore, we 120

performed an out-of-domain evaluation by using 121

FLoRes (Goyal et al., 2022) as the test dataset. 122

Dataset Quality Languages Train Size Test Size
FLoRes Sourced from English

Wikipedia and translated by
professional translators

HI, GU, SI, TA test only 1k

NLLB Automatically gathered from
web sources and monolingual
datasets, using web crawls and
LASER3 encoders for parallel
sentence identification

HI, GU, SI, TA 25k, 100k 2k

Gvt Parallel government
documents dataset with
manual cleaning and aligning

SI, TA 25k 2k

Sam Sourced both from existing
corpora and new, diverse data
collected via automated web
crawling and sentence
alignment, with human
evaluation ensuring its
reliability

HI, GU 25k 2k

Table 2: Dataset Statistics

Experimental Design The pre-trained model we 123

used is the mBART-50 model from Facebook (Tang 124

et al., 2020). The trainer employed in our study 125

is sourced from the Adapter Transformers (Pfeif- 126

fer et al., 2020a). Each adapter’s performance was 127

evaluated using the Sacre BiLingual Evaluation Un- 128

derstudy (SacreBLEU) Score (Post, 2018). Train- 129

ing details are given in Appendix A.1. 130

We evaluated the performance of our PEFT ar- 131

chitectures using direct fine-tuning with the pre- 132

trained model as the baseline. In total, we tested 133

15 PEFT architectures supported by the Hugging 134

Face Adapter Hub (Pfeiffer et al., 2020a) trained on 135

SI-TA 100k NLLB language dataset to identify the 136

best methods for further analysis; both the NLLB 137

test dataset and the FLoRes test dataset were used 138

to test these models. We then narrowed down the 139

selection to the top two methods with the highest 140

SacreBLEU scores from each of the test results, 141
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the NLLB and the FLoRes dataset. An additional142

PEFT architecture was selected based on those that143

outperformed the baseline for both test datasets and144

with the shortest training time.145

Extensive experiments were then conducted with146

these top-selected methods across additional LRL147

and dataset sizes to determine the optimal configu-148

ration. After all experiments were completed, the149

average performance was calculated to mitigate any150

variation due to GPU randomness.151

4 Results on the Effect of Various Factors152

Top-4 Selected PEFT Architectures To evaluate153

the PEFT architectures’ performance, we compared154

their in-domain test, out-domain test, and training155

time for 100k NLLB SI-TA training dataset (Ta-156

ble 3). For methods that did not surpass the base-157

line in both tests, we inferred that these methods158

are not suitable for tasks in LRL translation.159

For NLLB in-domain testing, the Houlsby160

adapter performs the best at 33.34 (10.20% bet-161

ter than baseline), followed by Scaled-parallel162

(9.21% improvement). For FLoRes out-of-domain163

testing, the Houlsby adapter remains the best at164

7.62 (38.23% better than baseline) followed by165

Houlsby+Inversion adapter (34.51% improvement).166

The Pfeiffer adapter runs the fastest at 52.59 while167

outperforming the baseline for both tests.168

Domain Similarity of Test Dataset We ex-169

panded our training to additional dataset do-170

mains (Appendix Table 5). For the in-domain171

test, Houlsby adapter exhibited superior per-172

formance at 31.53; for the out-of-domain test,173

Houlsby+Inversion performed best at 10.02 (a 0.1174

better than Houlsby). Since the FLoRes out-of-175

domain test resulted in a more robust and objective176

evaluation of the model’s translation performance177

across many domains (Goyal et al., 2022), we pri-178

oritize the out-of-domain results and conclude that179

the Houlsby+Inversion adapter has the best perfor-180

mance overall. Lastly, in terms of training time181

(Appendix Table 6), the Pfeiffer adapter has the182

shortest runtime as expected, saving 8 hours on183

average compared to the baseline.184

Result Generalization Our results demonstrate185

the robust generalizability of our PEFT architec-186

tures across different training dataset sizes and187

domains. Figure 4.1 shows that our model con-188

sistently outperforms the baseline, on average, in189

both in-domain and out-of-domain testing. Specif-190

ically for models trained on other domains, the191

∆% increase over the baseline is over 50%, demon- 192

strating the ability of PEFT methods to excel at 193

tasks beyond their training domain. In terms of 194

training dataset sizes, our selected PEFT architec- 195

tures showed a continuous trend for performance 196

increase compared to the baseline. It is worth not- 197

ing that our Table 5 in the appendix shows that 198

increasing the training size has led to improved 199

performance. However, the magnitude of the im- 200

provement difference shows diminishing returns, 201

suggesting a potential saturation effect as identified 202

in previous studies (Lee, 2021). 203

Figure 4.1: Average ∆% compared to baseline for each
dataset tested on in-domain and out-of-domain

Language Family and Pre-Training Size We 204

observed notable disparities in performance among 205

different language pairs (Figure 4.2). The LRL 206

SI-TA pair demonstrates lower performance with a 207

smaller dataset size (i.e., 25k) but improves as the 208

dataset size increases, suggesting that the amount 209

of training data is a critical factor in enhancing the 210

translation quality for LRL (Lee et al., 2022).

Figure 4.2: Performance of LRL Translation Pairs by
Fine-Tuning Dataset Size (In-Domain only)

211
The SI-TA pair yielded lower performance com- 212

pared to the HI-GU pair, underscoring the intricate 213

dynamics of linguistic relationships and the avail- 214

ability of resources (Table 1). Linguistically, HI, 215

GU and SI are part of the Indo-Aryan language 216

family, while TA is Dravidian; thus suggesting the 217

lower performance of SI-TA. Notably, GU’s closer 218
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Method In-domain ∆% Out-domain ∆% Runtime (hours) ∆%
Baseline 30.25 - 5.52 - 59.44 -
Houlsby 33.34 10.20% [1] 7.62 38.23% [1] 78.65 32.32% [10]
Scaled-parallel 33.04 9.21% [2] 6.62 20.00% [7] 93.68 57.60% [12]
Pfeiffer+Inversion 33.04 7.69% [3] 6.84 24.06% [4] 78.31 31.75% [9]
MAM 33.26 6.62% [4] 6.51 18.08% [8] 95.73 61.05% [13]
Houlsby+Inversion 32.23 6.55% [5] 7.42 34.51% [2] 63.54 6.90% [6]
Pfeiffer 31.24 3.27% [6] 6.96 26.25% [3] 52.59 -11.52% [3]
Language Adapter (TA) 29.98 -0.88% [7] 6.31 14.47% [9] 98.23 65.26% [14]
Parallel 27.63 -8.66% [8] 6.62 20.04% [6] 26.85 -54.83% [1]
Prefix tuning 23.62 -21.93% [9] 6.71 21.72% [5] 77.25 29.96% [8]
LORA 18.63 -38.41% [10] 5.76 4.45% [10] 58.1 -2.25% [5]
Compacter 13.36 -55.82% [11] 4.27 -22.61% [11] 106.56 79.27% [15]
Compacter++ 12.56 -58.49% [12] 4.12 -25.36% [12] 84.22 41.69% [11]
Prefix tuning flat 12.25 -59.50% [13] 3.93 -28.75% [13] 55.29 -6.98% [4]
(IA)3 11.10 -63.30% [14] 3.63 -34.14% [14] 63.81 7.35% [7]
Unipelt 0.38 -98.74% [15] 0.12 -72.54% [15] 39.47 -33.60% [2]

Table 3: Full list of fine-tuning results with the 100k NLLB SI-TA language dataset. The table shows the predicted
SacreBLEU score for both the In-domain test dataset (the NLLB test dataset), the Out-domain test dataset (the
FLoRes test dataset), and the models’ training time. ∆% represents the percentage increase in terms of the baseline
results. Bold means that the model’s performance is better than the baseline (higher SacreBLEU score/shorter
training time) Underline means that the corresponding PEFT architectures are selected for further testing.

linguistic affinity to HI may have facilitated enhanc-219

ing its performance through cross-lingual transfer,220

despite its smaller pre-training dataset size. How-221

ever, its smaller gains due to dataset size increase222

may be due to the high-resource saturation of HI.223

5 Discussion of Impact on Architectures224

Bottleneck Architecture on LRL Our analysis225

reveals that the top-performing adapters employ the226

bottleneck adapter architecture, establishing a clear227

correlation between this design and performance.228

Firstly, when fine-tuning with bottleneck, only229

task-specific parameters are fine-tuned. The origi-230

nal features are projected into a smaller dimension,231

thus preventing overfitting a large number of param-232

eters to the limited dataset on LRL translation. This233

finding is consistent with that of (Bapna et al., 2019;234

Cooper Stickland et al., 2021a,b), which finds that235

bottleneck adapter controls the parameter count to236

keep at least the performance of the parent model.237

Secondly, the skip connections facilitate infor-238

mation flows by bypassing one or more layers to239

allow input to be added directly to the output of240

the skipped layers. Parameters of projected layers241

initialized to near zero as near-identity initializa-242

tion (Philip et al., 2020; Cooper Stickland et al.,243

2021a). The adapter module does not introduce sig-244

nificant input changes, allowing graduate learning.245

When fine-tuning downstream tasks with limited246

LRL data, parameters are not easily influenced by247

individual data, allowing for stable training.248

Adapter for Domain Adaptation We found249

that in-domain testing performs better than out- 250

of-domain testing due to memorizing patterns in 251

the dataset, leading to falsely inflated performance. 252

When fine-tuning on a new domain, rapid domain- 253

specific overfitting and catastrophic forgetting re- 254

duces the performance on all other domains (Sen- 255

nrich et al., 2015; Barone et al., 2017; Bapna et al., 256

2019). However, by freezing the parameters of 257

the original pre-trained model and training only 258

task-specific parameters, the adapter avoids catas- 259

trophic forgetting of the knowledge learned during 260

pre-training and can maintain performance when 261

testing in other domains (McCloskey and Cohen, 262

1989; Lai et al., 2022; Üstün et al., 2021). 263

6 Conclusion 264

Our study delved into a wide range of PEFT meth- 265

ods to identify the most effective ones for LRL- 266

NMT. Particularly focusing on non-Latin scripts 267

and LRL-to-LRL translation pairs, our research 268

stands as a valuable guide for LRL-NMT. We found 269

that certain adapters consistently outperformed oth- 270

ers, offering enhanced translation accuracy and ef- 271

ficiency in challenging linguistic contexts. Fur- 272

thermore, the adapters’ effectiveness was tested 273

and generalized across various dataset domains and 274

sizes, ensuring the applicability of our findings to a 275

broad spectrum of LRL scenarios. Looking ahead, 276

these insights pave the way for further advance- 277

ments in PEFT methods, aiming to optimize the 278

balance between efficiency and quality in NMT, 279

especially in the challenging context of LRL. 280
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Limitation and Future Work281

Language Specific adapters We tested the PEFT282

architectures at adapting to our LRLs, and not283

the specific fine-tuned models of language-specific284

adapters. We hope this comparison can provide an285

agnostic baseline for others to follow. Surprisingly,286

the language adapter we tested did not perform287

above the baseline; therefore, we need to explore288

other language-specific fine-tuning strategies. In289

the future, we will explore more language-specific290

adapter; but the scope of this study only cover the291

generic PEFT architectures.292

Increase Domain While it is worth noting that293

three of the four LRLs we have provided transla-294

tions for belong to the Indo-Aryan language fam-295

ily and the other one is a Dravidian language, we296

suggest broadening our experimentation to include297

more diverse languages to increase the credibility298

of our results. As with dataset sizes of 100k and299

25k, we could experiment with sizes in between.300

Evaluation Criteria Our assessment of translation301

performance relied on SacreBLEU scores, but rely-302

ing on a single metric may not be sufficient to sup-303

port our conclusions. In future research to evaluate304

the model’s performance, it would be advantageous305

to use metrics such as ChrF and COMET, which are306

reportedly better correlated with human judgments307

(Dixit et al., 2023). Additionally, the variations308

between distinct methods lack strong indications.309

Consequently, statistical significance tests would310

be fundamental to further confirm the significance311

of the improvements.312

PEFT Composition This paper focuses solely on313

the impact of a single PEFT architecture. However,314

there is an ongoing exploration into the potential315

of combining multiple methods as a composition.316

AdapterHub recently published a paper that ex-317

panded its support to include various composition318

methods, including stack, fuse, split, and average319

(Poth et al., 2023).320

Ethics Statement321

The code we used to run fine-tuning with methods322

is publicly available in AdapterHub (Pfeiffer et al.,323

2020a). The NLLB, Sam, and FloRes datasets we324

used for running the experiments are all publicly325

available. We received the Gvt corpus from Fer-326

nando et al. (2020).327
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A Appendix524

A.1 Supplementary Material on Datasets525

No Language Left Behind (NLLB) The NLLB526

(Costa-jussà et al., 2022) corpus consists of pro-527

fessionally translated sentences from the domain528

of Wikipedia and was obtained by taking samples529

from Wikimedia’s List of Articles Every Wikipedia530

Should Have, covering various topics across differ-531

ent fields of knowledge and human activities. We532

employed a selection process based on the LASER533

score, where we chose the top 100,000 and 25,000534

translation pairs from the selected language pair535

for dataset size variation. However, NLLB lacks536

coverage and human quality control, due to con-537

struction using semi-automatic procedures (Goyal538

et al., 2022) and is only suitable for training pur-539

poses.540

Government corpus (Gvt) The government doc-541

ument corpus (Fernando et al., 2020) is a multi-542

way parallel corpus for Sinhala, Tamil, and En-543

glish. It comprises a range of official Sri Lankan544

government documents, including annual and com-545

mittee reports, content sourced from government546

websites, procurement-related documents, and leg-547

islative acts.548

Samanantar corpus (Sam) The Samanantar cor-549

pus (Ramesh et al., 2023) is the largest publicly550

available Parallel Corpora Collection for 11 Indic 551

Languages. The data is derived from two sources: 552

existing databases and new data automatically col- 553

lected through web crawling and sentence align- 554

ment techniques. 555

FLoRes The FLoRes dataset (Goyal et al., 2022) 556

is a multiway multilingual translation evaluation 557

dataset. FLoRes-101 is comprised of translations 558

from 842 unique web articles, comprising a total of 559

3001 sentences. Because all translations are fully 560

aligned, the resulting dataset allows for a more ac- 561

curate assessment of model quality on the long tail 562

of LRLs, including the evaluation of many-to-many 563

multilingual translation systems. The professional 564

rigor and reliability of the results are strengthened 565

by using an out-of-domain evaluation of this type, 566

resulting in a more robust and objective evaluation 567

of the model’s translation performance across many 568

domains. 569

A.2 Supplementary Material on 570

Experimental Setup 571

Choice of Pre-trained Model The mBART- 572

50 model (Tang et al., 2020) is a multilingual 573

Sequence-to-Sequence (Seq2Seq) model. Its in- 574

troduction aimed to demonstrate the feasibility of 575

developing multilingual translation models via the 576

process of multilingual fine-tuning. Instead of 577

singularly fine-tuning in a single direction, a pre- 578

trained model undergoes simultaneous fine-tuning 579

across many directions. The mBART-50 model is 580

derived from the original mBART architecture and 581

has been expanded to incorporate an additional 25 582

languages. This augmentation enables the develop- 583

ment of multilingual machine translation models 584

that can handle a total of 50 languages.

Paraemter Name Value
Evaluation Strategy Epoch
Number of Training Epoch 40
Patience 3
Batch Size 2
Metric for best model Evaluation SacreBLEU

Table 4: Full list of trainer parameters used and corre-
sponding value

585
Choice of Trainer The integration of PEFT meth- 586

ods into language models is facilitated by a modi- 587

fication of AdapterHub, a centralized store of pre- 588

trained adapter modules. 589

In the context of language translation, the pro- 590

cess involves utilizing a translation code to refine 591

the pre-existing model and assess the performance 592
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Language Dataset Size
No PEFT Houlsby Houlsby+inv Pfeiffer Scaled-parallel
In-domain FLoRES In-domain FLoRES In-domain FLoRES In-domain FLoRES In-domain FLoRES

SI-TA
NLLB

25k 21.8171 3.9573 24.7268 (+2.9097) 5.7709 21.6649 5.8532 (+1.8959) 21.9808 5.4773 24.0997 5.3101
100k 30.3961 5.4352 33.6794 (+3.2833) 7.6977 (+2.2625) 32.2317 7.4188 31.2395 6.9635 33.0374 6.6186

Gvt 25k 21.2982 1.3255 21.0242 2.2491 21.6247 (+0.3265) 2.1965 19.5961 2.347 (+1.0215) 20.5064 2.0723

TA-SI
NLLB

25k 22.3512 5.3989 25.1825 6.641 25.434 (+3.0828) 7.0094 (+1.6105) 24.5575 6.1987 24.9486 6.4323
100k 34.0925 7.1264 35.3707 (+1.2782) 8.3163 34.8269 8.6788 (+1.5524) 34.7869 7.9525 33.4139 7.8196

Gvt 25k 31.9105 2.4346 31.7150 3.2406 31.7034 3.259 28.6959 3.2433 28.86 3.3824 (+0.9478)

HI-GU NLLB
25k 35.8082 11.2997 39.3775 (+3.5693) 12.3927 38.2209 12.4318 38.7203 12.4832 38.4944 12.807 (+1.5073)
100k 39.1754 12.0767 41.5658 (+2.3904) 14.2947 41.4993 15.057 (+2.9803) 40.9938 14.5054 41.0432 14.2797

Sam 25k 11.1118 5.2094 12.6581 9.5945 12.6111 9.0768 12.7405 9.9535 (+4.7441) 12.8279 (+1.7161) 9.9509

GU-HI
NLLB

25k 43.2111 13.9272 45.9313 17.3196 (+3.3924) 45.8927 17.2129 45.9704 17.0236 46.341 (+3.1299) 17.1825
100k 47.6282 17.5709 50.6256 (+2.9974) 19.3265 49.5878 19.0191 48.826 19.2495 49.9162 19.4532 (+1.8823)

Sam 25k 14.3543 10.0847 16.4453 12.1565 16.6844 (+6.5997) 13.0219 16.5667 13.0903 16.6316 13.5055 (+3.4208)
Average 29.4296 7.9872 31.5252 9.9167 30.9985 10.0196 30.3895 9.8740 30.8434 9.9012

Table 5: Comparison of Fine-Tuning Results for Selected PEFT Methods Across Various Language Datasets and
Dataset Sizes on the in-domain test Datasets and FLoRes Test Datasets. In-domain means that the test dataset comes
from the same distribution as the training dataset. Bold score means that the SacreBLEU score is the highest among
all listed fine-tuning experiments within the same dataset.

Language Dataset Size No PEFT Houlsby Houlsby+inv Pfeiffer Scaled-parallel
25k 00-14:22:48 00-22:10:17 00-17:20:46 00-08:41:54 00-16:36:20NLLB 100k 02-23:47:07 03-12:06:21 02-15:32:23 02-04:35:37 (-19:11:30) 03-21:40:44SI-TA

Gvt 25k 01-20:35:13 00-23:09:18 01-06:25:42 00-10:29:23 (-01-10:05:50) 00-18:55:42
25k 00-09:51:53 00-19:04:15 01-06:57:42 00-21:56:10 00-21:12:29NLLB 100k 03-23:18:56 03-21:35:37 03-00:14:17 03-19:41:43 02-13:40:04 (-01-09:38:52)TA-SI

Gvt 25k 02-01:01:03 01-14:06:04 02-02:11:33 00-20:36:14 00-10:26:10 (-01-14:34:53)
25k 00-07:42:33 00-17:45:38 00-10:43:29 00-15:47:21 00-06:50:13NLLB 100k 01-05:37:21 01-02:22:44 01-00:18:21 00-19:28:39 (-10:08:42) 00-22:16:01HI-GU

Sam 25k 00-16:27:37 00-07:43:53 00-07:27:22 00-05:51:51 00-05:29:49 (-10:57:48)
25k 00-07:34:30 00-04:59:17 (-02:35:13) 00-07:20:46 00-05:47:51 00-06:23:02NLLB 100k 00-20:17:54 01-07:19:39 01-02:59:59 00-21:23:38 00-20:35:02GU-HI

Sam 25k 00-04:54:57 00-04:54:34) 00-05:51:34 00-04:59:19 00-04:46:03 (-00:08:54)
Average 01-06:57:39 01-07:06:28 01-04:57:00 00-23:16:38 01-00:04:18

Table 6: Comparison of Training Time for Selected PEFT Methods Across Language Datasets and Dataset Sizes.
Bold time means that the training time is the shortest among listed fine-tuning experiments with the same dataset.

of transformers to translation-oriented assignments.593

In this case, we use Seq2SeqTrainingArguments.594

GPU Details It consists of Dell nodes, each595

equipped with four NVIDIA V100-32GB GPUs,596

32 CPU cores, 32GB of GPU memory, and two597

Intel Silver 4216 Cascade Lake processors running598

at 2.1GHz. All GPUs are connected via NVLink599

and SXM2. They are well suited for processing600

large language models with a 7.0 capability.601

Trainer Setup There are several parameters that602

we have specified for the execution of the model.603

For the evaluation strategy, the evaluation is done604

at the end of each epoch (Wolf et al., 2020). We605

set the number of training epochs to 40 so that the606

model could be finished running in a maximum of607

4 days. The patience level is set to 3 based on some608

small experiments. A lower level of patience will609

cause the model to stop too early as there is still610

room for improvement; a higher level of patience611

will cause overfitting, and the model will only stop612

until the last epoch; there will be no early stopping,613

which is not what we expected. Since our task is614

simple fine-tuning, we set the batch size to 2. A615

smaller batch size introduces more stochasticity616

into the training process by updating the model617

parameters more frequently.618

Evaluation Metrics SacreBLEU (Post, 2018) of-619

fers benefits over BLEU scores, which cannot be620

directly compared across papers, as it allows for 621

easy computation of shareable, comparable, and 622

reproducible SacreBLEU scores. 623

B Direct fine-tuning results with selected 624

across different domains 625

We selected Houlsby, Houlsby+Inversion, and 626

Scaled-Parallel Adapter for the next experiments 627

based on their performance, with Houlsby emerg- 628

ing as the best performer for both testing results. 629

Pfeiffer adapter was selected for its short training 630

time compared to the baseline. The results dis- 631

played in Table 5 indicate that the Houlsby adapter 632

exhibited superior performance over all other meth- 633

ods in the in-domain test with an average Sacre- 634

BLEU score of 31.5252. For the FLoRes test 635

dataset, Houlsby+Inversion performs better with 636

an average SacreBLEU score of 10.0196, a 0.1 dif- 637

ference from Houlsby. 638

In terms of training time shown in 6, the Houlsby 639

adapter does not have the advantage and even be- 640

comes the longest runtime on average. The Pfeiffer 641

adapter, which we chose for its runtime, has the 642

shortest runtime as expected, saving 8 hours on 643

average compared to the baseline. 644
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