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ABSTRACT

Adversarial training has emerged as a popular approach for training models that
are robust to inference time attacks. However, our theoretical understanding of
why and when it works remains limited. Prior work has offered convergence
analysis of adversarial training, but they are either restricted to the Neural Tangent
Kernel (NTK) regime or make restrictive assumptions about data such as linearly
realizability. In this work, we provide convergence and generalization guarantees
for adversarial training of two-layer networks of any width on non-separable data.
Our analysis goes beyond the NTK regime and holds for both smooth and non-
smooth activation functions. We support our theoretical findings with an empirical
study on synthetic and real-world data.

1 INTRODUCTION

Machine learning models are ubiquitous in real-world applications, achieving state-of-the-art perfor-
mance on various tasks such as image classification and speech recognition. However, several recent
studies have shown that these models, especially those based on deep neural networks, are highly
vulnerable to small, nearly imperceptible, albeit strategic, perturbation of data. These perturbations,
called adversarial examples, are abundant and easy to find computationally (Bubeck et al., 2021;
Wang et al., 2022). The potential of such adversarial attacks to substantially degrade the performance
of an otherwise well-performing model has been a source of significant concern regarding deploying
machine learning models in real-world systems. It is no surprise, then, that developing algorithms that
can provably defend against such attacks and are guaranteed to improve the robustness of machine
learning has gained tremendous traction in recent years.

One of the most prominent empirical defense algorithms against inference-time attacks is the adver-
sarial training method of Madry et al. (2018). Adversarial training proceeds by simulating attacks as
part of training – generating adversarial examples from (clean) training examples and using them to
train a neural network. We can view adversarial training as a two-player game, wherein the learner
seeks to minimize their error on the training set while an adversary strives to maximize the error by
crafting small strategic corruptions of the input training examples. Several empirical studies show
that by using adversarial training, the learner returns a model that is more resilient to perturbations in
the input space (Madry et al., 2018; Shafahi et al., 2019b; Dong et al., 2020; Pang et al., 2021).

Despite the empirical success of adversarial training, our understanding of its theoretical under-
pinnings is far from complete. Several prior works study statistical and computational aspects of
adversarial training but in somewhat restrictive settings; e.g., assuming linear separability of data (Mi-
anjy and Arora, 2022), or essentially assuming away nonconvexity of neural networks by considering
an overly parametrized regime wherein the trajectory dynamics are in the lazy regime (aka, the neural
tangent kernel or the NTK setting) (Gao et al., 2019; Zhang et al., 2020; Li and Telgarsky, 2023).
In this paper, we forego these simplifying assumptions and present theoretical convergence and
generalization guarantees for adversarial training on two-layer neural networks, of any width, on
non-separable data. Our key contributions are as follows.

1. We establish convergence guarantees for adversarial training of two-layer neural networks. We
allow the network to be of arbitrary width thereby extending our results to networks beyond the
NTK regime. Furthermore, we do not make any assumptions about the separability or robust
realizability of data.
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2. We provide generalization guarantees on both the clean test error and the robust test error. For
a moderately large network, we show that for norm-bounded additive adversarial attacks, if the
perturbation budget is not too large, the robust test error approximates the label noise rate. For
adversarial attacks with a large perturbation budget, we show that the robust test error is bounded
from below by a constant.

3. We validate our theoretical results with experiments on both synthetic and real-world datasets.

1.1 RELATED WORK

Convergence Analysis of Standard Training. Several recent works study the convergence of
(stochastic) gradient descent for training neural networks (Arora et al., 2019; Allen-Zhu et al., 2019;
Cao and Gu, 2019). Most of these works focus on a lazy training regime wherein the network
weights remain close to initialization through the run of the algorithm (owing to an extreme over-
parametrization); this is also referred to as the neural tangent kernel (NTK) setting. While interesting
from a theoretical perspective (we essentially end up with a convex learning problem), this assumption
is typically violated in practice. Analyzing SGD beyond the NTK setting is much more challenging
owing to the non-convexity of learning problems associated with training neural networks of arbitrary
widths. There has been some progress toward addressing this challenge – Frei et al. (2022) provide
a first guarantee for finite-width neural networks trained on logistic loss for data drawn from a
Gaussian mixture model. Concurrently, Cao et al. (2022) characterize the generalization guarantees
of two-layer convolutional neural networks, assuming that the input data is a sum of a label-dependent
signal patch and a label-independent noise patch. While both of the works above consider a smooth
activation function, follow-up works by Kou et al. (2023); Xu and Gu (2023) extend the result to
SGD for training neural networks with non-smooth activation functions (e.g., ReLU networks).

Convergence Analysis of Adversarial Training. Adversarial training, introduced by Madry et al.
(2018), is one of the most popular algorithms for training models that are robust to adversarial
attacks. Subsequent works have explored variants, including the TRADES (Zhang et al., 2019) and
MART (Wang et al., 2020) algorithms. Despite their success, a theoretical understanding of why
and when adversarial training succeeds remains elusive. Much of the recent work (Charles et al.,
2019; Li et al., 2020; Zou et al., 2021; Chen et al., 2021) has focused on studying adversarial training
of linear models wherein the adversarial examples are given in a simple closed-form expression –
this simplifies the problem greatly reducing it to standard training. Adversarial training of neural
networks was analyzed by Gao et al. (2019) and further improved by Zhang et al. (2020); however,
both of these works focus on ensuring convergence of the training procedure and do not provide
generalization guarantees on robust loss. This gap has been addressed in very recent work by Li and
Telgarsky (2023). However, the work of Li and Telgarsky (2023), and the prior work all focus on
the lazy training regime, which, unfortunately, has been proven to be at odds with robustness Wang
et al. (2022). Finally, Mianjy and Arora (2022) provide an end-to-end analysis of adversarial training
beyond the NTK setting with a variant of adversarial training that involves using a slightly different
(reflected) loss for the inner loop maximization problem (for finding an attack vector as part of
adversarial training). The results of Mianjy and Arora (2022) are limited to distributions that are
robustly realizable.

Our work builds on that of Frei et al. (2022) and considers a high-dimensional setting for a class-
conditional model; the data model, as well as various other data assumptions we need, were first
introduced and studied in Chatterji and Long (2021). While our proof techniques are inspired by Frei
et al. (2022), we differ in many respects. To the best of our knowledge, ours is the first work that
provides the convergence and generalization guarantees for adversarial training for a non-separable

data distribution. We consider neural networks with both smooth and non-smooth activation functions,
e.g., ReLU networks; the analysis of Frei et al. (2022) is limited to smooth activation functions.
Additionally, unlike prior works (Gao et al., 2019; Zhang et al., 2020; Li and Telgarsky, 2023) that are
limited to the NTK setting, our guarantees hold for neural networks of arbitrary width and analyze
GD-based adversarial training in the rich regime (i.e., beyond the lazy regime).

2 PRELIMINARIES

Notation Throughout the paper, we denote scalars, vectors, and matrices with lowercase italics,
lowercase bold, and uppercase bold Roman letters, respectively; e.g., u, u, and U. We use [m]

2



Under review as a conference paper at ICLR 2024

to denote the set {1, 2, . . . ,m} and use both k · k and k · k2 for `2-norm. Given a matrix U =
[u1, . . . , um] 2 Rd⇥m, we use kUkF and kUk2 to represent the Frobenius norm and spectral norm,
respectively. We use B2(u,↵) to denote the `2 ball centered at u 2 Rd of radius ↵. We use the
standard O-notation (O, ⇥ and ⌦).

2.1 PROBLEM SETUP

We focus on binary classification and denote the input space and label space as X = Rd
,Y = {±1},

respectively. We assume that the data are drawn from a noisy mixture data distribution D on X ⇥ Y

that, along with its variants, has been studied in several recent works (Chatterji and Long, 2021; Cao
et al., 2021; Frei et al., 2022). Formally, we consider the following data distribution.
Definition (Data Distribution). Let Dclust be a �-strongly log-concave distribution over Rd for some
� > 0. We assume that Dclust = D

(1)
clust ⇥ · · ·⇥D

(d)
clust is a product distribution whose marginals are all

mean-zero with the sub-Gaussian norm at most one. We further assume that E⇠⇠Dclust [k⇠k
2] � d

holds for some 0 <  < 1. Let Dc be a distribution over X⇥Y . We first draw a sample (xc, yc) ⇠ Dc

by sampling yc 2 {±1} uniformly at random, sampling ⇠ ⇠ Dclust, and setting xc = ycµ+ ⇠. Given
a noise rate � > 0, we define our true data distribution D to be any distribution over X ⇥ Y such that
the marginal distribution of D and Dc on X are the same, and the total variation distance between the
two distributions is bounded by �, i.e., dTV(Dc,D)  �.

The standard coupling lemma states that given two distributions D and Dc over the same domain
Z = X ⇥Y , there exists a joint distribution over Z ⇥Z such that the marginals along the projections
(z, z0) 7! z and (z, z0) 7! z

0 are D and Dc, respectively. Given that the marginal on X for D and Dc

are the same (see the definition above), this implies that for (x, y) ⇠ D, (xc, yc) ⇠ Dc, P(x = xc) = 1
and P(y 6= yc)  �. The definition above includes two settings: 1) Independent label flip, where for
each sample, label y is obtained by flipping yc with probability at most �, independent of how other
labels are generated; 2) Non-independent label flip, where there exists potential correlations between
labels y. A yet another special instance that has been studied extensively in the adversarial learning
literature is that of Gaussian distribution (Javanmard et al., 2020; Dobriban et al., 2020; Dan et al.,
2020) which is a special case of the data generative model above for � = 0.

Hypothesis Class. We focus on learning two-layer neural networks defined as: f(x;W) :=
1

p
m

P
m

s=1 as�(hws, xi) where m is an even integer representing the number of hidden nodes
and � : R ! R is an activation function. The weight matrix at the bottom layer is denoted
as W = [w1, . . . ,wm] 2 Rd⇥m and the weight vector at the top layer by a = [a1, . . . , am] =
[1, . . . , 1,�1, . . . ,�1] 2 Rm. The top layer weight vector a is kept fixed throughout the training
process. The weight vectors at the bottom layer are initialized randomly as w0

s
⇠ N(0,!2

initI), for
s 2

�
1, . . . , m

2

 
, and setting w0

s
= w0

s�
m
2

for s 2
�

m

2 + 1, . . . ,m
 

. This ensures symmetry at
initialization and yields f(x;W0) = 0 for all x. This symmetric initialization technique is commonly
used in related work (Langer, 2021; Bartlett et al., 2021; Montanari and Zhong, 2022) and we employ
here for analytical purposes.

Training Data. We are given a training data of size n sampled i.i.d. from the noisy data distribution,
S = {(xi, yi)}

n

i=1 ⇠ D. Let C denote the set of indices of training data corresponding to the clean
labels; i.e., for i 2 C, we have that (xi, yi) ⇠ Dc; similarly, let N to denote the set of indices
corresponding to noisy labels; i.e., (xi,�yi) ⇠ Dc for all i 2 N .

Loss Function. The 0-1 loss of a predictor f(·,W) on a data point (x, y) is defined as
`
0/1((x, y);W) = 1 (yf(x;W)  0), where 1(·) is the indicator function. For computational reasons,

as is typical, we use the logistic loss, denoted `(z) = log (1 + exp (�z)), to train the two-layer
neural networks. The population and the empirical loss w.r.t. `(·) are denoted as:

L(W) := E(x,y)⇠D`(yf(x;W)) , and bL(W) :=
1

n

nX

i=1

`(yif(xi;W)).

Robust Loss. We consider `2 norm-bounded adversarial attacks with a perturbation budget of
size ↵ > 0. The set of all such perturbations for an input example x 2 X is represented by
B2(x,↵). This threat model motivates minimizing the robust 0-1 loss defined as `0/1rob ((x, y);W) =
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maxx̃2B2(x,↵) 1(yf(x̃;W)  0). The population and empirical risk w.r.t. the 0-1 loss and the robust
0-1 loss, respectively, are denoted as L0/1, bL0/1, L0/1

rob , and bL0/1
rob . Analogously, the population and

empirical risk w.r.t. the (surrogate) logistic loss `(·) are defined as:

Lrob(W) := E(x,y)⇠D max
x̃2B2(x,↵)

`(yf(x̃;W)) , and bLrob(W) :=
1

n

nX

i=1

max
x̃i2B2(xi,↵)

`(yif(x̃i;W)).

Note that we are ultimately interested in bounding the 0-1 loss and its robust variant.

Algorithm 1 Gradient Descent-based Adversarial
Training
Input: Step size ⌘, perturbation budget per sample ↵. Num-

ber of iterations T .
1: Initialize W0 randomly.
2: for t = 0, . . . , T � 1 do
3: for i = 1, . . . , n do
4: x̃t

i = argmaxx̃i2B2(xi,↵) `(yif(x̃i;Wt)).
5: end for
6: Update Wt+1 = Wt � ⌘

n

Pn
i=1 r`(yif(x̃t

i;Wt))
7: end for
8: return: WT

Adversarial Training. The gradient
descent-based adversarial training algorithm
is presented in Algorithm 1. We denote the
adversarial training example for some input
xi given model parameter Wt, at round t as
x̃t
i
= argmaxx̃i2B2(xi,↵) `(yif(x̃i;Wt)) =

argminx̃i2B2(xi,↵) yif(x̃i;Wt).

3 MAIN RESULT

3.1 SMOOTH ACTIVATION FUNCTION

In this section, we consider a strictly increasing, 1-Lipschitz, H-smooth activation function that is
approximately homogeneous with �(0) = 0. Formally, there exists �, H > 0, 0  ⇣ < 1, c1 �

0, c2 � 0 such that

0 < �  �
0(z)  1,�0(z) is H-Lipschitz , and |�

0(z) · z � �(z)|  c1 + c2 |z|
⇣
, 8z 2 R.

Smooth activation functions have been extensively studied both theoretically and empirically (Liu
and Di, 2021; Biswas et al., 2022). One example of such an activation function that satisfies our
condition is the smoothed Leaky ReLU activation (Frei et al., 2022) defined as follows:

�SLReLU(z) =

8
<

:

z �
1��

4H , z �
1
H

1��

4 Hz
2 + 1+�

2 z, |z| 
1
H

�z �
1��

4H , z  �
1
H

. (1)

However, we do need an additional assumption on top of what Frei et al. (2022) require. In particular,
we assume that �0(z)z and �(z) are close to each other. We argue that this is a mild assumption,
and holds trivially for standard ReLU and Leaky ReLU, with c1 = c2 = 0. For �SLReLU(z), of Frei
et al. (2022), the assumption holds with ⇣ = 0 with c1 = 1��

4H , and c2 = 0. The reason we need
this additional assumption is because the neural networks with �SLReLU(z) activation function are
no longer homogeneous. Consequently, without the assumption we end up with terms in the upper
bound on the empirical robust risk that depends on the Frobenius norm of the weight matrix (see
Section 4.2 for more details).

We make the following set of assumptions about our problem setup. Specifically, we consider a high
dimensional setting where the dimension d is much larger than the number of training samples n, as
stated below in Assumption (A2). Such a regime is popular in biomedical settings where the data
comes from limited patient information such as MRI or DNA sequence. Assumption (A6) requires a
small initialization to ensure that the first step of adversarial training dominates the behavior of the
neural network, pushing it beyond the lazy training regime. Such initialization technique has also been
introduced in previous work (Ba et al., 2019; Xing et al., 2021). Given that the objective of adversarial
training is to achieve a classifier that is robust against small input perturbations imperceptible to
human eyes, Assumption (A7) is reasonable as it imposes a mild constraint on the attack strength.
Finally, we note that when ↵ = 0, these assumptions are essentially the same as in Frei et al. (2022).
Assumption 1. Let � 2 (0, 1/2). We assume that there exists a positive constant C such that the
following holds: (A1) The number of samples satisfies n > C log (1/�). (A2) The dimension
satisfies Cmax{kµk2 n, n2

�
log (n/�) + ↵

2
�
}  d  kµk

4
/C. (A3) The signal size satisfies

kµk
2
� C log (n/�). (A4) noise rate � 2 [0, 1/C]. (A5) Step size ⌘  (Cd

2(1 + H
p
m
)2)�1.

(A6) Initialization variance satisfies !init
p
md  ⌘. (A7) Adversarial perturbation ↵  0.99 kµk.
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Next we present our main result of this section that describes the effects of adversarial training on
a neural network with smooth activation functions trained on samples from the noisy distribution
D (see Section 2.1). Our findings suggest that, as the we run adversarial training for more epochs,
the robust training loss goes to zero. Furthermore, the clean test error and the robust test error is
approximately equal to the noise rate, provided that the attack strength, ↵, is small.
Theorem 3.1. Let 0 < " 

1
2n , � 2 (0, 1/2). Let � be a �-leaky H-smooth activation with

0  ⇣ < 1. Let  2 (0, 1),� > 0. Then, given that Assumption 1 holds with some constant C > 0,

there exists a constant c > 0 such that after running Algorithm 1 for T � ⌦
⇣� 1+

p
m/d3

(199kµk�200↵)�⌘"

� 2
1�⇣

⌘

iterations, we have that with probability at least 1� 2� over the random initialization and the draw
of an i.i.d. sample of size n, the following holds:

1. The robust training loss satisfies bLrob(WT )  ".

2. The clean test error satisfies L0/1(WT )  � + 2 exp
⇣
�

c�nkµk
4

C2d

⇣
0.99� ↵

kµk

⌘2 ⌘
.

3. For ↵

kµk


0.99
p
nkµk

p
nkµk+C

p
d

, the robust test error satisfies

L
0/1
rob (WT )  � + 2exp

⇣
� c� kµk

2
⇣p

n kµk

C
p
d

⇣
0.99�

↵

kµk

⌘
�

↵

kµk

⌘2⌘
.

For the smooth Leaky ReLU activation function of Frei et al. (2022), we have the following result.
Corollary 3.2. For any �-leaky H-smooth ReLU activation �SLReLU defined in Equation (1), and for
all  2 (0, 1),� > 0, given Assumption 1 holds, we have that with probability at least 1� 2� over
the random initialization and the draws of the samples, the robust training loss satisfies

bLrob(WT )  O

 
1 +

p
(1� �)/Hm

1/4

(199 kµk � 200↵) �
p
⌘
p
T

!
.

3.2 NON-SMOOTH ACTIVATION FUNCTION

Here, we consider a more practical setting where the activation function is no longer smooth. We
consider a homogeneous non-smooth activation function that satisfies the following properties.

�(0) = 0,�0(z)z = �(z), z 2 R; 0  �
0(z)  1, z 2 R; �

0(z) � �, z � 0, � 2 (0, 1].

This includes ReLU and Leaky ReLU activation functions. Additionally, we assume the following.
Assumption 2. Let � 2 (0, 1/2). We assume that there exists a positive constant C such that
the following holds: (B1) The network width satisfies m � C log (n/�). (B2) The signal
size satisfies kµk � Cmax

n�
d

n
log (md/n�)

�1/4
,

p
log (n/�)

o
. (B3) The dimension satisfies

d � Cmax{kµk2 n, n2
�
log (n/�) + ↵

2
�
}. (B4) noise rate � 2 [0, 1/C]. (B5) Initialization vari-

ance satisfies !init
p
md  ⌘. (B6) Step size ⌘  (Cd

2)�1. (B7) The number of samples satisfies
n � C log (m/�). (B8) Adversarial perturbation ↵ 

p
n/d kµk.

Assumption (B1) is a relatively mild constraint on the network width. Assumption (B2) is slightly
more stringent compared to Assumption (A3). However, it is worth noting that in the clean setting,
the minimax generalization error is at least O

⇣
exp

⇣
�min

⇣
kµk

2
, n kµk

4
/d

⌘⌘⌘
(Giraud and

Verzelen, 2019), implying that Assumption(B2) is unavoidable up to logarithmic factors if we desire
a classifier with good generalization. Assumptions (B7) and (B8) are also more restrictive compared
to Assumptions (A1) and (A7), respectively. These assumptions ensure the presence of sufficient
number of neurons to have positive activation at the initial stage of adversarial training, which is a
crucial aspect of our analysis in terms of relaxing the requirement of a smooth activation function, as
opposed to Section 3.1. The analogous result to Theorem 3.1 is presented below.
Theorem 3.3. Let 0 < " 

1
2n , � 2 (0, 1/2). Let � be a non-smooth activation with � 2 (0, 1]. Let

 2 (0, 1),� > 0. Then, given that Assumption 2 holds with some constant C > 0, there exists

a constant c > 0 such that after running Algorithm 1 for T � ⌦
⇣⇣

(199 kµk � 200↵) �
p
⌘"

⌘�2⌘

iterations, we have that with probability at least 1� 2� over the random initialization and the draw of
an i.i.d. sample of size n, the following holds:
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1. The robust training loss satisfies bLrob(WT )  ".

2. The clean test error satisfies L0/1(WT )  � + 2 exp
⇣
�

c�nkµk
4

C2d

⇣
1� ↵

kµk

⌘2 ⌘
.

3. For ↵

kµk


p
nkµk

p
nkµk+C

p
d

, the robust test error satisfies

L
0/1
rob (WT )  � + 2exp

⇣
� c� kµk

2
⇣p

n kµk

C
p
d

⇣
1�

↵

kµk

⌘
�

↵

kµk

⌘2⌘
.

3.3 DISCUSSION

Theorems 3.1 and 3.3 suggest an interesting interplay between the parameters d, n, and kµk as

described in Assumptions 1 and 2. Importantly, when n � ⌦̃
� dmax(1,↵2)
kµk

2(kµk�↵)2

�
, it ensures a small

robust test error. Furthermore, when n � ⌦̃
�

d

kµk
2(kµk�↵)2

�
, the clean test error is also guaranteed to

be small. In cases where ↵ = 0, Theorem 3.1 and 3.3 recover the results in the standard setting (Frei
et al., 2022; Xu and Gu, 2023). Compared to the standard setting, we pay an additional price
proportional to max(1,↵2)

(1�↵/kµk)2 in terms of the sample size. It is worth noting that both the clean test
error and the robust test error decrease as n/d increases or the attack strength ↵

kµk
decreases, which

is consistent with the findings in previous literature (Schmidt et al., 2018; Shafahi et al., 2019a).

Next, we provide a lower bound on the robust test error that is independent of the algorithm as well
as the hypothesis class.
Theorem 3.4. We consider independent label flip with probability �. Let p(x) be the density
function of Dclust. For any given classifier f(·;W), when ↵ < kµk, we have L

0/1
rob (W) � � +

1�2�
4

R
Rd min{p(⇠), p(⇠+ v)}d⇠, where v = 2 (1� ↵/ kµk)µ. When ↵ � kµk, the robust test error

satisfies L0/1
rob (W) � 0.5.

Consider the special instance of when Dclust is a standard Gaussian distribution. Theorem 3.4 recovers
the optimal risk in Dobriban et al. (2020) up to a scaling factor when � = 0. Moreover, the upper
bound on the robust test error (denoted as UBD) that we provide in Theorems 3.1 and 3.3 and the lower
bound (denoted as LBD) in 3.4 satisfy the following relationship: (UBD��) = (LBD��)O(nkµk2

/d).
When nkµk

2

d
= ⌦(1),↵  O(kµk), our upper bound roughly matches the lower bound.

Overfitting with Adversarial Training. Recent empirical studies have observed overfitting with
adversarial training, wherein the robust training loss continues to decrease with the number of
epochs, whereas the robust test error first decreases and then starts increasing (Rice et al., 2020).
While our result may, at first, seem in conflict with this empirical observation, we note that there
is actually no contradiction since we consider a specific data-generative model and a bound on the
size of the adversarial perturbation during adversarial training. Indeed, recent empirical studies
by Dong et al. (2021) and Yu et al. (2022) confirm that small ↵ prevents adversarial training from
overfitting. Furthermore, Xing et al. (2022) explored the phase transition between standard training
and adversarial training and showed that the optimization trajectories in the two settings are close to
each other when ↵ is small. One interesting future direction is to justify the generalization guarantee
for moderately large attack strength ↵

kµk
.

Comparison with Theoretical Works Several recent works focus on giving convergence and
generalization guarantees for adversarial training (Gao et al., 2019; Zhang et al., 2020; Mianjy and
Arora, 2022; Li and Telgarsky, 2023); here we compare and contrast our work with each of these.

The work of Gao et al. (2019) prove convergence for a modified algorithm for adversarial training
wherein the iterates are projected onto a norm ball to ensure that the network weights stay close to
initialization. However, they further need to assume that a robust network exists in the vicinity of
the initialization. Such an assumption has been shown to be invalid in a recent work (Wang et al.,
2022). In a related work, Zhang et al. (2020) provide a fine-grained convergence analysis for datasets
that are well-separated. More recently, Li and Telgarsky (2023) give convergence and generalization
guarantees for adversarial training of shallow networks with early stopping. Unfortunately, all of the
aforementioned works are limited to the lazy regime (aka, the NTK setting) which has been shown to
be at odds with adversarial robustness (Wang et al., 2022). Mianjy and Arora (2022) were the first to
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provide both convergence and generalization guarantees beyond the NTK regime, yet their analysis
was restricted to robust realizable data distributions.

Our work stands out from prior work in several ways. First, we study the standard adversarial training
algorithm commonly used in practice. Second, we do not make restrictive assumptions regarding
data separability; our generative model allows for the data to be non-separable. Finally, our results
hold for neural networks of arbitrary width and can be trained for arbitrary many iterations allowing��Wt

�� to go to infinity, i.e., beyond the NTK regime. The following result shows that for certain step
sizes and initialization, the neural network weights move far from the initialization after the first step
of adversarial training based on gradient descent.
Proposition 3.5. Consider the same setting as in Theorem 3.1. Then, for some absolute constant
C > 1, with probability at least 1� 2� over the random initialization and the draw of an i.i.d. sample,

we have that k
W1

�W0
k

F
kW0kF

�
�(199kµk�200↵)

1000 .

Finally, we note that Dan et al. (2020) establish a minimax-type lower bound for the classification
excess risk in the conditional Gaussian model, with a bound of ⌦P

�
exp

�
�
�
1
8 + o(1)

�
r
2
�

d

n

�
1,

where r is the adversarial signal-to-noise ratio; this bound is shown to be achieved by a plug-in linear
estimator. While useful, their result does not elucidate why adversarial training helps train robust
networks. It also remains to be seen if adversarial training can achieve a matching upper bound.

4 PROOF SKETCH

We begin by providing some intuition for our proof. We show that when the perturbation size is
relatively small, the trajectory of the adversarial training remains close to that of the standard training.
Furthermore, given a good initialization of the neural network the dynamics of the training algorithm
can be shown to be nearly linear. We also leverage a result from high dimensional probability,
that the training data we draw is (nearly) separable even though the underlying data distribution is
non-separable. We show that both of these events happen with high probability and establish what we
refer to as a “good” run of the algorithm and are central to our proof.

Next, we formalize this intuition and provide a brief proof sketch of our main result. We focus
primarily on neural networks with smooth activation function (i.e., Theorem 3.1) and note the
differences in the analysis when extending the result to the non-smooth activation functions. In our
analysis, we borrow many ideas from Frei et al. (2022) and Xu and Gu (2023). However, the extension
is not straightforward and our focus in this section is on highlighting the technical challenges we
overcome and the key insights we utilized in our analysis. For detailed proofs, we refer the reader to
the Appendix.

4.1 GENERALIZATION GUARANTEE

As a proof strategy we seek to get an upper bound on the robust test error in terms of a lower bound
on the normalized expected conditional margin. This follows using a concentration argument given
that Dclust is �-strongly log-concave.
Lemma 4.1. Suppose that E(x,yc)⇠Dc

[ycf(x;W)|yc = ȳ]� kWk2 ↵ � 0 holds for both ȳ = 1 and
ȳ = �1. Then, there exists a universal constant c > 0 such that

L
0/1
rob (W)  � +

X

ȳ2{�1,+1}

exp
⇣
� c�

⇣E(x,yc)⇠Dc
[ycf(x;W)|yc = ȳ]

kWk2

� ↵

⌘2⌘

Next, we need to show that the assumption in Lemma 4.1 does indeed hold for our setting. Here, we
leverage the smoothness property of the activation function to derive a lower bound on the increment
in the un-normalized margin for an independent test example (x, y).
Lemma 4.2 (Informal). For some constant C2, with high probability, we have for any t � 0 and
(x, y) 2 Rd

⇥ {±1}, there exist ⇢̃t
i
= ⇢

�
Wt

, x̃t
i
, x
�
2 [�2

, 1] such that

y
⇥
f(x;Wt+1)� f(x;Wt)

⇤
�

⌘

n

nX

i=1

g̃i(Wt)
⇣
⇠̃
t

i

⌦
yix̃t

i
, yx
↵
�

H kxk2 C2
2d⌘

2
p
mn

⌘
.

1For a sequence of random variables, Xn, and corresponding constants cn, Xn = ⌦P (cn) denotes that
cn/Xn converges to zero in probability as n ! 1.
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where g̃i(Wt) = �`
0(yif(x̃ti;Wt)) = 1/(1 + exp

�
yif(x̃t

i
;Wt)

�
).

For the non-smooth activation function, we get a similar result which we defer to the Appendix
due to space constraints. Finally, we seek a positive lower bound on un-normalized expected
conditional margin for model Wt by expressing it in terms of the cumulative increments of margin;
i.e., showing E(x,yc)⇠Dc|yc=1[ycf(x;Wt)] =

P
T

t=1 E(x,yc)⇠Dc|yc=1[ycf(x;Wt)� ycf(x;Wt�1)] +

E(x,yc)⇠Dc|yc=1[ycf(x;W0)]. A positive lower bound holds trivially positive if
⌦
yix̃ti, ycx

↵
is always

bounded below by some positive constant. However, due to the presence of noisy labels yi and
adversarial examples x̃i,

⌦
yix̃ti, ycx

↵
may be negative. Note, though, that the term

⌦
yix̃t

i
, ycx

↵
scales

with g̃i(Wt). If we can show that g̃i(Wt) is of the same order across all training examples, and
assume a small perturbation budget and that only a small fraction of labels are noisy, then we can
mitigate the effect of the negative terms. The key lemma providing such a result by bounding the loss
ratio is as follows.
Lemma 4.3 (Informal). Given Assumption 1, there is an absolute constant Cr > 0 such that with
high probability, we have for all t � 0, maxi,j2[n]

g̃i(Wt)
g̃j(Wt)  Cr.

To see why the above holds, note that for any given i, j 2 [n], we have that g̃i(Wt)
g̃j(Wt) 

max
n
2,

2 exp(�yif(x̃ti;W
t))

exp(�yjf(x̃tj ;Wt))

o
, where x̃t

i
= argminx̃i2B2(xi;↵) yif(x̃i;Wt). For successive iterates

we get that
exp(�yif(x̃t+1

i ;Wt+1))
exp(�yjf(x̃t+1

j ;Wt+1))


exp(�yif(x̃ti;W
t))

exp(�yjf(x̃tj ;Wt))
·
exp(yif(x̃t+1

i ;Wt)�yif(x̃t+1
i ;Wt+1))

exp(yjf(x̃tj ;Wt)�yjf(x̃tj ;Wt+1))
. Finally, we

use induction to complete the proof.

For smooth activation function, the proof of Lemmas 4.2 and 4.3, follows by controling the term
y
⇥
f(x;Wt+1)� f(x;Wt)

⇤
via Taylor approximation. For non-smooth activation functions, we need

to ensure that there exist enough neurons have positive activations at initialization.
Remark 4.4. We can modify Assumption 2 by allowing the network initialization to depend on
the training data: asw0

s
= bµ

kbµk!init
p
d where bµ = 1

n

P
n

i=1 yixi. Then, Assumption (B8) can be
relaxed to allow ↵  O(kµk). Under Assumption 2 with the above modifications, Lemma 4.5 is still
applicable and therefore Theorem 3.3 continues to hold.
Lemma 4.5 (Informal). Given Assumption 2, with high probability, for all s 2 [m],
we have

���i 2 [n] : yi = as,
⌦
w0

s
, xi

↵
� ↵

��w0
s

�� �� = ⇥(n); for all i 2 [n], we have���s 2 [m] : yi = as,
⌦
w0

s
, xi
↵
� ↵

��w0
s

�� �� = ⇥(m).

We further show that the number of positive neurons remains large throughout the training process.

4.2 CONVERGENCE GUARANTEE

In order to control the robust training loss, a naive approach would be to decouple the increment of
the robust training loss, from iterate t to t+ 1, into two terms as follows:

bLrob(Wt+1)�bLrob(Wt)

=
1

n

nX

i=1

⇥�
`(yif(x̃t+1

i
;Wt+1))�`(yif(x̃ti;Wt+1))

�
+
�
`(yif(x̃ti;Wt+1))�`(yif(x̃ti;Wt))

�⇤
.

The second term can be controlled by the smoothness property of the loss function. The first
term, unfortunately, is upper bounded by

��Wt+1
�� ��x̃t+1

i
� x̃t

i

��, and the robust training loss hence
inevitably depends on the norm of iterates

��Wt+1
�� if no additional assumptions are made. This

poses a problem if we do not constrain the model weights within a bounded domain, as
��Wt

��
may tend to infinity as the number of epochs increases. To mitigate this issue, we instead control
the robust training loss via the norm of the iterates. Specifically, we first show that bLrob(WT ) 

2
T

P
T�1
t=0 Grob(Wt) where Grob(W) := 1

n

P
n

i=1 maxx̃i2B2(xi,↵) �`
0(yif(x̃i;W)); this holds due to

a property of the loss `(·) (see the Appendix for more details). We then bound Grob(Wt) by a
constant scaling of

D
�rbLrob(Wt),V

E
, where V 2 Rm⇥d is a matrix with row vs = asµ/ kµk. We

achieve this result using Lemma 4.3 and the fact that only a small fraction labels are noisy. Given
P

T�1
t=0

D
�rbLrob(Wt),V

E
=
⌦
WT

,V
↵
�
⌦
W0

,V
↵

��WT

��
F
+
��W0

��, the only thing we need to
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prove is that the growth rate of kWT k is smaller than O(T ). This property holds for both smooth
activation functions that satisfy our construction and non-smooth activation functions such as ReLU
and Leaky ReLU.

5 EXPERIMENTS

In this section, we present a simple empirical study on a synthetic dataset to support our theoretical
results. We follow the generative model in Section 2 to synthesize a dataset with independent label
flips when generating y from yc. We set µ = kµk2 [1, 0, 0, . . . , 0]

>, � = 0.1, and generate n = 100
training samples and 2K test samples with the noise vector sampled from the standard multivariate
Gaussian distribution, ⇠ ⇠ N (0, I). We train a two-layer ReLU network with width 1K. We use the
default initialization in PyTorch and train the network applying full-batch gradient-descent based
adversarial training using logistic loss for 1K iterations. We use PGD attack to generate adversarial
examples with attack strength ↵/ kµk and attack stepsize ↵/5 kµk for 20 iterations. The outer
minimization is trained using an initial learning rate of 0.1 with decay by 10 after training for every
500 iterations. We note that adversarial training achieves 100% robust training accuracy. We estimate
the robust test accuracy using the same PGD attack. We consider settings with varying dimension d

and attack strength ↵

kµk
.

Figure 1: Clean test accuracy (left) / robust test accuracy (right) as a
function of signal size kµk and dimension d, for a fixed perturbation
ratio ↵/ kµk = 0.1.

Figure 2: Robust test accuracy
as a function of d and ↵

kµk
for a

fixed kµk = 5.
For our first experiment, we fix the perturbation ratio ↵

kµk
= 0.1, and vary the value of the signal

strength kµk from 1 to 10 and the dimension d from 1K to 18K. We show the results in Figure 1 as a
heat map of clean accuracy and robust accuracy averaged over ten independent random runs. We
observe a phase transition for both clean accuracy and robust accuracy at the value of dimension d

around O(kµk4) for clean accuracy and O(kµk2) for robust accuracy. This is consistent with the
main theorems (see discussion in Section 3.3).

For our next experiment, we fix the signal size kµk = 5.0, vary dimension d from 500 to 6K and
perturbation ratio ↵

kµk
from 0.05 to 0.45. Figure 2 plots the robust accuracy as a heat map averaged

over ten independent runs. Our findings indicate that, increasing the dimension leads to a smaller
perturbation ratio required to achieve the same level of robust test accuracy.

We observe the same trends on the MNIST dataset even though the data generative assumptions are
no longer valid. We defer a detailed discussion of experiments on MNIST to the Appendix.

6 CONCLUSION

We presented the convergence and generalization guarantees for adversarial training of two-layer
neural networks of arbitrary width under a non-separable data distribution. Our work suggests several
promising future directions. Our results assume a generative model with a structured log-concave
data distribution. It is natural to explore whether our findings can be extended to more general data
distributions. Another interesting direction is to investigate whether our results generalize to the
setting where the data dimension and the number of training samples have the same scale. Finally,
we note that our main result only partially characterizes the phase transition from small to large
test errors for small and large attack strengths, respectively. An important next step is to provide
generalization guarantees for attacks of moderate strength and to explore the relationship between the
perturbation size, signal size, dimension, and the number of training samples.
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