
RoboGen: Towards Unleashing Infinite Data for

Automated Robot Learning via Generative Simulation

Yufei Wang * 1 Zhou Xian * 1 Feng Chen * 2 Tsun-Hsuan Wang 3 Yian Wang 4 Katerina Fragkiadaki 1

Zackory Erickson 1 David Held 1 Chuang Gan 4 5

Abstract

We present RoboGen, a generative robotic agent

that automatically learns diverse robotic skills at

scale via generative simulation. RoboGen lever-

ages the latest advancements in foundation and

generative models. Instead of directly adapting

these models to produce policies or low-level ac-

tions, we advocate for a generative scheme, which

uses these models to automatically generate di-

versified tasks, scenes, and training supervisions,

thereby scaling up robotic skill learning with min-

imal human supervision. Our approach equips a

robotic agent with a self-guided propose-generate-

learn cycle: the agent first proposes interesting

tasks and skills to develop, and then generates

simulation environments by populating pertinent

assets with proper spatial configurations. After-

wards, the agent decomposes the proposed task

into sub-tasks, selects the optimal learning ap-

proach (reinforcement learning, motion planning,

or trajectory optimization), generates required

training supervision, and then learns policies to

acquire the proposed skill. Our fully generative

pipeline can be queried repeatedly, producing an

endless stream of skill demonstrations associated

with diverse tasks and environments.

1. Introduction

Simulated environments have become a crucial driving force

for teaching robots various complex skills, spanning com-

plex manipulation and locomotion settings (Weng et al.,

2022; Xu et al., 2023; Chen et al., 2022; Haarnoja et al.,

2023; Zhuang et al., 2023). Compared to exploration and

data collection in the real-world, simulated environments

provide access to privileged low-level states and unlim-

*Equal contribution 1CMU 2Tsinghua IIIS 3MIT CSAIL
4UMass Amherst 5MIT-IBM AI Lab. Correspondence to: Yufei
Wang <yufeiw2@andrew.cmu.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

ited explorations, and support massively parallel compu-

tation for significantly faster data collection without con-

siderable investment in robotic hardware. However, robot

learning in simulations also presents its own limitations:

while exploration and practicing in simulated environments

are cost-effective, constructing these environments requires

tremendous human effort, demanding tedious steps includ-

ing designing tasks, producing relevant and semantically

meaningful assets, generating plausible scene layouts and

configurations, and crafting training supervisions such as

reward or loss functions (James et al., 2020; Srivastava et al.,

2022; Gu et al., 2023; Li et al., 2023a). The onerous task

of creating these components and constructing individual-

ized simulation settings for each one of the countless tasks

encountered in our daily life significantly hinders the scala-

bility of robotic skill learning even in simulated worlds.

In light of this, we propose Generative Simulation (Xian

et al., 2023a), a new paradigm aiming for scaling up sim-

ulated robot learning with the latest advancement in gen-

erative models. Generative simulation advocates for au-

tonomously generating information for all the stages needed

for diverse robotic skill learning in simulation: from high-

level task and skill proposals to task-dependent scene de-

scriptions, asset selections and generations, policy learn-

ing choices, and training supervisions. These information

is then used for massive skill training, enabling robots to

acquire proposed skills. In this paper, as an initial real-

ization of this proposed paradigm, we present RoboGen,

a robotic agent that continuously generates new skills via

a self-guided propose-generate-learn cycle: it firstly self-

proposes skills to learn, and then generates required assets

and constructs the scene in simulation conditioned on the

proposed task. Afterwards, it labels the tasks with natural

language descriptions, decomposes the task into sub-tasks,

selects the optimal learning approach (reinforcement learn-

ing, motion planning, or trajectory optimization), designs

proper training supervisions (e.g. reward functions), and

lastly proceeds to policy learning to solve the proposed task.

One distinct advantage of our proposed paradigm lies in

the careful choice of what modes of knowledge to extract

from contemporary foundation models. These models have

demonstrated impressive capabilities across various modali-

1

RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation

Figure 1: 25 example tasks generated and corresponding skills learned by RoboGen. Readers are encouraged to visit our project website
for the diverse set of tasks and skills RoboGen can produce.

ties (Touvron et al., 2023; Driess et al., 2023; OpenAI, 2023;

Rombach et al., 2022; Kang et al., 2023), However, due to

the absence of training data pertaining to dynamics, actu-

ations, and physical interactions, these models are yet to

develop essential understandings for robots to execute phys-

ical actions and interact with the surrounding environments

(e.g., producing precise joint torques needed for walking or

rolling a dough at hand). In contrast to recent efforts that

employ foundation models such as Large Language Models

(LLMs) for directly yielding policies or low-level actions

(Liang et al., 2022; Huang et al., 2023; Wang et al., 2023c),

our method only extracts information that falls neatly within

the capabilities and modalities of these models - object

semantics, object affordances, common-sense knowledge

regarding what tasks are valuable to learn, etc. These knowl-

edge are used to construct environmental playgrounds, and

then augmented with additional help from physics-grounded

simulations, for robots to develop understandings of physi-

cal interactions and acquire diverse skills.

Our experiments show that RoboGen can deliver a contin-

uous stream of diversified skill demonstrations, spanning

tasks including rigid and articulated object manipulation,

deformable object manipulation, as well as legged loco-

motion (see Figure 1). The diversity of tasks and skills

generated by RoboGen surpasses previous human-crafted

robotic datasets, with minimal human involvement beyond

several prompt designs and in-context examples. Our work

attempts to transfer the extensive and versatile knowledge

embedded in large-scale models to the field of robotics,

making a step towards automated large-scale robotic skill

training and demonstration collection for building gener-

alizable robotic systems. Our code will be made publicly

available upon publication. For extensive qualitative results

and interactive examples, please refer to our project site at

https://robogen-ai.github.io/.

2. Related Work

Robotic skill learning in simulations Various physics-

based simulation platforms have been developed in the

past to accelerate robotics research (Liu & Negrut, 2021).

These include rigid-body simulators (Coumans & Bai, 2016;

Todorov et al., 2012; Xiang et al., 2020; Bousmalis et al.,

2023), deformable object simulators (Macklin et al., 2014;

Lin et al., 2020; Xu et al., 2023; Heiden et al., 2021), and

environments supporting multi-material and their couplings

with robots (Xian et al., 2023b; Gan et al., 2021; Gu et al.,

2023). Such simulation platforms have been heavily em-

ployed in the robotics community for learning diverse skills,

including deformable object manipulation (Lin et al., 2022;

Weng et al., 2022; Wang et al., 2023b), object cutting (Hei-

den et al., 2021; Xu et al., 2023), fluid manipulation (Seita

et al., 2023; Xian et al., 2023b), as well as highly dynamic

and complex skills such as in-hand re-orientation (Chen

et al., 2022; Akkaya et al., 2019), object tossing (Zeng

2

https://robogen-ai.github.io/

RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation

et al., 2020), acrobatic flight (Kaufmann et al., 2020; Lo-

quercio et al., 2021; Song et al., 2023), and legged locomo-

tion (Cheng et al., 2023; Zhuang et al., 2023; Radosavovic

et al., 2023).

Scaling up simulation environments Apart from build-

ing physics engines and simulators, a large body of prior

work targeted at building large-scale simulation benchmarks,

providing platforms for scalable skill learning and standard-

ized benchmarking (Li et al., 2023a; Lin et al., 2020; Xian

et al., 2023b; Yu et al., 2020; James et al., 2020; Gu et al.,

2023; Srivastava et al., 2022). Notably, most of these prior

simulation datasets are manually built with human labeling.

Another line of works attempts to scale up tasks and environ-

ments using procedural generation, and generate demonstra-

tions with Task and Motion Planning (TAMP) (Jiang et al.,

2023; Dalal et al., 2023; McDonald & Hadfield-Menell,

2021; Murali et al., 2023). These methods primarily build

on top of manually-defined rules and planning domains,

limiting the diversity of the generated environments and

skills to relatively simple pick-and-place tasks (Dalal et al.,

2023; McDonald & Hadfield-Menell, 2021). Contrary to

these works, we leverage the common sense knowledge em-

bedded in foundation models to generate meaningful tasks,

relevant scenes, and skill training supervisions, leading to

more diverse and plausible skills.

Foundation and generative models for robotics Follow-

ing the advancement in foundation and generative mod-

els in domains of imagery, language and other modalities,

(Poole et al., 2022; Melas-Kyriazi et al., 2023; Touvron

et al., 2023; Driess et al., 2023; OpenAI, 2023; Liu et al.,

2023a; Girdhar et al., 2023), a line of works explores using

these models for robotics research via approaches such as

code generation (Wu et al., 2023; Liang et al., 2022), data

augmentation (Yu et al., 2023a), visual imagination for skill

execution (Du et al., 2023), sub-task planning (Ahn et al.,

2022; Huang et al., 2022; Lin et al., 2023), concept gener-

alization of learned skills (Brohan et al., 2023), outputting

low-level control actions (Wang et al., 2023c), and goal

specification (Kapelyukh et al., 2023; Jiang et al., 2023).

Related to ours are recent methods using LLMs for reward

generation (Yu et al., 2023b; Ma et al., 2023), and sub-task

and trajectory generation (Ha et al., 2023). Concurrent work

(Wang et al., 2023a) explored LLM-based task generation,

but are limited to table-top rigid object manipulation tasks

with limited assets. The task demonstrations are generated

by using LLMs to directly write the code script for manipu-

lating the objects; in contrast, we use LLMs to generate the

rewards, invoke appropriate algorithms (motion planning,

RL, etc) to learn the skill and generate the demonstrations,

which is more general. Katara et al. (Katara et al., 2023)

also used a LLM to generate table-top rigid and articulated

object manipulation tasks and rewards. Ours differ as we

additionally perform scene generation and automatic algo-

rithm selection. We also demonstrate our pipeline with more

diverse tasks, including more complex and long-horizon ar-

ticulated object manipulation tasks, as well as locomotion

and soft-body manipulation tasks.

3. RoboGen

RoboGen is an automated pipeline that utilizes the embed-

ded common sense and generative capabilities of the latest

foundation models (OpenAI, 2022; Taori et al., 2023) for

automatic task, scene, and training supervision generation,

leading to diverse robotic skill learning at scale. We con-

sider tasks including rigid (articulated) object manipulation,

soft body manipulation, and legged locomotion. We illus-

trate the whole pipeline in Figure 2, composed of several

integral stages: Task Proposal, Scene Generation, Training

Supervision Generation, and Skill Learning. We detail each

of them in the following.

3.1. Task Proposal

RoboGen starts with proposing meaningful and diverse tasks

for robots to learn. We initialize the system with a spe-

cific robot type and an object randomly sampled from a

pre-defined pool. The provided robot and sampled object

information are then used as input to an LLM to generate

task proposal. This initialization step serves as a seeding

stage, providing a basis upon which the LLM can condition

and subsequently reason and extrapolate to generate a vari-

ety of tasks, taking into account both robot capability and

object affordances. Apart from object-based initialization,

another choice is to employ example-based initialization,

where we initialize the query with a provided robot and

several example tasks sampled from a list of 11 pre-defined

tasks (see Appendix D.1). For tasks involving legged robots

and soft-body manipulation, we prompt the LLM with only

example-based seeding.

We use GPT-4 (OpenAI, 2023) as our LLM backend to

query in the current pipeline, which can be upgraded once

better models are available. In the following, we explain

details of RoboGen in the context of a robotic arm (e.g.,

Franka) and tasks generated pertain to object manipulation,

using object-based initialization. In this case, the objects

used for initialization are sampled from a predefined list,

including common articulated and non-articulated objects

in household scenarios such as oven, microwave, dispenser,

laptop, dishwasher, etc., extracted from PartNetMobility

(Xiang et al., 2020) and RLBench (James et al., 2020). The

common sense and reasoning capability embedded in LLMs

like GPT-4 allow them to produce meaningful tasks consid-

ering the object affordances, functionalities, and how they

can be interacted with. We instantiate a prompt for task

proposal containing the following information: 1) the cate-

gory of the sampled object, 2) its articulation tree derived

3

RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation

Figure 2: RoboGen consists of the following stages: A) task proposal, B) scene generation, C) training supervision generation, and D)
skill learning with generated information.

from its URDF file, and 3) semantic annotations of the links

in the object’s articulation, e.g., which link corresponds to

the door in a sampled microwave. These information are

provided by the PartNetMobility dataset. Additionally, we

include one example input-output pair in the prompt. We

feed the prompt to GPT-4 to obtain a number of semantically

meaningful tasks that can be performed with the sampled

object, where each task consists of 1) task name, 2) a nat-

ural language description of the task, 3) additional objects

needed for performing the proposed task and 4) joints and

links of the sampled articulated object relevant to the task.

As a concrete example, if a sampled articulated object is a

microwave, where joint 0 is a revolute joint connect-

ing its door, and joint 1 is another revolute joint control-

ling the timer knob, GPT-4 could return a task named “heat

up a bowl of soup”, with a task description of “The robot

arm places a bowl of soup inside the microwave, closes the

door and sets the microwave timer for an appropriate heating

duration”, additional objects that are necessary for the gener-

ated task such as “A bowl of soup”, and task-relevant joints

and links including joint 0 (for opening the microwave

door), joint 1 (for setting the timer), link 0 (the door),

and link 1 (the timer knob). Note that for cases where

we sample non-articulated objects or use example-based ini-

tialization, the sampled objects and examples are provided

only as a hint for task proposal, and the generated tasks will

not be tied to them. By repeatedly querying with different

sampled objects and examples, we can generate a diverse

range of manipulation and locomotion tasks, concerning the

relevant object affordances when needed.

3.2. Scene Generation

Once a task proposal is obtained, RoboGen then generates

a corresponding scene for solving the task by populating

the environment with a number of relevant and necessary

objects (assets). As shown in Figure 2 (B), generating a

corresponding scene requires obtaining information for 4

different components: a) relevant assets to be used, b) asset

sizes, c) initial asset configurations and d) initial scene

configuration. We explain details in the following.

Relevant assets In the previous stage of task proposal, we

obtained a list of relevant assets that are necessary for per-

forming the proposed task. To further increase the complex-

ity and diversity of the generated scenes while resembling

object distributions of real-world scenarios, we query GPT-4

to return a number of additional queries (object names and

their descriptions) that are semantically relevant to the task.

For example (Figure 1), for the task “Open storage, put the

toy inside and close it”, the generated scene involves addi-

tionally a living room mat, a table-top lamp, a book, and

an office chair. These queries (names) of the assets needed

for the scene are used to search in existing object mesh

databases. Specifically, we use Objaverse (Deitke et al.,

2023), a large-scale dataset containing over 800k object

assets (3d meshes, textures, and etc.) as the main database

to retrieve the top k = 10 objects that matches the asset

queries. Due to noises in assets’ language annotations and

the extreme diversity of objects in Objaverse (e.g. many

of the assets are not common household objects), object re-

trieved this way are potentially not suitable for the proposed

task. We further use Gemini-Pro (Team et al., 2023), a

state-of-the-art vision-language models (VLM) to verify the

retrieved assets and filter out the undesired ones. (See Ap-

pendix A.1 for more details for the retrieval and verification

4

RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation

process.) In practice, we found objects retrieved this way

work well for rigid object manipulation tasks. For soft-body

manipulation tasks, where a more consistent and control-

lable target shape for the soft-body under manipulation is

desired, and fine-grained details of geometry and texture

are secondary, we ask GPT-4 to come up with desired target

shapes, and use a text-to-image followed by image-to-mesh

generation pipeline to generate the needed mesh. We use

Midjourney (Midjourney, 2022) as our text-to-image gen-

erative model, and Zero-1-to-3 (Liu et al., 2023b) as our

image-to-mesh generative model. See more details of the

generation pipeline in Appendix C.

Asset size Assets generated or retreived from Obja-

verse (Deitke et al., 2022) and PartNetMobility (Xiang et al.,

2020) are usually not of physically plausible sizes. To ac-

count for this, we query GPT-4 to generate the sizes of the

assets such that: 1) the sizes should match real-world object

sizes; 2) the relative sizes between objects allow a plausible

solution for solving the task, e.g., for the task of “putting

a book into the drawer”, the size of the drawer should be

larger than the book.

Initial asset configuration For certain tasks, the articulated

object should be initialized with valid states for the robot

to learn the skill. For example, for the task of “close the

window”, the window should be initialized in an open state;

similarly, for the task of “opening the door”, the door should

be initially closed. Again, we query GPT-4 to set the initial

configurations of these articulated objects, specified in joint

angles.

Scene configuration Spatial configuration specifying the

location and relevant poses of each asset in the scene is

crucial for both producing plausible environments and al-

lowing valid skill learning. E.g., for the task of “retrieving a

document from the safe”, the document needs to be initial-

ized inside the safe; for the task of “removing the knife

from the chopping board”, the knife needs to be initially

placed on the chopping board. RoboGen queries GPT-4 to

generate the locations for each asset as well as such spe-

cial spatial relationships with the task description as the

input. To avoid collision between objects, RoboGen in-

structs GPT-4 to place objects in a collision-free manner.

(See Appendix A.2 for more details.) With the generated

scene components and their corresponding configurations,

we populate the scene accordingly. See Figure 1 for a col-

lection of example scenes and tasks generated by RoboGen.

More examples of the generated scenes are available on our

project website.

3.3. Training Supervision Generation

To acquire the skill for solving the proposed task, supervi-

sions for skill learning are needed. To facilitate the learning

process, RoboGen first queries GPT-4 to plan and decom-

pose the generated task into shorter-horizon sub-tasks. After

the decomposition, RoboGen then queries GPT-4 to choose

a proper algorithm for solving each sub-task. There are

three different types of learning algorithms integrated into

RoboGen: reinforcement learning (Schulman et al., 2017;

Haarnoja et al., 2018), gradient-based trajectory optimiza-

tion (Xian et al., 2023b; Xu et al., 2023), and action primitive

with motion planning (Karaman & Frazzoli, 2011). Each of

these is suited for different tasks, e.g., gradient-based trajec-

tory optimization is more suitable for learning fine-grained

manipulation tasks involving soft bodies such as shaping a

dough into a target shape (Xu et al., 2023; Lin et al., 2022);

action primitives coupled with motion planning are more

reliable in solving the task such as approaching a target ob-

ject via a collision-free path; reinforcement learning better

suits tasks that are contact rich and involving continuous

interaction with other scene components, e.g., legged lo-

comotion, or when the required actions cannot be simply

parameterized by discrete end-effector poses, e.g., turning

the knob of an oven. We provide examples and let GPT-4

choose which learning algorithm to use conditioned on the

generated sub-task.

We consider several action primitives including grasping,

approaching and releasing a target object. Since parallel jaw

gripper can be limited when grasping objects with diverse

sizes, we consider a robotic manipulator equipped with

a suction cup to simplify object grasping. The grasping

and approaching primitives are implemented as follows:

we first randomly sample a point on the target object or

link, compute a gripper pose that aligns with the normal of

the sampled point, and then use motion planning to find a

collision-free path to reach the target gripper pose. After the

pose is reached, we proceed along the normal direction until

a contact is made with the target object. For the grasping and

approaching primitives, RoboGen asks GPT-4 to specify the

target object to grasp or approach, conditioned on the sub-

task. See Appendix A.3 for more implementation details

about the action primitives.

For sub-tasks trained with RL, we prompt GPT-4 to write

corresponding reward functions with three in-context ex-

amples. For rigid manipulation and locomotion tasks, the

reward functions are based on the low-level states which

GPT-4 can query via provided simulator APIs. For soft

body manipulation tasks, RoboGen uses reward functions

specified as the earth-mover distance between the particles

of current and target shape. We prompt GPT-4 to generate a

text description of the target shape, and then use a text-to-3d

model (Liu et al., 2023b) to generate the mesh of the target

shape using the text description, as described in Section 3.2.

See Appendix C for more details on this text-to-3d pipeline.

5

RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation

3.4. Skill Learning

Once we obtained all the required information for the pro-

posed task, including scene components and configurations,

task decompositions, and training supervisions for the de-

composed sub-tasks, we are able to construct the scene in

simulation for the robot to learn the required skills for com-

pleting the task. For long-horizon tasks that involve multiple

sub-tasks, we adopt a simple scheme of learning each sub-

task sequentially: for each sub-task, we run the learning

algorithm for N = 8 times and use the end state with the

highest reward as the initial state for the next sub-task. As

aforementioned, we use a combination of techniques for

skill learning, including reinforcement learning, gradient-

based trajectory optimization, and action primitive with

motion planning, selected on the fly conditioned on the task

generated. For more details, please refer to Appendix A.3.

We included the prompts used for all the stages discussed

above in Appendix D for reference.

Discussion on design choices Our framework design priori-

tizes its foundational structure over specific backend models

used in the initial implementation, and our system is ag-

nostic to the backend LLM/VLM/generative model used,

ensuring that RoboGen can be continuously improved by

upgrading the backend modules with newer models once

they become available. In addition, while human-designed

3D asset databases currently still present better quality, au-

tomated text-to-3D generative pipelines utilize massive 2D

image resources available online and holds a better potential

in further scaling up. As a result, we intentionally added

support for both retrieval-based and generation-based meth-

ods for acquiring assets, and anticipate our method evolving

towards a fully generative model in the future.

4. Experiments

RoboGen is an automated pipeline that can be queried end-

lessly, and generate a continuous stream of skill demonstra-

tions for diverse tasks. Our experiments aim to answer the

following questions: 1) Task Diversity: How diverse are

the tasks proposed by RoboGen for robotic skill learning? 2)

Scene Validity: Does RoboGen generate valid simulation

environments? 3) Training Supervision Validity: Does

RoboGen generate valid task decomposition and training su-

pervisions for the task that will induce intended robot skills?

4) Skill Learning: Does integrating different learning algo-

rithms in RoboGen improve skill learning performance? 5)

System: Can the whole system produce diverse and mean-

ingful robotic skill demonstrations?

4.1. Experimental Setup

Our proposed system is generic and agnostic to specific

simulation platforms. However, since we consider a wide

range of task categories ranging from rigid dynamics to soft

body simulation, and also consider skill learning methods

such as gradient-based trajectory optimization which neces-

sitates a differentiable simulation platform, we used Genesis

for deploying RoboGen, a simulation platform for robot

learning with diverse materials and fully differentiable1. For

skill learning, we use SAC (Haarnoja et al., 2018) as the RL

algorithm. The policy and Q networks are both Multi-layer

Perceptrons (MLP) of size [256, 256, 256], trained with a

learning rate of 3e − 4. For each sub-task, we train with

1M environment steps. We use BIT∗ (Gammell et al., 2015)

as the motion planning algorithm, and Adam (Kingma &

Ba, 2014) for gradient-based trajectory optimization for soft

body manipulation tasks. More implementation details can

be found in Appendix A.3.

4.2. Evaluation Metrics and Baselines

The following evaluation metrics and baselines are used:

Task Diversity The diversity of the generated tasks can be

measured in many aspects, such as the semantic meanings

of the tasks, scene configurations of the generated simu-

lation environments, the appearances and geometries of

the retrieved object assets, and the robot actions required

to perform the task. For semantic meanings of the tasks,

we perform quantitative evaluations by computing the Self-

BLEU (Papineni et al., 2002; Zhu et al., 2018) and the em-

bedding similarity (Zhu et al., 2018) on the generated task

descriptions, where lower scores indicate better diversity.

In addition to the semantics, we also compare the diver-

sity of the generated tasks in the image space, measured

by the embedding similarity of the rendered images of the

scenes at the initial state with both ImageNet pre-trained ViT

(Dosovitskiy et al., 2020) and CLIP models (Radford et al.,

2021). We compare to established benchmarks, including

RLBench (James et al., 2020), Maniskill2 (Gu et al., 2023),

Meta-World (Yu et al., 2020), and Behavior-100 (Srivastava

et al., 2022). We also compare to concurrent work (Wang

et al., 2023a), which leverages LLM to write codes for

generating table-top rigid object manipulation tasks. For

robot actions, we evaluate RoboGen qualitatively using the

generated environments and visualizations of learned robot

skills.

Scene Validity To verify that the retrieved objects match the

requirements of the task, we compute the BLIP-2 scores (Li

et al., 2023b) between rendered images of the retrieved

objects in the simulation scene, and the text descriptions of

the objects. We compare with two ablations of our system.

A) w/o object verification: We retrieve objects based on

matching of language descriptions without using a VLM to

verify the retrieved object. B) w/o size verification: We use

1Genesis is still under development and will be release publicly
soon. We build our system on top of an internal version.

6

RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation

Figure 3: Snapshots of the learned skills on 4 example long-horizon tasks.

RoboGen Behavior-100 RLbench MetaWorld Maniskill2 GenSim

Number of Tasks 106 100 106 50 20 70

Task Description - Self-BLEU ↓ 0.284 0.299 0.317 0.322 0.674 0.378

Task Description - Embedding Similarity (SentenceBert) ↓ 0.165 0.210 0.200 0.263 0.194 0.288

Scene Image - Embedding Similarity (ViT) ↓ 0.193 0.389 0.375 0.517 0.332 0.717

Scene Image - Embedding Similarity (CLIP) ↓ 0.762 0.833 0.864 0.867 0.828 0.932

Table 1: Comparison on task diversity with representative human-designed robotics datasets Behavior-100, RLBench, MetaWorld,
Maniskill2, and concurrent work GenSim (Wang et al., 2023a).

the default size associated with the retrieved asset without

quering LLM for plausible sizes. We also evaluate scene-

level validity via human evaluation, examining whether the

generated scenes align with the task descriptions, and if the

scene configurations and retrieved objects are correct.

Training Supervision Validity We perform human verifica-

tion by asking a human expert to manually inspect whether

the generated decompositions and reward functions are rea-

sonable for solving the task. We also perform qualitative

evaluations by presenting videos of the learned skills using

the generated decomposition and training supervisions.

Skill Learning Performance We provide quantitative anal-

ysis on the skill learning success rate. The success rate is

defined as the ratio of runs that successfully learn the skill

over all attempting runs for a task. In addition, we com-

pare to an ablation where we remove the options of using

motion planning-based primitive, and rely purely on rein-

forcement learning to learn the skills on a set of generated

articulated-object manipulation tasks.

System We show qualitative evaluations of the whole sys-

tem, by providing videos of over 100 learned skills on our

website. Figure 1 includes snapshots of representative tasks.

We also provide a detailed list of generated tasks along

with task statistics (e.g., average number of sub-steps) and a

detailed failure analysis in Appendix B.1 and B.3, respec-

tively.

4.3. Results

Task Diversity We compare RoboGen with several estab-

lished robotics benchmarks in terms of task diversity and

report results in Table 1. Note that RoboGen can generate

an endless stream of tasks when queried repeatedly, but here

we evaluate a version with 106 tasks generated, comparable

to prior works. RoboGen achieves the lowest Self-BLEU,

as well as the lowest similarity score in both language and

image space, demonstrating that our pipeline can generate

tasks whose semantic and visual diversity matches or sur-

passes prior manually crafted skill learning benchmarks and

datasets. We also note the diversity of scenes and tasks gen-

erated by RoboGen is noticeably higher than GenSim (Wang

et al., 2023a). We believe part of the reason is that GenSim

only generates table-top pick-and-place manipulation tasks

with a small number of assets from the Ravens benchmark-

ing dataset (Shridhar et al., 2022). In contrast, RoboGen can

generate a broader range of tasks such as articulated object

manipulation tasks that reason about their affordances and

functionalities, legged locomotion, and soft body manipula-

7

RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation

Figure 4: We compare the BLIP-2 score of ablations of RoboGen on 7 tasks to evaluate the importance of both object and size verification.

Figure 5: Among 12 articulated object manipulation tasks, the success rate decreases drastically if only RL is used for skill learning.

tion tasks, meanwhile leverage more diverse assets retrieved

from open-world databases such as Objaverse, resulting

in much higher diversity in both task semantics and scene

images. We also provide the full list of generated tasks, in-

cluding the task name and task descriptions in Appendix B.1,

and refer readers to our project website for visualizations of

the generated tasks.

Scene Validity Figure 4 shows the BLIP-2 score of all

compared methods on an example set of 7 generated tasks.

As shown, removing the size verification leads to drastic

decrease in BLIP-2 score. This is expected as the default

asset sizes can be drastically different from plausible real-

world sizes. The ablation “w/o object verification” also

has a lower BLIP-2 score and a larger variances, indicating

our verification step improves validity of the constructed

scene. The results demonstrate the importance of using both

object and size verification in RoboGen. In addition, we

conducted manual evaluations of the generated tasks for

scene-level validity. Out of 155 generated tasks (full list in

Appendix B.1), we found 13 failures due to incorrect scene

generation. The failures can be categorized into 1) required

functionality not supported by the assets, e.g., loading paper

into a printer asset which do not have a movable tray. 2)

incorrect semantic understanding of articulated object’s joint

state, i.e., failure to correctly map the joint angle value of an

articulated object to its semantic state, e.g., an LLM cannot

judge whether the joint angle value 0 corresponds to the door

being opened or closed. 3) failure to find matched assets

for tasks that require extremely precise spatial relationships,

e.g., it is hard to retrieve or generate stapler and staples

whose size and geometry exactly match each other for the

task of loading the staples into the stapler. We provide a

detailed analysis in Appendix B.3 on the failure cases and

potential solutions to address them in future work.

Training Supervision Validity Figure 3 demonstrates the

skills learned with the generated training supervisions from

RoboGen, i.e., the task decompositions and reward func-

tions, on 4 example long-horizon tasks. As shown, the robot

successfully learns skills to complete the corresponding

tasks, suggesting that the automatically generated training

supervisions are effective in deriving meaningful and useful

skills. We also manually inspected the generated decompo-

sitions and reward functions, and found 6 failure cases in

the 155 generated object manipulation tasks. The errors can

be categorized into 1) referring to undefined variables; 2)

reward does not encode the intended behavior. Examples

include incorrect semantic understanding of articulated ob-

ject state, e.g., the task is to fold the chair, yet the generated

reward actually encourages unfolding the chair due to mis-

understanding of the mapping between joint angle values

and object state. We also find it hard to generate correct

rewards for continuous motions such as “moving robotic

8

RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation

hand back-and-forth”, or “knock the door”. Again, see Ap-

pendix B.3 for detailed failure analysis and discussion on

potential solutions.

Skill Learning We first evaluate the success rate of our

skill learning pipeline on a subset of 50 generated object

manipulation tasks, 7 soft-body manipulation tasks, and 12

locomotion tasks. Over all 69 benchmarked tasks, RoboGen

achieves an average success rate of 0.774, indicating 3 out

of 4 runs could lead to successful skill learning. Detailed

statistics of the tasks are available in Appendix B.2.

Further, we compare to an ablated version of RoboGen

where only RL is used for skill learning. We randomly select

12 tasks that involve interactions with articulated objects

for this comparison. The results are shown in Figure 5. As

shown, allowing RoboGen to select the optimal learning

algorithms beneficial for achieving higher performance for

completing the tasks. When only RL is used, the skill

learning completely fails for most tasks.

System Figure 1 and 3 show some representative tasks and

learned skills generated by RoboGen. As shown in Fig-

ure 1, RoboGen can generate diverse tasks for skill learning

spanning rigid/articulated object manipulation, legged loco-

motion and soft body manipulation. Figure 3 further shows

that RoboGen is able to deliver long-horizon manipulation

skills with reasonable decompositions. For extensive qual-

itative results of proposed tasks and learned skills, please

refer to our project site. Again, please refer to Appendix B

for a list of generated tasks, their statistics, and a detailed

failure analysis.

5. Conclusion & Limitations

We introduced RoboGen, a generative agent that automat-

ically proposes and learns diverse robotic skills at scale

via generative simulation. RoboGen utilizes the latest ad-

vancements in foundation models to automatically generate

diverse tasks, scenes, and training supervisions in simula-

tion, making a foundational step towards scalable robotic

skill learning in simulation, while requiring minimal human

supervision once deployed. Our system is a fully genera-

tive pipeline that can be queried endlessly, producing a large

number of skill demonstrations associated with diverse tasks

and environments. Our current system still has several limi-

tations: 1) Large-scale verification of learned skills is still

a challenge in the current pipeline, which could potentially

be addressed by incorporating feedback from multi-modal

foundation models in the future. 2) Our paradigm is in-

trinsically constrained by sim-to-real gaps for real-world

deployment, which is a stand-alone research field. However,

given the recent rapid advancements in physically accurate

simulation (Li et al., 2020) and techniques like domain ran-

domization (Tobin et al., 2017; Xu et al., 2023) and realistic

sensory signal rendering (Zhang et al., 2023), we anticipate

a continual narrowing of this gap in the near future.

Acknowledgement

This work is supported by National Science Foundation

under Grant No. IIS-2046491, National Science Foundation

award No. 1849287, DARPA Machine Common Sense, an

Amazon faculty award, an NSF CAREER award, an AFOSR

YIP award, and Cisco and Amazon research award. Any

opinions, findings, and conclusions or recommendations

expressed in this material are those of the author(s) and do

not necessarily reflect the views of the National Science

Foundation, DARPA, Amazon, AFOSR, or Cisco.

Impact Statement

This paper presents work whose goal is to advance the field

of Machine Learning. There are many potential societal

consequences of our work, none of which we feel must be

specifically highlighted here.

References

Ahn, M., Brohan, A., Brown, N., Chebotar, Y., Cortes, O.,

David, B., Finn, C., Gopalakrishnan, K., Hausman, K.,

Herzog, A., et al. Do as i can, not as i say: Ground-

ing language in robotic affordances. arXiv preprint

arXiv:2204.01691, 2022.

Akkaya, I., Andrychowicz, M., Chociej, M., Litwin, M.,

McGrew, B., Petron, A., Paino, A., Plappert, M., Powell,

G., Ribas, R., et al. Solving rubik’s cube with a robot

hand. arXiv preprint arXiv:1910.07113, 2019.

Bousmalis, K., Vezzani, G., Rao, D., Devin, C., Lee, A. X.,

Bauza, M., Davchev, T., Zhou, Y., Gupta, A., Raju, A.,

et al. Robocat: A self-improving foundation agent for

robotic manipulation. arXiv preprint arXiv:2306.11706,

2023.

Brohan, A., Brown, N., Carbajal, J., Chebotar, Y., Chen,

X., Choromanski, K., Ding, T., Driess, D., Dubey, A.,

Finn, C., et al. Rt-2: Vision-language-action models

transfer web knowledge to robotic control. arXiv preprint

arXiv:2307.15818, 2023.

Chen, T., Xu, J., and Agrawal, P. A system for general

in-hand object re-orientation. In Conference on Robot

Learning, pp. 297–307. PMLR, 2022.

Cheng, X., Kumar, A., and Pathak, D. Legs as manipulator:

Pushing quadrupedal agility beyond locomotion. arXiv

preprint arXiv:2303.11330, 2023.

Coumans, E. and Bai, Y. Pybullet, a python module for

9

RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation

physics simulation for games, robotics and machine learn-

ing. http://pybullet.org, 2016.

Dalal, M., Mandlekar, A., Garrett, C., Handa, A., Salakhut-

dinov, R., and Fox, D. Imitating task and motion planning

with visuomotor transformers, 2023.

Deitke, M., Schwenk, D., Salvador, J., Weihs, L., Michel,

O., VanderBilt, E., Schmidt, L., Ehsani, K., Kembhavi,

A., and Farhadi, A. Objaverse: A universe of annotated

3d objects. arXiv preprint arXiv:2212.08051, 2022.

Deitke, M., Schwenk, D., Salvador, J., Weihs, L., Michel,

O., VanderBilt, E., Schmidt, L., Ehsani, K., Kembhavi,

A., and Farhadi, A. Objaverse: A universe of annotated

3d objects. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pp. 13142–

13153, 2023.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,

D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M.,

Heigold, G., Gelly, S., et al. An image is worth 16x16

words: Transformers for image recognition at scale. arXiv

preprint arXiv:2010.11929, 2020.

Driess, D., Xia, F., Sajjadi, M. S., Lynch, C., Chowdhery,

A., Ichter, B., Wahid, A., Tompson, J., Vuong, Q., Yu, T.,

et al. Palm-e: An embodied multimodal language model.

arXiv preprint arXiv:2303.03378, 2023.

Du, Y., Yang, M., Dai, B., Dai, H., Nachum, O., Tenenbaum,

J., Schuurmans, D., and Abbeel, P. Learning universal

policies via text-guided video generation. arXiv preprint

arXiv:2302.00111, 2023.

Gammell, J. D., Srinivasa, S. S., and Barfoot, T. D. Batch

informed trees (bit*): Sampling-based optimal planning

via the heuristically guided search of implicit random geo-

metric graphs. In 2015 IEEE international conference on

robotics and automation (ICRA), pp. 3067–3074. IEEE,

2015.

Gan, C., Schwartz, J., Alter, S., Mrowca, D., Schrimpf, M.,

Traer, J., Freitas, J. D., Kubilius, J., Bhandwaldar, A.,

Haber, N., Sano, M., Kim, K., Wang, E., Lingelbach,

M., Curtis, A., Feigelis, K., Bear, D. M., Gutfreund, D.,

Cox, D., Torralba, A., DiCarlo, J. J., Tenenbaum, J. B.,

McDermott, J. H., and Yamins, D. L. K. Threedworld: A

platform for interactive multi-modal physical simulation,

2021.

Girdhar, R., El-Nouby, A., Liu, Z., Singh, M., Alwala, K. V.,

Joulin, A., and Misra, I. Imagebind: One embedding

space to bind them all. arXiv preprint arXiv:2305.05665,

2023.

Gu, J., Xiang, F., Li, X., Ling, Z., Liu, X., Mu, T., Tang,

Y., Tao, S., Wei, X., Yao, Y., et al. Maniskill2: A unified

benchmark for generalizable manipulation skills. arXiv

preprint arXiv:2302.04659, 2023.

Ha, H., Florence, P., and Song, S. Scaling up and distilling

down: Language-guided robot skill acquisition. arXiv

preprint arXiv:2307.14535, 2023.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft

actor-critic: Off-policy maximum entropy deep reinforce-

ment learning with a stochastic actor. In International

conference on machine learning, pp. 1861–1870. PMLR,

2018.

Haarnoja, T., Moran, B., Lever, G., Huang, S. H., Tirumala,

D., Wulfmeier, M., Humplik, J., Tunyasuvunakool, S.,

Siegel, N. Y., Hafner, R., et al. Learning agile soccer

skills for a bipedal robot with deep reinforcement learn-

ing. arXiv preprint arXiv:2304.13653, 2023.

Heiden, E., Macklin, M., Narang, Y., Fox, D., Garg, A.,

and Ramos, F. Disect: A differentiable simulation en-

gine for autonomous robotic cutting. arXiv preprint

arXiv:2105.12244, 2021.

Huang, W., Xia, F., Xiao, T., Chan, H., Liang, J., Florence,

P., Zeng, A., Tompson, J., Mordatch, I., Chebotar, Y., et al.

Inner monologue: Embodied reasoning through planning

with language models. arXiv preprint arXiv:2207.05608,

2022.

Huang, W., Wang, C., Zhang, R., Li, Y., Wu, J., and Fei-Fei,

L. Voxposer: Composable 3d value maps for robotic

manipulation with language models. arXiv preprint

arXiv:2307.05973, 2023.

James, S., Ma, Z., Arrojo, D. R., and Davison, A. J. Rlbench:

The robot learning benchmark & learning environment.

IEEE Robotics and Automation Letters, 5(2):3019–3026,

2020.

Jiang, Y., Gupta, A., Zhang, Z., Wang, G., Dou, Y., Chen, Y.,

Fei-Fei, L., Anandkumar, A., Zhu, Y., and Fan, L. Vima:

Robot manipulation with multimodal prompts. 2023.

Kang, M., Zhu, J.-Y., Zhang, R., Park, J., Shechtman, E.,

Paris, S., and Park, T. Scaling up gans for text-to-image

synthesis. arXiv preprint arXiv:2303.05511, 2023.

Kapelyukh, I., Vosylius, V., and Johns, E. Dall-e-bot: In-

troducing web-scale diffusion models to robotics. IEEE

Robotics and Automation Letters, 2023.

Karaman, S. and Frazzoli, E. Sampling-based algorithms

for optimal motion planning. The international journal

of robotics research, 30(7):846–894, 2011.

10

http://pybullet.org

RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation

Katara, P., Xian, Z., and Fragkiadaki, K. Gen2sim: Scaling

up robot learning in simulation with generative models.

arXiv preprint arXiv:2310.18308, 2023.

Kaufmann, E., Loquercio, A., Ranftl, R., Müller, M., Koltun,

V., and Scaramuzza, D. Deep drone acrobatics. arXiv

preprint arXiv:2006.05768, 2020.

Kingma, D. P. and Ba, J. Adam: A method for stochastic

optimization. arXiv preprint arXiv:1412.6980, 2014.

Li, C., Zhang, R., Wong, J., Gokmen, C., Srivastava, S.,

Martı́n-Martı́n, R., Wang, C., Levine, G., Lingelbach, M.,

Sun, J., et al. Behavior-1k: A benchmark for embodied

ai with 1,000 everyday activities and realistic simulation.

In Conference on Robot Learning, pp. 80–93. PMLR,

2023a.

Li, J., Li, D., Savarese, S., and Hoi, S. Blip-2: Boot-

strapping language-image pre-training with frozen im-

age encoders and large language models. arXiv preprint

arXiv:2301.12597, 2023b.

Li, M., Ferguson, Z., Schneider, T., Langlois, T. R., Zorin,

D., Panozzo, D., Jiang, C., and Kaufman, D. M. Incre-

mental potential contact: intersection-and inversion-free,

large-deformation dynamics. ACM Trans. Graph., 39(4):

49, 2020.

Liang, J., Huang, W., Xia, F., Xu, P., Hausman, K., Ichter,

B., Florence, P., and Zeng, A. Code as policies: Language

model programs for embodied control. arXiv preprint

arXiv:2209.07753, 2022.

Lin, K., Agia, C., Migimatsu, T., Pavone, M., and Bohg,

J. Text2motion: From natural language instructions to

feasible plans. arXiv preprint arXiv:2303.12153, 2023.

Lin, X., Wang, Y., Olkin, J., and Held, D. Softgym: Bench-

marking deep reinforcement learning for deformable ob-

ject manipulation. arXiv preprint arXiv:2011.07215,

2020.

Lin, X., Huang, Z., Li, Y., Tenenbaum, J. B., Held, D., and

Gan, C. Diffskill: Skill abstraction from differentiable

physics for deformable object manipulations with tools.

arXiv preprint arXiv:2203.17275, 2022.

Liu, C. K. and Negrut, D. The role of physics-based simula-

tors in robotics. Annual Review of Control, Robotics, and

Autonomous Systems, 4:35–58, 2021.

Liu, H., Chen, Z., Yuan, Y., Mei, X., Liu, X., Mandic, D.,

Wang, W., and Plumbley, M. D. Audioldm: Text-to-audio

generation with latent diffusion models. arXiv preprint

arXiv:2301.12503, 2023a.

Liu, R., Wu, R., Van Hoorick, B., Tokmakov, P., Zakharov,

S., and Vondrick, C. Zero-1-to-3: Zero-shot one image to

3d object. arXiv preprint arXiv:2303.11328, 2023b.

Loquercio, A., Kaufmann, E., Ranftl, R., Müller, M., Koltun,

V., and Scaramuzza, D. Learning high-speed flight in the

wild. Science Robotics, 6(59):eabg5810, 2021.

Luo, T., Rockwell, C., Lee, H., and Johnson, J. Scalable

3d captioning with pretrained models. arXiv preprint

arXiv:2306.07279, 2023.

Ma, Y. J., Liang, W., Wang, G., Huang, D.-A., Bastani, O.,

Jayaraman, D., Zhu, Y., Fan, L., and Anandkumar, A.

Eureka: Human-level reward design via coding large lan-

guage models. arXiv preprint arXiv:2310.12931, 2023.

Macklin, M., Müller, M., Chentanez, N., and Kim, T.-Y.

Unified particle physics for real-time applications. ACM

Transactions on Graphics (TOG), 33(4):1–12, 2014.

McDonald, M. J. and Hadfield-Menell, D. Guided imitation

of task and motion planning, 2021.

Melas-Kyriazi, L., Rupprecht, C., Laina, I., and Vedaldi,

A. Realfusion: 360 {\deg} reconstruction of any object

from a single image. arXiv preprint arXiv:2302.10663,

2023.

Midjourney. Midjourney. https://www.midjourney.

com/, 2022.

Murali, A., Mousavian, A., Eppner, C., Fishman, A., and

Fox, D. Cabinet: Scaling neural collision detection for

object rearrangement with procedural scene generation,

2023.

OpenAI. Chatgpt. https://openai.com/blog/

chatgpt, 2022.

OpenAI. Gpt-4 technical report. arXiv preprint

arXiv:2303.08774, 2023.

Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. Bleu:

a method for automatic evaluation of machine transla-

tion. In Proceedings of the 40th annual meeting of the

Association for Computational Linguistics, pp. 311–318,

2002.

Poole, B., Jain, A., Barron, J. T., and Mildenhall, B. Dream-

fusion: Text-to-3d using 2d diffusion. arXiv preprint

arXiv:2209.14988, 2022.

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G.,

Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark, J.,

et al. Learning transferable visual models from natural

language supervision. In International conference on

machine learning, pp. 8748–8763. PMLR, 2021.

11

https://www.midjourney.com/
https://www.midjourney.com/
https://openai.com/blog/chatgpt
https://openai.com/blog/chatgpt

RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation

Radosavovic, I., Xiao, T., Zhang, B., Darrell, T., Malik, J.,

and Sreenath, K. Learning humanoid locomotion with

transformers. arXiv preprint arXiv:2303.03381, 2023.

Reimers, N. and Gurevych, I. Sentence-bert: Sentence

embeddings using siamese bert-networks. arXiv preprint

arXiv:1908.10084, 2019.

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and

Ommer, B. High-resolution image synthesis with latent

diffusion models. In Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition, pp.

10684–10695, 2022.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and

Klimov, O. Proximal policy optimization algorithms.

arXiv preprint arXiv:1707.06347, 2017.

Seita, D., Wang, Y., Shetty, S. J., Li, E. Y., Erickson, Z., and

Held, D. Toolflownet: Robotic manipulation with tools

via predicting tool flow from point clouds. In Conference

on Robot Learning, pp. 1038–1049. PMLR, 2023.

Shen, T., Gao, J., Yin, K., Liu, M.-Y., and Fidler, S. Deep

marching tetrahedra: a hybrid representation for high-

resolution 3d shape synthesis. Advances in Neural Infor-

mation Processing Systems, 34:6087–6101, 2021.

Shridhar, M., Manuelli, L., and Fox, D. Cliport: What and

where pathways for robotic manipulation. In Conference

on Robot Learning, pp. 894–906. PMLR, 2022.

Song, Y., Romero, A., Müller, M., Koltun, V., and Scara-

muzza, D. Reaching the limit in autonomous racing:

Optimal control versus reinforcement learning. Science

Robotics, 8(82):eadg1462, 2023.

Srivastava, S., Li, C., Lingelbach, M., Martı́n-Martı́n, R.,

Xia, F., Vainio, K. E., Lian, Z., Gokmen, C., Buch, S., Liu,

K., et al. Behavior: Benchmark for everyday household

activities in virtual, interactive, and ecological environ-

ments. In Conference on Robot Learning, pp. 477–490.

PMLR, 2022.

Sucan, I. A., Moll, M., and Kavraki, L. E. The open motion

planning library. IEEE Robotics & Automation Magazine,

19(4):72–82, 2012.

Taori, R., Gulrajani, I., Zhang, T., Dubois, Y., Li,

X., Guestrin, C., Liang, P., and Hashimoto, T. B.

Stanford alpaca: An instruction-following llama

model. https://github.com/tatsu-lab/

stanford_alpaca, 2023.

Team, G., Anil, R., Borgeaud, S., Wu, Y., Alayrac, J.-B., Yu,

J., Soricut, R., Schalkwyk, J., Dai, A. M., Hauth, A., et al.

Gemini: a family of highly capable multimodal models.

arXiv preprint arXiv:2312.11805, 2023.

Tobin, J., Fong, R., Ray, A., Schneider, J., Zaremba, W.,

and Abbeel, P. Domain randomization for transferring

deep neural networks from simulation to the real world.

In 2017 IEEE/RSJ international conference on intelligent

robots and systems (IROS), pp. 23–30. IEEE, 2017.

Todorov, E., Erez, T., and Tassa, Y. Mujoco: A physics

engine for model-based control. In 2012 IEEE/RSJ inter-

national conference on intelligent robots and systems, pp.

5026–5033. IEEE, 2012.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,

M.-A., Lacroix, T., Rozière, B., Goyal, N., Hambro, E.,

Azhar, F., et al. Llama: Open and efficient foundation lan-

guage models. arXiv preprint arXiv:2302.13971, 2023.

Wang, L., Ling, Y., Yuan, Z., Shridhar, M., Bao, C., Qin,

Y., Wang, B., Xu, H., and Wang, X. Gensim: Generating

robotic simulation tasks via large language models. In

Arxiv, 2023a.

Wang, Y., Sun, Z., Erickson, Z., and Held, D. One policy

to dress them all: Learning to dress people with diverse

poses and garments. arXiv preprint arXiv:2306.12372,

2023b.

Wang, Y.-J., Zhang, B., Chen, J., and Sreenath, K. Prompt a

robot to walk with large language models. arXiv preprint

arXiv:2309.09969, 2023c.

Weng, T., Bajracharya, S. M., Wang, Y., Agrawal, K., and

Held, D. Fabricflownet: Bimanual cloth manipulation

with a flow-based policy. In Conference on Robot Learn-

ing, pp. 192–202. PMLR, 2022.

Wu, J., Antonova, R., Kan, A., Lepert, M., Zeng, A., Song,

S., Bohg, J., Rusinkiewicz, S., and Funkhouser, T. Tidy-

bot: Personalized robot assistance with large language

models. arXiv preprint arXiv:2305.05658, 2023.

Xian, Z., Gervet, T., Xu, Z., Qiao, Y.-L., and Wang, T.-H.

Towards a foundation model for generalist robots: Di-

verse skill learning at scale via automated task and scene

generation. arXiv preprint arXiv:2305.10455, 2023a.

Xian, Z., Zhu, B., Xu, Z., Tung, H.-Y., Torralba, A., Fragki-

adaki, K., and Gan, C. Fluidlab: A differentiable envi-

ronment for benchmarking complex fluid manipulation.

arXiv preprint arXiv:2303.02346, 2023b.

Xiang, F., Qin, Y., Mo, K., Xia, Y., Zhu, H., Liu, F., Liu, M.,

Jiang, H., Yuan, Y., Wang, H., et al. Sapien: A simulated

part-based interactive environment. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pp. 11097–11107, 2020.

12

https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca

RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation

Xu, Z., Xian, Z., Lin, X., Chi, C., Huang, Z., Gan, C.,

and Song, S. Roboninja: Learning an adaptive cut-

ting policy for multi-material objects. arXiv preprint

arXiv:2302.11553, 2023.

Yu, T., Quillen, D., He, Z., Julian, R., Hausman, K., Finn,

C., and Levine, S. Meta-world: A benchmark and evalua-

tion for multi-task and meta reinforcement learning. In

Conference on robot learning, pp. 1094–1100. PMLR,

2020.

Yu, T., Xiao, T., Stone, A., Tompson, J., Brohan, A., Wang,

S., Singh, J., Tan, C., Peralta, J., Ichter, B., et al. Scaling

robot learning with semantically imagined experience.

arXiv preprint arXiv:2302.11550, 2023a.

Yu, W., Gileadi, N., Fu, C., Kirmani, S., Lee, K.-H., Are-

nas, M. G., Chiang, H.-T. L., Erez, T., Hasenclever, L.,

Humplik, J., et al. Language to rewards for robotic skill

synthesis. arXiv preprint arXiv:2306.08647, 2023b.

Zeng, A., Song, S., Lee, J., Rodriguez, A., and Funkhouser,

T. Tossingbot: Learning to throw arbitrary objects with

residual physics. IEEE Transactions on Robotics, 36(4):

1307–1319, 2020.

Zhang, X., Chen, R., Li, A., Xiang, F., Qin, Y., Gu, J., Ling,

Z., Liu, M., Zeng, P., Han, S., et al. Close the optical

sensing domain gap by physics-grounded active stereo

sensor simulation. IEEE Transactions on Robotics, 2023.

Zhu, Y., Lu, S., Zheng, L., Guo, J., Zhang, W., Wang, J.,

and Yu, Y. Texygen: A benchmarking platform for text

generation models. In The 41st international ACM SIGIR

conference on research & development in information

retrieval, pp. 1097–1100, 2018.

Zhuang, Z., Fu, Z., Wang, J., Atkeson, C., Schwertfeger, S.,

Finn, C., and Zhao, H. Robot parkour learning. arXiv

preprint arXiv:2309.05665, 2023.

13

RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation

A. Implementation Details

A.1. Asset Retrieval and Verification

For each object in Objaverse, we obtain a list of language descriptions of it by combining the default annotations and a

more cleaned version of annotations from (Luo et al., 2023). Given the language description of the asset we want to retrieve,

we use Sentence-Bert (Reimers & Gurevych, 2019) to get the embedding of the description, and retrieve k objects from

Objaverse whose language embeddings are the most similar to the language embedding of the target asset. Due to noises in

the object annotations, there can be significant discrepancies between the actual asset and the intended target, even when the

similarity score in the language embedding space is high. To resolve this, we further use Gemini-Pro (Team et al., 2023) a

state-of-the-art vision-language model (VLM) to verify the retrieved assets and filter out the undesired ones. Specifically,

we input an image of the retrieved object to the VLM mode to generate a caption of the object. The caption, together with

the description of the desired asset and the description of the task, are fed back into GPT-4 to verify if the retrieved asset is

appropriate to be used in the proposed task.

A.2. Collision Resolving in Scene Generation

When the LLM generate the initial pose of the objects, we prompt it to leverage its basic spatial understanding and tries to

place the objects in different locations. We use this as the initialization, and check potential collisions in the initial scene

configuration. For any detected collision between two objects, we identify the collision node of the objects in contact, and

push their center of mass away along the opposite directions of the collision normals to resolve collision.

A.3. Skill Learning

For reinforcement learning, we use SAC (Haarnoja et al., 2018) as the RL algorithm. For object manipulation tasks, the

observation space is the low-level state of the objects and robot in the task. The policy and Q networks used in SAC are both

Multi-layer Perceptrons (MLP) of size [256, 256, 256]. We use a learning rate of 3e − 4 for the actor, the critic, and the

entropy regularizer. The horizon of all manipulation tasks are 100, with a frameskip of 2. The action of the RL policy is 6d:

where the first 3 elements determines the translation, either as delta translation or target location (suggested by GPT-4),

and the second 3 elements determines the delta rotation, expressed as delta-axis angle in the gripper’s local frame. For

each sub-task, we train with 1M environment steps. For locomotion tasks, the cross entropy method (CEM (De Boer et al.,

2005)) is used for skill learning, which we find to be more stable and efficient than RL. The ground-truth simulator is used

as the dynamcis model in CEM, and the actions to be optimized are the joint angle values of the robot. The horizon for all

locomotion tasks are 150, with a frameskip of 4

For action primitives, we use BIT∗ (Gammell et al., 2015) implemented in the Open Motion Planning Library (OMPL) (Sucan

et al., 2012) as the motion planning algorithm. For the grasping and the approaching primitive, we first sample a surface

point on the target object or link, then compute a gripper pose that aligns the gripper y axis with the normal of the sampled

point. The pre-contact gripper pose is set to be 0.03m above the surface point along the normal direction. Motion planning

is then used to find a collision-free path to reach the target gripper pose. After the target gripper pose is reached, we keep

moving the gripper along the normal until contact is made.

For soft body manipulation tasks, we use Adam (Kingma & Ba, 2014) for gradient-based trajectory optimization. We

run trajectory optimization for 300 gradient steps. We use a learning rate of 0.05 for the optimizer. The horizons of all

manipulation tasks are either 150 or 200. We use Earth Mover’s distance between object’s current and target shape as the

cost function for trajectory optimization.

For querying GPT-4, we used a temperature between 0.8− 1.0 for task proposal to ensure diversity in the generated tasks.

For all other stages of RoboGen, we use temperature values between 0− 0.3 to ensure more robust responses from GPT-4.

B. Generated tasks, Statistics, and Analysis

B.1. List of Tasks and Statistics

Note that RoboGen can be used to generate different type of tasks including rigid and articulated object manipulation, soft

body object manipulation, and legged locomotion, but the major diversity of the tasks lies in manipulating articulated and

rigid objects in the current framework, due to the varied nature of these objects in everyday life.

14

RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation

Figure 6: Left: The distribution of number of substeps for the generated rigid and articulated object manipulation tasks in

Table 2. The average number of substeps is 3.13. Middle: The distribution of number of substeps that need to be solved

using RL for the generated tasks. The average number of RL substeps is 1.5. Right: The distribution of number of substeps

that need to be solved using motion planning based primitives for the generated tasks. The average number of such kind of

substeps is 1.63. Regarding duration for solving the task: if the task’s subgoals can all be solved via planning, typically each

task can be solved within 10 minutes. If certain subgoals require RL to solve, it usually takes around 2-3 hours for each

RL-necessary step, and the total duration thus depends on both the number and nature of the subtasks. Taking these into

account, a task typically takes 4-5 hours on average. This is done using 8 threads of a CPU running at 2.5Ghz, meaning that

each single node in a cluster with a 32-core (64 threads) CPU could run 8 jobs in parallel at the same time.

Table 2 provides the list of rigid and articulated object manipulation tasks that are generated using RoboGen at the time of

submission. We note that RoboGen can be constantly queried to generate more tasks. Figure 6 shows the distribution of

number of substeps for these generated tasks. As shown, most tasks are short-horizon and can be solved within 4 substeps.

Longer-horizon tasks require 8 and up to 10 substeps to solve. The average number of substeps for all tasks is 3.13. Figure 6

also presents the distribution of substeps to be solved using RL or motion planning based primitives. Please refer to the

caption of the figure for more details.

Table 3 shows a list of representative soft body manipulation tasks that RoboGen generates, and Table 4 shows the a list of

example generated locomotion tasks.

Table 2: List of generated tasks.

Task name Task description # of substeps # of RL sub-

steps

of primitive

substeps

Rotate Laptop Screen The robot arm rotates the laptop screen to a

certain angle for better view

2 1 1

Move Laptop The robot arm lifts and moves the laptop to a

new location

3 2 1

Close Laptop Lid The robotic arm will close the laptop lid 2 1 1

Open Laptop Lid The robotic arm will open the laptop lid 2 1 1

Pack Item In Suitcase The robot arm places an item .for example, a

folded shirt. inside the suitcase

4 2 2

Extend Suitcase Handle The robotic arm will extend the suitcases han-

dle in order to pull or push the suitcase

2 1 1

Pull Suitcase on Wheels The robot arm extends the suitcase handle,

grips it in a way to let the suitcase stand on

its wheels and pulls it

3 2 1

Lift Suitcase The robotic arm will lift the suitcase by its

handle

2 1 1

Partially Close Window The robotic arm partially closes one of the

slider translation windows

2 1 1

Open Window Halfway The robotic arm will open one of the slider

translation windows halfway to let fresh air in

2 1 1

Fully Open Window The robotic arm will open both of the slider

translation windows to their full extent for max-

imum ventilation

4 2 2

Close Window The robotic arm closes both slider translation

windows

4 2 2

Open and Close Toilet Lid The robot arm will interact with the hinge lid

of the toilet to first open it and then close it

4 2 2

Open and Close Toilet Pump

Lid

The robot arm will interact with the slider

pump lid to first open it and then close it

3 2 1

Continued on next page

15

RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation

Table 2 continued from previous page

Task name Task description # of substeps # of RL sub-

steps

of primitive

substeps

Flush the Toilet The robotic arm will interact with the hinge

lever of the toilet to flush it

3 1 2

Set Clock Time The robotic arm adjusts the hinge hands of the

clock to set the desired time

6 2 4

Move Clock Ahead for Day-

light Saving

The robotic arm moves the clock hands ahead

by 1 hour to adjust for daylight saving

2 1 1

Move Clock Back at End of

Daylight Saving

The robot arm moves the clock hands back by

1 hour to adjust to the end of daylight saving

2 1 1

close the oven door The robot arm needs to close the oven door

after use This task involves moving towards

the oven door and applying force to close it

2 1 1

Extend Display Screen The robotic arm will extend the slider transla-

tion screen to enlarge the display

2 1 1

Retract Display Screen The robotic arm will retract the slider transla-

tion screen to make the display smaller

2 1 1

Adjust Display Angle The robotic arm adjusts the display base link

to change the viewing angle

2 1 1

Rotate Display Base The robotic arm will rotate the display base to

point the display to a different direction

2 1 1

Rinse a Plate The robot arm holds a plate under the spout,

turns on the faucet to rinse the plate, then turns

off the faucet

8 3 5

Turn On Faucet The robotic arm operates the hinge switch of

the faucet in order for water to flow from the

spout

2 1 1

Wash Hands The robot arm acts as if its washing hands to

demonstrate good hygiene

8 4 4

Fill a Glass of Water The robot arm first turns on the faucet, waits

for a glass to fill, then turns off the faucet

5 3 2

Fold Chair The robotic arm will fold the chair to save

room or for easy carrying

3 1 2

Position Chair for Seating The robotic arm positions the unfolded chair

in a desired location for a person to sit

3 1 2

Unfold Chair The robotic arm will unfold the folding chair

to make it suitable for sitting

3 1 2

Lift Chair The robotic arm lifts the chair from the ground

to place it into another location

4 2 2

Staple Papers The robot arm gathers a few loose sheets of pa-

per and uses the stapler to staple them together

6 2 4

Close Stapler Lid The robot arm closes the lid of the stapler after

it has been opened

2 1 1

Open Stapler Lid The robotic arm will open the lid of the stapler 2 1 1

Load Staples into Stapler The robot arm inserts new staples into the sta-

pler

6 3 3

Turn On the Printer The robot arm pushes the slider button to turn

on the printer

2 1 1

Load Paper into Printer The robot arm loads paper into the printer via

the input tray, typically located on the printer

body

2 1 1

Print a Document The robot interacts with the printer to print a

document The robot arm first places a docu-

ment on the printer, then moves the button to

initiate the print

4 2 2

Stop a Printer The robot arm stops a printer by moving the

slider button to the stop position

2 1 1

Fill Kettle with Water The robot arm opens the kettle lid, holds a

water jug to fill the kettle with water, and then

closes the lid

6 3 3

Pour Water from Kettle The robot arm holds the kettle handle, tilts the

kettle to pour water into a cup

4 2 2

Open Kettle Lid The robotic arm will open the kettle lid 2 1 1

Lift Kettle by Handle The robotic arm will lift the kettle by its handle 2 1 1

close the drawer of the table The robot arm will close the drawer of the table 2 1 1

Close Door The robotic arm will close the door 2 1 1

Knock On Door The robotic arm will knock on the door in a

typical way a human would

3 3 0

Partially Open Door Open the door partially for ventilation or for

casual conversation without fully opening it

2 1 1

Open Door The robotic arm will open the door 2 1 1

Open Partial Box Lid The robotic arm will partially open the box

lid based on certain degree, to demonstrate

kinematic control

2 1 1

Store an Object Inside Box The robot arm places a small object inside the

box and closes the lid

6 3 3

Open Box Lid The robotic arm will open the box lid 2 1 1

Continued on next page

16

RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation

Table 2 continued from previous page

Task name Task description # of substeps # of RL sub-

steps

of primitive

substeps

Retrieve an Object From Box The robot arm opens the box lid, takes a small

object from the box, and then closes the lid

6 3 3

Push Drawer In After retrieving an item from the drawer, the

robot arm slides the drawer back into the box

2 1 1

Close Box Lid The robotic arm closes the lid of the box 2 1 1

Pull Drawer Out The robotic arm uses the prismatic joint to

slide the drawer out from the box

2 1 1

Making Coffee The robot arm opens the lid of the container,

places coffee grounds inside, then closes the

lid and starts the brewing process by adjusting

the knob

8 4 4

Turning On Coffee Machine The robotic arm will adjust the hinge knob on

the coffee machine to the on setting

2 1 1

Change Cleaning Cycle Robot changes the cleaning cycle of the dish-

washer by interacting with one of the slider

buttons

2 1 1

Open Dishwasher Door The robotic arm will open the dishwasher door 2 1 1

Load Dishwasher Robot arm places a plate inside the dishwasher 6 3 3

Press Start Button The robot will press the start button on the

dishwasher to begin the washing cycle

3 1 2

Close Dispenser Lid After filling or extracting contents, the robotic

arm will close the lid of the dispenser

2 1 1

Extract Contents The robot arm will open the dispenser lid and

proceed to extract the contents inside the dis-

penser

6 3 3

Open Dispenser Lid The robotic arm will open the lid of the dis-

penser

2 1 1

Fill Dispenser The robotic arm opens the dispenser lid and

then pours the desired content into the dis-

penser

5 3 2

Rotate Fan Rotor The robotic arm will apply a force to the rotor

of the fan, causing it to rotate

3 1 2

Change Fan Direction The robotic arm will change the direction of

the fan by physically moving the entire fan

2 1 1

Position Fan To Cool Off a

Room

The robot arm moves the fan to a location in

order to cool off a specific area in a room

2 1 1

Turn Off Water Faucet The robotic arm will rotate the switch of the

faucet to cut off the water supply

2 1 1

Angle Laptop Screen The robot positions the laptop screen to a de-

sired angle for better visibility

2 1 1

Opening Refrigerator Door The robotic arm will open one of the refrigera-

tor doors

2 1 1

Opening Both Refrigerator

Doors

The robotic arm opens both the refrigerator

doors one after the other

4 2 2

Load item into the refrigerator The robotic arm will open one of the refrigera-

tor doors, place an item inside, and close the

door

6 3 3

Retrieving an item from the re-

frigerator

The robotic arm will open one of the refrigera-

tor doors, retrieve an item, and then close the

door

6 3 3

Dispose Toilet Paper into Toilet A robotic arm picks up a piece of toilet paper

and disposes of it in the toilet by dropping it in

and then closing the lid

10 3 7

Close Trashcan Lid The robotic arm will close the trashcans lid 2 1 1

Open Trashcan Lid The robotic arm will open the trashcans lid 2 1 1

Move the Trashcan The robot arm pushes the trashcan from one

place to another

2 1 1

Change Lamp Direction The robotic arm will alter the lamp’s light di-

rection by manipulating the lamps head

2 1 1

Rotate Lamp Base The robot arm will rotate the lamp base to

adjust the lamps general orientation

2 1 1

Adjust Lamp Position The robotic arm will adjust the position of the

lamp using its hinge rotation bars, enabling the

robot to direct the lamps light to a specific area

6 3 3

Change Lamp Direction The robotic arm will alter the lamp’s light di-

rection by manipulating the lamps head

2 1 1

Close Drawer The robotic arm will push the drawer closed 2 1 1

Retrieve Object from Drawer The robot arm opens the drawer, retrieves an

object from inside, and then closes the drawer

6 3 3

Open Drawer The robotic arm will pull the drawer open 2 1 1

Store Object in Table Drawer The robot arm puts an item, like a book, into a

drawer in the table

6 3 3

Throw Trash Away The robotic arm places an item of trash inside

the trash can

7 3 4

Continued on next page

17

RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation

Table 2 continued from previous page

Task name Task description # of substeps # of RL sub-

steps

of primitive

substeps

Insert New Trash Bag The robotic arm inserts a new trash bag into

the trash can

5 3 2

Check Contents of the Pot The robot arm slides the lid of the pot to check

the contents inside the pot

3 1 2

Stir Contents in Pot The robot arm removes the lid of the pot and

stirs the pots contents with a stirring spoon

4 2 2

Remove Pot Lid The robotic arm will slide the lid of the pot

aside

3 1 2

Select Washing Cycle The robotic arm will push one of the washing

machines slider buttons to select a washing

cycle

2 1 1

Load Clothes Into Washing

Machine

The robot arm opens the washing machine door

and places clothes inside

4 2 2

Adjust Washing Settings The robot arm rotates a knob to adjust washing

settings such as temperature or spin speed

2 1 1

Open Washing Machine Door The robotic arm will open the washing ma-

chine door

2 1 1

Move Door Slightly Open The robotic arm opens the door slightly to al-

low for some air circulation without fully open-

ing it

3 1 2

Deliver an Object The robot arm holds an object, opens the door,

passes through, then closes the door behind

it This represents the robot arm delivering an

object from one room to another

8 3 5

Find Door Position The robot arm would touch different parts of

the door to find its initial position It is useful

to know the initial position for actions like

opening or closing

4 2 2

Regulate Coffee Strength The robot arm rotates a knob to adjust the

strength of the coffee

2 1 1

Insert Portafilter The robot arm inserts the portafilter into the

coffee machine

3 2 1

Adjust Machine Settings The robot arm adjusts a knob to alter machine

settings

2 1 1

Pull Lever to Start Coffee

Brewing

The robot arm pulls a lever to start the brewing

process of the coffee machine

2 1 1

Steam Milk The robot operates a lever to steam milk for

the coffee

3 2 1

Unload Dishes from Dish-

washer

The robot arm retrieves clean dishes from the

dishwasher

6 3 3

Start Dishwasher Cycle The robot arm turns the dishwasher knob to

start the washing cycle

2 1 1

Open Dishwasher Door The robotic arm will open the dishwasher door

for placing or removing dishes

2 1 1

Straighten Display Screen The robotic arm will straighten the display

screen if it has been tilted or rotated

3 1 2

Tilt Display Screen The robotic arm will tilt the display screen to

adjust viewing angle

3 1 2

Position Display Screen The robotic arm will move the display screen

to a desired location

2 1 1

Orient Globe Towards Specific

Country

The robot arm rotates the globe such that a

specific country on the globes surface faces the

viewer

2 1 1

Rotate Globe Horizontally The robotic arm will rotate the globe horizon-

tally to display various continents and coun-

tries on its surface

2 1 1

Spin Globe Gently for Leisure The robot arm spins the globe gently, as a re-

laxing activity or a playful interaction

2 1 1

Adjust Lamp Height The robot arm will adjust the height of the

lamp by manipulating the rotation bars

6 3 3

Turn On Lamp The robotic arm turns on the lamp by pressing

the toggle button

3 1 2

Set Soup Bowl in Microwave The robot arm will set a bowl of soup on the

microwaves rotation tray and set the timer

7 3 4

Rotate Power Knob The robotic arm rotates the power know to set

the heating power level

2 1 1

Press Microwave Button The robot arm slides the microwave button 3 1 2

Set Timer The robotic arm rotates the timer knob to set

the duration for heating

2 1 1

Open Microwave Door The robotic arm will open the microwave door 2 1 1

Open Oven Door The robot arm is programmed to open the door

of the oven

2 1 1

Adjust Oven Timer The robot arm is to manipulate one of the ovens

hinge knobs to set an appropriate timer

2 1 1

Continued on next page

18

RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation

Table 2 continued from previous page

Task name Task description # of substeps # of RL sub-

steps

of primitive

substeps

Set Oven Temperature The robot arm is to adjust another knob to set

the appropriate temperature for cooking

2 1 1

Set Oven Function The robot arm needs to adjust another knob

to set the desired oven function – for example,

circulating air, grilling or bottom heat

2 1 1

Open Fridges Freezer Door The robot arm opens the freezer compartment

door of the refrigerator

2 1 1

Move Cart Forward The robotic arm will push the cart forward 2 1 1

Turn Cart The robotic arm will turn the cart to change its

direction

2 1 1

Load Object onto Cart The robot arm places an object onto the cart 3 1 2

Unload Object from Cart The robot arm takes an object off from the cart 3 1 2

Adjust Chair Height The robotic arm will adjust the height of the

chair by interacting with the knob

2 1 1

Move Chair The robot arm will move the chair using the

wheels

2 1 1

Rotate Chair The robot arm rotates the chair to a desired

direction

2 1 1

Tilt Chair Seat The robot arm tilts the chair seat to a desired

angle

2 1 1

Open Eyeglasses The robotic arm will unfold the legs of the

eyeglasses

4 2 2

Place Eyeglasses on Table The robot arm picks up the eyeglasses and

places them on a table

3 1 2

Store an Item in Safe The robot arm opens the safe, places an item

inside, and then closes and locks the safe

8 4 4

Turn Safe Knob The robotic arm will turn one of the safes

knobs to unlock it

2 1 1

Retrieve an Item from Safe The robot arm unlocks the safe, opens the door,

retrieves an item from inside, and then closes

and locks the safe

8 4 4

Open Safe Door The robotic arm will open the safe door 2 1 1

Open Trashcan Lid The robotic arm will open the lid of the trash-

can

2 1 1

Open Dispenser Lid The robotic arm will open the lid of the dis-

penser

2 1 1

Turn On Water Faucet The robotic arm will rotate the switch of the

faucet to turn on the water

2 1 1

Open Laptop The robotic arm opens the unfolded state of

the laptops screen

2 1 1

Open Toilet Lid The robotic arm will carefully open the lid of

the toilet

2 1 1

Close Dispenser Lid The robotic arm will close the dispenser lid

after use

2 1 1

Close Table Drawer The robotic arm will close the open drawer on

the table

2 1 1

Open Trash Can The robotic arm will open the trash can lid 2 1 1

Close Toilet Lid The robotic arm will put down the lid of the

toilet

3 1 2

Open Door The robotic arm will open the door by rotating

the hinge

2 1 1

Turn Off Faucet The robotic arm turns off the faucet by rotating

one of the hinge switches

2 1 1

Close Window The robotic arm will close the window to pre-

serve indoor temperature

2 1 1

Open Box The robot arm opens the box by manipulating

the hinge lid

2 1 1

Rotate Clock Hands Rotate the minute and hour hands of the clock

with the robotic arm, simulating the passing of

time

4 2 2

Unfold the Chair The robotic arm will unfold the chair to prepare

it for use

4 2 2

Open Kettle Lid The robot arm lifts the kettle lid 2 1 1

B.2. Skill Learning Success Rate

Due to the randomness in the skill learning process (sampling is used in the motion planning-based action primitive, and

RL inherently has randomness during exploration and training), we also provide quantitative analysis on the skill learning

success rate, i.e., given a generated task with correct training supervisions, if we run the skill learning pipeline for multiple

times, how many of the runs would succeed in learning the skill. The success in learning a skill is determined by a human

evaluator watching the video of the learned policy.

19

RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation

Task Name Task Description

Bend the noodle into a U shape The robot needs to to bend an initial straight noodle into the shape of letter ”U”

Flatten the rice dough The robot uses a square dough flattener to flatten a rice dough

Cut dough in half The robot uses a knife to cut a dough in half

Shape dough The robot uses two square dough flatteners to shape the dough into a baguette

Lift up dumping The robot uses two square dough flatteners to lift up a dumpling

Roll out dough The robot uses a rolling pin to flatten a dough

Put filling onto wrapper The robot needs to grasp a dumpling filling and put it on top of the dumpling wrapper

Table 3: List of soft body manipulation tasks RoboGen generated.

Task Name Task Description

Jump forward The legged robot needs to do a jump forward

Spin counter-clockwise The legged robot needs to spin itself counter-clockwise around the vertical axis

Run forward The legged robot needs to do fun forward at a high speed

Spin left without using right hind leg The legged robot needs to spin itself to the left while not letting the right hind leg touch the ground

Jump higher than 5 meters The legged robot needs to jump and reach a height higher than 5 meters

Flip forward The legged robot makes a flip forward

Climb up stairs The legged robot climbs up a staircase in the environment

Kick the soccer ball to the left The legged robot needs to kick the soccer ball and make it move to the left

Walk backwards The legged robot needs to move backwards

Push Ball The legged robot needs to push the ball forward

Turn Right The legged robot needs to turn itself to face right

Crawl forward The legged robot needs to move forward while keeping the body in a low position

Table 4: List of locomotion tasks RoboGen generated.

We present the detailed skill learning success rate of 50 articulated object manipulation tasks in Table 5. The average skill

learning success rate among these tasks is 0.745. We also benchmark the success rate for the soft-body manipulation and

locomotion tasks, shown in Table 6 and Table 7.

Table 5: Skill learning success rate on 50 articulated object manipulation tasks.

Task name Task description Skill Learning Success Rate

Rotate Laptop Screen The robot arm rotates the laptop screen to a

certain angle for better view

1.0

Extend Suitcase Handle The robotic arm will extend the suitcases han-

dle in order to pull or push the suitcase

1.0

Open Window Halfway The robotic arm will open one of the slider

translation windows halfway to let fresh air in

1.0

Flush the Toilet The robotic arm will interact with the hinge

lever of the toilet to flush it

0.67

Move Clock Ahead for Day-

light Saving

The robotic arm moves the clock hands ahead

by 1 hour to adjust for daylight saving

0.38

close the oven door The robot arm needs to close the oven door

after use This task involves moving towards

the oven door and applying force to close it

0.83

Open Trashcan Lid The robotic arm will open the lid of the trash-

can

1.0

Extend Display Screen The robotic arm will extend the slider transla-

tion screen to enlarge the display

1.0

Turn On Faucet The robotic arm operates the hinge switch of

the faucet in order for water to flow from the

spout

0.83

Unfold Chair The robotic arm will unfold the folding chair

to make it suitable for sitting

0.5

Open Stapler Lid The robotic arm will open the lid of the stapler 0.5

Turn On the Printer The robot arm pushes the slider button to turn

on the printer

1.0

Lift Kettle by Handle The robotic arm will lift the kettle by its handle 0.83

close the drawer of the table The robot arm will close the drawer of the table 0.75

Close Door The robotic arm will close the door 0.5

Open Partial Box Lid The robotic arm will partially open the box

lid based on certain degree, to demonstrate

kinematic control

0.83

Pull Drawer Out The robotic arm uses the prismatic joint to

slide the drawer out from the box

0.67

Turning On Coffee Machine The robotic arm will adjust the hinge knob on

the coffee machine to the on setting

0.5

Continued on next page

20

RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation

Table 5 continued from previous page

Task name Task description Skill Learning Success Rate

Press Start Button The robot will press the start button on the

dishwasher to begin the washing cycle

1.0

Close Dispenser Lid After filling or extracting contents, the robotic

arm will close the lid of the dispenser

0.25

Open Dispenser Lid The robotic arm will open the lid of the dis-

penser

0.0

Rotate Fan Rotor The robotic arm will apply a force to the rotor

of the fan, causing it to rotate

1.0

Turn On Water Faucet The robotic arm will rotate the switch of the

faucet to turn on the water

1.0

Open Laptop The robotic arm opens the unfolded state of

the laptops screen

0.8

Opening Both Refrigerator

Doors

The robotic arm opens both the refrigerator

doors one after the other

0.8

Open Toilet Lid The robotic arm will carefully open the lid of

the toilet

1.0

Close Trashcan Lid The robotic arm will close the trashcans lid 0.33

Change Lamp Direction The robotic arm will alter the lamp’s light di-

rection by manipulating the lamps head

1.0

Partially Close Window The robotic arm partially closes one of the

slider translation windows

0.5

Close Dispenser Lid The robotic arm will close the dispenser lid

after use

1.0

Open Drawer The robotic arm will pull the drawer open 0.75

Close Table Drawer The robotic arm will close the open drawer on

the table

0.75

Open Trash Can The robotic arm will open the trash can lid 1.0

Remove Pot Lid The robotic arm will slide the lid of the pot

aside

1.0

Close Toilet Lid The robotic arm will put down the lid of the

toilet

1.0

Open Washing Machine Door The robotic arm will open the washing ma-

chine door

1.0

Move Door Slightly Open The robotic arm opens the door slightly to al-

low for some air circulation without fully open-

ing it

0.67

Open Door The robotic arm will open the door by rotating

the hinge

0.5

Turn Off Faucet The robotic arm turns off the faucet by rotating

one of the hinge switches

0.67

Close Window The robotic arm will close the window to pre-

serve indoor temperature

0.8

Open Box The robot arm opens the box by manipulating

the hinge lid

0.8

Rotate Clock Hands Rotate the minute and hour hands of the clock

with the robotic arm, simulating the passing of

time

0.4

Pull Lever to Start Coffee

Brewing

The robot arm pulls a lever to start the brewing

process of the coffee machine

1.0

Open Dishwasher Door The robotic arm will open the dishwasher door

for placing or removing dishes

0.6

Tilt Display Screen The robotic arm will tilt the display screen to

adjust viewing angle

0.6

Unfold the Chair The robotic arm will unfold the chair to prepare

it for use

1.0

Rotate Globe Horizontally The robotic arm will rotate the globe horizon-

tally to display various continents and coun-

tries on its surface

1.0

Turn On Lamp The robotic arm turns on the lamp by pressing

the toggle button

0.25

Open Kettle Lid The robot arm lifts the kettle lid 0.75

Open Microwave Door The robotic arm will open the microwave door 0.25

Table 6: Skill learning success rate on 7 soft-body manipulation tasks.

Task name Task description Skill Learning Success Rate

Bend the noodle into a U shape The robot needs to to bend an initial straight

noodle into the shape of letter ”U”

0.8

Flatten the rice dough The robot uses a square dough flattener to flat-

ten a rice dough

1.0

Cut dough in half The robot uses a knife to cut a dough in half 1.0

Continued on next page

21

RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation

Table 6 continued from previous page

Task name Task description Skill Learning Success Rate

Shape dough The robot uses two square dough flatteners to

shape the dough into a baguette

0.6

Lift up dumping The robot uses two square dough flatteners to

lift up a dumpling

1.0

Roll out dough The robot uses a rolling pin to flatten a dough 1.0

Put filling onto wrapper The robot needs to grasp a dumpling filling

and put it on top of the dumpling wrapper

0.8

Table 7: Skill learning success rate on 12 locomotion tasks.

Task name Task description Skill Learning Success Rate

Jump forward The legged robot needs to do a jump forward 1.0

Spin counter-clockwise The legged robot needs to spin itself counter-

clockwise around the vertical axis

1.0

Run forward The legged robot needs to do fun forward at a

high speed

0.6

Spin left without using right

hind leg

The legged robot needs to spin itself to the left

while not letting the right hind leg touch the

ground

0.8

Jump higher than 5 meters The legged robot needs to jump and reach a

height higher than 5 meters

1.0

Flip forward The legged robot makes a flip forward 0.6

Climb up stairs The legged robot climbs up a staircase in the

environment

0.4

Kick the soccer ball to the left The legged robot needs to kick the soccer ball

and make it move to the left

0.8

Walk backwards The legged robot needs to move backwards 1.0

Push Ball The legged robot needs to push the ball for-

ward

1.0

Turn Right The legged robot needs to turn itself to face

right

1.0

Crawl forward The legged robot needs to move forward while

keeping the body in a low position

0.8

B.3. Failure Analysis

Through manual inspection on the 155 generated tasks in Table 2, we found 19 failure cases in total, due to either error in

the generated scene or the generated training supervisions. Table 8 provides a detailed analysis on the failure cases.

Among the 19 failure cases, 13 failures can be attributed to incorrect scene generation. The failures can be categorized into

1) required functionality not supported by the assets, e.g., loading paper into a printer asset which do not have a movable tray.

2) incorrect semantic understanding of articulated object’s joint state, i.e., failure to correctly map the joint angle value of an

articulated object to its semantic state, e.g., an LLM cannot judge whether the joint angle value 0 corresponds to the door

being opened or closed. 3) failure to find matched assets for tasks that require extremely precise spatial relationships, e.g.,

it’s hard to retrieve or generate stapler and staples whose size and geometry exactly match each other for the task of loading

the staples into the stapler. Some of these failures can be addressed with additional checks, e.g., using a vision language

model to verify the mapping between the joint angle values and the semantic state of the asset, while others (generate assets

with required functionalities, or pair of matched assets) might require more fundamental research to address.

6 failures are caused by incorrect reward generation. The errors can be categorized into 1) referring to undefined variables; 2)

reward does not encode the intended behavior. Examples include incorrect semantic understanding of articulated object state,

e.g., the task is to fold the chair, yet the generated reward actually encourages unfolding the chair due to misunderstanding

of the mapping between joint angle values and object state. We also find it hard to generate correct rewards for continuous

motions such as “moving robotic hand back-and-forth”, or “knock the door”. Again, the incorrect semantic understanding of

articulated object state can be potentially fixed by using a vision-language model to figure out the mapping between the joint

angle and object state. For syntax errors such as undefined variables, one could feed the error back to the LLM and ask it

to correct itself. The reward function generation can also be improved to better match the intended goal by incorporating

environment feedback into the system (Ma et al., 2023), which we leave as future work.

22

RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation

Table 8: Failure case analysis

Task name Task description Failure case

Pack Item In Suitcase The robot arm places an item .for example, a

folded shirt. inside the suitcase

Limited asset functionality: the suitcase cannot be opened.

Open Window Halfway The robotic arm will open one of the slider

translation windows halfway to let fresh air in

Incorrect semantic understanding of articulated object state:

setting both joint angles to 0 make the window opened already

Correct Clock Time The robotic arm corrects the time displayed on

the clock based on the standard time

Generated reward refers to undefined variables ”standard time”

Wash Hands The robot arm acts as if its washing hands to

demonstrate good hygiene

Reward error in one of the substeps: moving hands back and

forth

Fold Chair The robotic arm will fold the chair to save

room or for easy carrying

Wrong reward due to incorrect understanding of the joint

state of articulated object. The reward actually encourages

unfolding the chair

Unfold Chair The robotic arm will unfold the folding chair

to make it suitable for sitting

Wrong reward due to incorrect understanding of the joint state

of articulated object. The reward actually encourages folding

the chair

Staple Papers The robot arm gathers a few loose sheets of pa-

per and uses the stapler to staple them together

Too delicate initial spatial relationship – the task requires

the sheet of paper to be initialized into the stapler, which is

hard for a random stapler and a sheet of paper sampled from

PartNetMobility / Objaverse

Load Staples into Stapler The robot arm inserts new staples into the sta-

pler

Asset mismatch: randomly sampled stapler and staple won’t

easily match each other

Load Paper into Printer The robot arm loads paper into the printer via

the input tray, typically located on the printer

body

Limited asset functionality: the printer cannot really be loaded

with paper

Print a Document The robot interacts with the printer to print a

document The robot arm first places a docu-

ment on the printer, then moves the button to

initiate the print

Limited asset functionality: the printer cannot really be loaded

with paper

Fill Kettle with Water The robot arm opens the kettle lid, holds a

water jug to fill the kettle with water, and then

closes the lid

Limited asset functionality: the kettle lid cannot be really

moved away from the kettle body

Pour Water from Kettle The robot arm holds the kettle handle, tilts the

kettle to pour water into a cup

Limited asset functionality: the kettle lid cannot be really

moved away from the kettle body

Knock On Door The robotic arm will knock on the door in a

typical way a human would

Reward error: not really correct reward function for the knock-

ing motion.

Making Coffee The robot arm opens the lid of the container,

places coffee grounds inside, then closes the

lid and starts the brewing process by adjusting

the knob

Limited asset functionality: the coffeemachine lid cannot re-

ally be moved away from the body

Extract Contents The robot arm will open the dispenser lid and

proceed to extract the contents inside the dis-

penser

Limited asset functionality: the lid of the dispenser canont be

removed from the body to enable the pouring motion.

Fill Dispenser The robotic arm opens the dispenser lid and

then pours the desired content into the dis-

penser

Limited asset functionality: the lid of the dispenser canont be

removed from the body to enable the pouring motion.

Stir Contents in Pot The robot arm removes the lid of the pot and

stirs the pots contents with a stirring spoon

Limited asset functionality: the lid cannot really be removed

from the pod

Deliver an Object The robot arm holds an object, opens the door,

passes through, then closes the door behind

it This represents the robot arm delivering an

object from one room to another

Reward error for delivering an object through the door

Open Eyeglasses The robotic arm will unfold the legs of the

eyeglasses

Incorrect semantic understanding of the object joint state. Set-

ting the joint angle to 0 actually make the eyeglass already

unfolded.

C. Asset Generation Results

We provide more details on our text-to-3D asset generation pipeline here. This asset generation pipeline is majorly used for

generating goal meshes for deformable object manipulation tasks. It works as follows. First, given the text descriptions of

the object, we use Midjourney (Midjourney, 2022) to generate a 2D image of it. We prompt Midjourney to generate the

image with white background, in either front view or top-down view, as images in these formats are more suitable inputs

for the following text-to-3D generation models. Midjourney usually generates 4 images in a batch, and a random image is

chosen as input for the following image-to-3d model. Then, the generated image and text descriptions are used as input

to zero-1-to-3 (Liu et al., 2023b), an image to mesh generative model. The generated mesh is then refined using Deep

Marching Tetrahedra (DMTet) (Shen et al., 2021). Figure 9 shows some example results.

23

RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation

image of bagel mesh of bagel image of croissant mesh of croissant

image of rope mesh of rope image of cylinder dough mesh of cylinder dough

image of baguette mesh of baguette image of mooncake mesh of mooncake

image of dumpling mesh of dumpling image of meat mesh of meat

Table 9: Example generated images and meshes from our text-to-image-to-3d pipeline.

24

RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation

D. Prompts

D.1. Pre-defined tasks for example-based initialization of RoboGen (purely non-articulated object manipulation

tasks).

For task proposal of non-articulated object manipulation tasks, we use example-based seeding for RoboGen. Below is the

list of example tasks.

"""

Task: stack two blocks, with the larger one at the bottom.

Object: A small block, and a large block.

""",

"""

Taks: Put the broccoli on the grill pan

Objects: a broccoli, a grill pan

""",

"""

Task: Put 1 mug on the cup holder

Objects: A mug, a mug tree holder

""",

"""

Task: Pick up the hanger and place it on the clothing rack

Objects: a cloth hanger, a clothing rack

""",

"""

Task: Put 1 book into the bookshelf

Objects: a book, a bookshelf

""",

"""

Taks: Put the knife on the chopping board

Objects: a kitchen knife, a board

""",

"""

Task: Put a old toy in bin

Objects: A old toy, a rubbish bin

""",

"""

Task: Place the dishes and cutlery on the table in preparation for a meal

Objects: a dish plate, a fork, a spoon, a steak knife

""",

"""

Task: Stack one cup on top of the other

Objects: Two same cups

""",

"""

Task: Remove the green pepper from the weighing scales and place it on the floor

Objects: A green pepper, a weighing scale

""",

"""

Task: Put the apple on the weighing scale to weigh it

Objects: An apple, a weighing scale

""",

D.2. Pre-defined tasks for example-based initialization of RoboGen (locomotion tasks).

For task proposal of locomotion tasks, we included 3 examples in the prompt as the seeding for RoboGen.

"""

Skill: flip rightwards

Reward:

‘‘‘python

def _compute_reward(self):

we first get some information of the quadruped/humanoid robot.

COM_pos and COM_quat are the position and orientation (quaternion) of the center of mass of the quadruped/humanoid.

COM_pos, COM_quat = get_robot_pose(self)

COM_vel, COM_ang are the velocity and angular velocity of the center of mass of the quadruped/humanoid.

COM_vel, COM_ang = get_robot_velocity(self)

face_dir, side_dir, and up_dir are three axes of the rotation of the quadruped/humanoid.

face direction points from the center of mass towards the face direction of the quadruped/humanoid.

side direction points from the center of mass towards the side body direction of the quadruped/humanoid.

up direction points from the center of mass towards up, i.e., the negative direction of the gravity.

gravity direction is [0, 0, -1].

when initialized, the face of the robot is along the x axis, the side of the robot is along the y axis, and the up of the robot

is along the z axis.

face_dir, side_dir, up_dir = get_robot_direction(self, COM_quat)

25

RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation

target_side = np.array([0, 1, 0]) # maintain initial side direction during flip

target_ang = np.array([50, 0, 0.0]) # spin around x axis to do the rightwards flip, since x is the face direction of the robot.

alpha_ang = 1.0

alpha_side = 1.0

r_ang = - alpha_ang * np.linalg.norm(COM_ang - target_ang)

r_side = - alpha_side * np.linalg.norm(side_dir - target_side)

r += r_ang + r_side

there is a default energy term that penalizes the robot for consuming too much energy. This should be included for all skill.

r_energy = get_energy_reward(self)

return r + r_energy

‘‘‘

""",

"""

Skill: jump backward

Reward:

‘‘‘python

def _compute_reward(self):

we first get some information of the quadruped/humanoid.

COM_pos and COM_quat are the position and orientation (quaternion) of the center of mass of the quadruped/humanoid.

COM_pos, COM_quat = get_robot_pose(self)

COM_vel, COM_ang are the velocity and angular velocity of the center of mass of the quadruped/humanoid.

COM_vel, COM_ang = get_robot_velocity(self)

face_dir, side_dir, and up_dir are three axes of the rotation of the quadruped/humanoid.

face direction points from the center of mass towards the face direction of the quadruped/humanoid.

side direction points from the center of mass towards the side body direction of the quadruped/humanoid.

up direction points from the center of mass towards up, i.e., the negative direction of the gravity.

gravity direction is [0, 0, -1].

when initialized, the face of the robot is along the x axis, the side of the robot is along the y axis, and the up of the robot

is along the z axis.

face_dir, side_dir, up_dir = get_robot_direction(self, COM_quat)

if self.time_step <= 30: # first a few steps the robot are jumping

target_height = 5.0

else: # then it should not jump

target_height = 0.0

target_v = np.array([-5.0, 0, 0.0]) # jump backwards

target_up = np.array([0, 0, 1]) # maintain up direction

target_face = np.array([1, 0, 0]) # maintain initial face direction

target_side = np.array([0, 1, 0]) # maintain initial side direction

target_ang = np.array([0, 0, 0.0]) # don’t let the robot spin

alpha_vel = 5.0

alpha_ang = 1.0

alpha_face = 1.0

alpha_up = 1.0

alpha_side = 1.0

alpha_height = 10.0

r_vel = - alpha_vel * np.linalg.norm(COM_vel - target_v)

r_ang = - alpha_ang * np.linalg.norm(COM_ang - target_ang)

r_face = - alpha_face * np.linalg.norm(face_dir - target_face)

r_up = - alpha_up * np.linalg.norm(up_dir - target_up)

r_side = - alpha_side * np.linalg.norm(side_dir - target_side)

r_height = - alpha_height * np.linalg.norm(COM_pos[2] - target_height)

r = r_vel + r_ang + r_face + r_up + r_side + r_height

there is a default energy term that penalizes the robot for consuming too much energy. This should be included for all skill.

r_energy = get_energy_reward(self)

return r + r_energy

‘‘‘

""",

"""

Skill: walk to ball

Object: ball # for this task there is a ball in the environment

Location: [1, 0, 0] # we put it at the position [1, 0, 0]. The robot is initialized at the origin [0, 0, 0].

Reward:

‘‘‘python

def _compute_reward(self):

we first get some information of the quadruped/humanoid.

COM_pos and COM_quat are the position and orientation (quaternion) of the center of mass of the quadruped/humanoid.

COM_pos, COM_quat = get_robot_pose(self)

COM_vel, COM_ang are the velocity and angular velocity of the center of mass of the quadruped/humanoid.

COM_vel, COM_ang = get_robot_velocity(self)

face_dir, side_dir, and up_dir are three axes of the rotation of the quadruped/humanoid.

face direction points from the center of mass towards the face direction of the quadruped/humanoid.

side direction points from the center of mass towards the side body direction of the quadruped/humanoid.

up direction points from the center of mass towards up, i.e., the negative direction of the gravity.

gravity direction is [0, 0, -1].

when initialized, the face of the robot is along the x axis, the side of the robot is along the y axis, and the up of the robot

is along the z axis.

face_dir, side_dir, up_dir = get_robot_direction(self, COM_quat)

target_v = np.array([0.0, 0, 0.0])

26

RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation

target_up = np.array([0, 0, 1])

target_face = np.array([1, 0, 0])

target_side = np.array([0, 1, 0])

target_ang = np.array([0, 0, 0.0])

alpha_vel = 0.0

alpha_ang = 0.0

alpha_face = 1.0

alpha_up = 1.0

alpha_side = 1.0

alpha_height = 1.0

r_vel = - alpha_vel * np.linalg.norm(COM_vel - target_v)

r_ang = - alpha_ang * np.linalg.norm(COM_ang - target_ang)

r_face = - alpha_face * np.linalg.norm(face_dir - target_face)

r_up = - alpha_up * np.linalg.norm(up_dir - target_up)

r_side = - alpha_side * np.linalg.norm(side_dir - target_side)

r_height = - alpha_height * np.linalg.norm(COM_pos[2] - self.COM_init_pos[2])

r += r_vel + r_ang + r_face + r_up + r_height

don’t want the ball to move

obj_pos, obj_quat = get_obj_pose("ball")

obj_vel, obj_ang = get_obj_vel("ball")

target_obj_vel = np.array([0.0, 0, 0.0])

alpha_obj_vel = 1.0

r_obj_vel = - alpha_obj_vel * np.linalg.norm(obj_vel - target_obj_vel)

r += r_obj_vel

move towards the ball

r_dist = - np.linalg.norm(COM_pos - obj_pos)

r += r_dist

there is a default energy term that penalizes the robot for consuming too much energy. This should be included for all skill.

r_energy = get_energy_reward(self)

return r + r_energy

‘‘‘

""",

D.3. Prompt for soft body manipulation tasks

The task proposal prompt for soft body manipulation is as follows:

We need you to generate some robot learning tasks involving manipulation of soft materials, especially those focused on making baked

foods.

Please think of 5 suitable table-top tasks involving manipulating soft body objects in common household scenarios.

You should first think of the soft-body object to manipulate, and then you can choose what tools to use in the next conversation.

Note: you should only think of meaningful tabletop manipulation tasks in household settings. Please do not think of tasks that are not

common in household scenarios. You should make sure that the tasks can be solved by a robot arm.

Please do not think of tasks that involve chemical change of the objects, such as boiling the water, or frying a steak.

Please output a list with 5 different task names.

After we obtain the task names, we use the following prompt for scene generation as well as training supervision generation.

We assume soft body manipulation tasks can be described using a initial configuration and a goal configuration. For both the

initial and the goal configuration, we ask GPT-4 to generate a text description of the soft body. This text description is used

as input to our text-to-image-to-3d pipeline to generate the mesh of the softbody. The training supervision takes a fixed form

as the earth mover distance between the mesh in the initial configuration and the mesh in the goal configuration.

We need you to generate some robot learning tasks involving soft materials.

We have successfully built a system that builds simulation environments using the following YAML file format, and we also have a system

that translates language descriptions into meshes. The YAML files can import the mesh into the simulation environment.

We believe that a successful task consists of two parts: a start YAML file and a goal YAML file.

The YAML file must follow the following rules.

I will give you the name of the task you need to build.

Here is an example:

Task1: Make a pretzel

Description: Reshape dough into pretzel.

start.yaml

‘‘‘yaml

note: every child leads a different object

note: You can only use type ’mesh’.

childs:

27

RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation

- type: ’Mesh’

obj_cfg:

file: cube_dough.obj

scale: (0.1, 0.1, 0.1)

The first dimension is the x-axis, which expands horizontally, the second dimension is the y-axis, which expands vertically,

and the third dimension is the z-axis, which represents the horizontal height.

pos: (0.5, 0.5, 0.5)

material_cfg:

note: Define name for the material

name: ’cube_dough’

note: Use rgba to control the color

color: (0.9, 0.9, 0.9, 1.0)

We need to provide a detailed language description as the image_prompt, which is used as input for a text-to-image model to

generate an image, so we want a fully detailed one.

Prompt must be a string.

Image_prompt: ’a cube dough, no background, top-view’

Mesh_prompt helps an image-to-mesh model to generate a mesh from an image, so we want a fully detailed one. It must follow the

rule of prompt.

Mesh_prompt: ’a cube dough’

‘‘‘

goal.yaml

‘‘‘yaml

childs:

- type: ’Mesh’

obj_cfg:

file: pretzel.obj

pos: (0.5, 0.5, 0.5)

scale: (0.1, 0.1, 0.1)

contorl the size of the mesh

all the mesh will be scaled into default size as 1 meter in length, 1 meter in height, 1 meter in width

In this case, the mesh will be 0.1 meter in width, 0.1 meter in length, 0.1 meter in height.

material_cfg:

name: ’pretzel’

color: (0.9, 0.9, 0.9, 1.0)

We need to provide a detailed language description as the image_prompt, which is used as input for a text-to-image model to

generate an image, so we want a fully detailed one.

Prompt must be a string.

Image_prompt: ’a pretzel, no background, top-view’

Mesh_prompt helps an image-to-mesh model to generate a mesh from an image, so we want a fully detailed one. It must follow the

rule of prompt.

Mesh_prompt: ’a pretzel’

‘‘‘

I want you to generate a task with the name: {TASK NAME}

D.4. All prompts for articulated object centric manipulation tasks

In the following, we show all prompts used for generating an articulated object manipulation task using RoboGen.

D.4.1. PROMPT FOR TASK PROPOSAL.

The first stage of RoboGen is task proposal, where it proposes meaningful and diverse tasks for robots to learn. For tasks

related to articulated object manipulation, we randomly sample an object from a pre-defined pool, and ask GPT-4 to propose

tasks related to the functionality and affordance of the sampled object. We show the prompt we use for this stage here.

We include one input-output example (when the sampled object is an oven) in the prompt. For the prompt shown here, we

ask GPT-4 to generate meaningful tasks related to a trashcan:

I will give you an articulated object, with its articulation tree and semantics. Your goal is to imagine some tasks that a robotic arm

can perform with this articulated object in household scenarios. You can think of the robotic arm as a Franka Panda robot. The

task will be built in a simulator for the robot to learn it.

Focus on manipulation or interaction with the object itself. Sometimes the object will have functions, e.g., a microwave can be used to

heat food, in these cases, feel free to include other objects that are needed for the task.

Please do not think of tasks that try to assemble or disassemble the object. Do not think of tasks that aim to clean the object or

check its functionality.

For each task you imagined, please write in the following format:

Task name: the name of the task.

Description: some basic descriptions of the tasks.

Additional Objects: Additional objects other than the provided articulated object required for completing the task.

Links: Links of the articulated objects that are required to perform the task.

- Link 1: reasons why this link is needed for the task

- Link 2: reasons why this link is needed for the task

- ...

Joints: Joints of the articulated objects that are required to perform the task.

- Joint 1: reasons why this joint is needed for the task

- Joint 2: reasons why this joint is needed for the task

- ...

Example Input:

28

RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation

‘‘‘Oven articulation tree

links:

base

link_0

link_1

link_2

link_3

link_4

link_5

link_6

link_7

joints:

joint_name: joint_0 joint_type: revolute parent_link: link_7 child_link: link_0

joint_name: joint_1 joint_type: continuous parent_link: link_7 child_link: link_1

joint_name: joint_2 joint_type: continuous parent_link: link_7 child_link: link_2

joint_name: joint_3 joint_type: continuous parent_link: link_7 child_link: link_3

joint_name: joint_4 joint_type: continuous parent_link: link_7 child_link: link_4

joint_name: joint_5 joint_type: continuous parent_link: link_7 child_link: link_5

joint_name: joint_6 joint_type: continuous parent_link: link_7 child_link: link_6

joint_name: joint_7 joint_type: fixed parent_link: base child_link: link_7

‘‘‘

‘‘‘Oven semantics

link_0 hinge door

link_1 hinge knob

link_2 hinge knob

link_3 hinge knob

link_4 hinge knob

link_5 hinge knob

link_6 hinge knob

link_7 heavy oven_body

‘‘‘

Example output:

Task Name: Open Oven Door

Description: The robotic arm will open the oven door.

Additional Objects: None

Links:

- link_0: from the semantics, this is the door of the oven. The robot needs to approach this door in order to open it.

Joints:

- joint_0: from the articulation tree, this is the revolute joint that connects link_0. Therefore, the robot needs to actuate this

joint for opening the door.

Task Name: Adjust Oven Temperature

Description: The robotic arm will turn one of the oven’s hinge knobs to set a desired temperature.

Additional Objects: None

Links:

- link_1: the robot needs to approach link_1, which is assumed to be the temperature knob, to rotate it to set the temperature.

Joints:

- joint_1: joint_1 connects link_1 from the articulation tree. The robot needs to actuate it to rotate link_1 to the desired

temperature.

Task Name: Heat a hamburger Inside Oven

Description: The robot arm places a hamburger inside the oven, and sets the oven temperature to be appropriate for heating the

hamburger.

Additional Objects: hamburger

Links:

- link_0: link_0 is the oven door from the semantics. The robot needs to open the door in order to put the hamburger inside the oven.

link_1: the robot needs to approach link_1, which is the temperature knob, to rotate it to set the desired temperature.

Joints:

- joint_0: from the articulation tree, this is the revolute joint that connects link_0 (the door). Therefore, the robot needs to

actuate this joint for opening the door.

- joint_1: from the articulation tree, joint_1 connects link_1, which is the temperature knob. The robot needs to actuate it to rotate

link_1 to the desired temperature.

Task Name: Set Oven Timer

Description: The robot arm turns a timer knob to set cooking time for the food.

Additional Objects: None.

Links:

- link_2: link_2 is assumed to be the knob for controlling the cooking time. The robot needs to approach link_2 to set the cooking time

.

Joints:

- joint_2: from the articulation tree, joint_2 connects link_2. The robot needs to actuate joint_2 to rotate link_2 to the desired

position, setting the oven timer.

Can you do the same for the following object:

‘‘‘TrashCan articulation tree

links:

base

link_0

link_1

joints:

joint_name: joint_0 joint_type: revolute parent_link: link_1 child_link: link_0

joint_name: joint_1 joint_type: fixed parent_link: base child_link: link_1

29

RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation

‘‘‘

‘‘‘TrashCan semantics

link_0 hinge door

link_1 free trashcan_body

‘‘‘

Here we provide an example response from GPT-4 with the sampled object being a trashcan. GPT-4 come up with two tasks:

Open Trash Can and Throw Trash Away. It also returns an additional object as ”a pile of trash” for the task of Throw Trash

Away. It returns the involved links and joints for these two tasks as well.

Task Name: Open Trash Can

Description: The robotic arm will open the trash can lid.

Additional Objects: None

Links:

- link_0: This link represents the lid of the trash can, based on the sematics. The robot needs to approach this lid to open it.

Joints:

- joint_0: The joint_0 in the articulation tree connects link_0 (the lid). Thus, the robot needs to actuate this joint to open the lid.

Task Name: Throw Trash Away

Description: The robotic arm places an item of trash inside the trash can.

Additional Objects: A pile of trash

Links:

- link_0: Link_0, as the trash can lid, needs to be approached and opened by the robot in order to throw away the trash.

Joints:

- joint_0: Joint_0, connecting to link_0, needs to be actuated for the robot to open the trash can lid.

D.4.2. SCENE GENERATION PROMPT.

Once a task proposal is obtained, RoboGen then generates a corresponding scene for solving the task by populating the

environment with a number of relevant and necessary objects (assets). Continuing the above example, we show the scene

generation prompt for the task “Throw Trash Away”. We include 3 input-output examples in the prompt. As shown in the

prompt, we ask GPT-4 to output the scene in a yaml file format, such that it can be easily processed and subsequently used

to build the scene in simulation.

I need you to describe the initial scene configuration for a given task in the following format, using a yaml file. This yaml file will

help build the task in a simulator. The task is for a mobile Franka panda robotic arm to learn a manipulation skill in the

simulator. The Franka panda arm is mounted on a floor, at location (1, 1, 0). It can move freely on the floor. The z axis is the

gravity axis.

The format is as follows:

‘‘‘yaml

- use_table: whether the task requires using a table. This should be decided based on common sense. If a table is used, its location

will be fixed at (0, 0, 0). The height of the table will be 0.6m. Usually, if the objects invovled in the task are usually placed

on a table (not directly on the ground), then the task requires using a table.

for each object involved in the task, we need to specify the following fields for it.

- type: mesh

name: name of the object, so it can be referred to in the simulator

size: describe the scale of the object mesh using 1 number in meters. The scale should match real everyday objects. E.g., an apple is

of scale 0.08m. You can think of the scale to be the longest dimension of the object.

lang: this should be a language description of the mesh. The language should be a concise description of the obejct, such that the

language description can be used to search an existing database of objects to find the object.

path: this can be a string showing the path to the mesh of the object.

on_table: whether the object needs to be placed on the table (if there is a table needed for the task). This should be based on

common sense and the requirement of the task. E.g., a microwave is usually placed on the table.

center: the location of the object center. If there isn’t a table needed for the task or the object does not need to be on the table,

this center should be expressed in the world coordinate system. If there is a table in the task and the object needs to be

placed on the table, this center should be expressed in terms of the table coordinate, where (0, 0, 0) is the lower corner of

the table, and (1, 1, 1) is the higher corner of the table. In either case, you should try to specify a location such that

there is no collision between objects.

‘‘‘

An example input includes the task names, task descriptions, and objects involved in the task. I will also provide with you the

articulation tree and semantics of the articulated object.

This can be useful for knowing what parts are already in the articulated object, and thus you do not need to repeat those parts as

separate objects in the yaml file.

Your task includes two parts:

1. Output the yaml configuration of the task.

2. Sometimes, the task description / objects involved will refer to generic/placeholder objects, e.g., to place an "item" into the

drawer, and to heat "food" in the microwave. In the generated yaml config, you should change these placeholder objects to be

concrete objects in the lang field, e.g., change "item" to be a toy or a pencil, and "food" to be a hamburger, a bowl of soup,

etc.

Example input:

Task Name: Insert Bread Slice

Description: The robotic arm will insert a bread slice into the toaster.

Objects involved: Toaster, bread slice. Only the objects specified here should be included in the yaml file.

‘‘‘Toaster articulation tree

links:

base

link_0

link_1

30

RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation

link_2

link_3

link_4

link_5

joints:

joint_name: joint_0 joint_type: continuous parent_link: link_5 child_link: link_0

joint_name: joint_1 joint_type: prismatic parent_link: link_5 child_link: link_1

joint_name: joint_2 joint_type: prismatic parent_link: link_5 child_link: link_2

joint_name: joint_3 joint_type: prismatic parent_link: link_5 child_link: link_3

joint_name: joint_4 joint_type: prismatic parent_link: link_5 child_link: link_4

joint_name: joint_5 joint_type: fixed parent_link: base child_link: link_5

‘‘‘

‘‘‘Toaster semantics

link_0 hinge knob

link_1 slider slider

link_2 slider button

link_3 slider button

link_4 slider button

link_5 free toaster_body

‘‘‘

An example output:

‘‘‘yaml

- use_table: True ### Toaster and bread are usually put on a table.

- type: mesh

name: "Toaster"

on_table: True # Toasters are usually put on a table.

center: (0.1, 0.1, 0) # Remember that when an object is placed on the table, the center is expressed in the table coordinate, where

(0, 0, 0) is the lower corner and (1, 1, 1) is the higher corner of the table. Here we put the toaster near the lower corner of

the table.

size: 0.35 # the size of a toaster is roughly 0.35m

lang: "a common toaster"

path: "toaster.urdf"

- type: mesh

name: "bread slice"

on_table: True # Bread is usually placed on the table as well.

center: (0.8, 0.7, 0) # Remember that when an object is placed on the table, the center is expressed in the table coordinate, where

(0, 0, 0) is the lower corner and (1, 1, 1) is the higher corner of the table. Here we put the bread slice near the higher

corner of the table.

size: 0.1 # common size of a bread slice

lang: "a slice of bread"

Path: "bread_slice.obj"

‘‘‘

Another example input:

Task Name: Removing Lid From Pot

Description: The robotic arm will remove the lid from the pot.

Objects involved: KitchenPot. Only the objects specified here should be included in the yaml file.

‘‘‘KitchenPot articulation tree

links:

base

link_0

link_1

joints:

joint_name: joint_0 joint_type: prismatic parent_link: link_1 child_link: link_0

joint_name: joint_1 joint_type: fixed parent_link: base child_link: link_1

‘‘‘

‘‘‘KitchenPot semantics

link_0 slider lid

link_1 free pot_body

‘‘‘

Output:

‘‘‘yaml

- use_table: True # A kitchen pot is usually placed on the table.

- type: mesh

name: "KitchenPot"

on_table: True # kitchen pots are usually placed on a table.

center: (0.3, 0.6, 0) # Remember that when an object is placed on the table, the center is expressed in the table coordinate, where

(0, 0, 0) is the lower corner and (1, 1, 1) is the higher corner of the table. Here we put the kitchen pot just at a random

location on the table.

size: 0.28 # the size of a common kitchen pot is roughly 0.28m

lang: "a common kitchen pot"

path: "kitchen_pot.urdf"

‘‘‘

Note in this example, the kitchen pot already has a lid from the semantics file. Therefore, you do not need to include a separate lid

in the yaml file.

One more example input:

Task Name: Heat a hamburger in the oven.

Description: The robotic arm will put a hamburger in the oven and use the oven to heat it.

Objects involved: A hamburger, an oven. Only the objects here should be included in the yaml file.

‘‘‘Oven articulation tree

links:

base

31

RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation

link_0

link_1

link_2

link_3

link_4

link_5

link_6

link_7

joints:

joint_name: joint_0 joint_type: revolute parent_link: link_7 child_link: link_0

joint_name: joint_1 joint_type: continuous parent_link: link_7 child_link: link_1

joint_name: joint_2 joint_type: continuous parent_link: link_7 child_link: link_2

joint_name: joint_3 joint_type: continuous parent_link: link_7 child_link: link_3

joint_name: joint_4 joint_type: continuous parent_link: link_7 child_link: link_4

joint_name: joint_5 joint_type: continuous parent_link: link_7 child_link: link_5

joint_name: joint_6 joint_type: continuous parent_link: link_7 child_link: link_6

joint_name: joint_7 joint_type: fixed parent_link: base child_link: link_7

‘‘‘

‘‘‘Oven semantics

link_0 hinge door

link_1 hinge knob

link_2 hinge knob

link_3 hinge knob

link_4 hinge knob

link_5 hinge knob

link_6 hinge knob

link_7 heavy oven_body

‘‘‘

Output:

‘‘‘yaml

- use_table: True # Although an oven is usually just placed on the ground, a hamburger is usually placed on the table.

- type: mesh

name: "Oven"

on_table: False # An oven is usually just placed on the floor.

center: (1.0, 0, 0) # Remember that when not on a table, the center is expressed in the world coordinate. Since the robot is at (1,

1, 0) and the table is at (0, 0, 0), we place the oven at (1.8, 2, 0) to avoid collision with the table and the robot.

size: 0.9 # the size of an oven is roughly 0.9m

lang: "a common oven"

path: "oven.urdf"

- type: mesh

name: "hamburger"

on_table: True # a hamburger is usually placed on the table.

center: (0.2, 0.4, 0) # Remember that when an object is placed on the table, the center is expressed in the table coordinate, where

(0, 0, 0) is the lower corner and (1, 1, 1) is the higher corner of the table. Here we put the hamburger just at a random

location on the table.

size: 0.1 # common hamburgers’ diameters are 10 cm.

lang: "a common hamburger"

path: "hamburger.obj"

‘‘‘

Rules:

- You do not need to include the robot in the yaml file.

- The yaml file should only include the objects listed in "Objects involved".

- Sometimes, the task description / objects involved will refer to generic/placeholder objects, e.g., to place an "item" into the

drawer, and to heat "food" in the microwave. In the generated yaml config, you should change these placeholder objects to be

concrete objects in the lang field, e.g., change "item" to be a toy or a pencil, and "food" to be a hamburger, a bowl of soup,

etc.

Can you do this for the following task:

Task Name: Throw Trash Away

Description: The robotic arm places an item of trash inside the trash can

Objects involved: TrashCan, A pile of trash

‘‘‘TrashCan articulation tree

links:

base

link_0

link_1

joints:

joint_name: joint_0 joint_type: revolute parent_link: link_1 child_link: link_0

joint_name: joint_1 joint_type: fixed parent_link: base child_link: link_1

‘‘‘

‘‘‘TrashCan semantics

link_0 hinge door

link_1 free trashcan_body

‘‘‘

Here we show an example response from GPT-4. The generated scene yaml file specifies the location of each object, its

physical size, along with a language description of the object, which will be used when retrieving the object from Objaverse.

Output:

‘‘‘yaml

- use_table: False # Trash cans are usually placed on the floor.

32

RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation

- type: mesh

name: "TrashCan"

on_table: False # Trash cans are usually placed on the floor.

center: (1.5, 1.5, 0) # Remember that when not on a table, the center is expressed in the world coordinate. Since the robot is at (1,

1, 0) and the table is at (0, 0, 0), we place the trash can at (1.5, 1.5, 0) to avoid collision with the table and the robot.

size: 0.6 # the size of a common trash can is roughly 0.6m

lang: "a common trash can"

path: "trashcan.urdf"

- type: mesh

name: "Trash"

on_table: True # Trash is usually picked up from a table or the floor. Here we assume it’s on the table.

center: (0.5, 0.5, 0) # Remember that when an object is placed on the table, the center is expressed in the table coordinate, where

(0, 0, 0) is the lower corner and (1, 1, 1) is the higher corner of the table. Here we put the trash in the middle of the table

.

size: 0.1 # common size of a pile of trash

lang: "a pile of paper waste" # Note here, we changed the generic/placeholder "pile of trash" object to be a more concrete object: a

pile of paper waste.

path: "paper_waste.obj"

‘‘‘

D.4.3. PROMPT FOR RETRIEVING SEMANTICALLY RELEVANT ASSETS.

To further increase the complexity and diversity of the generated scenes while resembling object distributions of real-world

scenarios, we query GPT-4 to return a number of additional queries (object names and their descriptions) that are semantically

relevant to the task. Here we show the prompt for this part. We include one input-output example in the prompt. We again

ask GPT-4 to output the list of semantically relevant assets in the yaml file format.

Given a task, which is for a mobile Franka panda robotic arm to learn a manipulation skill in the simulator, your goal is to add more

objects into the task scene such that the scene looks more realistic. The Franka panda arm is mounted on a floor, at location (1,

1, 0). It can move freely on the floor. The z axis is the gravity axis.

The input to you includes the following:

Task name, task description, the essential objects involved in the task, and a config describing the current task scene, which contains

only the essential objects needed for the task. The config is a yaml file in the following format:

‘‘‘yaml

- use_table: whether the task requires using a table. This should be decided based on common sense. If a table is used, its location

will be fixed at (0, 0, 0). The height of the table will be 0.6m.

for each object involved in the task, we need to specify the following fields for it.

- type: mesh

name: name of the object, so it can be referred to in the simulator

size: describe the scale of the object mesh using 1 number in meters. The scale should match real everyday objects. E.g., an apple is

of scale 0.08m. You can think of the scale to be the longest dimension of the object.

lang: this should be a language description of the mesh. The language should be a bit detailed, such that the language description

can be used to search an existing database of objects to find the object.

path: this can be a string showing the path to the mesh of the object.

on_table: whether the object needs to be placed on the table (if there is a table needed for the task). This should be based on

common sense and the requirement of the task.

center: the location of the object center. If there isn’t a table needed for the task or the object does not need to be on the table,

this center should be expressed in the world coordinate system. If there is a table in the task and the object needs to be

placed on the table, this center should be expressed in terms of the table coordinate, where (0, 0, 0) is the lower corner of

the table, and (1, 1, 1) is the higher corner of the table. In either case, you should try to specify a location such that

there is no collision between objects.

‘‘‘

Your task is to think about what other distractor objects can be added into the scene to make the scene more complex and realistic for

the robot to learn the task. These distractor objects are not necessary for the task itself, but their existence makes the scene

look more interesting and complex. You should output the distractor objects using the same format as the input yaml file. You

should try to put these distractor objects at locations such that they don’t collide with objects already in the scene.

Here is one example:

Input:

Task name: Heat up a bowl of soup in the microwave

Task description: The robot will grab the soup and move it into the microwave, and then set the temperature to heat it.

Objects involved: Microwave, a bowl of soup

Config:

‘‘‘yaml

- use_table: true

- center: (0.3, 0.7, 0)

lang: A standard microwave with a turntable and digital timer

name: Microwave

on_table: true

path: microwave.urdf

size: 0.6

type: urdf

- center: (0.2, 0.2, 0)

lang: A ceramic bowl full of soup

name: Bowl of Soup

on_table: true

path: bowl_soup.obj

size: 0.15

type: mesh

‘‘‘

Output:

33

RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation

‘‘‘yaml

- name: plate # a plate is a common object placed when there is microwave and bowl of soup, in a kitchen setup

lang: a common kitchen plate

on_table: True

center: (0.8, 0.8, 0)

type: mesh

path: "plate.obj"

size: 0.15 # a plate is usually of scale 0.15m

- name: sponge # a sponge is a common object placed when there is microwave and bowl of soup, in a kitchen setup

lang: a common sponge

on_table: True

center: (0.5, 0.2, 0)

type: mesh

path: "sponge.obj"

size: 0.1 # a sponge is usually of scale 0.1m

- name: Oven # a oven is a common object placed when there is microwave and bowl of soup, in a kitchen setup

lang: a kitchen oven

on_table: False # an oven is usually a standalone object on the floor

center: (1.8, 0.5, 0) # remember robot is at (1, 1, 0) and table is at (0, 0, 0). So the oven is placed at (1.8, 0.5, 0) in the world

coordinate system to avoid collision with other objects.

type: mesh

path: "oven.obj"

size: 0.8 # an oven is usually of scale 0.8m

‘‘‘

Can you do it for the following task:

Task name: Throw Trash Away

Task description: The robotic arm places an item of trash inside the trash can

Initial config:

‘‘‘yaml

- use_table: false

- center: (1.5, 1.5, 0)

lang: a common trash can

name: TrashCan

on_table: false

path: trashcan.urdf

size: 0.6

type: urdf

- center: (0.5, 0.5, 0)

lang: a pile of paper waste

name: Trash

on_table: true

path: paper_waste.obj

size: 0.05

type: mesh

‘‘‘

Here is an example response from GPT-4. For the task of throwing away trash, the addition objects are: a broom, a dustpan,

and a recycling bin, which are common objects for a scene where one needs to throw trash away.

Sure, here is the output for the given task:

‘‘‘yaml

- name: broom # a broom is a common object found near a trash can

lang: a common broom

on_table: False

center: (2, 1.5, 0)

type: mesh

path: "broom.obj"

size: 1.2 # a broom is usually of scale 1.2m

- name: dustpan # a dustpan is a common object found near a trash can

lang: a common dustpan

on_table: False

center: (2, 2, 0)

type: mesh

path: "dustpan.obj"

size: 0.3 # a dustpan is usually of scale 0.3m

- name: recycling_bin # a recycling bin is a common object found near a trash can

lang: a common recycling bin

on_table: False

center: (1, 2, 0)

type: mesh

path: "recycling_bin.obj"

size: 0.6 # a recycling bin is usually of scale 0.6m

- name: soda_can # a soda can is a common object found near a trash can

lang: a common soda can

on_table: True

center: (0.7, 0.7, 0)

type: mesh

path: "soda_can.obj"

size: 0.1 # a soda can is usually of scale 0.1m

‘‘‘

34

RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation

D.4.4. ASSET SIZE ADJUSTMENT PROMPT.

Because the assets retrieved from Objaverse is usually not of correct physical sizes, we ask GPT-4 to correct any unreasonable

object sizes. For each object in the scene, we query GPT-4 to correct its size such that the size matches the real-world size.

We continue the above example of throw trash away.

A robotic arm is trying to manipulate some objects to learn corresponding skills in a simulator. However, the size of the objects might

be wrong. Your task is to adjust the size of the objects, such that they match each other when interact with each other; and the

size should also match what is commonly seen in everyday life, in household scenarios.

Now I will give you the name of the task, the object and their sizes, please correct any unreasonable sizes.

Objects are represented using a mesh file, you can think of size as the longest dimension of the object.

I will write in the following format:

‘‘‘

Task: task description

obj1, mesh, size

obj2, mesh, size

‘‘‘

Please reply in the following format:

explanations of why some size is not reasonable.

‘‘‘yaml

obj1, mesh, corrected_size

obj2, mesh, corrected_radius

‘‘‘

Here is an example:

Input:

‘‘‘

Task: The robotic arm lowers the toilet seat from an up position to a down position

Toilet, mesh, 0.2

‘‘‘

Output:

A toilet is usually 0.6 - 0.8m in its back height, so the size is not reasonable -- it is a bit too small. Below is the corrected size.

‘‘‘yaml

Toilet, mesh, 0.7

‘‘‘

Another example:

Input:

‘‘‘

Task: Fill a cup with water under the faucet

Faucet, mesh, 0.25

Cup, mesh, 0.3

‘‘‘

Output:

The size of the faucet makes senes. However, the size of the cup is too large for 2 reasons: it does not match the size of tha faucet

for getting water under the faucet; and it is not a common size of cup in everyday life. Below is the corrected size.

‘‘‘yaml

Faucet, mesh, 0.25

Cup, mesh, 0.12

‘‘‘

One more example to show that even if no change is needed, you should still reply with the same size.

Input:

‘‘‘

Task: Open Table Drawer The robotic arm will open a table drawer

table, mesh, 0.8

‘‘‘

Output:

The size of the table is reasonable, so no change is needed.

‘‘‘yaml

table, mesh, 0.8

‘‘‘

This is also a good example to show that sometimes, the task description might include two objects, e.g., a table and a drawer, yet

there is only one object size provided (here the table). This is not an error, but that the other object is part of the provided

object, i.e., here the drawer is part of the table. It’s fine, you should then just reply with the corrected size of the object

provided, here, the table, in such cases.

‘‘‘

Task: Throw Trash Away The robotic arm places an item of trash inside the trash can

trashcan, mesh, 0.6

trash, mesh, 0.1

‘‘‘

An example response from GPT-4, where it adjusted the size of the trash from 0.1m to 0.05m.

The size of the trashcan is reasonable as it is a common size for a household trashcan. However, the size of the trash is a bit too

large. Trash items are usually smaller to fit inside the trashcan. Below is the corrected size.

‘‘‘yaml

trashcan, mesh, 0.6

trash, mesh, 0.05

‘‘‘

35

RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation

D.4.5. PROMPT FOR ARTICULATED OBJECT JOINT INITIALIZATION.

For scene generation, we also need to specify the asset configuration, which is the initial joint angle of the articulated object.

E.g., for the robot to learn to open the drawer, the drawer needs to be initially closed. We continue the example of throwing

the trash away. We include multiple input-output examples in the prompt.

Your goal is to set the joint angles of some articulated objects to the right value in the initial state, given a task. The task is

for a robot arm to learn the corresponding skills to manipulate the articulated object.

The input to you will include the task name, a short description of the task, the articulation tree of the articulated object, a

semantic file of the articulated object, the links and joints of the articulated objects that will be involved in the task, and

the substeps for doing the task.

You should output for each joint involved in the task, what joint value it should be set to. You should output a number in the range

[0, 1], where 0 corresponds to the lower limit of that joint angle, and 1 corresponds to the upper limit of the joint angle. You

can also output a string of "random", which indicates to sample the joint angle within the range.

By default, the joints in an object are set to their lower joint limits. You can assume that the lower joint limit corresponds to the

natural state of the articulated object. E.g., for a door’s hinge joint, 0 means it is closed, and 1 means it is open. For a

lever, 0 means it is unpushed, and 1 means it is pushed to the limit.

Here is an example:

Input:

Task Name: Close the door

Description: The robot arm will close the door after it was opened.

‘‘‘door articulation tree

links:

base

link_0

link_1

link_2

joints:

joint_name: joint_0 joint_type: revolute parent_link: link_1 child_link: link_0

joint_name: joint_1 joint_type: fixed parent_link: base child_link: link_1

joint_name: joint_2 joint_type: revolute parent_link: link_0 child_link: link_2

‘‘‘

‘‘‘door semantics

link_0 hinge rotation_door

link_1 static door_frame

link_2 hinge rotation_door

‘‘‘

Links:

- link_0: link_0 is the door. This is the part of the door assembly that the robot needs to interact with.

Joints:

- joint_0: Joint_0 is the revolute joint connecting link_0 (the door) as per the articulation tree. The robot needs to actuate this

joint cautiously to ensure the door is closed.

substeps:

approach the door

close the door

Output:

The goal is for the robot arm to learn to close the door after it is opened. Therefore, the door needs to be initially opened, thus, we

are setting its value to 1, which corresponds to the upper joint limit.

‘‘‘joint values

joint_0: 1

‘‘‘

Another example:

Task Name: Turn Off Faucet

Description: The robotic arm will turn the faucet off by manipulating the switch

‘‘‘Faucet articulation tree

links:

base

link_0

link_1

joints:

joint_name: joint_0 joint_type: fixed parent_link: base child_link: link_0

joint_name: joint_1 joint_type: revolute parent_link: link_0 child_link: link_1

‘‘‘

‘‘‘Faucet semantics

link_0 static faucet_base

link_1 hinge switch

‘‘‘

Links:

- link_0: link_0 is the door. This is the part of the door assembly that the robot needs to interact with.

Joints:

- joint_0: Joint_0 is the revolute joint connecting link_0 (the door) as per the articulation tree. The robot needs to actuate this

joint cautiously to ensure the door is closed.

36

RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation

substeps:

grasp the faucet switch

turn off the faucet

Output:

For the robot to learn to turn off the faucet, it cannot be already off initially. Therefore, joint_1 should be set to its upper joint

limit, or any value that is more than half of the joint range, e.g., 0.8.

‘‘‘joint value

joint_1: 0.8

‘‘‘

One more example:

Task Name: Store an item inside the Drawer

Description: The robot arm picks up an item and places it inside the drawer of the storage furniture

‘‘‘StorageFurniture articulation tree

links:

base

link_0

link_1

link_2

joints:

joint_name: joint_0 joint_type: revolute parent_link: link_1 child_link: link_0

joint_name: joint_1 joint_type: fixed parent_link: base child_link: link_1

joint_name: joint_2 joint_type: prismatic parent_link: link_1 child_link: link_2

‘‘‘

‘‘‘StorageFurniture semantics

link_0 hinge rotation_door

link_1 heavy furniture_body

link_2 slider drawer

‘‘‘

Links:

- link_2: link_2 is the drawer link from the semantics. The robot needs to open this drawer to place the item inside.

Joints:

- joint_2: joint_2, from the articulation tree, connects to link_2 (the drawer). Thus, the robot would need to actuate this joint to

open the drawer to store the item.

substeps:

grasp the drawer

open the drawer

grasp the item

put the item into the drawer

grasp the drawer again

close the drawer

release the grasp

Output:

This task involves putting one item into the drawer of the storage furniture. As noted in the substeps, the robot needs to first open

the drawer, put the item in, and then close it. Since the articulated object is initialized with the lower joint limit, i.e., the

drawer is initially closed, it aligns with the task where the robot needs to first learn to open the drawer. Therefore, no

particular joint angle needs to be set, and we just output None.

‘‘‘joint value

None

‘‘‘

Can you do it for the following task:

Task Name: Throw Trash Away

Description: The robotic arm places an item of trash inside the trash can

‘‘‘TrashCan articulation tree

links:

base

link_0

link_1

joints:

joint_name: joint_0 joint_type: revolute parent_link: link_1 child_link: link_0

joint_name: joint_1 joint_type: fixed parent_link: base child_link: link_1

‘‘‘

‘‘‘TrashCan semantics

link_0 hinge door

link_1 free trashcan_body

‘‘‘

Links:

link_0: Link_0, as the trash can lid, needs to be approached and opened by the robot in order to throw away the trash.

Joints:

joint_0: Joint_0, connecting to link_0, needs to be actuated for the robot to open the trash can lid.

37

RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation

substeps:

grasp the trash can lid

open the trash can lid

grasp the trash

put the trash into the trash can

release the trash

grasp the trash can lid again

close the trash can lid

An example output from GPT-4. It correctly reasons that to throw the trash away in the trashcan, the robot needs to learn to

open the trashcan, thus the trashcan needs to be initialized as closed (joint angle set to be 0).

Output:

The task involves the robot learning to throw trash away. The robot needs to learn to open the trash can lid, throw the trash in, and

then close the lid. Therefore, we need to set the initial joint angle such that the trash can lid is not already open. We can set

joint_0 to its lower limit, which corresponds to the trash can lid being closed.

‘‘‘joint value

joint_0: 0

‘‘‘

D.4.6. PROMPT FOR SPECIAL SPATIAL RELATIONSHIPS.

For certain tasks, the objects in the scene need to satisfy certain spatial relationships. For example, for the task of retrieve a

gold bar from the safe, the gold bar needs to be initially inside the safe. Here we show the prompt we use for that, and we

continue the “Throw away trash” example.

Your goal is to output any special spatial relationships certain objects should have in the initial state, given a task. The task is

for a robot arm to learn the corresponding skills in household scenarios.

The input to you will include

the task name,

a short description of the task,

objects involved in the task,

substeps for performing the task,

If there is an articulated object involved in the task, the articulation tree of the articulated object, the semantic file of the

articulated object, and the links and joints of the articulated objects that will be involved in the task.

We have the following spatial relationships:

on, obj_A, obj_B: object A is on top of object B, e.g., a fork on the table.

in, obj_A, obj_B: object A is inside object B, e.g., a gold ring in the safe.

in, obj_A, obj_B, link_name: object A is inside the link with link_name of object B. For example, a table might have two drawers,

represented with link_0, and link_1, and in(pen, table, link_0) would be that a pen is inside one of the drawers that corresponds

to link_0.

Given the input to you, you should output any needed spatial relationships of the involved objects.

Here are some examples:

Input:

Task Name:Fetch Item from Refrigerator

Description: The robotic arm will open a refrigerator door and reach inside to grab an item and then close the door.

Objects involved: refrigerator, item

‘‘‘refrigerator articulation tree

links:

base

link_0

link_1

link_2

joints:

joint_name: joint_0 joint_type: fixed parent_link: base child_link: link_0

joint_name: joint_1 joint_type: revolute parent_link: link_0 child_link: link_1

joint_name: joint_2 joint_type: revolute parent_link: link_0 child_link: link_2

‘‘‘

‘‘‘refrigerator semantics

link_0 heavy refrigerator_body

link_1 hinge door

link_2 hinge door

‘‘‘

Links:

link_1: The robot needs to approach and open this link, which represents one of the refrigerator doors, to reach for the item inside.

Joints:

joint_1: This joint connects link_1, representing one of the doors. The robot needs to actuate this joint to open the door, reach for

the item, and close the door.

substeps:

grasp the refrigerator door

open the refrigerator door

grasp the item

move the item out of the refrigerator

grasp the refrigerator door again

38

RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation

close the refrigerator door

Output:

The goal is for the robot arm to learn to retrieve an item from the refrigerator. Therefore, the item needs to be initially inside the

refrigerator. From the refrigerator semantics we know that link_0 is the body of the refrigerator, therefore we should have a

spatial relationship as the following:

‘‘‘spatial relationship

In, item, refrigerator, link_0

‘‘‘

Another example:

Task Name: Turn Off Faucet

Description: The robotic arm will turn the faucet off by manipulating the switch

Objects involved: faucet

‘‘‘Faucet articulation tree

links:

base

link_0

link_1

joints:

joint_name: joint_0 joint_type: fixed parent_link: base child_link: link_0

joint_name: joint_1 joint_type: revolute parent_link: link_0 child_link: link_1

‘‘‘

‘‘‘Faucet semantics

link_0 static faucet_base

link_1 hinge switch

‘‘‘

Links:

link_0: link_0 is the door. This is the part of the door assembly that the robot needs to interact with.

Joints:

joint_0: Joint_0 is the revolute joint connecting link_0 (the door) as per the articulation tree. The robot needs to actuate this joint

cautiously to ensure the door is closed.

substeps:

grasp the faucet switch

turn off the faucet

Output:

There is only 1 object involved in the task, thus no special spatial relationships are required.

‘‘‘spatial relationship

None

‘‘‘

One more example:

Task Name: Store an item inside the Drawer

Description: The robot arm picks up an item and places it inside the drawer of the storage furniture.

Objects involved: storage furniture, item

‘‘‘StorageFurniture articulation tree

links:

base

link_0

link_1

link_2

joints:

joint_name: joint_0 joint_type: revolute parent_link: link_1 child_link: link_0

joint_name: joint_1 joint_type: fixed parent_link: base child_link: link_1

joint_name: joint_2 joint_type: prismatic parent_link: link_1 child_link: link_2

‘‘‘

‘‘‘StorageFurniture semantics

link_0 hinge rotation_door

link_1 heavy furniture_body

link_2 slider drawer

‘‘‘

Links:

link_2: link_2 is the drawer link from the semantics. The robot needs to open this drawer to place the item inside.

Joints:

joint_2: joint_2, from the articulation tree, connects to link_2 (the drawer). Thus, the robot would need to actuate this joint to open

the drawer to store the item.

substeps:

grasp the drawer

open the drawer

grasp the item

put the item into the drawer

grasp the drawer again

close the drawer

release the grasp

Output:

This task involves putting one item into the drawer of the storage furniture. The item should initially be outside of the drawer, such

that the robot can learn to put it into the drawer. Therefore, no special relationships of in or on are needed. Therefore, no

special spatial relationships are needed.

39

RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation

‘‘‘spatial relationship

None

‘‘‘

Can you do it for the following task:

Task Name: Throw Trash Away

Description: The robotic arm places an item of trash inside the trash can

Objects involved: TrashCan, Trash

‘‘‘TrashCan articulation tree

links:

base

link_0

link_1

joints:

joint_name: joint_0 joint_type: revolute parent_link: link_1 child_link: link_0

joint_name: joint_1 joint_type: fixed parent_link: base child_link: link_1

‘‘‘

‘‘‘TrashCan semantics

link_0 hinge door

link_1 free trashcan_body

‘‘‘

Links:

link_0: Link_0, as the trash can lid, needs to be approached and opened by the robot in order to throw away the trash.

Joints:

joint_0: Joint_0, connecting to link_0, needs to be actuated for the robot to open the trash can lid.

substeps:

grasp the trash can lid

open the trash can lid

grasp the trash

put the trash into the trash can

release the trash

grasp the trash can lid again

close the trash can lid

An example output from GPT-4: it decides that there is no speical relationship needed for the task of throw trash away.

Output:

The task involves the robot arm placing an item of trash into the trash can. Initially, the trash should not be inside the trash can,

so the robot can learn to put it in. Therefore, no special spatial relationships are needed.

‘‘‘spatial relationship

None

‘‘‘

We have finished all steps needed for scene generation now.

D.4.7. PROMPT FOR GENERATING TRAINING SUPERVISION.

To acquire the skill for solving the proposed task, supervisions for skill learning are needed. To facilitate the learning

process, RoboGen first queries GPT-4 to plan and decompose the generated task into shorter-horizon sub-tasks. After the

decomposition, RoboGen then queries GPT-4 to choose a proper algorithm for solving each sub-task. For sub-tasks to be

learned using RL, we prompt GPT-4 to write corresponding reward functions with three in-context examples. For object

manipulation and locomotion tasks, the reward functions are based on the low-level states which GPT-4 can query via a

provided list of simulator APIs. Here we show the prompt we use for this, which includes 3 input-output examples, including

the decomposition, the algorithm selection, and the reward if RL is selected as the algorithm. With the generated scene and

training supervision, we can then perform skill learning to let the robot learn the skill to perform this task.

A robotic arm is trying to solve some household object manipulation tasks to learn corresponding skills in a simulator.

We will provide with you the task description, the initial scene configurations of the task, which contains the objects in the task and

certain information about them.

Your goal is to decompose the task into executable sub-steps for the robot, and for each substep, you should either call a primitive

action that the robot can execute, or design a reward function for the robot to learn, to complete the substep.

For each substep, you should also write a function that checks whether the substep has been successfully completed.

Common substeps include moving towards a location, grasping an object, and interacting with the joint of an articulated object.

An example task:

Task Name: Fetch item from refrigerator

Description: The robotic arm will open a refrigerator door reach inside to grab an item, place it on the table, and then close the door

Initial config:

‘‘‘yaml

40

RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation

- use_table: true

- center: (1.2, 0, 0)

lang: a common two-door refrigerator

name: Refrigerator

on_table: false

path: refrigerator.urdf

size: 1.8

type: urdf

- center: (1.2, 0, 0.5)

lang: a can of soda

name: Item

on_table: false

path: soda_can.obj

size: 0.2

type: mesh

‘‘‘

I will also give you the articulation tree and semantics file of the articulated object in the task. Such information will be useful

for writing the reward function/the primitive actions, for example, when the reward requires accessing the joint value of a joint

in the articulated object, or the position of a link in the articulated object, or when the primitive needs to access a name of

the object.

‘‘‘Refrigerator articulation tree

links:

base

link_0

link_1

link_2

joints:

joint_name: joint_0 joint_type: fixed parent_link: base child_link: link_0

joint_name: joint_1 joint_type: revolute parent_link: link_0 child_link: link_1

joint_name: joint_2 joint_type: revolute parent_link: link_0 child_link: link_2

‘‘‘

‘‘‘Refrigerator semantics

link_0 heavy refrigerator_body

link_1 hinge door

link_2 hinge door

‘‘‘

I will also give you the links and joints of the articulated object that will be used for completing the task:

Links:

link_1: This link is one of the refrigerator doors, which the robot neesd to reach for the item inside.

Joints:

joint_1: This joint connects link_1, representing one of the doors. The robot needs to actuate this joint to open the door, reach for

the item, and close the door.

For each substep, you should decide whether the substep can be achieved by using the provided list of primitives. If not, you should

then write a reward function for the robot to learn to perform this substep.

If you choose to write a reward function for the substep, you should also specify the action space of the robot when learning this

reward function.

There are 2 options for the action space: "delta-translation", where the action is the delta translation of the robot end-effector,

suited for local movements; and "normalized-direct-translation", where the action specifies the target location the robot should

move to, suited for moving to a target location.

For each substep, you should also write a condition that checks whether the substep has been successfully completed.

Here is a list of primitives the robot can do. The robot is equipped with a suction gripper, which makes it easy for the robot to grasp

an object or a link on an object.

grasp_object(self, object_name): the robot arm will grasp the object specified by the argument object name.

grasp_object_link(self, object_name, link_name): some object like an articulated object is composed of multiple links. The robot will

grasp a link with link_name on the object with object_name.

release_grasp(self): the robot will release the grasped object.

approach_object(self, object_name): this function is similar to grasp_object, except that the robot only approaches the object, without

grasping it.

approach_object_link(self, object_name, link_name): this function is similar to grasp_object_link, except that the robot only

approaches the object’s link, without grasping it.

Note that all primitives will return a tuple (rgbs, final_state) which represents the rgb images of the execution process and the final

state of the execution process.

You should always call the primitive in the following format:

rgbs, final_state = some_primitive_function(self, arg1, ..., argn)

Here is a list of helper functions that you can use for designing the reward function or the success condition:

get_position(self, object_name): get the position of center of mass of object with object_name.

get_orientation(self, object_name): get the orientation of an object with object_name.

detect(self, object_name, object_part): detect the position of a part in object. E.g., the opening of a toaster, or the handle of a

door.

get_joint_state(self, object_name, joint_name): get the joint angle value of a joint in an object.

get_joint_limit(self, object_name, joint_name): get the lower and upper joint angle limit of a joint in an object, returned as a 2-

element tuple.

get_link_state(self, object_name, link_name): get the position of the center of mass of the link of an object.

get_eef_pos(self): returns the position, orientation of the robot end-effector as a list.

get_bounding_box(self, object_name): get the axis-aligned bounding box of an object. It returns the min and max xyz coordinate of the

bounding box.

get_bounding_box_link(self, object_name, link_name): get the axis-aligned bounding box of the link of an object. It returns the min and

max xyz coordinate of the bounding box.

in_bbox(self, pos, bbox_min, bbox_max): check if pos is within the bounding box with the lowest corner at bbox_min and the highest

corner at bbox_max.

get_grasped_object_name(self): return the name of the grasped object. If no object is grasped by the robot, return None. The name is

automatically converted to the lower case.

41

RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation

get_grasped_object_and_link_name(self): return a tuple, the first is the name of the grasped object, and the second is the name of the

grasped link. If no object is grasped by the robot, return (None, None). The name is automatically converted to the lower case.

gripper_close_to_object(self, object_name): return true if the robot gripper is close enough to the object specified by object_name,

otherwise false.

gripper_close_to_object_link(self, object_name, link_name): return true if the robot gripper is close enough to the object link,

otherwise false.

You can assume that for objects, the lower joint limit corresponds to their natural state, e.g., a box is closed with the lid joint

being 0, and a lever is unpushed when the joint angle is 0.

For the above task "Fetch item from refrigerator", it can be decomposed into the following substeps, primitives, and reward functions:

substep 1: grasp the refrigerator door

‘‘‘primitive

rgbs, final_state = grasp_object_link(self, "Refrigerator", "link_1")

grasped_object, grasped_link = get_grasped_object_and_link_name(self)

success = (grasped_object == "Refrigerator".lower() and grasped_link == "link_1".lower())

‘‘‘

substep 2: open the refrigerator door

‘‘‘reward

def _compute_reward(self):

this reward encourages the end-effector to stay near door to grasp it.

eef_pos = get_eef_pos(self)[0]

door_pos = get_link_state(self, "Refrigerator", "link_1")

reward_near = -np.linalg.norm(eef_pos - door_pos)

Get the joint state of the door. We know from the semantics and the articulation tree that joint_1 connects link_1 and is the

joint that controls the rotation of the door.

joint_angle = get_joint_state(self, "Refrigerator", "joint_1")

The reward is the negative distance between the current joint angle and the joint angle when the door is fully open (upper limit)

.

joint_limit_low, joint_limit_high = get_joint_limit(self, "Refrigerator", "joint_1")

target_joint_angle = joint_limit_high

diff = np.abs(joint_angle - target_joint_angle)

reward_joint = -diff

reward = reward_near + 5 * reward_joint

success = diff < 0.1 * (joint_limit_high - joint_limit_low)

return reward, success

‘‘‘

‘‘‘action space

delta-translation

‘‘‘

In the last substep the robot already grasps the door, thus only local movements are needed to open it.

substep 3: grasp the item

‘‘‘primitive

rgbs, final_state = grasp_object(self, "Item")

success = get_grasped_object_name(self) == "Item".lower()

‘‘‘

substep 4: move the item out of the refrigerator

‘‘‘reward

def _compute_reward(self):

Get the current item position

item_position = get_position(self, "Item")

The first reward encourages the end-effector to stay near the item

eef_pos = get_eef_pos(self)[0]

reward_near = -np.linalg.norm(eef_pos - item_position)

The reward is to encourage the robot to grasp the item and move the item to be on the table.

The goal is not to just move the soda can to be at a random location out of the refrigerator. Instead, we need to place it

somewhere on the table.

This is important for moving an object out of a container style of task.

table_bbox_low, table_bbox_high = get_bounding_box(self, "init_table") # the table is referred to as "init_table" in the simulator.

table_bbox_range = table_bbox_high - table_bbox_low

target location is to put the item at a random location on the table

target_location = np.zeros(3)

target_location[0] = table_bbox_low[0] + 0.2 * table_bbox_range[0] # 0.2 is a random chosen number, any number in [0, 1] should

work

target_location[1] = table_bbox_low[1] + 0.3 * table_bbox_range[1] # 0.3 is a random chosen number, any number in [0, 1] should

work

target_location[2] = table_bbox_high[2] # the height should be the table height

diff = np.linalg.norm(item_position - target_location)

reward_distance = -diff

reward = reward_near + 5 * reward_distance

success = diff < 0.06

return reward, success

‘‘‘

‘‘‘action space

normalized-direct-translation

‘‘‘

42

RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation

Since this substep requires moving the item to a target location, we use the normalized-direct-translation.

substep 5: grasp the refrigerator door again

‘‘‘primitive

rgbs, final_state = grasp_object_link(self, "Refrigerator", "link_1")

grasped_object, grasped_link = get_grasped_object_and_link_name(self)

success = (grasped_object == "Refrigerator".lower() and grasped_link == "link_1".lower())

‘‘‘

substep 6: close the refrigerator door

‘‘‘reward

def _compute_reward(self):

this reward encourages the end-effector to stay near door

eef_pos = get_eef_pos(self)[0]

door_pos = get_link_state(self, "Refrigerator", "link_1")

reward_near = -np.linalg.norm(eef_pos - door_pos)

Get the joint state of the door. The semantics and the articulation tree show that joint_1 connects link_1 and is the joint that

controls the rotation of the door.

joint_angle = get_joint_state(self, "Refrigerator", "joint_1")

The reward encourages the robot to make joint angle of the door to be the lower limit to clost it.

joint_limit_low, joint_limit_high = get_joint_limit(self, "Refrigerator", "joint_1")

target_joint_angle = joint_limit_low

diff = np.abs(target_joint_angle - joint_angle)

reward_joint = -diff

reward = reward_near + 5 * reward_joint

success = diff < 0.1 * (joint_limit_high - joint_limit_low)

return reward, success

‘‘‘

‘‘‘action space

delta-translation

‘‘‘

I will give some more examples of decomposing the task. Reply yes if you understand the goal.

=====================================

Yes, I understand the goal. Please proceed with the next example.

=====================================

Another example:

Task Name: Set oven temperature

Description: The robotic arm will turn the knob of an oven to set a desired temperature.

Initial config:

‘‘‘yaml

- use_table: false

- center: (1, 0, 0) # when an object is not on the table, the center specifies its location in the world coordinate.

lang: a freestanding oven

name: oven

on_table: false

path: oven.urdf

size: 0.85

type: urdf

‘‘‘

‘‘‘Oven articulation tree:

links:

base

link_0

link_1

link_2

link_3

link_4

joints:

joint_name: joint_0 joint_type: continuous parent_link: link_4 child_link: link_0

joint_name: joint_1 joint_type: continuous parent_link: link_4 child_link: link_1

joint_name: joint_2 joint_type: continuous parent_link: link_4 child_link: link_2

joint_name: joint_3 joint_type: continuous parent_link: link_4 child_link: link_3

joint_name: joint_4 joint_type: fixed parent_link: base child_link: link_4

‘‘‘

‘‘‘Oven semantics

link_0 hinge knob

link_1 hinge knob

link_2 hinge knob

link_3 hinge knob

link_4 heavy oven_body

‘‘‘

Links:

link_0: We know from the semantics that link_0 is a hinge knob. It is assumed to be the knob that controls the temperature of the oven.

The robot needs to actuate this knob to set the temperature of the oven.

Joints:

43

RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation

joint_0: from the articulation tree, joint_0 connects link_0 and is a continuous joint. Therefore, the robot needs to actuate joint_0

to turn link_0, which is the knob.

This task can be decomposed as follows:

substep 1: grasp the temperature knob

‘‘‘primitive

rgbs, final_state = grasp_object_link(self, "oven", "link_0")

grasped_object, grasped_link = get_grasped_object_and_link_name(self)

success = (grasped_object == "oven".lower() and grasped_link == "link_0".lower())

‘‘‘

substep 2: turn the temperature knob to set a desired temperature

‘‘‘reward

def _compute_reward(self):

This reward encourages the end-effector to stay near the knob to grasp it.

eef_pos = get_eef_pos(self)[0]

knob_pos = get_link_state(self, "oven", "link_0")

reward_near = -np.linalg.norm(eef_pos - knob_pos)

joint_angle = get_joint_state(self, "oven", "joint_0")

joint_limit_low, joint_limit_high = get_joint_limit(self, "oven", "joint_0")

desired_temperature = joint_limit_low + (joint_limit_high - joint_limit_low) / 3 # We assume the target desired temperature is one

third of the joint angle. It can also be 1/3, or other values between joint_limit_low and joint_limit_high.

The reward is the negative distance between the current joint angle and the joint angle of the desired temperature.

diff = np.abs(joint_angle - desired_temperature)

reward_joint = -diff

reward = reward_near + 5 * reward_joint

success = diff < 0.1 * (joint_limit_high - joint_limit_low)

return reward, success

‘‘‘

‘‘‘action space

delta-translation

‘‘‘

I will provide more examples in the following messages. Please reply yes if you understand the goal.

=====================================

Yes, I understand the goal. Please proceed with the next example.

=====================================

Here is another example:

Task Name: Put a toy car inside a box

Description: The robotic arm will open a box, grasp the toy car and put it inside the box.

Initial config:

‘‘‘yaml

- use_table: True

- center: (0.2, 0.3, 0)

on_table: True

lang: a box

name: box

size: 0.25

type: urdf

- center: (0.1, 0.6, 0)

on_table: True

lang: a toy car

name: toy_car

size: 0.1

type: mesh

‘‘‘

‘‘‘box articulation tree

links:

base

link_0

link_1

link_2

joints:

joint_name: joint_0 joint_type: revolute parent_link: link_2 child_link: link_0

joint_name: joint_1 joint_type: revolute parent_link: link_2 child_link: link_1

joint_name: joint_2 joint_type: fixed parent_link: base child_link: link_2

‘‘‘

‘‘‘box semantics

link_0 hinge rotation_lid

link_1 hinge rotation_lid

link_2 free box_body

‘‘‘

Links:

link_0: To fully open the box, the robot needs to open both box lids. We know from the semantics that link_0 is one of the lids.

link_1: To fully open the box, the robot needs to open both box lids. We know from the semantics that link_1 is another lid.

44

RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation

Joints:

joint_0: from the articulation tree, joint_0 connects link_0 and is a hinge joint. Thus, the robot needs to actuate joint_0 to open

link_0, which is the lid of the box.

joint_1: from the articulation tree, joint_1 connects link_1 and is a hinge joint. Thus, the robot needs to actuate joint_1 to open

link_1, which is the lid of the box.

This task can be decomposed as follows:

substep 1: grasp the first lid of the box

‘‘‘primitive

The semantics shows that link_0 and link_1 are the lid links.

rgbs, final_state = grasp_object_link(self, "box", "link_0")

grasped_object, grasped_link = get_grasped_object_and_link_name(self)

success = (grasped_object == "box".lower() and grasped_link == "link_0".lower())

‘‘‘

substep 2: open the first lid of the box

‘‘‘reward

def _compute_reward(self):

This reward encourages the end-effector to stay near the lid to grasp it.

eef_pos = get_eef_pos(self)[0]

lid_pos = get_link_state(self, "box", "link_0")

reward_near = -np.linalg.norm(eef_pos - lid_pos)

Get the joint state of the first lid. The semantics and the articulation tree show that joint_0 connects link_0 and is the joint

that controls the rotation of the first lid link_0.

joint_angle = get_joint_state(self, "box", "joint_0")

The reward is the negative distance between the current joint angle and the joint angle when the lid is fully open (upper limit).

joint_limit_low, joint_limit_high = get_joint_limit(self, "box", "joint_0")

target_joint_angle = joint_limit_high

diff = np.abs(joint_angle - target_joint_angle)

reward_joint = -diff

reward = reward_near + 5 * reward_joint

success = diff < 0.1 * (joint_limit_high - joint_limit_low)

return reward, success

‘‘‘

‘‘‘action space

delta-translation

‘‘‘

substep 3: grasp the second lid of the box

‘‘‘primitive

We know from the semantics that link_0 and link_1 are the lid links.

rgbs, final_state = grasp_object_link(self, "box", "link_1")

grasped_object, grasped_link = get_grasped_object_and_link_name(self)

success = (grasped_object == "box".lower() and grasped_link == "link_1".lower())

‘‘‘

substep 4: open the second lid of the box

‘‘‘reward

def _compute_reward(self):

This reward encourages the end-effector to stay near the lid to grasp it.

eef_pos = get_eef_pos(self)[0]

lid_pos = get_link_state(self, "box", "link_1")

reward_near = -np.linalg.norm(eef_pos - lid_pos)

Get the joint state of the second lid. The semantics and the articulation tree show that joint_1 connects link_1 and is the joint

that controls the rotation of the second lid link_1.

joint_angle = get_joint_state(self, "box", "joint_1")

The reward is the negative distance between the current joint angle and the joint angle when the lid is fully open (upper limit).

joint_limit_low, joint_limit_high = get_joint_limit(self, "box", "joint_1")

target_joint_angle = joint_limit_high

diff = np.abs(joint_angle - target_joint_angle)

reward_joint = -diff

reward = reward_near + 5 * reward_joint

success = diff < 0.1 * (joint_limit_high - joint_limit_low)

return reward, success

‘‘‘

‘‘‘action space

delta-translation

‘‘‘

substep 5: grasp the toy car

‘‘‘primitive

rgbs, final_state = grasp_object(self, "toy_car")

success = get_grasped_object_name(self) == "toy_car".lower()

‘‘‘

substep 6: put the toy car into the box

‘‘‘reward

def _compute_reward(self):

Get the current car position

car_position = get_position(self, "toy_car")

45

RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation

This reward encourages the end-effector to stay near the car to grasp it.

eef_pos = get_eef_pos(self)[0]

reward_near = -np.linalg.norm(eef_pos - car_position)

Get the box body bounding box

min_aabb, max_aabb = get_bounding_box_link(self, "box", "link_4") # from the semantics, link_4 is the body of the box.

diff = np.array(max_aabb) - np.array(min_aabb)

min_aabb = np.array(min_aabb) + 0.05 * diff # shrink the bounding box a bit

max_aabb = np.array(max_aabb) - 0.05 * diff

center = (np.array(max_aabb) + np.array(min_aabb)) / 2

another reward is one if the car is inside the box bounding box

reward_in = 0

if in_bbox(self, car_position, min_aabb, max_aabb): reward_in += 1

another reward is to encourage the robot to move the car to be near the box

we need this to give a dense reward signal for the robot to learn to perform this task.

reward_reaching = -np.linalg.norm(center - car_position)

The task is considered to be successful if the car is inside the box bounding box

success = in_bbox(self, car_position, min_aabb, max_aabb)

We give more weight to reward_in, which is the major goal of the task.

reward = 5 * reward_in + reward_reaching + reward_near

return reward, success

‘‘‘

‘‘‘action space

normalized-direct-translation

‘‘‘

Since this substep requires moving the item to a target location, we use the normalized-direct-translation.

Please decompose the following task into substeps. For each substep, write a primitive/a reward function, write the success checking

function, and the action space if the reward is used.

The primitives you can call for the robot to execute:

grasp_object(self, object_name): the robot arm will grasp the object specified by the argument object name.

grasp_object_link(self, object_name, link_name): some object like an articulated object is composed of multiple links. The robot will

grasp a link with link_name on the object with object_name.

release_grasp(self): the robot will release the grasped object.

approach_object(self, object_name): this function is similar to grasp_object, except that the robot only approaches the object, without

grasping it.

approach_object_link(self, object_name, link_name): this function is similar to grasp_object_link, except that the robot only

approaches the object’s link, without grasping it.

Note that all primitives will return a tuple (rgbs, final_state) which represents the rgb images of the execution process and the final

state of the execution process.

You should always call the primitive in the following format:

rgbs, final_state = some_primitive_function(self, arg1, ..., argn)

The APIs you can use for writing the reward function/success checking function:

get_position(self, object_name): get the position of center of mass of object with object_name.

get_orientation(self, object_name): get the orientation of an object with object_name.

get_joint_state(self, object_name, joint_name): get the joint angle value of a joint in an object.

get_joint_limit(self, object_name, joint_name): get the lower and upper joint angle limit of a joint in an object, returned as a 2-

element tuple.

get_link_state(self, object_name, link_name): get the position of the center of mass of the link of an object.

get_eef_pos(self): returns the position, orientation of the robot end-effector as a list.

get_bounding_box(self, object_name): get the axis-aligned bounding box of an object. It returns the min and max xyz coordinate of the

bounding box.

get_bounding_box_link(self, object_name, link_name): get the axis-aligned bounding box of the link of an object. It returns the min and

max xyz coordinate of the bounding box.

in_bbox(self, pos, bbox_min, bbox_max): check if pos is within the bounding box with the lowest corner at bbox_min and the highest

corner at bbox_max.

get_grasped_object_name(self): return the name of the grasped object. If no object is grasped by the robot, return None. The name is

automatically converted to the lower case.

get_grasped_object_and_link_name(self): return a tuple, the first is the name of the grasped object, and the second is the name of the

grasped link. If no object is grasped by the robot, return (None, None). The name is automatically converted to the lower case.

gripper_close_to_object(self, object_name): return true if the robot gripper is close enough to the object specified by object_name,

otherwise false.

gripper_close_to_object_link(self, object_name, link_name): return true if the robot gripper is close enough to the object link,

otherwise false.

The action space you can use for learning with the reward: delta-translation is better suited for small movements, and normalized-

direct-translation is better suited for directly specifying the target location of the robot end-effector.

You can assume that for objects, the lower joint limit corresponds to their natural state, e.g., a box is closed with the lid joint

being 0, and a lever is unpushed when the joint angle is 0.

Task name: Throw Trash Away

Description: The robotic arm places an item of trash inside the trash can

Initial config:

‘‘‘yaml

- use_table: false

- center: (1.5, 1.5, 0)

lang: a common trash can

name: TrashCan

on_table: false

path: trashcan.urdf

reward_asset_path: ’102187’

size: 0.6

46

RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation

type: urdf

- center: (0.5, 0.5, 0)

lang: a pile of paper waste

name: Trash

on_table: true

path: paper_waste.obj

size: 0.05

type: mesh

‘‘‘

‘‘‘TrashCan articulation tree

links:

base

link_0

link_1

joints:

joint_name: joint_0 joint_type: revolute parent_link: link_1 child_link: link_0

joint_name: joint_1 joint_type: fixed parent_link: base child_link: link_1

‘‘‘

‘‘‘TrashCan semantics

link_0 hinge door

link_1 free trashcan_body

‘‘‘

Links:

link_0: Link_0, as the trash can lid, needs to be approached and opened by the robot in order to throw away the trash.

Joints:

joint_0: Joint_0, connecting to link_0, needs to be actuated for the robot to open the trash can lid.

An example response for the above task “Throw the trash away”. It is decomposed into multiple substeps, and either action

primitive or RL is selected as the algorithm for these substeps. For substep using RL, a reward function is further written.

This task can be decomposed into the following substeps:

substep 1: grasp the trash can lid

‘‘‘primitive

rgbs, final_state = grasp_object_link(self, "TrashCan", "link_0")

grasped_object, grasped_link = get_grasped_object_and_link_name(self)

success = (grasped_object == "TrashCan".lower() and grasped_link == "link_0".lower())

‘‘‘

substep 2: open the trash can lid

‘‘‘reward

def _compute_reward(self):

This reward encourages the end-effector to stay near the lid to grasp it.

eef_pos = get_eef_pos(self)[0]

lid_pos = get_link_state(self, "TrashCan", "link_0")

reward_near = -np.linalg.norm(eef_pos - lid_pos)

Get the joint state of the lid. The semantics and the articulation tree show that joint_0 connects link_0 and is the joint that

controls the rotation of the lid.

joint_angle = get_joint_state(self, "TrashCan", "joint_0")

The reward is the negative distance between the current joint angle and the joint angle when the lid is fully open (upper limit).

joint_limit_low, joint_limit_high = get_joint_limit(self, "TrashCan", "joint_0")

target_joint_angle = joint_limit_high

diff = np.abs(joint_angle - target_joint_angle)

reward_joint = -diff

reward = reward_near + 5 * reward_joint

success = diff < 0.1 * (joint_limit_high - joint_limit_low)

return reward, success

‘‘‘

‘‘‘action space

delta-translation

‘‘‘

substep 3: grasp the trash

‘‘‘primitive

rgbs, final_state = grasp_object(self, "Trash")

success = get_grasped_object_name(self) == "Trash".lower()

‘‘‘

substep 4: put the trash into the trash can

‘‘‘reward

def _compute_reward(self):

Get the current trash position

trash_position = get_position(self, "Trash")

This reward encourages the end-effector to stay near the trash to grasp it.

47

RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation

eef_pos = get_eef_pos(self)[0]

reward_near = -np.linalg.norm(eef_pos - trash_position)

Get the trash can body bounding box

min_aabb, max_aabb = get_bounding_box_link(self, "TrashCan", "link_1") # from the semantics, link_1 is the body of the trash can.

diff = np.array(max_aabb) - np.array(min_aabb)

min_aabb = np.array(min_aabb) + 0.05 * diff # shrink the bounding box a bit

max_aabb = np.array(max_aabb) - 0.05 * diff

center = (np.array(max_aabb) + np.array(min_aabb)) / 2

another reward is one if the trash is inside the trash can bounding box

reward_in = 0

if in_bbox(self, trash_position, min_aabb, max_aabb): reward_in += 1

another reward is to encourage the robot to move the trash to be near the trash can

we need this to give a dense reward signal for the robot to learn to perform this task.

reward_reaching = -np.linalg.norm(center - trash_position)

The task is considered to be successful if the trash is inside the trash can bounding box

success = in_bbox(self, trash_position, min_aabb, max_aabb)

We give more weight to reward_in, which is the major goal of the task.

reward = 5 * reward_in + reward_reaching + reward_near

return reward, success

‘‘‘

‘‘‘action space

normalized-direct-translation

‘‘‘

Since this substep requires moving the item to a target location, we use the normalized-direct-translation.

substep 5: release the trash

‘‘‘primitive

rgbs, final_state = release_grasp(self)

success = get_grasped_object_name(self) == None

‘‘‘

substep 6: grasp the trash can lid again

‘‘‘primitive

rgbs, final_state = grasp_object_link(self, "TrashCan", "link_0")

grasped_object, grasped_link = get_grasped_object_and_link_name(self)

success = (grasped_object == "TrashCan".lower() and grasped_link == "link_0".lower())

‘‘‘

substep 7: close the trash can lid

‘‘‘reward

def _compute_reward(self):

This reward encourages the end-effector to stay near the lid

eef_pos = get_eef_pos(self)[0]

lid_pos = get_link_state(self, "TrashCan", "link_0")

reward_near = -np.linalg.norm(eef_pos - lid_pos)

Get the joint state of the lid. The semantics and the articulation tree show that joint_0 connects link_0 and is the joint that

controls the rotation of the lid.

joint_angle = get_joint_state(self, "TrashCan", "joint_0")

The reward encourages the robot to make joint angle of the lid to be the lower limit to close it.

joint_limit_low, joint_limit_high = get_joint_limit(self, "TrashCan", "joint_0")

target_joint_angle = joint_limit_low

diff = np.abs(target_joint_angle - joint_angle)

reward_joint = -diff

reward = reward_near + 5 * reward_joint

success = diff < 0.1 * (joint_limit_high - joint_limit_low)

return reward, success

‘‘‘

‘‘‘action space

delta-translation

‘‘‘

48

