
Towards Fully Exploiting LLM Internal States to Enhance Knowledge
Boundary Perception

Anonymous ACL submission

Abstract

Large language models (LLMs) exhibit impres-001
sive performance across diverse tasks but of-002
ten struggle to accurately gauge their knowl-003
edge boundaries, leading to confident yet incor-004
rect responses. This paper explores leveraging005
LLMs’ internal states to enhance their percep-006
tion of knowledge boundaries from efficiency007
and risk perspectives. We investigate whether008
LLMs can estimate their confidence using in-009
ternal states before response generation, po-010
tentially saving computational resources. Our011
experiments on datasets like Natural Ques-012
tions, HotpotQA, and MMLU reveal that LLMs013
demonstrate significant pre-generation percep-014
tion, which is further refined post-generation,015
with perception gaps remaining stable across016
varying conditions. To mitigate risks in critical017
domains, we introduce Consistency-based Con-018
fidence Calibration (C3), which assesses confi-019
dence consistency through question reformula-020
tion. C3 significantly improves LLMs’ ability021
to recognize their knowledge gaps, enhancing022
the unknown perception rate by 5.6% on NQ023
and 4.9% on HotpotQA. Our findings suggest024
that pre-generation confidence estimation can025
optimize efficiency, while C3 effectively con-026
trols output risks, advancing the reliability of027
LLMs in practical applications.028

1 Introduction029

Large language models (LLMs) store vast amounts030

of knowledge in their parameters and have demon-031

strated remarkable performance across various032

tasks (Touvron et al., 2023; Achiam et al., 2023;033

Yang et al., 2024). However, they may hallucinate,034

generating responses that appear to be fluent but035

are factually incorrect. A reliable model should per-036

ceive its knowledge boundaries well, providing cor-037

rect answers to the questions it knows and declining038

to answer those it does not. This requires the model039

to align its confidence with its actual abilities.040

Current research on a model’s perception of its041

knowledge boundaries mainly involves two types042

of confidence: probabilistic confidence where they 043

use the probability of generated tokens as the 044

model’s confidence in the answer (Guo et al., 2017; 045

Desai and Durrett, 2020; Jiang et al., 2021; Kada- 046

vath et al., 2022; Si et al., 2022; Kuhn et al., 2023) 047

and verbalized confidence where they teach the 048

model to express its confidence in the answer using 049

natural language. (Lin et al., 2022; Yin et al., 2023; 050

Tian et al., 2023; Xiong et al., 2023; Yang et al., 051

2023; Ni et al., 2024a). Ni et al. (2024b) found that 052

probabilistic confidence better reflects the model’s 053

capability than verbalized confidence. 054

Recent studies have demonstrated that the inter- 055

nal states of LLMs can indicate the factuality of 056

texts (Azaria and Mitchell, 2023). Specifically, Su 057

et al. (2024) and Chen et al. (2024) demonstrated 058

that LLMs’ internal states can be leveraged to eval- 059

uate the factuality of self-generated content, with 060

confidence derived from these internal states pro- 061

viding a more accurate reflection of the model’s 062

capabilities than probabilistic confidence. Building 063

on this, this paper focuses on estimating LLMs’ 064

confidence based on their internal states, aiming 065

to enhance their knowledge boundary perception 066

from efficiency and risk perspectives. 067

On the one hand, most existing studies rely on 068

the internal states of the model after generating a re- 069

sponse to assess its correctness. However, this does 070

not prevent the generation of incorrect information 071

and introduces extra computational overhead. In 072

contrast, humans often know whether they can an- 073

swer a question simply by considering the question 074

itself. This raises the question: is it necessary to 075

use LLMs’ internal states after generation to assess 076

confidence? If not, the model could save computa- 077

tional resources by generating answers only when 078

it is confident. 079

To explore this, we use the embeddings of the 080

question and the full question-answer sequence to 081

estimate the model’s perception of its knowledge 082

boundaries before and after answer generation. We 083
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also compare the gap between these two percep-084

tions. We conduct experiments on Natural Ques-085

tions (NQ) (Kwiatkowski et al., 2019), HotpotQA086

(HQ) (Yang et al., 2018), and MMLU (Hendrycks087

et al., 2020) to examine the effects of question088

difficulty and task format. We employ Chain-of-089

Thought (Wei et al., 2022) strategy to increase the090

information content in generated responses, aim-091

ing to explore whether this added information im-092

pacts the gap between pre- and post-generation093

perceptions. Furthermore, we conduct experiments094

with training sets of varying sizes to assess the095

impact of training data volume on this gap. Exper-096

imental results reveal that LLMs exhibit a good097

level of pre-generation perception, and their098

post-generation perception will be further en-099

hanced. The gap between these two perceptions100

remains relatively stable across different ques-101

tion difficulties, task formats, amounts of gen-102

erated content, and training set sizes. There-103

fore, in efficiency-critical scenarios, pre-perception104

can be used to determine whether generation is105

necessary, offering a more efficient alternative to106

post-generation assessment, particularly when gen-107

erating lengthy content. The time for obtaining108

internal states before and after response generation109

can be found in Figure 1.110

On the other hand, in addition to efficiency, con-111

trolling the risk associated with model outputs is112

also crucial, especially in safety-critical domains113

like healthcare, which helps us decide when to trust114

the LLM. This requires accurately detecting what115

LLMs do not know.116

To enhance LLMs’ perception of what they do117

not know, we introduce C3 (Consistency-based118

Confidence Calibration), inspired by human behav-119

ior, where repeated probing is used to detect incon-120

sistencies and potential deception. C3 leverages121

confidence consistency: if a model is confident in122

answering a question but loses confidence when the123

question format changes, this inconsistency signals124

potential uncertainty, indicating that the model may125

be overconfident.126

C3 has two phases: Question Reformulation and127

Confidence Calibration, as illustrated in Figure 4.128

In the first phase, to avoid relying on additional129

information and to obtain questions of varying diffi-130

culty, the model is asked to generate 10 potential an-131

swers for a given question. These answers are then132

used to create multiple-choice questions with differ-133

ent numbers of answer options. Next, we calibrate134
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Figure 1: Time (in seconds) taken to obtain pre-
generation and post-generation states for each model
on the first 500 data points of the NQ test. Pre-Vanilla
and Pre-COT refer to the pre-generation states obtained
under the vanilla prompt and COT, respectively, while
Post-Vanilla and Post-COT refer to the corresponding
post-generation states.

the original confidence based on the consistency 135

between the model’s confidence on the original 136

question and its confidence on each multi-choice 137

question. Results show that C3 substantially en- 138

hances LLMs’ perception of what they do not 139

know, improving the unknown perception rate 140

by 5.6% on NQ and 4.9% on HotpotQA com- 141

pared to directly estimating confidence based on 142

the original question-answer sequence. 143

2 Related Work 144

Current research on how to express LLMs’ confi- 145

dence can be mainly divided into three categories: 146

Probabilistic Confidence. This series of work 147

uses the generation probability of the answer as 148

the model’s confidence. (Guo et al., 2017; Desai 149

and Durrett, 2020; Jiang et al., 2021; Kadavath 150

et al., 2022; Si et al., 2022; Kuhn et al., 2023). Guo 151

et al. (2017) found that early neural networks tend 152

to be overconfident and mitigated this by adjust- 153

ing the temperature during the generation process. 154

Subsequently, Desai and Durrett (2020) found that 155

pre-trained Bert-style models have a relatively clear 156

perception of their knowledge boundaries and Jiang 157

et al. (2021) showed that the issue of overconfi- 158

dence still persists in pre-trained language models. 159

More recent studies have explored LLMs’ percep- 160

tion of their knowledge boundaries. Kadavath et al. 161

(2022) and Si et al. (2022) demonstrated LLMs 162

can be reliable under approprite prompts. Kuhn 163

et al. (2023) argued that the probability of gener- 164

ated tokens does not accurately reflect the probabil- 165

ity of the generated answer and estimated LLMs’ 166
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confidence in their answers based on the semantic167

consistency across multiple generations.168

Verbalized Confidence. With the development169

of LLMs, some studies have shown that LLMs170

can express their confidence in answers in natural171

language (Lin et al., 2022; Yin et al., 2023; Tian172

et al., 2023; Xiong et al., 2023; Yang et al., 2023;173

Ni et al., 2024a). Lin et al. (2022) were the first174

to demonstrate that a model (GPT-3) can learn to175

express confidence about its answers using natural176

language. Recently, Yin et al. (2023) found that177

LLMs have difficulty in perceiving their knowl-178

edge boundaries and tend to be overconfident and179

Xiong et al. (2023) explored various methods of180

confidence extraction. To enhance LLMs’ percep-181

tion level, Tian et al. (2023) and Ni et al. (2024a)182

focused on prompting methods while Yang et al.183

(2023) proposed training methods.184

Confidence Estimation via Internal States.185

LLMs’ internal states have been found to be ef-186

fective in indicating the factuality of texts. (Azaria187

and Mitchell, 2023; Slobodkin et al., 2023) and (Su188

et al., 2024; Chen et al., 2024) extended this ap-189

proach to detect the factuality of model’s self-190

generated content. This line of work utilized a191

shallow network (i.e., MLP) to extract confidence192

from the hidden states of LLMs. Compared to193

prob-based methods, this tends to be more accurate194

because converting hidden states into token prob-195

abilities results in information loss. Additionally,196

compared to training LLMs to express better ver-197

balized confidence it is much more cost-efficient.198

In this paper, we exploit LLMs’ internal states199

to enhance their knowledge boundary perception200

from efficiency and risk mitigation perspectives.201

3 Estimating LLM Confidence with202

Internal States203

In this section, we introduce the task formulation,204

how we extract internal states, and the confidence205

estimator.206

3.1 Task Formulation207

We introduce the task formulation of confidence208

estimation via LLMs’ internal states here. The pro-209

cess of estimating a model’s confidence based on its210

internal states is as follows. For a given model M211

and a question q, it generates a response aM,q and212

produces internal states IM,q(a). Specifically, IM,q213

refers to the internal state containing only infor-214

mation about the question, while IM,qa represents 215

the internal state containing information about the 216

entire question-answer sequence: 217

IM,q(a), aM,q = fM (q), (1) 218

then, we estimate the model’s confidence from its 219

internal state IM,q(a): 220

cM,q = E(IM,q(a)), (2) 221

where E is the confidence estimator. cM,q = 1 222

indicates the model is confident that it knows the 223

correct answer while cM,q = 0 means the opposite. 224

The confidence estimator E can be learned through 225

a dataset Dtrain
M = {(ItrainM,qi(ai)

, ctrainM,qi
)Ni=1} where 226

N is the count of samples in this dataset. The 227

ground-truth confidence ctrainM,qi
is set to 1 if the 228

model can correctly answer the question qi (i.e., 229

cM,qi = 1); otherwise, it is set to 0. Once E is 230

learned, we can perform confidence estimation dur- 231

ing inference. 232

Recent works (Azaria and Mitchell, 2023; Chen 233

et al., 2024; Su et al., 2024) commonly use the em- 234

bedding of the last token in the generated answer 235

to estimate the model’s confidence. This state con- 236

tains information from the entire question-answer 237

sequence, potentially leading to more accurate 238

judgments. However, relying on post-generation 239

states does not prevent the generation of incorrect 240

information, which can mislead users and introduce 241

extra overhead. Therefore, in this paper, we extract 242

representations prior to answer generation to inves- 243

tigate whether LLMs can sense their knowledge 244

boundaries before response generation. The spe- 245

cific extraction method is detailed in Section § 3.2. 246

3.2 Internal States Extraction 247

In Transformer-based models, the model performs 248

next token prediction, where the generation of each 249

token is based on the semantic vectors (i.e., in- 250

ternal states) of the preceding tokens in its se- 251

quence. For a question q, let the input tokens 252

be {q1, q2, . . . , qn} and the output answer tokens 253

a be {a1, a2, . . . , am} where n and m represent 254

the count of tokens in the question and the gener- 255

ated answer, respectively. The internal states cor- 256

responding to the generation of each token in the 257

answer (See Figure 2) are represented as follows: 258

{I lqn , I
l
a1 , I

l
a2 , . . . , I

l
am}

L
l=1, (3) 259

where I lx denotes the semantic representation of the 260

tokens up until x at layer l, and L is the total num- 261
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Figure 2: Internal states extraction during generation.

ber of layers in the model. Note that I lqn contains262

only information about the question.263

Layer Selection Previous work (Azaria and264

Mitchell, 2023) has found that the representa-265

tions from the intermediate layers best capture the266

model’s awareness of factuality. Therefore, we267

extract representations from the intermediate lay-268

ers (i.e., 16 for Llama2-Chat-7B) to construct the269

internal states I .270

To investigate whether it is necessary to extract271

LLMs’ internal states after response generation, we272

construct I (see Figure 2) at two stages: before and273

after response generation.274

Extraction Before Response Generation.275

1. Pre-State. We extract the state of the last276

token of the question Imid
qn as I .277

Extraction After Response Generation. Unlike278

pre-generation states, we extract I in two ways:279

1. Last State. We take the embedding of the last280

token from the generated answer Imid
am as I .281

2. Avg State. We take the average of the rep-282

resentations of each generated token in the283

answer 1
m

∑m
i=1 I

mid
ai as I .284

Training Data Construction. For each question285

q in the training set, we prompt the model to gener-286

ate a response and construct {I, c}, where c = 1 if287

the ground-truth answer is included in the response,288

and c = 0 otherwise.289

3.3 Binary Confidence Estimator290

Similar to previous works (Azaria and Mitchell,291

2023; Chen et al., 2024; Su et al., 2024), we take a292

lightweight MLP (Multi-layer Perceptron) network293

as the estimator to perform binary classification on294

the model’s confidence. The estimator takes the 295

internal states which are constructed as described 296

in Section § 3.2 as input and outputs a binary 297

confidence label indicating whether the model is 298

confident to provide a correct answer. This process 299

can be mathematically expressed as: 300

P (ĉ = 1) = σ (MLP (I)) , (4) 301

where ĉ is the predicted confidence, σ is the sig- 302

moid function, and I ∈ R1×h is the internal state 303

vector where h refers to the model’s hidden dimen- 304

sion. Wi ∈ Rdi×di−1 where di denotes the number 305

of hidden units in the ith hidden layer (i.e., d0 = 306

h) and b ∈ Rdi represent weights and the biases of 307

MLP, respectively. We use a 4-layer MLP for bi- 308

nary classification on I , with the following number 309

of hidden units in each layer: (512 → 64 → 32 → 310

2), and ReLU as the activation function. 311

Training. We employ cross-entropy loss as the 312

training objective: 313

LCE = −
N∑
i=1

1(ci) log(Pi)+1(1−ci) log(1−Pi),

(5) 314

where ci is the ground-truth label for the ith 315

training sample and Pi = P (ĉi = 1). We 316

randomly initialize the model parameters and use 317

the Adam optimizer with an initial learning rate 318

of 5 × 10−5. To enhance the reliability of the 319

results, we train the model 30 epochs under three 320

random seeds (0, 42, 100) and report the average 321

performance as the final result. 322

Inference. During inference, we can determine 323

whether a model is confident to provide a correct 324

answer as follows: 325

ĉi = max(P (ci = 1), P (ci = 0)). (6) 326

4 LLMs’ Perception Before and After 327

Response Generation 328

In this section, we evaluate the gap between LLMs’ 329

perception level before and after response gener- 330

ation, as well as the impact of question difficulty, 331

question format, the amount of generated content, 332

and training data amount. 333

4.1 Experimental Setup 334

Datasets. We take three representative open- 335

domain QA benchmark datasets, including Nat- 336

ural Questions (NQ) (Kwiatkowski et al., 2019), 337
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HotpotQA (HQ) (Yang et al., 2018), and338

MMLU (Hendrycks et al., 2020). NQ and Hot-339

potQA are two free-form QA datasets that primar-340

ily evaluate the model’s factual knowledge, with341

varying levels of difficulty. NQ is constructed from342

Google Search queries, with annotated short and343

long answers. HotpotQA is a dataset consisting of344

question-answer pairs that require multi-hop rea-345

soning. These pairs are collected via Amazon Me-346

chanical Turk. MMLU is a multi-choice dataset347

containing questions from 57 different subjects. We348

conduct experiments on both free-form and multi-349

choice QA datasets to investigate the influence of350

task format. Due to space limitation, Count of sam-351

ples for each dataset can be found in Table 4 in352

Appendix and details of data selection is shown in353

Appendix § A.2. For training, we randomly select354

1,000 positive and 1,000 negative samples from the355

training set shown in Table 4 to mitigate the impact356

of label imbalance. The choice of 1,000 is because357

all experiments in this paper include 1,000 positive358

and negative samples. Additionally, to examine359

the impact of training data size, we also evaluate360

performance using the full training set. Details361

on data construction and confidence estimation are362

provided in section § 3.2.363

LLMs. We conduct experiments on four repre-364

sentative open-source models, including Llama2-365

7B-Chat (Touvron et al., 2023), Llama3-8B-366

Instruct (Dubey et al., 2024), Qwen2-7B-367

Instruct (Yang et al., 2024), and Llama2-13B-368

Chat (Touvron et al., 2023). We use half-precision369

for the 13B model. For all the models, we set the370

temperature to 1.0 and select the token with the371

highest probability at each position (i.e., greedy372

search). Unless otherwise specified, all the other373

parameters are set to their default values.374

Metrics. Following previous research (Ni et al.,375

2024a), we use accuracy to evaluate the QA perfor-376

mance considering a response correct if it contains377

the ground-truth answer. For the model’s percep-378

tion level, we use alignment, overconfidence, and379

conservativeness as the evaluation metrics. Align-380

ment refers to the proportion of samples where the381

model’s confidence matches its QA performance,382

serving as an indicator of the model’s overall per-383

ception level. Overconfidence and conservative-384

ness represent the proportions of samples where385

the model’s confidence exceeds or falls below its386

actual capabilities, respectively, which illustrate387

why the model’s perception level is not perfect. 388

Dimensions of Analysis. To investigate the fac- 389

tors influencing the difference in the model’s per- 390

ception before and after generation, we analyze the 391

effects of question difficulty, question format, and 392

the amount of training data. The specific settings 393

are detailed in Paragraph Datasets 4.1. Addition- 394

ally, to examine whether the information content in 395

generated responses impacts the gap in LLMs’ per- 396

ception, we employ two strategies: Vanilla, where 397

the model is simply asked to provide the correct 398

answer, and Chain-of-Thought (Wei et al., 2022) 399

(COT), where the model first outputs its reasoning 400

process before providing the final answer. 401

4.2 Results and Analysis 402

The QA performance and alignment results for 403

all the models, trained on 2,000 examples, can be 404

found in Table 1, and the detailed perception re- 405

sults for Llama3-8B-Instruct are shown in Table 2. 406

Detailed perception results for the other models 407

can be found in Table 8, 10, 11. We observe that: 408

1) LLMs can perceive their knowledge bound- 409

aries before generating the response, and incor- 410

porating the representations of the generated 411

answer further enhances the perception. In Ta- 412

ble 1, across all the models and datasets, Align-P 413

consistently achieves high perception level. Align- 414

L and Align-A often show improvement compared 415

to Align-P. This provides us a trade-off between 416

judging whether the model can provide the correct 417

answer and the computational cost. On one hand, 418

if we determine that the model cannot provide the 419

correct answer before it generates a response, we 420

can stop the generation to save computational cost, 421

especially when responses tend to be long. On the 422

other hand, making the judgment after generation 423

improves the accuracy of the assessment. 424

2) Including reasoning process in the output 425

does not widen the gap between an LLM’s per- 426

ception level before and after generating a re- 427

sponse, but it may reduce the model’s overall 428

perception level. Table 1 shows that COT does not 429

markedly increase the gap between Align-P and 430

Align-L (or Align-A) in any scenario. Addition- 431

ally, in free-form QA tasks, COT often improves 432

QA performance but tends to reduce the model’s 433

perception level. From Table 2, it can be seen 434

that COT leads to an increase in the model’s con- 435

fidence. However, this change in confidence does 436

not align with the changes in QA performance, 437
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Datasets Metrics Llama2-7B Llama3-8B Qwen2-7B Llama2-13B

Vanilla COT Vanilla COT Vanilla COT Vanilla COT

NQ

Acc 26.12 36.43 27.53 44.35 27.31 37.76 32.27 41.99

Align-P 73.65 67.51 73.79 65.21 72.69 64.06 68.67 65.16
Align-L 73.73 68.98 74.73 67.56 70.77 67.85 72.15 66.12
Align-A 74.82 70.12 75.35 67.66 72.65 69.78 71.20 67.03

HotpotQA

Acc 19.93 29.55 21.63 36.79 24.96 33.34 23.69 33.10

Align-P 79.69 74.36 78.58 74.61 79.34 76.79 75.91 73.55
Align-L 79.16 74.77 80.77 74.59 75.13 75.20 77.66 74.10
Align-A 79.91 72.71 80.61 74.67 77.77 75.33 76.32 72.57

MMLU

Acc 42.20 45.51 62.49 63.77 68.72 68.63 50.58 51.18

Align-P 62.86 63.83 71.95 68.17 69.33 68.68 64.88 64.25
Align-L 68.11 66.55 72.86 70.43 70.02 72.66 67.75 67.96
Align-A 68.71 67.95 73.98 71.61 72.57 72.74 69.18 69.30

Table 1: QA performance and LLMs’ perception of knowledge boundaries on the NQ, HotpotQA, and MMLU
datasets with 2,000 training samples. Bold values denote the highest performance per model and dataset. Align-P,
Align-L, and Align-A represent alignment scores for Pre-generation, Last, and Average States, respectively.

Datasets States Vanilla COT

Acc Conf. Align.↑ Overcon.↓ Conserv.↓ Acc Conf. Align.↑ Overcon.↓ Conserv.↓

NQ
Pre-State 27.53 17.38 73.79 8.02 18.18 44.35 41.12 65.21 15.78 19.01
Last State 27.53 21.47 74.73 9.60 15.67 44.35 41.50 67.56 14.79 17.65
Avg State 27.53 19.71 75.35 8.41 16.23 44.35 43.91 67.66 15.95 16.39

HQ
Pre-State 21.63 26.91 78.58 13.35 8.08 36.79 31.29 74.61 9.95 15.44
Last State 21.63 24.88 80.77 11.24 7.99 36.79 35.18 74.59 11.90 13.51
Avg State 21.63 24.55 80.61 11.15 8.24 36.79 37.72 74.67 13.13 12.20

MMLU
Pre-State 62.49 67.83 71.95 16.36 11.70 63.77 80.24 68.17 23.87 7.97
Last State 62.49 63.39 72.86 13.68 13.46 63.77 75.33 70.43 20.28 9.29
Avg State 62.49 64.95 73.98 13.90 12.12 63.77 76.97 71.61 20.51 7.88

Table 2: Detailed perception results for Llama3-8B. Conf., Align., Overcon., and Conserv. stands for Confident
Ratio, Alignment, Overconfidence, and Conservativeness, respectively. Bold denotes the best scores on each dataset.
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Figure 3: Llama2-7B’s perception of its knowledge
boundaries with 10,000 training samples.

which may increase the overconfidence or conser-438

vativeness, thereby harming the alignment. How-439

ever, on MMLU, COT has no significant impact440

on QA performance, similar to the previous find-441

ings (Sprague et al., 2024), and its effect on percep-442

tion level shows no clear pattern.443

3) LLMs exhibit better perception of their 444

knowledge boundaries on more difficult ques- 445

tions. The results from Table 1 and Table 2 show 446

that, compared to NQ, the model’s QA perfor- 447

mance on HotpotQA is lower, yet its confidence 448

remains at a comparable or even higher level. This 449

reduces conservativeness and improves alignment. 450

4) The perception levels of LLMs before and 451

after response generation can be improved 452

with additional training data, though the gap 453

between these levels remains nearly unchanged. 454

Figure 3 illustrates the perception level of 455

Llama2-7B trained on 10,000 samples. Compared 456

to the results in Table 1, the gap between the 457

LLMs’ perception levels before and after response 458

generation remains almost identical. A detailed 459

analysis can be found in Appendix § A.5. 460
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Figure 4: Workflow of C3. C3 includes two phases: Question Reformulation and Confidence Calibration. First,
we ask the model to generate multiple answers and reformulate the original question into multiple-choice (MC)
questions. Then, we estimate the model’s confidence via its internal states, and calibrates its original confidence
based on the consistency between its confidence in answering the original and reformatted questions.

5 C3: Consistency-Based Confidence461

Calibration462

A model introduces risks when it provides incor-463

rect answers, which is especially unacceptable in464

safety-critical domains such as healthcare. In this465

section, we present C3, a method aimed at enhanc-466

ing LLMs’ perception of what they do not know.467

5.1 Overview468

If someone truly knows the correct answer, they469

will remain confident in their ability to answer470

the question correctly, even when the question471

is asked in different ways. Inspired by this, we472

think a model may be overconfident if the model473

is confident in its ability to answer a question474

correctly but loses confidence when the question475

format changes. In such cases, the model’s original476

confidence should be calibrated. This approach,477

which reduces overconfidence by leveraging the478

consistency of the model’s confidence across479

differently phrased questions, is termed C3480

(Consistency-based Confidence Calibration).481

We focus on calibrating the model’s confidence482

on free-form questions cause they are the most483

commonly used question format in practice.484

5.2 Methodology485

We aim to ask the model using different question486

formats and leverage the consistency of the model’s487

confidence across these formats to calibrate its con-488

fidence. Therefore, C3 includes two phases: Ques-489

tion Reformulation and Confidence Calibration,490

as shown in Figure 4.491

Step1-Question Reformulation. To avoid rely-492

ing on additional information and to obtain ques-493

tions of varying difficulty, we ask the model to gen-494

erate multiple candidate answers and use these an- 495

swers to construct multiple-choice questions. The 496

process can be described in the following two steps: 497

1. For question q, we first ask the model to gen- 498

erate α (i.e., α = 10) possible answers. Each 499

model is able to generate more than 8 unique 500

answers on average for questions across all the 501

datasets, with the correctness rate of earlier- 502

generated answers being higher. The analysis 503

of these generated answers is provided in Ap- 504

pendix § A.3, and the prompt can be found in 505

Appendix § A.1. 506

2. We deduplicate the candidate answers and 507

take the top-k (in order) as the options to con- 508

struct the multi-choice question MCk. This 509

prevents LLMs from becoming uncertain due 510

to the absence of the correct answer among 511

the options. Further analysis can be found in 512

Appendix A.3. 513

We set k to 2, 4, 6, and 8, respectively. 514

Step2-Confidence Calibration We check the 515

consistency between the model’s confidence coq 516

in the original question q and its confidence cmck 517

in the constructed multiple-choice questions MCk 518

to calibrate coq. The specific strategy is as follows: 519

1. We estimate the model’s confidence for each 520

question based on its internal states after gen- 521

erating the response according to Section § 3.2 522

2. coq is refined based on multiple cmcαas: 523

coq =

{
0, if coq = 1and

∑
k∈K cmck ≤ β,

coq, otherwise,
(7) 524

where K is the set of k values. We set K to 525

{2, 4, 6, 8} and β to 0. 526
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Models Methods NQ HotpotQA

Conf. UPR↑ Overcon.↓ Align.↑ Conf. UPR↑ Overcon.↓ Align.↑

Llama2-7B Vanilla 21.59 85.29 10.87 73.73 25.91 83.25 13.41 79.16
C3 14.23 91.24 6.47 75.16 21.56 86.93 10.46 80.71

Llama3-8B Vanilla 21.47 86.74 9.60 74.73 24.88 85.66 11.24 80.77
C3 15.37 91.53 6.14 75.56 18.89 89.85 7.95 81.35

Qwen2-7B Vanilla 29.41 78.46 15.66 70.77 29.95 80.12 14.93 75.13
C3 22.82 84.51 11.26 72.99 24.16 85.06 11.21 76.79

Llama2-13B Vanilla 26.92 83.39 11.25 72.15 25.10 84.45 11.88 77.66
C3 17.79 90.32 6.56 72.41 20.47 88.40 8.85 79.08

Table 3: The results of LLMs’ perception level of their knowledge boundaries after calibration with C3. Conf.,
Overcon., and Align. stands for Confident Ratio, Overconfidence, and Alignment, respectively. Bold indicates the
best scores for each model and the results are based on Last State.

UPR Evaluation. To assess the ability to de-527

tect what the model does not know, we introduce528

Unknown Perception Rate (UPR). The UPR can529

be calculated as:530

UPR =

∑n
i=1 1(Acc(ai) = 0 and ci = 0)∑n

i=1 1(Acc(ai) = 0)
, (8)531

The rest of the experimental settings are the same532

as in Section §4.1.533

5.3 Results and Analysis534

The performance of C3 based on Last State is pre-535

sented in Table 3. It shows that: 1) C3 substan-536

tially enhances LLMs’ perception of what they537

do not know. Compared to the vanilla method, C3538

substantially improves UPR in all the cases. This539

improvement occurs because the method reduces540

the proportion of samples where the LLMs are con-541

fident but provides wrong answers, which mitigates542

the LLMs’ overconfidence. 2) C3 does not exces-543

sively calibrate the LLMs’ confidence. Reducing544

the model’s confidence significantly decreases over-545

confidence, while slightly increasing conservative-546

ness (See Table 9). Overall alignment consistently547

improves, suggesting that C3 does not excessively548

calibrate the model’s confidence. The performance549

of C3 based on Avg State shows similar conclu-550

sions and can be found in Table 7 in Appendix.551

Effects of β A larger β results in more samples552

being calibrated, which aids risk mitigation but553

may lead to overly calibrated outcomes. The554

alignment score improves across almost all β555

values, as shown in Figure 5. This suggests556

that C3 does not excessively adjust the model’s557

confidence. Smaller values of β may lead to good558
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Figure 5: The alignment scores of C3 under different
β when using Last State on HotpotQA. The horizontal
line represents the alignment score without C3.

alignment but can limit risk mitigation, as overly 559

strict calibration criteria may emerge. We can 560

adjust β to balance risk mitigation and alignment. 561

Alignment scores under different β values on NQ 562

can be found in Figure 6 in Appendix. 563

6 Conclusion 564

In this paper, we first examine LLMs’ ability to as- 565

sess the factuality of their responses using internal 566

states before and after response generation. Our 567

findings show that LLMs can predict the correct- 568

ness of their answers prior to generation, providing 569

a cost-efficient approach that avoids inference, with 570

this ability further enhanced post-generation. Next, 571

we introduce C3 (Consistency-based Confidence 572

Calibration), a method to refine the model’s per- 573

ception after response generation. Experimental 574

results demonstrate that C3 substantially improves 575

LLMs’ ability to recognize what they do not know 576

and consistently enhances their overall perception. 577
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Limitations578

First, we conduct research based on binary con-579

fidence to determine whether the model’s output580

can be trusted. Further exploration is needed in the581

future for more fine-grained confidence. Second,582

we focus on the model’s perception of its factual583

knowledge boundaries. The model’s perception584

of its non-factual knowledge boundaries require585

further investigation. Third, due to resource limita-586

tions, we conduct our experiments only on 7B and587

13B models. The effectiveness of our approach on588

larger models remains to be validated.589

Ethics Statement590

We approach ethics with great care. In this paper,591

all the datasets and models we use are open-source.592

Additionally, the methods we propose aim to en-593

hance the reliability of LLMs’ responses and do594

not encourage or induce the model to generate any595

harmful information.596
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A Appendix719

A.1 Prompts720

Candidate Answers Generation. Generate 10721

possible answers for the following question, each722

separated by a semicolon. These 10 answers must723

be different, and your response should be as con-724

cise as possible, with no irrelevant words beyond725

the answers.726

Question: [Question]727

Answer:728

Vanilla. Answer the following question based on729

your internal knowledge with one or few words.730

Question: [Question]731

Answer:732

COT. Answer the question by briefly explaining733

your reasoning with one or few sentences, then734

provide the final answer.735

Question: [Question]736

Answer:737

MC Vanilla. The following are multiple choice738

questions (with answers). Select the correct an-739

swer without any irrelevant words. Do not include740

conversational words and do not provide any ex-741

planation.742

Question: [Question]743

Answer:744

MC COT. The following are multiple choice745

questions (with answers)subject. Briefly explain746

your reasoning with one or few sentences and747

choose the correct answer. Start with “So, the748

correct answer is” to select the correct answer.749

Question: [Question]750

Answer:751

A.2 Data Selection752

For the NQ dataset, we use its test set as our753

NQ-test, the validation set as NQ-dev, and ran-754

domly sample 10,000 examples from the training755

set as NQ-train. For HotpotQA, similar to previous756

work (Ni et al., 2024a), we use the validation set757

as the HQ-test. Additionally, we randomly sample758

non-overlapping 10,000 and 6,000 examples from759

the training set as the HQ-train and HQ-dev, respec-760

tively. For MMLU, we randomly sample 50% of761

its test set as MMLU-train, and split the remaining762

test set equally into MMLU-dev and MMLU-test.763

Count of samples for each dataset can be seen in764

Table 4.765

Dataset Train Dev Test

NQ 10,000 6,489 3,610
HotpotQA 10,000 6,000 7,405

MMLU 7,021 3,510 3,511

Table 4: Count of samples for each dataset.
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Figure 6: The alignment scores of C3 under different β
when using Last State on NQ. The horizontal line repre-
sents the model’s alignment under the vanilla approach.

A.3 Analysis on Candidate Answers 766

Generation 767

Unique Answers Count. In this paper, we ask 768

the model to generate 10 candidate answers for 769

each free-form question. The number of remaining 770

answers after deduplication is presented in Table 5. 771

The table shows that, across all the datasets, all 772

the models generate an average of more than 8 773

unique answers. Based on this, we reformulate 774

the free-form question into 4 multiple-choice ques- 775

tions, with the count of options for each MC ques- 776

tion being 2, 4, 6, and 8, respectively. 777

Datasets Models Train Dev Test

NQ

Llama2-7B 8.50 8.51 8.29
Llama3-8B 9.30 9.29 9.43
Qwen2-7B 9.47 9.44 9.46

Llama2-13B 8.56 8.55 8.46

HQ

Llama2-7B 8.84 8.80 8.67
Llama3-8B 9.03 9.01 9.00
Qwen2-7B 9.71 9.67 9.75

Llama2-13B 8.70 8.65 8.53

Table 5: The count of unique answers in the generated
candidate answers for the NQ and HotpotQA datasets.
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Figure 7: The proportion of the ground-truth answer included in the top-k answers generated by different models on
the NQ and HotpotQA test sets.

Datasets Metrics Llama2-7B Llama3-8B Qwen2-7B Llama2-13B

Vanilla COT Vanilla COT Vanilla COT Vanilla COT

NQ

Acc 26.12 36.43 27.53 44.35 27.31 37.76 32.27 41.99

Align-P 75.38 68.40 75.57 67.43 72.73 67.50 70.13 66.28
Align-L 76.53 70.17 78.43 70.70 75.24 70.22 73.92 68.13
Align-A 77.88 71.19 78.69 69.87 76.12 70.94 73.72 68.16

HotpotQA

Acc 19.93 29.55 21.63 36.79 24.96 33.34 23.69 33.10

Align-P 80.91 76.92 82.13 74.68 79.60 77.25 78.89 74.71
Align-L 82.68 77.41 83.29 76.35 79.79 76.25 80.33 75.26
Align-A 82.59 77.07 83.47 76.04 79.93 77.24 79.84 75.28

MMLU

Acc 42.20 45.51 62.49 63.77 68.72 68.63 50.58 51.18

Align-P 65.20 65.80 71.51 69.88 71.08 71.43 65.51 65.41
Align-L 68.13 64.17 72.86 72.44 70.78 73.36 67.00 66.09
Align-A 69.46 68.42 72.98 73.34 70.87 72.59 68.62 68.15

Table 6: QA performance and LLMs’ perception of their knowledge boundaries on the NQ, HotpotQA, and MMLU
datasets with 10,000 training samples. Bold values indicate the highest performance for each model on each dataset.
Align-P, Align-L, and Align-A represent alignment scores using the Pre-generation State, Last State, and Average
State, respectively.

Answer Quality. We evaluate the proportion of778

the ground-truth answer included in the top-k an-779

swers generated by different models on the NQ and780

HotpotQA test sets, with results shown in Figure 7.781

The figure indicates that as the number of gener-782

ated answers increases, the top-k accuracy also783

improves. However, the rate of accuracy growth784

slows down as the number of answers increases,785

suggesting that LLMs tend to generate correct786

answers in the earlier positions. Notably, we do787

not explicitly instruct the model to prioritize gener-788

ating the correct answer; it does this autonomously.789

The proportion of ground-truth answers included in790

the options is relatively high, which helps prevent791

situations where the model, despite being confident792

in its correct answer for the free-form question, be- 793

comes uncertain due to the absence of the correct 794

answer among the options. This ensures more accu- 795

rate calibration and prevents incorrect confidence 796

adjustments. 797

A.4 LLMs’ QA Performance and Perception 798

on Reformatted Questions 799

LLMs’ QA performance and perception levels on 800

reformatted questions can be seen in Table 9. 801

1) LLMs can be misled by self-generated an- 802

swers, leading to worse QA performance. As 803

the number of options increases, despite the higher 804

likelihood of including the ground-truth answer 805

among them (See Figure 7), LLMs’ QA perfor- 806
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Models Methods NQ HotpotQA

Conf. UPR↑ Overcon.↓ Align.↑ Conf. UPR↑ Overcon.↓ Align.↑

Llama2-7B Vanilla 13.50 91.50 6.28 74.82 23.43 85.26 11.80 79.91
C3 8.86 95.14 3.59 75.55 18.94 88.56 9.16 80.70

Llama3-8B Vanilla 19.71 88.40 8.41 75.35 24.55 85.76 11.15 80.61
C3 15.82 91.31 6.30 75.69 18.91 89.79 8.00 81.27

Qwen2-7B Vanilla 26.76 81.57 13.40 72.65 27.18 83.72 12.23 77.77
C3 20.03 87.22 9.29 74.14 21.80 87.91 9.07 78.69

Llama2-13B Vanilla 29.16 81.03 12.84 71.20 44.32 75.31 12.36 76.32
C3 17.76 89.91 6.83 71.82 22.42 86.29 10.47 77.80

Table 7: The results of LLMs’ perception level of their knowledge boundaries after calibration with C3. Conf.,
Overcon., and Align. stands for Confident Ratio, Overconfidence, and Alignment, respectively. Bold indicates the
best scores for each model and the results are based on Avg State.

Datasets States
Vanilla COT

Acc Align.↑ Conf. Overcon.↓ Conserv.↓ Acc Align.↑ Conf. Overcon.↓ Conserv.↓

NQ
Pre-State 26.1 73.65 11.09 5.66 20.69 36.4 67.51 28.27 12.17 20.32
Last State 26.1 73.73 21.59 10.87 15.4 36.4 68.98 32.52 13.55 17.46
Avg State 26.1 74.82 13.5 6.28 18.9 36.4 70.12 32.01 12.73 17.15

HQ
Pre-State 19.9 79.69 16.47 8.42 11.88 29.55 74.36 27.46 11.78 13.86
Last State 19.9 79.16 25.91 13.41 7.43 29.55 74.77 28.74 12.21 13.02
Avg State 19.9 79.91 23.43 11.8 8.3 29.55 72.71 34.83 16.29 11.00

MMLU
Pre-State 42.2 62.86 33.7 14.06 23.08 45.51 63.83 37.21 14.26 21.91
Last State 42.2 68.11 31.4 10.28 21.61 45.51 66.55 38.36 13.47 19.98
Avg State 42.2 68.71 32.13 10.35 20.94 45.51 67.95 34.04 10.61 21.44

Table 8: Detailed perception for Llama2-Chat-7B. Align., Conf., Overcon., and Conserv. stands for Alignment,
Confidence level, Overconfidence, and Conservativeness, respectively. Bold denotes the best scores on each dataset.

mance consistently decline. This suggests that the807

more options there are, the harder it becomes for808

LLMs. This indicates that the LLMs struggle to809

select the correct answer when faced with similar810

self-generated answers.811

2) LLMs show better perception level on re-812

formatted questions. The decline in LLMs’ con-813

fidence on reformatted questions is often less than814

the decrease in QA performance, which reduces815

conservativeness and enhances alignment. More816

accurate assessments of these questions enable us817

to obtain reliable supplementary information.818

3) Transforming a free-form question into a819

multiple-choice question may improve the model’s820

perception level, but it comes at the cost of QA821

performance. In contrast, C3 achieves the lowest822

overconfidence in most cases and consistently en-823

hances alignment without negatively impacting QA824

performance.825

A.5 The Impact of Training Sample Amount 826

The QA performance and alignment results for all 827

the models, trained on 10,000 examples, can be 828

found in Table 6. We observe that: 829

1) The alignment scores can be improved (most 830

are in the 70s, with some even exceeding 80) with 831

a little more training data. 832

2) Compared to Table 1, the gap between LLMs’ 833

perception levels before and after response gen- 834

eration remains nearly unchanged with different 835

training amount. 836

In this part of the comparison, our focus is not 837

on determining the optimal number of training sam- 838

ples for achieving the best perception level. Instead, 839

we are solely concerned with the gap in the model’s 840

perception of its knowledge boundaries before and 841

after generating the answers and the effects of train- 842

ing sample amount. 843
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Models Methods NQ HotpotQA

Acc Align.↑ Conf. Overconf.↓ Conserv.↓ Acc Align.↑ Conf. Overconf.↓ Conserv.↓

Llama2-7B

Vanilla 26.12 74.82 13.50 6.28 18.90 19.93 79.91 23.43 11.80 8.30
MC-2 21.91 76.17 17.73 9.82 14.01 17.58 80.31 18.51 10.31 9.38
MC4 19.09 78.04 14.76 8.82 13.14 16.34 77.79 25.80 15.84 6.38
MC-6 15.46 79.64 20.45 12.68 7.68 13.80 84.17 12.04 7.03 8.80
MC-8 13.66 83.20 14.80 8.98 7.83 12.72 82.69 16.22 10.40 6.90
C3 26.12 75.55 8.86 3.59 20.86 19.93 80.70 18.94 9.16 10.15

Llama3-8B

Vanilla 27.53 75.35 19.71 8.41 16.23 21.63 80.61 24.55 11.15 8.24
MC-2 26.20 75.90 26.15 12.02 12.08 19.81 80.43 19.93 9.84 9.72
MC-4 23.07 78.46 18.60 8.53 13.01 18.65 80.40 23.92 12.44 7.17
MC-6 22.22 79.76 17.80 7.91 12.33 17.80 80.50 23.75 12.73 6.78
MC-8 21.0 79.09 23.93 11.92 8.98 16.29 80.26 23.85 13.65 6.09
C3 27.53 75.69 15.82 6.30 18.01 21.63 81.27 18.91 8.00 10.73

Qwen2-7B

Vanilla 27.31 72.57 26.76 13.40 13.95 24.96 77.79 27.18 12.23 10.00
MC-2 21.30 75.02 26.57 15.12 9.85 20.51 80.40 21.91 10.50 9.10
MC-4 20.08 77.94 22.40 12.19 9.87 16.85 80.65 20.42 11.46 7.89
MC-6 17.84 77.61 22.21 13.38 9.01 15.65 81.22 18.60 10.87 7.91
MC-8 18.12 77.42 22.77 13.62 8.97 14.75 81.89 17.34 10.35 7.76
C3 27.31 74.14 20.03 9.29 16.57 24.96 78.69 21.80 9.07 12.23

Llama2-13B

Vanilla 32.27 71.20 29.16 12.84 15.96 23.69 76.32 27.27 13.63 10.05
MC-2 25.90 74.25 25.08 12.47 13.29 21.38 77.58 24.75 12.90 9.52
MC-4 22.74 76.21 21.52 11.28 12.50 18.83 78.52 24.33 13.49 7.99
MC-6 19.31 78.64 19.48 10.77 10.59 16.87 79.39 22.29 13.01 7.59
MC-8 16.95 80.49 18.05 10.30 9.21 14.79 79.59 24.29 14.96 5.46
C3 32.27 71.82 17.76 6.83 21.35 23.69 77.80 22.42 10.47 11.74

Table 9: LLMs’ QA performance and perception level on reformatted MC questions when using Avg State.

Datasets States
Vanilla COT

Acc Align.↑ Conf. Overcon.↓ Conserv.↓ Acc Align.↑ Conf. Overcon.↓ Conserv.↓

NQ
Pre-State 27.31 72.69 0 0 27.31 37.76 64.06 29.30 13.74 22.2
Last State 27.31 70.77 29.41 15.66 13.56 37.76 67.85 34.27 14.33 17.82
Avg State 27.31 72.65 26.76 13.4 13.95 37.76 69.78 37.67 15.07 15.15

HQ
Pre-State 24.96 79.34 19.90 7.81 12.86 33.34 76.79 25.59 7.73 15.49
Last State 24.96 75.13 29.95 14.93 9.93 33.34 75.20 29.12 10.29 14.51
Avg State 24.96 77.77 27.18 12.23 10.00 33.34 75.33 35.33 13.33 11.34

MMLU
Pre-State 68.72 69.33 92.26 27.19 3.48 68.63 68.68 92.45 27.75 3.57
Last State 68.72 70.02 87.58 24.50 5.48 68.63 72.66 81.46 20.26 7.07
Avg State 68.72 72.57 82.27 20.57 6.85 68.63 72.74 85.76 22.38 4.89

Table 10: Detailed perception for Qwen2-7B-Instruct. Align., Conf., Overcon., and Conserv. stands for Alignment,
Confidence level, Overconfidence, and Conservativeness, respectively. Bold denotes the best scores on each dataset.
Conf=0 is due to insufficient training on the pre-state. Training on 10,000 data can address this.

Datasets States
Vanilla COT

Acc Align.↑ Conf. Overcon.↓ Conserv.↓ Acc Align.↑ Conf. Overcon.↓ Conserv.↓

NQ
Pre-State 32.27 68.67 18.91 8.98 22.35 41.99 65.16 24.72 8.78 26.06
Last State 32.27 72.15 26.92 11.25 16.60 41.99 66.12 35.47 13.67 20.20
Avg State 32.27 71.20 29.16 12.84 15.96 41.99 67.03 35.60 13.29 19.69

HQ
Pre-State 23.69 75.91 24.26 12.33 11.76 33.1 73.55 24.11 8.73 17.72
Last State 23.69 77.66 25.10 11.88 10.46 33.10 74.10 28.76 10.78 15.12
Avg State 23.69 76.32 27.27 13.63 10.05 33.10 72.57 30.79 12.56 14.87

MMLU
Pre-State 50.58 64.88 55.23 19.97 15.15 51.18 64.25 49.76 17.77 17.97
Last State 50.58 67.75 51.58 16.71 15.54 51.18 67.96 54.94 18.51 13.53
Avg State 50.58 69.18 44.32 12.36 18.46 51.18 69.30 46.58 13.66 17.04

Table 11: Detailed perception for Llama2-Chat-13B. Align., Conf., Overcon., and Conserv. stands for Alignment,
Confidence level, Overconfidence, and Conservativeness, respectively. Bold denotes the best scores on each dataset.
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