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Abstract

Centred on content modification and style preservation, Scene Text Editing (STE)
remains a challenging task despite considerable progress in text-to-image synthesis
and text-driven image manipulation recently. GAN-based STE methods generally
encounter a common issue of model generalization, while Diffusion-based STE
methods suffer from undesired style deviations. To address these problems, we
propose TextCtrl, a diffusion-based method that edits text with prior guidance
control. Our method consists of two key components: (i) By constructing fine-
grained text style disentanglement and robust text glyph structure representation,
TextCtrl explicitly incorporates Style-Structure guidance into model design and
network training, significantly improving text style consistency and rendering
accuracy. (ii) To further leverage the style prior, a Glyph-adaptive Mutual Self-
attention mechanism is proposed which deconstructs the implicit fine-grained
features of the source image to enhance style consistency and vision quality during
inference. Furthermore, to fill the vacancy of the real-world STE evaluation
benchmark, we create the first real-world image-pair dataset termed ScenePair for
fair comparisons. Experiments demonstrate the effectiveness of TextCtrl compared
with previous methods concerning both style fidelity and text accuracy. Project
page: https://github.com/weichaozeng/TextCtrl.

1 Introduction

Scene Text Editing (STE) refers to modifying the text with desired content on an input image
while preserving the styles and textures of both the text and the background to maintain a realistic
appearance [1]. As a newly emerging task in the field of scene text processing [2], STE not only
possesses distinctive application value [3, 4, 5] but also benefits the text-oriented downstream research
in detection [6], recognition [7, 8], spotting [9] and reasoning [10, 11]. Recently, increasing attention
has been paid to GAN-based and diffusion-based scene text editing methods.

Exploiting the Generative Adversarial Networks (GANs) [12], early works [1, 13] decompose
STE into three subtasks: foreground text style transfer, background restoration and fusion. The
divide-and-conquer manner significantly reduces the difficulty of pattern learning and enables the
pre-training of sub-modules with additional supervision [14]. However, the generalization capabilities
of these methods are inevitably limited due to the constrained model capacity of GANs [15] and the
challenges in accurately decomposing text styles [4]. Besides, as observed in experiments, the divide-
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Figure 1: Conceptual illustration of the decomposition of STE by TEXTCTRL. (a) Text style is
disentangled into text background, text foreground, text font glyph and text color features. (b) Text
glyph structure is represented by the cluster centroid of various font text features. (c) The explicit
style features and structure features guide the generator to perform scene text editing.

and-conquer design brings about the “bucket effect”, wherein the unstable background restoration
quality leads to messy fusion artifacts.

Recently, large-scale text-to-image diffusion models [16, 17] have convincingly demonstrated strong
capabilities in image synthesis and processing. Several methods attempt to realize STE in a conditional
synthesis manner, including style image concatenation [18] and one-shot style adaptation [19].
However, these methods are limited to the coarse-grained learning of miscellaneous styles from
text images. Other methods [20, 21, 22] tend to resolve STE in a universal framework along with
STG (Scene Text Generation) in an inpainting manner conditioned on full images, which enables
the leverage of large-scale data for self-supervised learning [23]. Nevertheless, their style guidance
predominantly originates from the image’s unmasked regions, which can be unreliable in complex
scenarios and fail in style consistency. Besides, resulting from the weak correlation between text
prompt and glyph structure [24, 25, 26], diffusion-based STE methods are prone to generating
typos, which decreases the text rendering accuracy.

For the aforementioned problems, we identify insufficient prior guidance on both style and structure
as the primary factor that impedes the previous methods from performing accurate and faithful scene
text editing. As depicted in Fig. 1, we propose a conditional diffusion-based STE model, wherein our
method decomposes the prerequisite of STE into two main aspects: text style disentanglement and text
glyph representation. The fine-grained disentangled text style features ensure visual coherency, while
the robust glyph structure representation improves text rendering accuracy. The dual Style-Structure
guidance collectively contributes to significant enhancements in STE performance.

Furthermore, undesired color deviation and texture degradation compared with the source text image
occasionally occur in the inference of diffusion-based STE methods, which is attributed to the error
accumulation in the denoising process [27] as well as the domain gap between training and inference
[19]. To overcome this limitation, we introduce a glyph-adaptive mutual self-attention mechanism to
improve the generator, which sets up a parallel reconstruction branch to introduce the source image
style prior through cross-branch integration. The refined sampling process effectively eliminates
visual inconsistency without requiring additional tuning.

Additionally, the deficiency of real-world evaluation benchmarks on STE has become a non-negligible
problem as increasing methods are proposed. Early assessments [1], which rely on synthetic data,
face significant limitations in practice due to the domain gap. Recent evaluations [14] emphasize
text accuracy in edited real images but fail to benchmark visual quality adequately. Based on the
observation that scene texts often occur in phrases with the same style and background in real-world
scenery, we elaborately collect 1,280 text image pairs in terms of similar style and word length from
scene text datasets to build the ScenePair dataset enabling comprehensive evaluation.

In summary, we improve STE with the full leverage of Text prior for comprehensive guidance
Control throughout the model design, network training and inference control, termed as TextCtrl.
Our main contributions are as follows:
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• For the first time, we decompose the prerequisite of STE into fine-grained style disentangle-
ment as well as glyph structure representation and incorporate the Style-Structure guidance
with diffusion models to improve rendering accuracy and style fidelity.

• For further style coherency control during sampling, with the leverage of additional prior
guidance through the reconstruction of the source image, we introduce a glyph-adaptive
mutual self-attention mechanism that effectively eliminates visual inconsistency.

• We propose an evaluation benchmark ScenePair consisting of cropped text image pairs
along with original full-size images. To the best of our knowledge, it is the first pairwise
real-world dataset for STE which enables both visual quality assessment and rendering
accuracy evaluation.

2 Related work

GAN-based Scene Text Editing. SRNet [1] first introduces the word-level editing method built
in a divide-and-conquer manner. SwapText [13] further enhances SRNet with Thin Plate Spline
Interpolation Network for curved text modification while STRIVE [28] extends the framework into
the video domain of scene text replacement. Besides, TextStyleBrush [4] adopts a self-supervised
strategy building on StyleGAN2 [29] while MOSTEL [14] designs a semi-supervised training scheme.

Diffusion-based Scene Text Editing. Numerous studies have focused on adapting the diffusion
model for scene text manipulation. DiffSTE [20] improves pre-trained diffusion models with a dual
encoder design, wherein a character encoder for render accuracy and an instruction encoder for style
control is used. DiffUTE [23] further utilizes an OCR-based image encoder as an alternative to CLIP
Text encoder. Moreover, TextDiffuser [21] and UDiffText [30] leverage character segmentation masks
for condition input and supervised labels respectively. To leverage text style, LEG [18] concats the
source image as input while DBEST [19] relies on a fine-tuning process during inference. Recently,
AnyText [22] adopted a universal framework to resolve STE and STG in multiple languages based on
the prevalent ControlNet [31].

Image Editing with Diffusion Models. Image editing aims to manipulate a certain attribute (e.g.
color, posture, position) of the target object while keeping the other context unchanged, which can
be seen as the parent task of STE. Recent Diffusion-based methods have shown unprecedented
potential with a wide variety of designs. Model-tuning methods [32, 33] fine-tune the entire model
to enhance subject embedding in the output domain. Leveraging DDIM inversion [34], prompt-
tuning methods [27] turn to improve identity preservation by optimizing null-text prompts through
classifier-free guidance sampling [35]. Recently, [36, 37] explored the self-attention layers in LDMs
and demonstrated the rich semantic information preserved in queries, keys and values. Through the
cross-frame substitute of keys and values of self-attention, they perform non-rigid editing without
additional tuning. [38] further extends the cross-frame interaction to video domain for motion editing.

3 Method

Based on a conditional synthesis manner, in this work, we define the scene text editing process as
Iedit = G(Cstruct, Cstyle) as shown in Fig. 2 (c). The text glyph structure feature is acquired from a
character-based structure encoder as Cstruct = T (Ctext) in Fig. 2 (a) and the text style feature is
derived from a style encoder Cstyle = S(Isource) in Fig. 2 (b). The module design and pre-training
strategy to enable precise extraction for glyph structure and fine-grained disentanglement of text style
are introduced in section 3.1 and section 3.2 respectively, with the whole model training process
illustrated in section 3.3. Furthermore, details of the improved tuning-free inference control and the
proposed glyph-adaptive mutual self-attention mechanism in Fig. 2 (d) are presented in section 3.4.

3.1 Text Glyph Structure Representation Pre-training

Distinctive from natural objects, scene text possesses a complicated non-convex structure, wherein a
minor stroke discrepancy can significantly alter visual perception and lead to misinterpretation [39],
thus presenting unique challenges to editing accuracy. For scene text editing, an ideal text encoder
is capable of encoding the target text concerning glyph structure rather than semantic information
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Figure 2: Decomposed framework of TextCtrl. (a) Text glyph structure encoder T with corresponding
glyph structure representation pre-training. (b) Text style encoder S with corresponding style
disentanglement pre-training. (c) Prior guided diffusion generator G. (d) The improved inference
control with the Glyph-adaptive Mutual Self-attention mechanism.

[20, 21] or certain image template [14, 23]. Specifically, for a certain text Ctext = “Sifted”, encoder
T is expected to be aware of the glyph structure of “S”, “i”, “f”, “t”, “e”, “d” respectively.

To this end, we adopt a character-level text encoder to align the target text feature with its visual
glyph structure. As depicted in Fig. 2 (a), the target text embedding in character level is processed
with a transformer encoder T to generate glyph structure features Cstruct ∈ RL×d, which is further
aligned to the visual feature of corresponding text image extracted by a frozen pre-trained scene text
recognizer with CLIP loss [30, 40] Lclip. Differ from [30], we collect vast quantities of text fonts
constructing a cluster {font1, font2...fontn} to render the corresponding text image with diverse
fonts during training. The font-variance augmentation brings continuous glyph structure variation
which implicitly enhances the projection from Cstruct to the cluster centroids of visual features for
robust text glyph structure representation.

3.2 Text Style Disentanglement Pre-training

Text styles comprise a variety of aspects, including font, color, spatial transformation and stereoscopic
effect, which visually mingle with each other and bring obstacles to disentangle the style features
precisely in previous works. To realize the fine-grained disentanglement of the text style, we propose
a multi-task pre-training paradigm as illustrated in Fig. 2 (b), involving text color transfer, text font
transfer, text removal and text segmentation.

Concretely, given a text image Isource ∈ R3×H×W , we first extract the style feature Cstyle ∈ RN×d

with a ViT [41] backbone S , which is projected to texture feature ctexture ∈ RN×d and spatial feature
cspatial ∈ RN×d respectively. Subsequently, ctexture is employed in text color transfer and text font
transfer while cspatial is utilized for text removal and text segmentation.

Text Color Transfer. Since both intrinsic style and lighting conditions determine the text color,
it is challenging to label or classify the holistic color. Instead, we refer to image style transfer and
implicitly extract color through colorization training. A light-weight encoder-decoder Fc is built
to provide colorization on a black and white text image icin ∈ R1×h×w with an Adaptive Instance
Normalization [42] A for source text color image icout ∈ R3×h×w written as:

icout = Fc
dec(A(Fc

enc(i
c
in), ctexture)), (1)

Text Font Transfer. With a common intention with color transfer to capture stylized information but
focusing on glyph boundary, font transfer is realized through the boundary reshaping process. Another
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light-weight encoder-decoder Ff is employed to transfer a template font text glyph ifin ∈ R3×h×w to
the source font text glyph ifout ∈ R3×h×w through Pyramid Pooling Module [43] P in latent space
as:

ifout = F
f
dec(P(F

f
enc(i

f
in), ctexture)), (2)

Text Removal and Text Segmentation. Text removal aims at erasing the text pixels and reasoning
the background pixels covered by text while text segmentation decouples the spatial relationships
between background and text. A residual convolution block with spatial attention mechanism [44]
is adopted to construct a removal head Fr and a segmentation head Fs respectively to generate
predicted background irout ∈ R3×h×w and predicted mask isout ∈ R1×h×w as:

irout = Fr(cspatial), isout = Fs(cspatial), (3)

Multi-task Loss. With the multi-task pre-training for fostering the text style extraction and disen-
tanglement ability of SE, the whole loss function for style pre-training can be expressed as:

Ldisentangle = Lcolor(i
c
out, i

c
gt) + Lfont(i

f
out, i

f
gt) + Lrem(irout, i

r
gt) + Lseg(i

s
out, i

s
gt), (4)

wherein we leverage MSE loss for Lcolor, MAE loss for Lrem and Dice loss [45] for Lfont and Lseg .
Synthetic groundtruth is leveraged for fine-grained supervision and the task-oriented pre-training
achieves fine-grained textural and spatial disentanglement of stylized text images which fertilizes the
style representation for downstream generator.

3.3 Prior Guided Generation

With the robust glyph structure representation Cstruct and fine-grained style disentanglement Cstyle

mentioned above, a diffusion generator G is employed to integrate the prior guidance and generate the
edited result as shown in Fig. 2 (c). For Cstruct, since the U-Net in latent diffusion models contains
both self-attention and cross-attention, wherein the cross-attention focuses on the relation between
latent and external conditions [16, 17], we replace the key-value in cross-attention modules of G with
the linear projection of Cstruct to provide glyph guidance for improving accurate text rendering. For
Cstyle, promising results have been shown by additional control injection [31] through the decoder
of U-Net, based on which we apply the multi-scale style feature Cstyle to the skip-connections and
middle block of the model G to provide a style reference for high-fidelity rendering.

With the leverage of pre-trained model [17], the training is performed under a combined supervision
on the synthetic text image data. Please refer to Appendix A for preliminaries of the diffusion model
and Appendix B.2 for implementation details of training.

3.4 Inference Control

During inference of the diffusion-based STE model, undesired color deviation and texture degradation
occasionally occur. Such discrepancy can be partly attributed to the error accumulation during the
iterative sampling process [27, 36]. Besides, the domain gap between training and inference impedes
style consistency in complicated real-world scenery. To control the visual style consistency, we
attempt to ameliorate the inference process by injecting style prior from the source image into editing.
Specifically, we propose the Glyph-adaptive Mutual Self-Attention mechanism, which seamlessly
incorporates the style of source images throughout the deconstruction process.

Reconstruction Branch. Rather than transforming random noise samples into an image, our
objective is to execute an image-to-image translation, ensuring the preservation of style fea-
tures. Initially, we perform DDIM inversion [27, 46] to generate an initial latent zTsource from
the source image Isource. The deconstructed inversion process enables a reconstruction branch
(zTsource, z

T−1
source...z

0
source) of the source image parallel to the editing branch (zTedit, z

T−1
edit ...z

0
edit),

which benefits the proposed integration process, as shown by the arrow in Fig. 2 (d).

Glyph-adaptive Mutual Self-Attention Mechanism (GaMuSa). Diverge from the general im-
age editing, the target text modification of STE can lead to significant changes in the condition
representation, which impedes text style preservation through general prompt-tuning methods [27].
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Algorithm 1 Glyph-adaptive Mutual Self-attention
Input: Inversion latent zTsource, reconstruction condition embedding csource, editing condition
embedding cedit and target text embedding emby .
Parameters: Time step t, interval τ , intensity parameter λ and µ.
Output: Denoised latent z0source and z0edit.

1: t = T, λ = 0, µ = 1, τ = 5;
2: for t = T, T − 1...1 do
3: ——————————————– Reconstruction Branch——————————————–
4: zt−1

source, {Ks, Vs} ← Ĝ(t, ztsource, csource); ▷ Self-Attention.
5: ———————————————– Editing Branch————————————————–
6: if at intervals of τ then
7: embedit = R(Edec(ztedit));
8: λ = (embedit · emby)/(∥embedit∥ ∗ ∥emby∥); ▷ Cosine Similarity.
9: end if

10: µ = 1− λ;
11: {Kes, Ves} = λ{Ks, Vs}+ µ{Ke, Ve}; ▷ Integration.
12: zt−1

edit ← Ĝ(t, ztedit, cedit; {Kes, Ves}); ▷ Glyph-adaptive Mutual Self-attention.
13: end for
Return z0source, z0edit

Recently, [36, 37] have demonstrated that self-attention layers in the diffusion model focus on latent
internal relations. Based on the characteristic, we perform a mutual self-attention process between
two branches as shown in Fig. 2(d), wherein at denoising step t, the Key-Value features {Ks, Vs}
from reconstruction branch are introduced to the self-attention operation in editing branch. Rather
than a direct replacement in the previous method [36], however, we prefer an integration of {Ks, Vs}
and {Ke, Ve} to mitigate the domain gap between ztsource and ztedit.

It is worth noting that the original mutual self-attention process is hyper-parameter-sensitive to
the starting time step. Premature initialization may introduce ambiguity and lead to spelling errors,
whereas late intervention might fail to provide sufficient guidance. Inspired by the gradual deformation
of text glyph during the iteration, we design a glyph-adaptive strategy to control the intensity of
integration. Specifically, we employed a vision encoderR of the pre-trained text recognizer [47] to
construct a glyph-adaptive strategy for the harmonious integration of Key-Value between branches.
Specifically, during the iterative process, the intermediate latent ztedit is decoded and processed
with R for the cosine similarity calculation with the target text embedding emby at intervals of τ
steps to denote the glyph similarity of the intermediate edited image with target text. The similarity
will serve as the intensity parameter λ and µ for controlling the integration between {Ks, Vs}
from reconstruction branch and {Ke, Ve} from editing branch. The result of integration {Kes, Ves}
is subsequently leveraged in the self-attention modules of the editing branch for style coherency
enhancement. The overall sampling pipeline is illustrated in Alg. 1.

GaMuSa = Softmax(
Qe · (λKs + µKe)

T

√
d

) · (λVs + µVe), µ = 1− λ. (5)

4 Experiments

4.1 Dataset and Metrics

Training Data. Based on [1, 3], we synthesize 200k paired text images for style disentanglement
pre-training and supervised training of TextCtrl, wherein each paired images are rendered with the
same styles (i.e. font, size, colour, spatial transformation and background) and different texts, along
with the corresponding segmentation mask and background image. Furthermore, a total of 730 fonts
are employed to synthesize the visual text images in text glyph structure pre-training.

ScenePair Benchmark. To provide assessments on both visual quality and rendering accuracy, we
propose the first real-world image-pair dataset in STE. Specifically, we collect 1,280 image pairs with
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Methods
Metrics ScenePair (Cropped Text Image) ScenePair (Full-size Image)

SSIM ↑ (×10-2) PSNR ↑ MSE ↓ (×10-2) FID ↓ SSIM ↑(×10-2) FID ↓
SRNet [1] 26.66 ± 0.00 14.08 ± 0.00 5.61 ± 0.00 49.22 ± 0.00 98.91 1.48

MOSTEL [14] 27.45 ± 0.00 14.46 ± 0.00 5.19 ± 0.00 49.19 ± 0.00 98.96 1.49
DiffSTE [20] 26.85 ± 0.08 13.44 ± 0.04 6.11 ± 0.04 120.34 ± 1.52 98.86 (76.91) 2.37 (96.78)

TextDiffuser [21] 27.02 ± 0.11 13.96 ± 0.03 5.75 ± 0.05 57.01 ± 0.44 98.97 (92.76) 1.65 (12.23)
AnyText [22] 30.73 ± 0.55 13.66 ± 0.07 6.19 ± 0.14 51.79 ± 0.35 98.99 (82.57) 1.93 (16.92)

TextCtrl 37.56 ± 0.32 14.99 ± 0.15 4.47 ± 0.15 43.78 ± 0.17 99.07 1.17

Table 1: Text style fidelity assessment within text image level and full-size image level, highlighted
with best and second best results. For full-size image evaluation, we replace the unedited region with
the origin image while values in “()” denote the direct output of inpainting-based methods.

Methods
Metrics ScenePair ScenePair (Random) TamperScene [14]

ACC(%) ↑ NED ↑ ACC(%) ↑ NED ↑ ACC(%) ↑ NED ↑
SRNet [1] 17.84 ± 0.00 0.478 ± 0.000 9.61 ± 0.00 0.422 ± 0.000 39.96 ± 0.00 0.776 ± 0.000

MOSTEL [14] 37.69 ± 0.00 0.557 ± 0.000 22.50 ± 0.00 0.451 ± 0.000 76.79 ± 0.00 0.858 ± 0.000
DiffSTE [20] 31.35 ± 0.35 0.538 ± 0.002 21.56 ± 0.69 0.487 ± 0.002 - -

TextDiffuser [21] 51.48 ± 0.19 0.719 ± 0.003 33.99 ± 0.34 0.635 ± 0.004 - -
AnyText [22] 51.12 ± 0.21 0.734 ± 0.005 25.05 ± 0.05 0.593 ± 0.003 - -

TextCtrl 84.67 ± 0.34 0.936 ± 0.003 66.95 ± 0.13 0.869 ± 0.007 74.17 ± 0.55 0.909 ± 0.011

Table 2: Text rendering accuracy evaluation with different methods, highlighted with best and
second best results. “Random” denotes that we replace the paired target text in SCENEPAIR with
randomly chosen text to verify the model robustness. Note that we are not able to evaluate inpainting-
based STE methods [20, 21, 22] on TamperScene [14] since it does not contain full-size images.

text labels from ICDAR 2013 [48], HierText [49] and MLT 2017 [50], wherein each pair consists
of two cropped text images with similar text length, style and background, along with the original
full-size images. Collecting methods and dataset details are introduced in Appendix C.

Evaluation Dataset. For a fair comparison, we conduct all the evaluations on real-world datasets.
ScenePair consists of 1,280 cropped text image pairs along with original full-size images enabling
both style fidelity assessment and text rendering accuracy evaluation. TamperScene [14] combines a
total of 7,725 cropped text images with predefined target text to provide rendering accuracy evaluation.
Nevertheless, it does not involve paired images for style assessment nor full-size images for evaluation
on inpainting-based methods, demonstrating the necessity of the proposed ScenePair.

Evaluation Metrics. For visual quality assessment, we adopt the commonly used metrics including
(i) SSIM, mean structural similarity; (ii) PSNR, the ratio of peak signal to noise; (iii) MSE, the mean
squared error on pixel-level; (iv) FID [51], the statistical difference between feature vectors. For text
rendering accuracy comparison, we measure with (i) ACC, word accuracy and (ii) NED, normalized
edit distance, using an official text recognition algorithm [52] and corresponding checkpoint.

4.2 Performance Comparison

Implementation. We conduct the comparison of the proposed TextCtrl with two GAN-based
methods: SRNet [1] and MOSTEL [14] as well as three diffusion-based methods: DiffSTE [20],
TextDiffuser [21] and AnyText [22] with their provided checkpoints. The quantitative results are
illustrated in Tab. 1 and Tab. 2 while the qualitative results for comparison are shown in Fig. 3 and
Fig. 4. Notably, DiffSTE [20], TextDiffuser [21] and AnyText [22] conduct STE with an inpainting
manner on a full-size image, for which we employed the corresponding full-size image of each pair
in ScenePair with the target text area masked as input and crop the generated target text area for style
evaluation on text image level. SRNet [1], MOSTEL [14] and TextCtrl resolve STE in a synthesis
manner on a text image, for which we perform a perspective process to paste the generated image
back to the full-size image for style evaluation on full image level.

Text Style Fidelity. The text style fidelity assessment is performed on both the text image level
and the full image level of ScenePair to enable a comprehensive comparison among methods. On
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Figure 3: Qualitative comparison among different methods. Note that for the inpainting-based
methods [20, 21, 22], we conduct the editing on the full-size images and perform the visualization of
the edited text region.

text image level, TextCtrl outperforms other methods by at least 0.07, 0.53, 0.72 and 5.41 in SSIM,
PSNR, MSE and FID respectively as represented in Tab. 1. GAN-based methods [1, 14] generally
achieve a higher score on pixel-level assessment (i.e., PSNR, MSE). The reason lies in that they
adopt a divide-and-conquer method, which contains a background restoration process to restrain the
background region unaltered. Nevertheless, this may result in generating unsatisfied fuzzy images as
shown in Fig. 3 column 3 and 4 due to the artifacts left by the unstable restoration process. Due to
the loose style control result from the inpainting manner, undesired text style occurs occasionally in
the outcome for diffusion-based methods [20, 21, 22]. On the contrary, TextCtrl benefits from the full
leverage of disentangled style prior and the inference control for high-fidelity edited results. Further
comparison on the full image level demonstrates the superiority of TextCtrl with precise manipulation
and less style deviation against the inpainting-based methods with visualization in Fig. 4. Besides, it
is not negligible that the inpainting strategy downgrades the image quality of unmasked regions.

Text Rendering Accuracy. Meanwhile, owing to the robust glyph structure representation, TextCtrl
achieves superior spelling accuracy among all the methods, with more than 33% improvements in
rendering accuracy of paired target text and randomly chosen text in ScenePair. TamperScene
[14] contains a number of ambiguous low-resolution text images, which bring obstacles in style
disentanglement and therefore impede the rendering accuracy of TextCtrl. Still, TextCtrl achieves
a higher normalized edit distance that indicates the explicit mapping constructed between text and
glyph. In comparison, GAN-based methods tend to yield ambiguous images, where source text left by
imperfect removal blends with target text, resulting in fuzzy visual quality. Besides, due to the limited
model capacity, GAN-based methods suffer from weak generalization and show incompetence with
unseen style font as shown in Fig. 3 row 4 and 5. Diffusion-based methods achieve a disproportionate
NED to their relatively low accuracy, which indicates their struggle with spelling mistakes. Notably,
the inpainting manner serves as a primary factor that impedes the editing quality on small text for
AnyText, whereas TextCtrl possesses the flexibility to perform editing on arbitrary scale text images.

4.3 Ablation Study

TextCtrl significantly improves STE through the substantial leverage of prior information in proposed
(i) glyph structure representation pre-training, (ii) style disentanglement pre-training and (iii) glyph-
adaptive mutual self-attention. We delve into the efficacy of each module in the following section.

Text Encoder ScenePair ScenePair (Random)

ACC(%) ↑ NED ↑ ACC(%) ↑ NED ↑

CLIP [40] 13.98 0.637 13.47 0.615
T w/o font-variance 76.08 0.875 60.84 0.827
T w font-variance 84.67 0.936 66.95 0.869

Table 3: Ablation experiment on glyph structure represen-
tation pre-training.

Text Glyph Structure Representation.
Conditional text prompt serves an im-
portant role in STE guiding the render-
ing of edited text glyphs. Consequently,
we conduct the experiments by training
TextCtrl with different text encoders T
to evaluate the text rendering accuracy
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TextCtrl DiffSTE                                   TextDiffuser                                   AnyText

Figure 4: Qualitative comparison with inpainting-based methods [20, 21, 22] on full-size images.

on ScenePair. Specifically, we employed a CLIP text encoder [40] for comparison which is generally
adopted in generative diffusion models [16, 17]. The contrast between ACC and NED results in Tab.
3 confirms that the CLIP text encoder [40] struggles with spelling mistakes which are attributed to
the sub-word embedding [24] and sub-optimal alignment between text prompt and text glyph. We
further analyze the impact of the proposed font-variance alignment strategy in pre-training and the
results indicate the robust representation brought by the augmentation.

Figure 5: t-SNE [53] visualization of style
features by pre-trained text style encoder.

Text Style Disentanglement. The explicit text style
disentanglement pre-training distinguishes TextCtrl
from previous STE methods [14, 21, 22] in fostering
the fine-grained feature representation ability on scene
text concerning font, color, glyph and background tex-
ture. To further verify the style disentangling ability of
TextCtrl, as depicted in Fig. 5, we visualize the style
feature embedding using t-SNE [53] with text images
from ICDAR 2013 [48] encoded by the pre-trained
style encoder S . From a broad perspective, text images
with a similar color cluster in different regions of fea-
ture space which indicate the style representation of the
image entirety. From a micro perspective, as shown
by the sample pair pointed out with the magnifier, text images that share the same text style and
background adjoin to each other regardless of different text content.

Injection Module SSIM ↑ MSE ↓ FID ↓

ControlNet [31] 0.3306 0.0464 58.30
S w/o pre-training 0.3130 0.0475 66.10
S w pre-training 0.3756 0.0447 43.78

Table 4: Ablation experiment on style dis-
entanglement.

In Tab. 4, we replace the style encoder with a preva-
lent module ControlNet following the implementation
settings and empirical suggestions in [31]. Concretely,
the style encoder is replaced with a vanilla Stable Dif-
fusion encoder, serving as the ControlNet module. The
module is initialized with the pre-trained weight of SD
encoder. As a powerful technique in enhancing genera-
tion controllability, ControlNet is prevalently leveraged
in image editing for style and structural control. The
simple yet effective design enables a more meticulous reference from conditional input (e.g., Canny
Edge, Depth map), which is also verified through the ablation study against our style encoder S
(w/o pre-training) shown in Paper Tab. 4. After performing the style pre-training, however, the
style encoder achieves a superiority performance against ControlNet module. Quantitative results
demonstrate the fine-grained representation ability brought by the explicit style pre-training strat-
egy, compared with implicit style learning by ControlNet. Notably, it also improves the parameter
efficiency with 118M for style encoder S and 332M for ControlNet module.

9



Source
Image

W/O GaMuSa

W GaMuSa

Source
Image

W/O GaMuSa

W GaMuSa

Background Color Regulation Unseen Font Imitation 

Glyph Texture Improvement

Figure 6: Visualization of text editing result with and without the proposed GaMuSa during inference,
which verifies the improvements in background color, text font and glyph texture.

Inference SSIM ↑ MSE ↓ FID ↓

w/o 0.3126 0.0609 51.35
w MasaCtrl [36] 0.3571 0.0468 49.53

w GaMuSa 0.3756 0.0447 43.78

Table 5: Ablation experiment on inference
enhancement.

Inference control with Glyph-adaptive Mutual Self-
attention (GaMuSa). In Tab. 5, we assess the style
fidelity enhancement of GaMuSa in contrast with direct
sampling and a prevalent enhancement method Mas-
aCtrl [36] on ScenePair. Quantitative results verify the
effectiveness of GaMuSa in enhancing style control dur-
ing inference on variant real-world text images. Further
visualization in Fig. 6 demonstrates the ability to persist style fidelity of GaMuSa when confronted
with situations including background color deviation, unseen font and glyph texture degradation.

5 Limitations and Conclusion

Challenging arbitrary shape text editing. Arbitrary shape text editing occurs occasionally when
editing with text on a crescent signboard or a circular icon as shown in Appendix Fig. 11. These texts
possess a complicated geometric attribution which is hard to disentangle through the style reference.
Early works [13, 14] adopt the Thin-Plate-Spline (TPS) module to capture the accurate geometric
distribution of text and perform a transformation on the template image as pre-processing. However,
this strategy only takes effect in GAN-based methods which adopt an image-to-image paradigm. It
remains a problem to effectively introduce accurate geometric prior guidance to diffusion models.

Sub-optimal visual quality assessments metric. Following previous STE methods, we adopt a
variety of evaluation metrics for visual quality assessment. However, these metrics either focus on
pixel-level discrepancy or concentrate on feature similarity in latent space, which is sub-optimal
for assessing text style coherency. Besides, all these metrics rely on the paired data under which
a ground-truth image is required. Though we collect a real-world image-pair dataset ScenePair in
our work, a large amount of real-world text images remain unpaired and thus fail to provide visual
quality assessment in editing. While human evaluation may be a possible solution, a more efficient
and objective visual assessment metric is expected for scene text editing.

In this paper, we propose a diffusion-based STE method named TextCtrl with the leverage of
disentangled text style features and robust glyph structure guidance for high-fidelity text editing.
For further coherency control during inference, a glyph-adaptive mutual self-attention mechanism
is introduced along with the parallel sampling process. Additionally, an image-pair dataset termed
ScenePair is collected to enable the comprehensive assessment on real-world images. Extensive
quantitative experiments and qualitative results validate the superiority of TextCtrl.
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Appendix

A Preliminaries

Latent Diffusion Models (LDMs). Instead of operating diffusion process [34, 54] in image pixel
space, LDMs utilize an autoencoder [55] ε to translate the input image x to latent space representation
z0. Then the denoising network ϵθ built upon a time-conditional UNet [56] is trained to estimate
added noise ϵ at a time step t. The condition embedding c, which is c = {Cstruct, Cstyle} in our
work, is integrated through the cross-attention mechanism or the skip-connections and middle block,
realizing a conditional generation that has the following training objective:

Ldn = Eε(x),c,ϵ∼N (0,1),t

[
∥ϵ− ϵθ(t, zt, c)∥22

]
, (6)

DDIM Sampling. At inference, random Gaussian noised zT can be gradually denoised to form a
result z0 through iterative sampling, wherein the deterministic DDIM sampling [34] is adopted in our
method:

zt−1 =

√
αt−1

αt
zt +

√
αt−1(

√
1

αt−1
− 1−

√
1

αt
− 1) · ϵθ(t, zt, c), (7)

where αt =
∏t

i=1(1− βi) and β0 = 0 and tends to 1 as i increases.

DDIM Inversion. In contrast to the stochastic sampling employed in DDPM [54], the sampling
process in DDIM [34] is deterministic, allowing for the complete inversion [27, 46] from the original
images latent z0 back to initial noised latent zT to construct the reconstruction branch in our work.

zt+1=

√
αt+1

αt
zt+
√
αt+1(

√
1

αt+1
−1−

√
1

αt
−1) · ϵθ(t, zt, c), (8)

Classifier-Free Guidance (CFG). To improve the visual quality and faithfulness of generated
images, [35] introduces the classifier-free guidance technique, which jointly trains a conditional and
an unconditional (denoted as cnull) diffusion model to provide a refined result:

ϵ̂θ(t, zt, c) = ω · ϵθ(t, zt, c) + (1− ω) · ϵθ(t, zt, cnull), (9)
where ω is a hyperparameter that controls the strength of guidance.

B Implementation Setting

B.1 Details of Model Architecture and Parameter

TextCtrl primarily comprises five components: an Encoder-Decoder VAE E , a U-Net backbone G,
a text glyph structure encoder T , a text style encoder S and a vision encoder R. For the VAE and
U-Net, we employ the pre-trained checkpoint of Stable Diffusion [17] V1-52. For the text glyph
structure encoder, we utilize a lightweight transformer encoder and perform pre-training on the
proposed glyph structure representation aligning to the visual features captured by a frozen vision
encoder3 [57]. For the text style encoder, a ViT [58] backbone is employed to perform pre-training
on multi-task style disentanglement. For the vision encoder, the vision backbone of ABINet4 [47] is
adopted with pre-trained checkpoint.

As the model input, the source image is resized to 256× 256 while the max target prompt length is
set to 24. The training process utilizes a batch size of 256 with a learning rate of 1× 10−5 and a total
epoch of 100. TextCtrl is trained on 4 NVIDIA A6000 GPU and the parameter sizes of each module
are provided in Tab. 6.

2https://huggingface.co/runwayml/stable-diffusion-v1-5
3https://github.com/roatienza/deep-text-recognition-benchmark
4https://github.com/FangShancheng/ABINet
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Modules G E T S R Total

Params 859M 83M 66M 118M 90M 1216M

Table 6: The parameter sizes of each module in TEXTCTRL

B.2 Details of Training

During training of the generator, we follow the Diffusion Denoising Probabilistic Models (DDPM)
[54] and perform the forward noising process on the image latent ze0 = Eenc(Ie) with random
t ∈ {1, ..., T} to generate noised latent zet :

zet =
√
αtz

e
0 +
√
1− αtϵt, ϵt ∼ N (0, I), (10)

where αt =
∏t

i=1(1 − βt) and βt ∈ (0, 1) is defined by a parameter schedule. The noise latent
serves as the model input yielding the predicted noise ϵ̃t along with condition embedding c =
{Cstruct, Cstyle} as:

ϵ̃t = G(t, zet , c), (11)
during which c is randomly replaced by the unconditional embedding cnull = {Cnull, Cstyle}
with the probability puc = 0.1 to jointly train an unconditional model, enabling the leverage of
classifier-free guidance [35].

Since the diffusion process is performed in the latent space, to enable further vision and linguistics
supervision, we construct the image-level result Ĩe = Edec(z̃0e) where z̃0e is gained through:

z̃e0 =
1
√
αt

(zet −
√
1− αtϵ̃t), (12)

We provide a triple-guidance loss for supervision of the diffusion generator, including the denoising
loss Ldn, the construction loss Lcons and the linguistic loss Locr.

For construction loss, we adopt the Lper and Lstyle as part of construction loss following [14], along
with MSE loss Lreg. The functions are written as:

Lcons = λ1Lper + λ2Lstyle + Lreg, (13)

Lper = E[∥ϕi(Ie)− ϕi(Ĩe)∥1], (14)

Lstyle = Ej [∥Gϕ
j (Ie)−Gϕ

j (Ĩe)∥1], (15)

where balance factors λ1 and λ2 are set to 0.01 and 100 respectively. ϕi is the activation map from
relu1_1 and relu5_1 layer of VGG-19 model [59] and G is the Gram matrix.

Words are composed of character sequences that inherently contain linguistic information. pre-trained
text recognition models, rich in sequence features prior, can be harnessed as global guidance to
enhance text rendering ability. For linguistic loss, a recognition process will be applied to the decoded
image Ĩe ∈ R3×H×W generating recognition result ỹ, which is utilized to calculate the cross-entropy
loss CE with the text label y:

Locr = λ3CE(y, ỹ), (16)
where λ3 is set to 0.01. The overall objective function in training can be presented as a combination
of the denoising loss Eq. 6, the construction loss Eq. 13 and the text recognition loss Eq. 16:

L = Ldn + Lcons + Locr. (17)

B.3 Details of Inference

During inference, for a full-size image, the quadrangle location of the source text region is indicated
through user interface or detection with ocr model, which is the same as all the other STE methods
to provide clear instruction of the specific text to be edited. Subsequently, we perform a cropping
and perspective process on the text region to acquire the input source image. The source image
is further employed in an inversion process based on Eq. 8 to construct a reconstruction branch
and disentangled in style encoder S to serve as style guidance Cstyle, while the arbitrary target text
provided by user is encoder by glyph structure encoder T as Cstruct. The condition embedding
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c = {Cstyle, Cstrcut} is later passed to the generator G guiding the generation process. The sampling
step is set to T = 50 and the classifier-free guidance scale is set to ω = 2 with 7 seconds to generate
an edited image on a single NVIDIA A6000 GPU. Note that for the reconstruction branch, either
a default null text or a source text is suitable for the input of glyph structure encoder T due to the
symmetry of the inversion process Eq. 8 and the reconstruction process Eq. 7, which is flexible and
will not interface the editing quality. The edited result will be perspective and stitched back to the
original region for the full image result.

C ScenePair Dataset

(a)Visualization of pair-texts  in scene images (b)Pipeline of data collection of ScenePair
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Figure 7: Data collection strategy of ScenePair. (a) Texts with the same style and background often
occur in real-world scenery. (b) The pipeline for our data collection.
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Figure 8: Visualization of paired data along with full-size images in SCENEPAIR.

Dataset Introduction. To provide practical assessments on both style consistency and rendering
accuracy, we propose the first real-world image-pair dataset in STE termed ScenePair. Specifically,
we collect 1,280 image pairs with the text label from ICDAR 2013 [48], HierText [49] and MLT 2017
[50]. For each pair, we collect the source text image, the target text image, the respective text labels,
the respective quadrangle locations in full-size image and the original full-size image.

The inspiration for constructing ScenePair dataset comes from the observation that scene texts often
occur in phrases with the same style and background in real-world scenery, as depicted in Fig. 7 (a),
which serves as a perfect pair sample for evaluation of editing quality. Notably, there isn’t a “correct”
result for image editing whereas our paired data serves as a reference benchmark for high-fidelity.

Collecting Strategy. We design a semi-automatic collecting strategy for ScenePair from several
scene text datasets as illustrated in Fig. 7 (b). Initially, we collect the full-size images from the
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Figure 9: Visualization of edited result on text image by TEXTCTRL on dataset TAMPERSCENE.

datasets along with the detection and recognition labels. For each full-size image, we perform
cropping and perspective with the quadrangle location to acquire all the text images, for which an
automatic pairing algorithm is employed to construct paired text images. Specifically, the algorithm
calculates the weighted similarity score involving text length, aspect ratio, centre distance in full-size
image and SSIM (Structure Similarity Index Measure) between the cropped text images, wherein the
paired images with similarity score that surpass a pre-defined threshold would be chosen to form a
raw dataset. Finally, we manually filter out the unsatisfied pairs to construct the ScenePair dataset, as
shown in Fig. 8.

D Visualization

To further demonstrate the editing performance of our TextCtrl, we provide various visualizations of
edited outcomes. In Fig. 9, a variety of images in TamperScene with abundant text style are provided
to verify the text style generalization of TextCtrl. In Fig. 10, we provide the edited result on the scene
image of ICDAR 2013. Specifically, given a scene photo with an automatically detected text box, we
perform scene text editing on box images and stitch back to the original photo. Results demonstrate
the ability of TextCtrl to preserve fine-grained detail for high-fidelity editing.
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Figure 10: Visualization of edited result on scene image by TEXTCTRL on dataset ICDAR 2013.

Source Image Source ImageEdited Image Edited Image Source Image Edited Image

Figure 11: Visualization of failure cases on text image by TEXTCTRL. The problem mainly results
from the insufficient geometric prior guidance control.

E Additional Considerations

This paper introduces a novel method for scene text editing which leverages the fine-grained style
disentanglement and robust glyph structure representation to achieve high-fidelity editing results.
Though we acknowledge that the proposed method has the potential to be misused for image forgery,
significant advancement in visual quality and text rendering accuracy would also contribute to text-
related visual art creation. To prevent the high risk of misuse of the proposed method, an additional
user commitment will be required for accessing the checkpoint in our forthcoming open release,
through which we hope to alleviate the potential misuse while benefiting further research.

F Licenses

Here we provide license details of the code and data used in our proposed network and comparison
experiments. SRNet [1] is available for use under GNU General Public License v3.0. AnyText [22],
deep-text-recognition-benchmark [52], ViTSTR [57] are available for use under Apache License
2.0. DiffSTE [20], TextDiffuser [21], CLIP [40] are available for use under MIT License. Stable
Diffusion [16] is available for research purposes under CreativeML Open RAIL M License. ABINet
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is available for non-commercial purposes with license 5. MLT 2017 [50] and HierText [49] are
released under CC BY-SA 4.0 license. There is no known license for ICDAR 20136 [48], MOSTEL7

[14] and TamperScene8 [14], but the data and code are commonly referred to as "public", and so we
interpret this to mean they are available for use under research purpose.

5https://github.com/FangShancheng/ABINet/blob/main/LICENSE
6https://rrc.cvc.uab.es/?ch=2
7https://github.com/qqqyd/MOSTEL
8https://github.com/qqqyd/MOSTEL
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly reflect the main contributions and scope
of the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have discussed the limitations of our work. Please refer to Sec. 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: Our propositions are mainly based on experiments and empirical results which
do not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have provided all the implementation details of model design, network
training and inference in Appendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Project page: https://github.com/weichaozeng/TextCtrl.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We have provided all the details including the data and hyperparameter in our
paper. Please refer to Sec. 4.1 and Appendix B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report the standard deviation with respect to the random seed after running
each model 3 times in our main experiments. Please refer to Tab. 1 and Tab. 2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have provided these details in the paper. Please refer to Appendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research conducted in the paper conforms with the NeurIPS Code of
Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We have discussed the potential societal impacts of our work. Please refer to
Appendix E.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: We describe the safeguards that we will put in place in our future release of
checkpoints. Please refer to Appendix E.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have cited all relevant existing works and assets which are related/used
in our work in References. We also provide license details of the assets used in our work.
Please refer to Appendix F.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Project page: https://github.com/weichaozeng/TextCtrl.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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