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Abstract

The phenomenon of different deep learning models producing similar data rep-
resentations has garnered significant attention, raising the question of why such
representational similarity occurs. Identifiability theory offers a partial explanation:
for a broad class of discriminative models, including many popular in representation
learning, those assigning equal likelihood to the observations yield representations
that are equal up to a linear transformation, if a suitable diversity condition holds.
In this work, we identify two key challenges in applying identifiability theory to
explain representational similarity. First, the assumption of exact likelihood equal-
ity is rarely satisfied by practical models trained with different initializations. To
address this, we describe how the representations of two models deviate from being
linear transformations of each other, based on their difference in log-likelihoods.
Second, we demonstrate that even models with similar and near-optimal loss values
can produce highly dissimilar representations due to an underappreciated differ-
ence between loss and likelihood. Our findings highlight key open questions and
point to future research directions for advancing the theoretical understanding of
representational similarity.

1 Introduction

There is ample evidence of similarity in the representations learned by different deep learning models
(Lenc and Vedaldi, 2015; Kornblith et al., 2019; Bansal et al., 2021; Ding et al., 2021), which has
given rise to conjectures on why the phenomenon occurs (Huh et al., 2024; Teney et al., 2024)
as well as work on exploiting it (Moschella et al., 2022; Cannistraci et al., 2023; Maiorca et al.,
2024), for example for model stitching (Lenc and Vedaldi, 2015; Bansal et al., 2021). One instance
of representational similarity, perhaps the simplest and most fundamental one, is when different
models trained on the same data and with the same learning objective produce representations that
are equal up to a simple transformation, for example linear.3 For highly nonlinear models, it is not
obvious that this should occur: in fact, work on nonlinear independent component analysis (ICA)
offers many examples where different models, despite assigning equal likelihood to the data, yield
representations related by nonlinear transformations (see, e.g., (Hyvärinen and Pajunen, 1999)).
However, Roeder et al. (2021) and Khemakhem et al. (2020) show that for nonlinear models in a
broad discriminative class—including several models popular in representation learning, those which
assign equal likelihood to the observations extract representations which are linear transformations
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3though the representational similarity phenomenon appears to be broader, and it encompasses models trained

with different learning objectives and datasets, see, e.g., (Moschella et al., 2022; Huh et al., 2024).
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of one another, provided a suitable diversity condition is satisfied. One might therefore be inclined to
use these findings to account for some of the empirical observations of representational similarity.

In this work, we identify two key challenges in using existing identifiability theory to explain
representational similarity. Firstly, identifiability results require equality of the likelihoods of the
considered models as a premise: in practice, this assumption is rarely fulfilled for trained models,
since even initializing with different random seeds will typically result in models with likelihoods
which might be close, but not equal. It would therefore be desirable to relax the assumption of
equality and explore whether the results in (Roeder et al., 2021; Khemakhem et al., 2020) can be
extended to prove approximate representational similarity4 for models achieving close to equal
likelihoods. Furthermore, as we will show in Section 4, minimizing the loss is not the same as
minimizing the difference of log-likelihoods, which means that models with close to optimal loss can
have representations which are very dissimilar. By pointing out these challenges, we hope to inspire
further research on the theoretical underpinnings of representational similarity.

Our contributions can be summarized as follows:

• In Section 3, we prove a relation between the difference of log-likelihoods entailed by two
models and their extracted representations. This generalizes the analysis in (Roeder et al.,
2021; Khemakhem et al., 2020), which requires vanishing log-likelihood difference.

• In Section 4, we introduce a construction showing that it is not sufficient that both considered
models have close to optimal (zero) loss for their representations to become similar.

2 Preliminaries

Model Class. We will consider a model class defined by the probability of a label, y, given an
input, x, from a domain, X , and a collection of possible targets, S, where we must have y ∈ S.

pθ(y|x,S) =
exp(fθ(x)

⊤gθ(y))∑
y′∈S exp(fθ(x)⊤gθ(y′))

(1)

where θ is the parameters of the model. We will often write “the model θ” as short for the model with
parameters θ. For two models, θ∗ and θ′, we write f∗ and f ′ for their embedding functions and g∗ and
g′ for their unembedding functions, following the terminology in (Park et al., 2023). In the following,
we let the codomain of f and g be RM . So the embedding functions f : X → RM take inputs into
RM , and the unembedding functions g : S → RM take the labels into RM . This model class is
the same as the one considered in (Roeder et al., 2021): it is particularly interesting because many
common models and pre-training objectives can be written in this form, for example autoregressive
language models and a common supervised classification objective. For more examples, see (Roeder
et al., 2021, Section 4 & Appendix D).

Diversity Condition. We define the diversity condition like in (Khemakhem et al., 2020).

Definition 1 (Diversity condition). We say that a model θ′ from the model class Eq. (1) satisfies the
diversity condition for g′ if there exists y0, ...,yM ∈ S such that the M vectors {g′(yi)− g′(y0)}Mi=1
are linearly independent. Similarly, we say that a model satisfies the diversity condition for f ′ if there
exists x0, ...,xM ∈ X such that the M vectors {f ′(xi)− f ′(x0)}Mi=1 are linearly independent.

This assumption, or variations thereof, plays a crucial role in the identifiability results in, e.g., (Roeder
et al., 2021), (Khemakhem et al., 2020) and (Lachapelle et al., 2023).

Identifiability Result. For our purposes, the identifiability results found in (Khemakhem et al.,
2020), (Roeder et al., 2021), and (Lachapelle et al., 2023) can be summarized in the following
statement (a detailed proof can be found in Appendix B).

Theorem 1. Let θ∗ be a model of the form in Eq. (1) and satisfying the diversity condition on f∗ and
g∗. Assume θ′ is another model of the same form. Then

pθ∗ = pθ′ =⇒ θ∗ ∼L θ′, (2)

4Buchholz and Schölkopf (2024) also consider approximate identifiability, but for a different model class.
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where following (Lachapelle et al., 2023), the equivalence relation is defined by

θ∗ ∼L θ′ ⇐⇒
{
f∗(x) = Af ′(x)

g∗(y) = A−⊤g′(y) + b
, (3)

where A is an invertible matrix and b is a vector.

Measuring Similarity with Canonical Correlation Analysis. It is possible to define a mea-
sure of how close two sets of vectors are to being linear transformations of each other, based on
Canonical Correlation Analysis (CCA) (Hotelling, 1936). Given two random vectors z ∈ RN and
w ∈ RM , CCA finds vectors sk and tk, where k ≤ min(N,M), such that the Pearson correlation
ρk = corr

(
s⊤k z, t

⊤
k w

)
is maximized, with the constraint that s⊤k z, s

⊤
j z and t⊤k w, t⊤j w are linearly

independent for k ̸= j. In our setting, we would like to measure how close the embeddings and
unembeddings from two models θ∗,θ′ are to being linear transformations of each other. Our vectors
will thus be f∗(x), f ′(x) or g∗(y),g′(y) for inputs x and labels y (thereby N = M ). As our
similarity score, we will use the mean canonical correlation, as in (Klabunde et al., 2023):

mCCA(z,w) =
1

M

∑
k
ρk

If mCCA(z,w) = 1, z and w are linear transformations of each other (see Appendix A).

The Difference Between Loss and Likelihood. The distinction between loss and likelihood is
crucial, since we would like to understand whether different models achieving small loss (i.e., close
to optimal) will extract similar representations. We say that two models, θ∗,θ′, have equal likelihood
if pθ∗(y|x,S) = pθ′(y|x,S) for all x ∈ X and y ∈ S. When training such models, the loss
we optimize is E(x,y)∼qD [− log (pθ(y|x,S))], where (x,y) is an input–label pair from the data
distribution qD. Note that the identifiability results by, e.g., Roeder et al. (2021) and Khemakhem et al.
(2020) require that the likelihood entailed by the two models, θ∗ and θ′, should be equal. However,
the observed data distribution qD(y|x) will likely not include all possible combinations of inputs
values x ∈ X and label values in S. For example, in the case of an autoregressive language model,
given a sequence of words x, many among the potential next token-candidates y would result in
nonsensical sentences, thereby having a low probability of appearing in the training data. Because of
this, for each x, minimizing the loss does not uniquely constrain the conditional likelihood for all
targets in S . In short, equal loss does not mean equal likelihood. One might nevertheless think that if
the loss is close enough to optimal, and there is very little density assigned to improbable targets, we
would still get models with representations which are close to being linear transformations of each
other. However, as we show in Section 4, this is not the case.

3 Close-to-Identifiability Result

As a first step towards generalizing the results in (Roeder et al., 2021; Khemakhem et al., 2020), we
prove that for models as in Equation (1), it holds that the representations extracted by a model θ∗ can
be written as a linear transformation of those from another model, θ′, plus an error term which can
be seen as the non-linear part of the relationship between the functions. When the likelihoods of the
two models are equal, the error term vanishes, and we recover the results of Theorem 1.

Theorem 2. Let θ∗ and θ′ be two models, and let θ∗ satisfy the diversity condition (Definition 1) for
both f∗ and g∗. Let y0, ...,yM be the yis from the diversity condition on g∗. Let L∗ be the matrix
with columns g∗(yi)− g∗(y0) and L′ the matrix with columns g′(yi)− g′(y0). Then

f∗(x) = Af ′(x) + hf∗(x) (4)

g∗(y) = Bg′(y) + hg∗(y) (5)

where A = L∗−⊤L′⊤, hf∗(x) = L∗−⊤ϵy(x), and ϵy(x) is a vector function with each entry equal
to ϵyi(x) = f∗(x)⊤g∗(yi)− f ′(x)⊤g′(yi)+ f ′(x)⊤g′(y0)− f∗(x)⊤g∗(y0). So ϵy(x) is a function
of x using the yis from the diversity condition on g∗. B will be a similar product of matrices, only
using the diversity condition on f∗. Also, hg∗(y) will contain a ϵx(y) which is a function of y using
the xis from the diversity condition on f∗.
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The proof can be found in Appendix C. A consequence of Theorem 2 is that there is the following
relationship between the embeddings f∗(x), f ′(x):

f∗(x) = L∗−⊤
(
L

′⊤f ′(x) + ϵy(x)
)

(6)

and a similar one for the unembeddings g∗(y),g′(y). This equation shows that whether we can say
that f ′(x) is close to being a linear transformation of f∗(x) depends on the relative size of ϵy(x)
compared to L

′⊤f ′(x). If ∥ϵy(x)∥ << ∥L′⊤f ′(x)∥, then the representations will be close to linear
transformations of each other. Since ϵy(x) and ϵx(y) can be expressed in terms of differences of
log-likelihoods entailed by the two models (see Appendix C), we see that they will be small if the
models assign likelihoods which are close to equal to the observations. In particular, we see that
for the embedding representations to be close, we need log-likelihoods to be close for all x and for
all the yi’s from the diversity condition on g. Conversely, for the g representations to be close, we
need log-likelihoods to be close for all y and for all the xi’s from the diversity condition on f . If the
distributions for the models are equal, ϵy(x) and ϵx(y) will be zero, and we recover the identifiability
result of Theorem 1. However, optimizing p∗(y|x,S) and p′(y|x,S) for the correct label, y, is not
enough to make this difference of log-likelihoods small. Below we present an example of this.

4 Example of Close to Zero Loss where Representations are Dissimilar

Figure 1: Embeddings f ′(x) (above)
and f∗(x) (below). Unembeddings are
not shown in the figure.

In this example, we have M = 2 and a classification task with
four labels, y0,y1,y2,y3. The example relies on the fact that if
we fix non-zero angles between the unembedding vectors, and
we let the embedding representations be closer to the correct
label in terms of angle than the incorrect ones, then we can
make the likelihood of the correct label arbitrarily close to 1
by only changing the lengths of the unembedding vectors (see
Appendix E, and Appendix D for more details).

For the first model θ′, we let the the angle between the unem-
beddings be very small, and the lengths of the unembeddings be
very large. We generate our embedding vectors such that they
have Euclidean norms larger than 1 and such that they are very
close in terms of angle to the unembeddings with the correct
label (see Fig. 1). For the second model, θ∗, we spread out the
unembedding representations such that three are on the axes
and one is slightly off. For the embedding representations, we
place them such that they are closer in terms of angle to the
unembedding with the correct label, but more spread out than
the ones from model θ′ (see Fig. 1).

We can now calculate the negative log-likelihood (NLL)
for these two models using Eq. (1). For model θ′,
we get NLL′ ≈ 9 · 10−10 and for model θ∗, we get
NLL∗ ≈ 7 · 10−10. In fact, for the correct labels, we get a
small difference in log-likelihood for all datapoints. The max-
imal difference for the two models is 8 · 10−7. As mentioned
above, we could make this loss arbitrarily small, by increasing
the lengths of the unembeddings. Now both of these models
have close to zero loss, and their loss thus is close to equal:
however, they are very far from being linear transformations of each other. For example, the mean
canonical correlation between the embedding representations is mCCA(f

′(x), f∗(x)) ≈ 0.42, which
is very far from the value of 1 which would indicate a perfect linear relationship. See Appendix D for
further insights on this value of mCCA and the degree of dissimilarity it indicates. It is possible to
construct an example with even smaller mCCA, for example by making the angles smaller and the
lengths longer for g′(y) for model θ′, while keeping the other model θ∗ as it is.
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5 Conclusion

We showed that the representations (embeddings and unembeddings) extracted by two models of
the form in Eq. (1) will be close to being linear transformations of each other for all x and y, if the
log-likelihoods entailed by the two models are close for all x and y. We also introduced a construction
to show that, for the representations of two models to be close to equivalent, it is not sufficient that the
losses of both models are close to each other and small. These results point to interesting questions
for future research: for example, how a non-vanishing difference in log-likelihood can be connected
to a measurement of representational similarity; and under what additional assumptions similarity
should be expected if the difference in expected log-likelihood or in loss is non-vanishing.
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Part I

Appendix
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A More About CCA

We show that if f∗(x) = Af ′(x), where A is an invertible matrix, then mCCA(f
∗(x), f ′(x)) = 1 and

that if mCCA(f
∗(x), f ′(x)) = 1, then f∗(x) = Af ′(x)+b where A is an invertible matrix and b is a

vector. So if we assume that the representations are centered, we have that if mCCA(f
∗(x), f ′(x)) = 1,

then f∗(x) = Af ′(x).

Proof. Assume f∗(x) = Af ′(x), where A is an invertible matrix. Then the k’th entry of f∗(x) is
equal to

f∗(x)k = Akf
′(x)

where Ak is the k’th row of A. Let

sk = ek , tk = A⊤
k (7)

where ek is the standard basis vector, we get the vectors used by CCA. Note that since A is invertible,
the rows Ak are linearly independent. Then

ρk = corr
(
s⊤k f

∗(x), t⊤k f
′(x)

)
= 1 (8)

for all k ∈ {1, ...,M}. Thus mCCA(f
∗(x), f ′(x)) = 1.

Assume now that mCCA(f
∗(x), f ′(x)) = 1. Then there exist from CCA, vectors sk, tk such that

ρk = corr
(
s⊤k f

∗(x), t⊤k f
′(x)

)
= 1 (9)

for all k ∈ {1, ...,M}. Therefore,

s⊤k f
∗(x) =

σ(s⊤k f
∗(x))

σ(t⊤k f
′(x))

t⊤k f
′(x) + c (10)

where σ is the standard deviation and c is some constant. Therefore, if we stack these equations, we
get

Sf∗(x) = Tσf
′(x) + c (11)

where S and Tσ are invertible matrices, therefore we get

f∗(x) = S−1Tσf
′(x) + S−1c (12)

so letting A = S−1Tσ and b = S−1c, we have the result.

7



B Identifiability Result and Proof

We here present a merging of the identifiability results found in (Khemakhem et al., 2020), (Roeder
et al., 2021) and (Lachapelle et al., 2023). Let θ∗ be a model satisfying the diversity condition on f∗

and g∗ (like in (Khemakhem et al., 2020) and not (Roeder et al., 2021)). Assume θ′ is another model.
Then

pθ∗ = pθ′ =⇒ θ∗ ∼L θ′ (13)
where the equivalence relation is defined as in (Lachapelle et al., 2023) by

θ∗ ∼L θ′ ⇐⇒
{
f∗(x) = Af ′(x)

g∗(y) = A−⊤g′(y) + b
(14)

where A is an invertible matrix and b is a vector.

Proof. We first prove that p∗ = p′ =⇒ f∗(x) = Af ′(x) for A invertible.

Assume the models have equal likelihoods. Let the codomains of f∗,g∗, f ′,g′ be in RM . Let
Z∗(x,S) =

∑
yj∈S exp(f∗(x)⊤g∗(yj)), and similarly for Z ′(x,S). Then

p∗(y|x,S) = p′(y|x,S) (15)

f∗(x)⊤g∗(y)− log(Z∗(x,S)) = f ′(x)⊤g′(y)− log(Z ′(x,S)) (16)
for all y. In particular, it is true for the M + 1 ys, y0, ..., yM which exist according to the diversity
condition on g∗. So we can write up M + 1 equations of this kind. If we subtract the equation with
y0 from these, we are left with M equations of the form

f∗(x)⊤g∗(yi)− f∗(x)⊤g∗(y0) + log(Z∗(x,S))− log(Z∗(x,S)) (17)

= f ′(x)⊤g′(yi)− f ′(x)⊤g′(y0) + log(Z ′(x,S))− log(Z ′(x,S)) (18)

f∗(x)⊤g∗(yi)− f∗(x)⊤g∗(y0) = f ′(x)⊤g′(yi)− f ′(x)⊤g′(y0) (19)

f∗(x)⊤(g∗(yi)− g∗(y0)) = f ′(x)⊤(g′(yi)− g′(y0)) (20)

(g∗(yi)− g∗(y0))
⊤f∗(x) = (g′(yi)− g′(y0))

⊤f ′(x) (21)
(22)

Let L∗ be the matrix which has g∗(yi) − g∗(y0) as columns and L′ be the matrix which has
g′(yi)− g′(y0) as columns. We can then stack the equations to get

L∗T f∗(x) = L
′⊤f ′(x) (23)

and since L∗ is invertible,

f∗(x) = L∗−⊤L
′⊤f ′(x) (24)

If we set A = (L′L∗−1)⊤, we only need to show that A is invertible. Using the diversity condition
on f∗, we pick points x0, ..., xM such that f∗(xi)− f∗(x0) are linearly independent. Let N∗ be the
matrix with f∗(xi)− f∗(x0) as columns and N′ be the matrix with f ′(xi)− f ′(x0) as columns. Then

N∗ = AN′ (25)
Since we know that for any two matrices, B,C, rank(BC) ≤ min(rank(B), rank(C)), and N∗ has
rank M , we see that A and N′ must both also have rank M . Thus, A is invertible.

Next we prove that p∗ = p′ =⇒ g∗(y) = A−⊤g′(y) + b for A invertible and b a vector.

As before we have that
f∗(x)⊤g∗(y)− log(Z∗(x,S)) = f ′(x)⊤g′(y)− log(Z ′(x,S)) (26)

holds for all x. In particular, it is true for the M + 1 x’s, x0, ..., xM which exist according to the
diversity condition on f∗. So we can write up M + 1 equations of this kind. If we subtract the
equation with x0 from these, we are left with M equations of the form

f∗(xi)
⊤g∗(y)− f∗(x0)

⊤g∗(y) + log(Z∗(x0,S))− log(Z∗(xi,S)) (27)

= f ′(xi)
⊤g′(y)− f ′(x0)

⊤g′(y) + log(Z ′(x0,S))− log(Z ′(xi,S)) (28)

(f∗(xi)− f∗(x0))
⊤g∗(y) = (f ′(xi)− f ′(x0))

⊤g′(y) + ci (29)
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where

ci = log

(
Z ′(x0,S)
Z∗(x0,S)

)
+ log

(
Z∗(xi,S)
Z ′(xi,S)

)
(30)

Let N∗ be the matrix with f∗(xi)− f∗(x0) as columns, let N′ be the matrix with f ′(xi)− f ′(x0) as
columns and let c be the vector with ci as entries. Then since N∗ is invertible

N∗Tg∗(y) = N′⊤g′(y) + c (31)

g∗(y) = N∗−⊤N′⊤g′(y) +N∗−⊤c (32)

Since we found before that A is invertible and

A−1N∗ = N′ (33)

we have that

g∗(y) = N∗−⊤N′⊤g′(y) +N∗−⊤c (34)

g∗(y) = N∗−⊤(A−1N∗)⊤g′(y) +N∗−⊤c (35)

g∗(y) = N∗−⊤N∗TA−⊤g′(y) +N∗−⊤c (36)

g∗(y) = A−⊤g′(y) + b (37)

where b = N∗−⊤c, and we have the result.

C Close-to-Identifiability Result and Full Proof

We here provide the statement and proof of our main contribution. We show that for models as in
Equation (1), the representations extracted by a model θ∗ can be written as a linear transformation
of those from another model, θ′, plus an error term which can be seen as the non-linear part of the
relationship between the functions. When the likelihoods of the two models are equal, the error
term vanishes, and we recover the results of Theorem 1. Moreover, the connection we present
between representations and difference in log-likelihoods can also be seen as a first step towards a
“similarity-quantifying” measure (Sucholutsky et al., 2023) of representations based on the likelihood
of the models.

Let θ∗ and θ′ be two models, and let θ∗ satisfy the diversity condition (Definition 1) for both f∗ and
g∗. Let y0, ...,yM be the yis from the diversity condition on g∗. Let L∗ be the matrix with columns
g∗(yi)− g∗(y0) and L′ the matrix with columns g′(yi)− g′(y0). Let x0, ...,xM be the xis from
the diversity condition on f∗. Let N∗ be the matrix with columns f∗(xi)− f∗(x0) and N′ the matrix
with columns f ′(xi)− f ′(x0). Then

f∗(x) = Af ′(x) + hf∗(x) (38)

g∗(y) = Bg′(y) + hg∗(y) (39)

where A = L∗−⊤L′⊤, hf∗(x) = L∗−⊤ϵy(x), and ϵy(x) is a vector function with each entry
equal to ϵyi(x) = f∗(x)⊤g∗(yi) − f ′(x)⊤g′(yi) + f ′(x)⊤g′(y0) − f∗(x)⊤g∗(y0). Also, B =
N∗−⊤N′⊤, hg(y) = N∗−⊤(ϵx(y) + c), and ϵx(y) is a vector function with each entry equal to
ϵxi(y) = f∗(xi)

⊤g∗(y)−f ′(xi)
⊤g′(y)+f ′(x0)

⊤g′(y)−f∗(x0)
⊤g∗(y), and c is a constant vector.

Proof. We first show that f∗(x) = Af ′(x) + hf∗(x).

Let the codomains of f∗,g∗, f ′,g′ be in RM . Let y0, ...,yM be the ones which exist according to the
diversity condition on g∗. Let Z∗(x,S) =

∑
yj∈S exp(f∗(x)⊤g∗(yj)), and similarly for Z ′(x,S).

Then

p∗(y|x,S) = p∗(y|x,S)p
′(y|x,S)

p′(y|x,S)
f∗(x)⊤g∗(y)− log(Z∗(x,S)) = f∗(x)⊤g∗(y)− log(Z∗(x,S))

+ f ′(x)⊤g′(y)− log(Z ′(x,S))
− f ′(x)⊤g′(y) + log(Z ′(x,S))
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for all y. In particular, it is true for y0, ...,yM . So we can write up M + 1 equations of this kind. If
we subtract the equation with y0 from these, we are left with M equations of the form

f∗(x)⊤g∗(yi)− f∗(x)⊤g∗(y0) + log(Z∗(x,S))− log(Z∗(x,S))
= f∗(x)⊤g∗(yi)− f∗(x)⊤g∗(y0) + log(Z∗(x,S))− log(Z∗(x,S))

+ f ′(x)⊤g′(yi)− f ′(x)⊤g′(y0) + log(Z ′(x,S))− log(Z ′(x,S))
− (f ′(x)⊤g′(yi)− f ′(x)⊤g′(y0) + log(Z ′(x,S))− log(Z ′(x,S)))

f∗(x)⊤g∗(yi)− f∗(x)⊤g∗(y0) = f ′(x)⊤g′(yi)− f ′(x)⊤g′(y0)

+ f∗(x)⊤g∗(yi)− f ′(x)⊤g′(yi)

+ f ′(x)⊤g′(y0)− f∗(x)⊤g∗(y0)

f∗(x)⊤(g∗(yi)− g∗(y0)) = f ′(x)⊤(g′(yi)− g′(y0))

+ f∗(x)⊤g∗(yi)− f ′(x)⊤g′(yi)

+ f ′(x)⊤g′(y0)− f∗(x)⊤g∗(y0)

(g∗(yi)− g∗(y0))
⊤f∗(x) = (g′(yi)− g′(y0))

⊤f ′(x)

+ f∗(x)⊤g∗(yi)− f ′(x)⊤g′(yi)

+ f ′(x)⊤g′(y0)− f∗(x)⊤g∗(y0)

(g∗(yi)− g∗(y0))
⊤f∗(x) = (g′(yi)− g′(y0))

⊤f ′(x) + ϵyi(x)

where ϵyi(x) = f∗(x)⊤g∗(yi)− f ′(x)⊤g′(yi) + f ′(x)⊤g′(y0)− f∗(x)⊤g∗(y0). Note that

ϵyi(x) = log(p∗(yi|x,S))− log(p′(yi|x,S)) + log(p′(y0|x,S))− log(p∗(y0|x,S)) (40)

so it is a difference of log-likelihoods.

Let L∗ be the matrix which has g∗(yi) − g∗(y0) as columns, let L′ be the matrix which has
g′(yi) − g′(y0) as columns and let ϵy(x) be the vector which has ϵyi(x) as entries. We can then
stack the equations to get

L∗T f∗(x) = L
′⊤f ′(x) + ϵy(x) (41)

and since L∗ is invertible,

f∗(x) = L∗−⊤
(
L

′⊤f ′(x) + ϵy(x)
)

(42)

If we set A = L∗−⊤L
′⊤ and hf∗(x) = L∗−⊤ϵy(x), we get the result.

Notes on when A is invertible We see that if the diversity condition is satisfied for g′ with the
same yi as for g∗, A is invertible.

If we do not assume that g′ satisfies the diversity condition, we can use the diversity condition on f∗

to pick points x0, ...,xM such that f∗(xi)− f∗(x0) are linearly independent. Let N∗ be the matrix
with f∗(xi)− f∗(x0) as columns, let N′ be the matrix with f ′(xi)− f ′(x0) as columns and let E be
the matrix with ϵy(xi)− ϵy(x0) as columns. Then we have

N∗ = L∗−⊤
(
L

′⊤N′ +E
)

(43)

If E = 0, we get N∗ = AN′. Since we know that for any two matrices, B,C, rank(BC) ≤
min(rank(B), rank(C)), and N∗ has rank M , we see that A and N′ must both also have rank M .
Thus, A and N′ are invertible.

If E ̸= 0, we get from the same argument that L
′⊤N′ +E is an invertible matrix. However, this does

not give us invertibility of L′ or N′.

Proof. Next we show that g∗(y) = Bg′(y) + hg(y).
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As before we have that

f∗(x)⊤g∗(y)− log(Z∗(x,S)) = f ′(x)⊤g′(y)− log(Z ′(x,S)) (44)

+ f∗(x)⊤g∗(y)− log(Z∗(x,S)) (45)

− f ′(x)⊤g′(y) + log(Z ′(x,S)) (46)

holds for all x. In particular, it is true for the M + 1 xs, x0, ...,xM which exist according to the
diversity condition on f∗. So we can write up M + 1 equations of this kind. If we subtract the
equation with x0 from these, we are left with M equations of the form

f∗(xi)
⊤g∗(y)− f∗(x0)

⊤g∗(y) + log(Z∗(x0,S))− log(Z∗(xi,S))
= f ′(xi)

⊤g′(y)− f ′(x0)
⊤g′(y) + log(Z ′(x0,S))− log(Z ′(xi,S))

+ f∗(xi)
⊤g∗(y)− f∗(x0)

⊤g∗(y) + log(Z∗(x0,S))− log(Z∗(xi,S))
− f ′(xi)

⊤g′(y) + f ′(x0)
⊤g′(y)− log(Z ′(x0,S)) + log(Z ′(xi,S))

(f∗(xi)− f∗(x0))
⊤g∗(y) = (f ′(xi)− f ′(x0))

⊤g′(y) + ϵxi(y) + ci

where

ϵxi(y) = f∗(xi)
⊤g∗(y)− f ′(xi)

⊤g′(y) + f ′(x0)
⊤g′(y)− f∗(x0)

⊤g∗(y) (47)

and

ci = log(Z∗(x0,S))− log(Z∗(xi,S))− log(Z ′(x0,S)) + log(Z ′(xi,S)) (48)

+ log(Z ′(x0,S))− log(Z ′(xi,S)) (49)

= log

(
Z∗(x0,S)
Z ′(x0,S)

)
+ log

(
Z ′(xi,S)
Z∗(xi,S)

)
+ log

(
Z ′(x0,S)
Z ′(xi,S)

)
(50)

which is a constant.

Let N∗ be the matrix with f∗(xi)− f∗(x0) as columns, let N′ be the matrix with f ′(xi)− f ′(x0) as
columns, let c be the vector with ci as entries and let ϵx(y) be the vector which has ϵxi(y) as entries.
Then

N∗Tg∗(y) = N′⊤g′(y) + ϵxi(y) + c (51)

g∗(y) = N∗−⊤(N′⊤g′(y) + c+ ϵx(y)) (52)

Letting B = N∗−⊤N′⊤ and hg(y) = N∗−⊤(ϵx(y) + c), we have the result.

D Full Example of Close to Zero Loss where Representations are Dissimilar

In this example, we have M = 2 and a classification task with four labels, y0,y1,y2,y3. The
example relies on the fact that if we fix non-zero angles between the unembedding vectors, and we let
the embedding representations be closer to the correct label in terms of angle than the incorrect ones,
then we can make the likelihood of the correct label arbitrarily close to 1 by only changing the lengths
of the unembedding vectors. We will first describe the unembedding vectors, g(yi), and then describe
the embedding representations, f(x), based on the g(yi)s. For model θ′, we let ∥g′(yi)∥ = 1100 for
all i (see Appendix E for how this was chosen) and the angle between g′(yi) and g′(yi+1) be π/16
radians, starting with g′(y0) = (1100, 0). So we have g′(y1) = (1100·cos(π/16), 1100·sin(π/16)),
g′(y2) = (1100 ·cos(2π/16), 1100 ·sin(2π/16)), g′(y3) = (1100 ·cos(3π/16), 1100 ·sin(3π/16)).
To generate our f ′(x) representations, we draw 1000 samples for each label from a uniform dis-
tribution from [−π/128, π/128]. This represents the angle between f ′(x) and the representation
of the correct label g′(yi). To get the length of the f ′(x), we draw 4000 samples from a standard
normal distribution, z ∈ N (0, 1), and transform it to be a value larger than 1 in the following way:
∥f ′(x)∥ = |z|+ 1. See a visualization of the f ′(x) for model 1 in Fig. 2.

For model θ∗, we let ∥g∗(yi)∥ = 100 for all i, the angle between g∗(y0) and g∗(y1) will be 2π/6
radians and the angle between g∗(y2), g∗(y3) and g∗(y3), g∗(y0) be π/2 radians, starting with
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Figure 2: f ′(x) for model θ′ Figure 3: f∗(x) for model θ∗

g∗(y0) = (100, 0). So we have g∗(y1) = (100 · cos(2π/6), 100 · sin(2π/6)), g∗(y2) = (−100, 0),
g∗(y3) = (0,−100).

To generate our f∗(x) representations, we take the samples we drew from the uniform distribution
for the first model and multiply them with 16, so we get samples from a uniform distribution from
[−π/8, π/8]. These represent the angle between f∗(x) and the representation of the correct label
g∗(yi). We use the same lengths for the f∗(x)s as in model 1. See visualization in Fig. 3.

We can now calculate the negative log-likelihood (NLL) for these two models using Eq. (1). For
model θ′, we get NLL′ ≈ 9 · 10−10 and for model θ∗, we get NLL∗ ≈ 7 · 10−10. In fact, for the
correct labels, we get a small difference in log-likelihood for all datapoints. The maximal difference
for the two models is 8 · 10−7. As mentioned above, we could make this loss arbitrarily small, by
increasing the lengths of the unembeddings.

Now both of these models have close to zero loss, and their loss thus is close to equal: however,
when we calculate the mean canonical correlation between the embedding representations, we get
mCCA(f

′(x), f∗(x)) ≈ 0.42, which is very far from the value of 1 which would indicate a perfect
linear relationship. To get an idea of how dissimilar this is, let f ′noise(x) be f ′(x), where we have
added Gaussian noise to each dimension with four times the variance that f ′(x) has in that dimension.
We then get mCCA(f

′(x), f ′noise(x)) ≈ 0.44. If we only add noise with twice the variance, we get
mCCA(f

′(x), f ′noise(x)) ≈ 0.57. Thus, we can see that the representations of the models are quite far
from being similar.

We can also calculate L
′⊤f ′(x) and ϵy(x) (the equivalent of Eq. (6)) for the models and consider

the relative size of ϵy(x) compared to L
′⊤f ′(x) in each dimension. We use y0,y1 and y3 for the

diversity condition and let

L
′⊤ =

[
(g′(y1)− g′(y0))

⊤

(g′(y3)− g′(y0))
⊤

]
(53)

Let L
′⊤f ′(x)i be the i’th dimension of L

′⊤f ′(x). Then

Ex∈X

[
|ϵy1(x)|

|L′⊤f ′(x)1|

]
= 2.2 and Ex∈X

[
|ϵy2(x)|

|L′⊤f ′(x)2|

]
= 0.8

This means that on average the value of the “error term” in one of the dimensions is more than twice
as large as the representation term and thus it makes sense that the representations are not close to
being linear transformations of each other.
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E Choosing the Lengths of the Embedding and Unembedding Vectors

To decide on the lengths of the embedding and unembedding vectors, in the example, we first noted
that

f(x)⊤g(y) = cos(f(x),g(y))∥f(x)∥∥g(y)∥ (54)

Therefore, if we decide on the angles for the g(y)s and f(x)s and let all the g(y)s have the same
length, we can write the log-likelihood as a function of v = ∥f(x)∥∥g(y)∥

log pθ(y|x,S) = fθ(x)
⊤gθ(y)− log

∑
y′∈S

exp(fθ(x)
⊤gθ(y

′))

 (55)

= cos(f(x),g(y)) · v − log

∑
y′∈S

exp(cos(f(x),g(y)) · v)

 (56)

Inspecting this function (see Fig. 4), we see we can get arbitrarily close to zero log-likelihood, by
increasing v. Thus, for models where the g(y)s are closer in terms of angles, we can simply increase
the length of the g(y)s.

Figure 4: log-likelihood as function of product of vector lengths for fixed angles
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