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Physical Audiovisual Commonsense Reasoning
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Abstract—In this paper, we propose a new Robust Disentangled Counterfactual Learning (RDCL) approach for physical audiovisual
commonsense reasoning. The task aims to infer objects’ physics commonsense based on both video and audio input, with the main
challenge being how to imitate the reasoning ability of humans, even under the scenario of missing modalities. Most of the current
methods fail to take full advantage of different characteristics in multi-modal data, and lacking causal reasoning ability in models impedes
the progress of implicit physical knowledge inferring. To address these issues, our proposed RDCL method decouples videos into static
(time-invariant) and dynamic (time-varying) factors in the latent space by the disentangled sequential encoder, which adopts a variational
autoencoder (VAE) to maximize the mutual information with a contrastive loss function. Furthermore, we introduce a counterfactual
learning module to augment the model’s reasoning ability by modeling physical knowledge relationships among different objects under
counterfactual intervention. To alleviate the incomplete modality data issue, we introduce a robust multimodal learning method to recover
the missing data by decomposing the shared features and model-specific features. Our proposed method is a plug-and-play module that
can be incorporated into any baseline including VLMs. In experiments, we show that our proposed method improves the reasoning
accuracy and robustness of baseline methods and achieves the state-of-the-art performance. Our code and data are available at
https://github.com/MICLAB-BUPT/DCL.

Index Terms—Physical Commonsense Reasoning, Robust Multimodal Learning, Disentangled Representation, Counterfactual Analysis.
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1 INTRODUCTION

HUMANS acquire the physical commonsense knowledge
by integrating information from various modalities,

enabling them to deduce the properties of unfamiliar objects
in the daily life [1]. This includes tasks such as determining
material composition (e.g., "this object is likely made of
wood") or solving practical problems (e.g., "which object
would cause a greater mess if it fell") [2]. Such reasoning
remains a significant challenge for machine intelligence, yet
it is essential for applications like robot navigation [3] and
augmented or virtual reality systems. In this paper, we
employ Audio-Visual Question Answering (AVQA) as a
proxy task to advance the machine’s capacity for physical
commonsense reasoning. As shown in Figure 1(a), the
AVQA aimed to select the correct answer to the question
by comparing the given two objects. For each object, our
input consists of a video of human-object interactions and its
corresponding audio.

The major challenge in audio-visual physical common-
sense reasoning lies in effectively extracting and reasoning
about implicit physical knowledge from the vast amounts of
multi-modal data, particularly from videos. This necessitates
the capability to analyze intricate video content, recognize the
categories and associated physical attributes of various ob-
jects, and comprehend the causal interactions between them.
These cognitive functions closely resemble how humans
acquire knowledge, learn, and reason about the physical
environment.

This work is partly supported by the Funds for the NSFC Project under Grant
62202063, Beijing Natural Science Foundation (L243027). (Corresponding
author: Mengshi Qi (email: qms@bupt.edu.cn))
M. Qi, C. Lv, and H. Ma are with the State Key Laboratory of Networking and
Switching Technology, Beijing University of Posts and Telecommunications,
China.
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Fig. 1: Illustration of our main tasks. Task (a) involves
AVQA for physical commonsense reasoning, while task (b)
addresses robust AVQA, which deals with missing modality
data for physical commonsense reasoning encountered in
real-world scenarios.

Current existing methods [4], [5] typically extract generic
visual features from videos depicting human-object interac-
tions, resulting in mixed feature representations that fail to
separate object and action information. This approach often
results in misidentifying relevant objects due to insufficient
contextual detail. However, in physical commonsense rea-
soning, it is crucial to identify the attributes and physical
properties of objects.

To address this challenge, we propose an approach to
disentangle video content into two distinct factors: static fac-
tors, which remain constant over time, and dynamic factors,
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which change over time. Another motivation for our paper
is to establish relationships of physical knowledge among
different objects across both video and audio modalities. We
improve the optimization of our results by considering the
relevance of multiple samples and integrating causal learn-
ing, using these relationships as confounders. Additionally,
the implementation of counterfactual interventions enhances
the model’s explainability and reasoning capabilities.

Furthermore, current methods infer the physical common-
sense under the assumption of modality completeness. How-
ever, a few real-world factors such as particular modality
data missing [6], [7] invariably bring robustness challenges,
As shown in Figure 1(b). For instance, privacy restrictions in
mobile applications or sensor corruptions in robot navigation
can result in data limitations or low-quality data, respectively.
To ensure robust physical commonsense reasoning in such
scenarios, we further extend the work to learn the relation-
ship between audio and video representations, and then
recover missing modal information through shared features
across these modalities.

In this paper, we propose a novel approach for audiovi-
sual physical commonsense reasoning, named Disentangled
Counterfactual Learning (DCL). It explicitly extracts static and
dynamic factors from video and employs causal learning
to reveal physical knowledge relationships among various
objects. To achieve this, we design a Disentangled Sequential
Encoder (DSE), which utilizes a sequential variational au-
toencoder for effectively self-supervised separation of static
and dynamic video factors. Additionally, we incorporate
a contrastive estimation method to enhance the mutual
information (MI) between the input data and the two
latent factors, while simultaneously reducing MI between
static and dynamic factors. Furthermore, we introduce a
novel Counterfactual Learning Module (CLM) to capture
physical knowledge relationships from a diverse range of
data samples by counterfactual interventions. The model’s
training objectives are refined by maximizing the probability
likelihood in the DSE and the Total Indirect Effect value in
the CLM.

More importantly, this paper extends our NeurIPS con-
ference paper [8], enhancing the DCL to Robust Disentangled
Counterfactual Learning (RDCL). In contrast to the original
version, we have devised a novel method to improve DSE,
by computing discriminative information between positive
and negative samples. Moreover, to address the challenge
of missing modality data in real-world scenarios, we in-
corporate a new incomplete multi-modal learning method,
which extracts shared semantic information representing
physical knowledge across modalities, and supplements
missing modalities during both training and testing, by
leveraging shared semantic features from other modalities.
In our experiments, we evaluate both DCL and RDCL on
the PACS dataset [2], and further conduct comprehensive
tests, present additional visualizations, and perform more
detailed ablation studies to demonstrate the effectiveness of
each proposed component in our approach. In addition, we
analyze and discuss about the visual bias and VLM-assisted
reasoning issues.

Our main contributions can be summarized as follows:
(1) We introduce a novel Disentangled Counterfactual

Learning (DCL) approach for physical audiovisual common-

sense reasoning, which separates video inputs into static and
dynamic factors using a Disentangled Sequential Encoder.

(2) We present a new Counterfactual Learning Module
designed to model physical knowledge relationships among
various objects, utilizing these relationships as counterfactual
interventions to enhance causal reasoning capabilities.

(3) We design a new Robust Disentangled Counterfactual
Learning (RDCL) method, which decomposes multimodal
data into modality-shared information among various modal-
ities data and modality-specific information and utilizes the
shared information between modalities to complete missing
modalities.

(4) We conducted comprehensive comparisons with
other methods on the PACS dataset under both complete
and incomplete modality conditions. Compared to DCL,
our RDCL achieves relative improvements of 3.3% on the
complete PACS dataset and 11.8% on the PACS dataset under
incomplete.

2 RELATED WORK

Physical Commonsense Reasoning. Commonsense knowl-
edge, embedded in a variety of data, is acquired by humans
and used for reasoning about unseen things [9]. Hespos et
al. [10] show that infants’ commonsense aids in reasoning
about knowledge, and machines can similarly learn and
perform well on physical knowledge [9]. Machines can
acquire commonsense from various data types, including
visual [11], [12], textual [13], audio [14], and multimodal
data [2]. Zellers et al. [11] constructed a visual question-
answering (VQA) dataset for visual commonsense rea-
sonng (VCR), guiding models to utilize learned common-
sense knowledge for high-level cognition and reasoning
beyond images. Wang et al. [15] proposed an unsupervised
approach to mine visual commonsense, enhancing model
performance on visual captioning and VQA. Zareian et al.
[16] proposed the first method to automatically acquire
visual commonsense such as affordance and intuitive physics
from data for scene graph generation. Li et al. [12] further
introduced a video-based VQA dataset, Video-VQA, which
not only involves reasoning questions about video content
but also generates appropriate justifications based on com-
monsense knowledge. Bisk et al. [13] firstly proposed the task
of learning physical commonsense from text and constructed
a corresponding benchmark dataset, PIQA. Lin et al. [17]
explored the usage of commonsense knowledge in human-
like chatbots with multi-modal context. However, most
work focused on learning visual and audio commonsense
knowledge, with a lack of learning the physics from visual
objects. Yu et al. [2] introduced a multimodal physical
commonsense knowledge dataset based on visual, audio,
and text, PACS, and performed the VQA task related to
the physical commonsense in a fusion manner. In contrast,
our proposed method decouples physical commonsense into
static and dynamic aspects and introduces causal learning to
enhance reasoning ability for physical problems.
Disentangled Representation Learning (DRL). DRL aims to
learn various hidden explanatory factors behind observable
data [18], and it has been widely applied in computer
vision [19], including image recognition [20], [21], visual
reasoning [22], [23], and generation [24], [25], [26], [27], [28],.
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Tran et al. [29] employed a Generative Adversarial Network
(GAN) [30] to explicitly disentangle facial variations, address-
ing face recognition across diverse human poses. Similarly,
Wei et al. [20] utilized a Variational Autoencoder (VAE) to
disentangle actions within videos, enhancing unsupervised
cross-domain action recognition by decoupling videos into
domain-specific and domain-invariant features. Moreover,
disentangled representation has been leveraged in image gen-
eration. Ma et al. [24] disentangled images into foreground,
background, and pose information, generating new person
images based on these manipulated factors through a multi-
branch reconstruction network and adversarial training.
Differing from static image processing, Bai et al. [25] and
Zhu et al. [31] investigated video generation by disentangling
and merging static and dynamic character information.
Wang et al. [32] addressed the visual semantic ambiguity
problem by decoupling questions into region-related, spatial-
related, and semantic-related features. Contrary to previous
methods that explicitly model disentangled factors, our work
centers on learning the relationships of physical knowledge
across different samples. We utilize this knowledge to assist
in answering relevant questions, thereby enhancing the
model’s interpretability.
Causal learning. Due to the "language prior" [33] or "visual
bias" [34] in traditional VQA datasets, current methods
rely heavily on inherent biases in language or visual fea-
tures, leading to inaccurate answers. Recently, counterfactual
causal reasoning have been utilized in VQA [35], scene
graph generation [36], image recognition [37], and video
understanding [38]. These techniques not only mitigate the
impact of data biases on results [39], but also enhance model
interpretability during inference [40]. Different from the
current work [41] focusing VQA with cross-modal modeling,
our approach distinctively concentrates on constructing
physical knowledge relationships among different samples
and employing them as confounders in causal reasoning.
Roubst multimodal learning. Multimodal learning encom-
passes various types of data, including visual-text [42], visual-
audio [43], text-audio [44], and visual-text-audio [45]. How-
ever in practical applications, data from different modalities
may exhibit varying degrees of missing information [46],
which can lead to the performance decrease of multimodal
systems, sometimes even inferior to those of the single-modal
approach. In this work, we propose a new robust multi-
modal learning that aligns the shared semantic information
across different modalities and then utilizes this information
to complete the missing modality.

3 PROBLEM DEFINATION

The task of physical audiovisual commonsense reasoning
involves executing a binary classification. It requires the
model to extract features from the audio and video associated
with two distinct objects, and subsequently select the most
appropriate one in response to a specific question. A pair
of videos, denoted as < v1, v2 >, and their corresponding
audios, denoted as < a1, a2 >, represent the input data
for object-1 and object-2. Here, v1 ∈ RT×C×H×W , where
T,C,H,W represent the time duration, channel, height, and
width of the RGB frame, respectively. The audio is denoted as
a1, a2 ∈ RT×F , where T and F denote the time duration and

frequency of the audio signal, respectively. The task involves
selecting the most fitting object from the video inputs to
answer questions (i.e., q) according to physical commonsense.
The predicted answer is Ŷ , while the ground-truth answer is
Y . During the pre-processing phase, the extracted features of
audio, video, and question are denoted as Xa, Xv , and
Xt, respectively. Here, Xa, Xt ∈ Rd refer to the audio
and question text features captured as non-sequential data,
with d signifying the feature dimension. Conversely, the
video feature, represented as sequential data, is denoted as
Xv = {Xv

1 , X
v
2 , · · · , Xv

T }, where T indicates the number of
video frames and Xv

i ∈ Rd. Furthermore, we assume that
modality data may be missing during both the training and
testing phases to address the robustness challenge in physical
audiovisual commonsense reasoning. For a given mini-batch
of data, B is the batch size. For example, the proportion of
missing data in the object-1’s video sample is denoted by
αv1 , indicating that αv1 · B samples in the mini-batch are
missing. This process is similarly applied to the missing of
object-2 video or audio data.

4 PROPOSED APPROACH

4.1 Overview

As depicted in Figure 2(a), our proposed method extracts fea-
tures from input videos and audios using respective encoders,
then employs a Disentangled Sequence Encoder (Sec. 4.2
and Sec. 4.3) to separate static and dynamic factors. The
Counterfactual Learning Module (Sec. 4.4) generates raw
and intervened multi-modal features, which are integrated
with the question feature. The final predictions are optimized
based on the fusion features. To improve the robustness of
physical knowledge learning, we developed an enhanced
model, RDCL, by introducing an incomplete multi-modal
learning module (IMLM) (Sec.4.5) to compensate for missing
modalities, as shown in Figure. 3.

4.2 Disentangled Sequential Encoder

As shown in Figure 2(b), Disentangled Sequential En-
coder (DSE) is designed to separate static and dynamic
factors within multi-modal data. This model enhances
the traditional sequential variational auto-encoder (VAE)
by integrating a mutual information term to amplify the
disentanglement effect. Specifically, we postulate that the
latent representations of the input video’s feature, denoted
as Xv

1:T , can be partitioned into a static factor s and dy-
namic factors z1:T , where zt signifies the latent dynamic
representation at the time step t. Following [25], we propose
that these two factors are mutually independent, expressed
as p(s, z1:T ) = p(s)p(z1:T ), where p(·) symbolizes the
probability distribution. Furthermore, zi is contingent on
z<i = {z0, z1, .., zi−1}, with z0 = 0, and the reconstruc-
tion 1 of xi is independent of other frames given zi and
s. Consequently, we aim to learn a posterior distribution

1. To simplify, we will use xi to denote Xv
i in the subsequent

discussion.
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Fig. 2: The illustration of our proposed DCL model: Part (a) presents the overall structure, which begins with the input
of videos accompanied by audio. These are initially encoded via the respective visual and audio encoders. Subsequently,
the Disentangled Sequence Encoder in Part (b) is employed to segregate video features into static and dynamic elements
utilizing an LSTM-based Variational Autoencoder (VAE). The Counterfactual Learning Module in Part (c) is then used to
construct the affinity matrix ‘A’, which acts as a confounder, and to derive the prediction ŶX,AX

and the counterfactual
outcome ŶX,A∗

X
. Ultimately, we compute ŶTIE by subtracting these two outcomes and optimizing the model.

q(z1:T , s|x1:T ) where the two factors are disentangled, as
expressed in the following equation:

q(z1:T , s|x1:T ) = q(s|x1:T )q(z1:T |x1:T )

= q(s|x1:T )
T∏

i=1

q(zi|z<i, x≤i).
(1)

Specifically, we employ the Bi-LSTM [47] to represent the
posterior distribution, where q(zi|z<i, x≤i) is conditioned on
the entire time series by using the hidden states as input,
and q(s|x1:T ) is computed by inputting x1:T . Subsequently,
we sample the two disentangled factors s and z1:T using
the distributions q(s|x1:T ) and q(zi|z<i, x≤i) through the
reparameterization trick [48]. Afterward, we employ the
extracted disentangled factors to reconstruct x1:T using a
VAE-based decoder [25]. The priors of the static factor s and
dynamic factor zi are defined as Gaussian distributions with
N (0, I) andN (µ(z<i), σ

2(z<i)) respectively, where µ(·) and
σ(·) are modeled by Bi-LSTM. The following factorization
can formalize the reconstruction process:

p(x1:T , s, z1:T ) = p(s)
T∏

i=1

p(zi|z<i)p(xi|zi, s). (2)

Furthermore, we incorporate mutual information (MI) to
promote exclusivity between the disentangled factors (i.e.,
static and dynamic factors) and integrate non-parametric
contrastive estimation into the standard loss function for
learning latent representations, which can be formulated as:

C(z1:T ) = EpD
log

ϕ(z1:T , x
+
1:T )

ϕ(z1:T , x
+
1:T ) +

∑n
j=1 ϕ(z1:T , x

j
1:T )

, (3)

where x+ denotes a ‘positive’ sample containing the same ob-
ject, while xj (j = {1, 2, ..., n}) signifies n ‘negative’ sample
with different objects. To counter high dimensionality [49],
we employ ϕ(z1:T , x

+
1:T ) = exp(sim(z1:T , x

+
1:T )/τ), where

sim(·, ·) signifies the cosine similarity function and τ = 0.5
is a temperature parameter. C(s) can be computed similarly.
To construct the ‘positive’ sample, following [25], we adopt
content augmentation by randomly rearranging the video’s
time steps and motion augmentation via Gaussian blur [50].
The results can be denoted as C(zm1:T ) and C(sc), where
zm1:T and sc represent the augmented data of z1:T and s,
respectively. The Mutual Information (MI) term I(·) can be
expressed as follows:

I(z1:T ;x1:T ) ≈
1

2
(C(z1:T ) + C(zm1:T )), (4)

I(s;x1:T ) ≈
1

2
(C(s) + C(sc)). (5)

The objective function can be formulated by adding MI
terms to the standard evidence lower bound (ELBO):

LDSE = −log(p(x1:T |z1:T )) + γ · (LKLs + LKLz )

− γ · (I(z1:T ;x1:T ) + I(s;x1:T )) + θ · I(z1:T ; s),
(6)

where

LKLs = KL(q(s|x1:T )||p(s)), (7)

LKLz
=

T∑

t=1

KL(q(zt|x≤t)||p(zt|z<t)). (8)

where γ, α, and θ are hyper-parameters. The complete proof
can be found in our supplementary materials.
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4.3 Disentangged Sequential Encoder+
As detailed in Sec. 4.2, Disentangled Sequential Encoder
(DSE) was initially proposed in our conference paper [8].
To further enhance the model in extracting distinguishing
features between the given two objects, we propose a new
Disentangled Sequential Encoder+ (DSE+) by improving the
selection strategy for ‘negative’ samples in Eq. 3. Specifi-
cally, we incorporate features of the input paired object as
additional negative samples. The dynamic factor z ∈ Rd is
extracted from the last cell output of the Bi-LSTM (Eq. 1),
while the static factor s ∈ Rd represents time-invariant fea-
tures, where d denotes the feature dimensionality. Departing
from prior work [25], [31] by leveraging content-/motion-
augmented samples as positive samples, our approach
explicitly emphasizes the inherent dissimilarity between
dynamic and static factors within object pairs. Then we
propose dual contrastive losses to amplify this distinction:

Lcontras
= max (0, sim(s1, s2)− δ) , (9)

Lcontraz
= max (0, sim(z1, z2)− δ) , (10)

where s1, s2 and z1, z2 denote static and dynamic factors of
paired objects, respectively. The cosine similarity function
sim(·, ·) quantifies feature alignment, while the margin δ
controls the separation threshold between factors. Hence the
dual contrastive losses of DSE+ can be incorporated into
Eq. 6, formulated as:

LDSE+ = LDSE + Lcontras + Lcontraz . (11)

4.4 Counterfactual Learning Module
In this section, the static and dynamic factors extracted
by DSE/DSE+ are then employed to establish relation-
ships based on physical knowledge in conjunction with
the associated audio features. Concurrently, we implement
counterfactual relation intervention to enhance the process
of knowledge learning.

4.4.1 Physical Knowledge Relationship
Inspired by Knowledge Graph [51], we posit that the physical
knowledge embedded in diverse samples may exhibit certain
correlations. Consequently, we propose to model these
implicit relationships via a graph structure, and we construct
an affinity matrix A to represent these physical knowledge
relationships among various objects. Similarly, we create
an affinity matrix for audio features and other modalities,
resulting in an augmented matrix AX defined as follows:

AX =
[
AXa AXv

s
AXv

z

]
, (12)

where AX signifies the augmented matrix composed of three
affinity matrices. With the well-structured affinity matrix A,
we can augment the video static and dynamic factors, as well
as audio features, denoted as Xv

s , Xv
z , and Xa, by facilitating

message passing and transfer across different samples, as
follows:

X =
[
Xa Xv

s Xv
z

]
, (13)

F = AX ·X⊤, (14)

where F represents the transferred features, and ⊤ indicates
the transpose of a matrix. By concatenating these three

components and passing them through an MLP, we obtain
the fused feature F1 and F2 corresponding to object-1 and
object-2, respectively. To compute A, we use AXv

s
as an

example. Firstly, we calculate the similarity matrix S based on
the static factors, where each element Si,j ∈ S (0 < i, j < B)
can be computed as:

Si,j = exp

(
sim(xi, xj)

τ

)
, xi, xj ∈ Xs, (15)

where sim(·, ·) denotes the cosine similarity, and τ is the
temperature coefficient. To eliminate the noisy relationships,
we apply a near neighbor selection function T (·, k), which
retains the top-k values in each row of S , resulting in a
refined matrix S ′:

S ′ = T (S, k). (16)

Finally, we normalize the affinities using the Laplacian matrix
D−1 of S ′, yielding:

AXv
s
= D−1 · S ′. (17)

Following a similar calculation, we can obtain AXv
z

and AXa .

4.4.2 Counterfactual Relation Intervention
To provide additional supervision for the affinities AX , we
propose to emphasize the role of the object’s physical knowl-
edge relationship during optimization. Initially, we formulate
our method as a Structural Causal Model (SCM) [52], as
depicted in Figure 2(c), and subsequently incorporate causal
inference into our method. Ŷ denotes the final classification
output of the model, which is derived by forwarding the
input F into the fusion model and classifier:

ŶX,AX
= CLS(ϕ(F1, F2, X

t)), (18)

where F1 and F2 represent the fused visual-audio features
of the input pair v1 and v2, respectively, and Xt signifies
the feature of the question text. ‘CLS’ and ‘ϕ’ denote the
classifier and fusion model, respectively, with further details
provided in the following Section 4.4.3. The process of
generating the output Ŷ from the input X can be considered
as two types of effects: a direct effect X → Ŷ , and an
indirect effect X → AX → Ŷ . Our final loss function aims to
maximize the likelihood estimation of Ŷ , which influences
both types of effects in an end-to-end manner, resulting in
an insufficient enhancement of AX in the indirect effects
path. Therefore, we employ the Total Indirect Effect (TIE) to
emphasize the effect of AX :

ŶTIE = ŶX,AX
− EX∗ [ŶX,AX∗ ], (19)

where ŶX,AX∗ refers to the results calculated by substituting
the original affinity AX with an intervened one AX∗ , and
X∗ represents the given intervened inputs. Note that ŶX,AX∗

cannot occur in reality because affinities AX∗ originate from
X∗, which is referred to as counterfactual intervention.
Therefore, modifying ŶX,AX

to ŶX,AX∗ is equivalent to
keeping all features constant but only altering the affinity
AX . We compute the expectation of that effect to obtain a
more stable one, and the intervened input features X∗ are
sampled by a Gaussian distribution:

X∗ = Xσ ·W +Xµ, (20)
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where W is a standard random vector with the same
dimension as X , and both mean Xµ and standard deviation
Xσ are learned via the re-parameterization trick.

4.4.3 Fusion Model and Optimization
Our proposed approach functions as a plug-and-play mod-
ule, capable of seamless integration into various multimodal
fusion models. We will illustrate the application of our
method using LateFusion method [53] as the example, which
is based on linear classifiers. For the given object-1, object-
2, and the textual feature (F1, F2, and Xt), we employ
two multilayer perceptrons (MLPs) as the fusion model,
expressed as:

ϕ(F1, F2, X
t) = MLP 1(MLP 2(F1∥F2)∥Xt), (21)

where ∥ denotes row-wise concatenation, and MLP1 and
MLP2 represent two independent MLPs with distinct param-
eters. Subsequently, we employ a fully connected layer as the
classifier, with the input dimension of d (the hidden feature
dimension of the model) and the output dimension of two,
indicating the selection of the suitable object for the input text
between the two. For LTIE , we minimize the cross-entropy
between ŶTIE and the corresponding labels YGT , which can
be formulated as:

LTIE = −YGT log(ŶTIE). (22)

Finally, our optimization goal can be formulated as:

LDCL = LDSE+ + LTIE . (23)

4.5 Incomplete Multi-Modal Learning Module
In this section, we introduce an Incomplete Multi-Modal
Learning Module (IMLM) to address the challenge of missing
modalities in real-world applications. The proposed IMLM
aims to investigate the unique and shared semantic informa-
tion among video static factors, dynamic factors, and audio
features. The shared semantic information is subsequently
leveraged to compensate for any missing modalities. As
illustrated in Fig. 3, the architecture of IMLM is divided
into two components: complete modalities (Sec. 4.5.1) and
missing modalities (Sec. 4.5.2).

4.5.1 Complete Modalities Learning
According to the proposed DSE/DSE+, for a given object
i, we denote its input audio features as xa

i ∈ Xa, while
xz
i ∈ Xv

z and xs
i ∈ Xv

s represent the dynamic and static
factors, respectively. Since all subsequent descriptions pertain
to object i, the subscript i is omitted hereafter.

For samples with complete modalities, our objective
is to extract both the shared semantic information, which
encapsulates the physical properties of the object, and the
unique semantic information, which captures the distinct
characteristics of each modality. These features are encoded
using a shared feature encoder fshare(·) and a unique feature
encoder funique(·), formulated as follows:

rsharem = fshare(x
m), m ∈ {a, z, s}, (24)

runiquem = funique(x
m), m ∈ {a, z, s}, (25)

where rsharem and runiquem denote the shared and unique
features of modality m, respectively. Both fshare(·) and

funique(·) are implemented as independent two-layer MLPs,
with parameters shared across all modalities. Subsequently,
the shared features rsharem of complete modalities are stored
in memory.

Then we project the concatenated shared and unique
features of each modality into a latent feature space with
the same dimensionality as the original features xa and xv .
This projection is achieved using an MLP denoted as fpro(·).
Inspiring from residual connections [54], we incorporate the
projected features into the original features through addition,
as expressed by:

xm′
= fpro(r

share
m ∥runiquem ) + xm, (26)

where ∥ denotes concatenation, and xm and xm′
represent

the features before and after processing by the IMLM,
respectively, and m ∈ {a, z, s}. The resulting features xm′

are then utilized as the static, dynamic, and audio features
for the subsequent Counterfactual Learning Module.

4.5.2 Missing Modalities Learning
In scenarios involving missing modalities, the proposed
IMLM is designed to mitigate semantic information loss
in physical attributes. Specifically, we reconstruct the missing
modality’s semantic features by leveraging shared infor-
mation across static, dynamic, and audio modalities. For
instance, in cases where audio data is missing2 at a rate of
αa, we define the set of missing data Bmiss for a batch of
size N as follows:

Bmiss = {b1, b2, . . . , bN×αa
}, (27)

where bi denotes the i-th missing data point, and 1 ≤ i ≤
N×αa. Subsequently, we use Bcom to represent the complete
set of modalities, where N = ∥Bmiss∥ + ∥Bcom∥. For the
audio data ai ∈ a1 of object-1, it can be represented as:

ai =

{
0, if i ∈ Bmiss

ai, if i ∈ Bcom.
(28)

The same operation can be applied to object-1’s and object-
2’s audio data, as well as the corresponding video data.

Subsequently, we employ the DSE/DSE+ to encode and
decouple the video, while using an audio encoder to encode
the audio. For the available modalities, we extract shared
and unique features by Eq. 25, denoted as rsharem and runiquem

respectively, where m ∈ {a, z, s}. For samples in the missing
subset Bmiss, represented as {xa

i , i ∈ Bmiss}, we directly
utilize the shared features of the corresponding modalities
(e.g., static factor rshares,i and dynamic factor rsharez,i ) as the
audio shared features:

rsharea,i =
1

2

(
rsharez,i + rshares,i

)
, i ∈ Bmiss. (29)

For unique features, we compute them as the mean of the
unique features from other samples:

runiquea,i =
1

∥Bcom∥

∥Bcom∥∑

j=1

runiquea,j , i ∈ Bmiss, j ∈ Bcom.

(30)
Finally, we project the shared and unique features derived

from static factor, dynamic factor, and audio into their
respective feature spaces using Eq. 26.

2. In this paper, we use missing audio scenarios as an illustrative case.
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Fig. 3: Illustration of our proposed RDCL model. The upper part shows our proposed Incomplete Multi-Modal Learning
Method (IMLM) within RDCL during the training stage when the training data is modality-complete. IMLM comprises a
unique encoder and a shared encoder, along with a Shared Feature Memory and a Unique Feature Memory. As a plug-in
model, the features processed by the IMLM are subsequently fed into the Counterfactual Learning Module (CLM). The
lower part presents RDCL during the inference stage when audio data is missing, and we utilize the average value across
the shared feature memory to substitute for the missing audio feature.

4.5.3 Optimization

Our method maintains an identical architecture during both
training and testing. During training, we employ a domain
classification objective to optimize the features extracted by
the unique encoder. These features are classified using the
classifier fmodal(·), and the unique feature classification loss
is computed via cross-entropy3:

Ŷunique = fmodal(r
unique
m ), m ∈ {a, s, z}, (31)

Lunique = −
1

∥Bcom∥

∥Bcom∥∑

i=1

[
Yunique,i log(Ŷunique,i)

+(1− Yunique,i) log(1− Ŷunique,i)
]
,

(32)

where Yunique and Ŷunique denote the ground truth and
predicted values, respectively. Yunique = 1 indicates runiquem

belongs to modality m; otherwise, Yunique = 0.
To align the shared semantic information encapsulating

the physical properties of objects, we enforce consistency in
the shared feature representations rsharem (m ∈ {a, z, s}) by
minimizing the symmetrized L1 loss between all modality
pairs. The share feature alignment loss is defined as:

Lshare =
∑

m̸=m′
∥rsharem − rsharem′ ∥1, (33)

where rsharem and rsharem′ represent shared features of m and
m′, respectively, and ∥ · ∥1 denotes the L1 norm.

3. Here, we use the linear classifiers employed in late fusion as an
example.

The overall loss function of the model under incomplete
modalities is defined as:

LIMLM = Lunique + Lshare. (34)

Finally, the loss function for our RDCL is formulated as:

LRDCL = LDSE+ + LTIE + LIMLM . (35)

5 EXPERIMENTS

5.1 Experimental Setup
Dataset. The Physical Audiovisual CommonSense Reasoning
Dataset (PACS) [2] is a compilation of 13k question-answer
pairs curated to assess physical commonsense reasoning
abilities. PACS encompasses 1,377 distinct physical com-
monsense questions covering a range of physical properties,
supplemented by 1,526 video and audio clips sourced from
YouTube. The PACS dataset comprises 13,400 data points
in total, with the PACS-Material subset containing 4,349. In
line with [2], we segregate PACS into training, validation,
and testing sets with 11,044, 1,192, and 1,164 data points
respectively, each containing 1,224, 150, and 152 objects
respectively. The PACS-Material subset is partitioned into
3,460, 444, and 445 data points for training, validation, and
testing respectively, maintaining the same object distribution
as PACS. To ensure unbiased model evaluation, we assess
our method on both the complete dataset and a subset
concentrating on material-related issues, presenting the
results for each subset separately during testing.
Evaluation Metric. Following [2], we employ accuracy as the
evaluation metric for both PACS and PACS-material subsets.
All experimental results are reported as the average of five
independent runs.
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TABLE 1: Quantitative results comparing baseline methods
with our proposed method.

Baseline Model
Accuracy (%)

PACS ∆ PACS-Material ∆

Gemini [59] 65.7 - - -

Qwen-VL [61] 55.7 - - -

GPT-4V [60] 51.3 - - -

Late Fusion [53] 55.0 ± 1.1 - 67.4 ± 1.5 -

Late Fusion [53] w/ DCL 57.7 ± 0.9 +2.7 69.7 ± 1.2 +2.3

Late Fusion [53] w/ DCL (DSE+) 58.1 ± 0.8 +3.1 70.6 ± 1.1 +3.2

CLIP [55] 56.3 ± 0.7 - 72.4 ± 1.1 -

CLIP [55] w/ DCL 58.4 ± 0.8 +2.1 75.4 ± 1.2 +3.0

CLIP [55] w/ DCL (DSE+) 60.6 ± 0.7 +2.5 77.5 ± 1.1 +5.1

UNITER(Large) [57] 60.6 ± 2.2 - 75.0 ± 2.8 -

UNITER [57] w/ DCL 62.0 ± 2.4 +1.4 75.7 ± 2.8 +0.7

UNITER [57] w/ DCL (DSE+) 62.7 ± 2.1 +2.1 76.6 ± 2.5 1.6

AudioCLIP [56] 60.0 ± 0.9 - 75.9 ± 1.1 -

AudioCLIP [56] w/ DCL 63.2 ± 0.8 +3.2 76.2 ± 1.4 +0.3

AudioCLIP [56] w/ DCL (DSE+) 65.3 ± 1.2 +5.3 79.7 ± 1.5 +3.8

Implementation. Our proposed model is developed using
PyTorch and executed on a single NVIDIA RTX 3090 GPU.
Specifically, we preprocess each video by downsampling to
T = 8 frames and establish the feature dimension as d = 256.
In the Disentangled Sequence Encoder, a hidden layer size
of 256 is utilized for the Bi-LSTM. During the optimization
process, we establish a batch size of 64, comprising 64 video
pairs and their corresponding questions. The hyperparam-
eters γ, and θ are assigned values of 1 and 50, respectively.
In the Counterfactual Learning Module, τ = 2 and k = 5
are employed for calculating similarities and establishing the
physical knowledge relationships. The parameter count for
AudioCLIP is 182M, while AudioCLIP with DCL has 192M,
and RDCL has 214M. The inference time for AudioCLIP
with DCL is 277 seconds. For more details please refer to the
supplementary material.
Compared Methods. To validate the effectiveness of our pro-
posed approach, we compare it with the following baseline
methods: 1) Late fusion [53] utilizes separate encoders for
text, image, audio, and video to extract unimodal features.
These features are concatenated and passed through a linear
layer to generate multimodal embeddings for prediction. 2)
CLIP/AudioCLIP [55], [56] embeds video, text, and audio
data into a shared vector space using CLIP and AudioCLIP.
A linear layer is then applied to produce multimodal
embeddings for prediction. Note that since CLIP cannot
extract audio features, audio data is excluded in experiments
involving CLIP. 3) UNITER [57] is a pre-trained model for
image and text that has been trained on four image-text tasks
and has demonstrated strong performance on tasks such
as NLVR2 [58]. 4) MLLMs. To evaluate the performance of
existing large models on physical commonsense reasoning,
we test popular models, including Gemini [59] and GPT-
4V [60], as well as the open-source model Qwen-VL [61]. For
all the aforementioned benchmark methods, we adhere to
the parameters reported in their respective papers.

5.2 Comparison to Baselines
Quantitative Results. We present quantitative performance
comparisons on the PACS dataset in Table 1. The results

demonstrate that integrating our proposed DCL method
leads to consistent improvements across all baseline models.
Specifically, Late Fusion and UNITER achieve absolute accu-
racy gains of 2.7% and 1.4%, respectively. Similarly, CLIP and
AudioCLIP, which align image, audio, and text modalities
into a shared embedding space, show improvements of
2.1% and 3.2%, respectively. These results underscore the
strong reasoning and generalization capabilities of our DCL
approach. These results highlight the strong reasoning and
generalization capabilities of our DCL method. Furthermore,
we evaluate the enhanced variant, DCL with DSE+, which
introduces contrastive losses for static and dynamic factors.
As shown in Table 1, DCL (DSE+) yields additional perfor-
mance gains over DCL across all baselines. For instance,
UNITER and AudioCLIP achieve absolute improvements of
0.7% and 2.1%, respectively, highlighting the effectiveness of
the proposed contrastive losses in refining feature representa-
tions. Notably, even with DCL, CLIP ’s performance remains
below that of AudioCLIP, emphasizing the importance
of audio information in physical commonsense reasoning.
When comparing CLIP and AudioCLIP enhanced with DCL,
the inclusion of audio information results in a significant
absolute improvement of 4.8%. However, with the further
enhancements of DCL (DSE+), CLIP achieves an accuracy
of 60.6%, matching the performance of AudioCLIP. This
suggests that CLIP, despite lacking audio information, can
achieve comparable results to AudioCLIP when equipped
with DSE+, demonstrating the DSE+’s ability to effectively
handle video features. The same trend can be observed on
the PACS-Material dataset, where our method consistently
enhances material reasoning performance across all models.
This indicates that our approach serves as a versatile, plug-
and-play module that can be seamlessly integrated into
various architectures to improve their reasoning capabili-
ties. Especially, experiments with current multimodal large
language models (MLLMs) on the PACS benchmark reveal
that Qwen-VL and GPT-4V exhibit significant performance
gaps compared to both the baseline and the baseline w/
DCL. Notably, our AudioCLIP w/ DCL (DSE+) achieves
performance approaching that of Gemini, demonstrating the
DCL’s superiority on this benchmark. Finally, it is worth
noting that all objects in the test set were excluded from
the training and validation sets, showcasing the zero-shot
reasoning ability of our model. This further validates the
generalizability of our proposed method.

Qualitative Results. Figure 4 presents comparative
visualization results for identical questions. In Figure 4(a),
both objects are small in size, but Object-1 exhibits a
deformable, time-varying shape. Our DCL model accu-
rately captures Object-1’s liquid-like, dynamically mutable
properties, enabling consistent correct predictions across
both questions by leveraging this distinctive characteristic.
Figure 4(b) highlights DCL’s capacity to model physical
knowledge embedded in audio data. Since Object-1 emits
a foam-like acoustic signature distinct from Object-2, CLIP
which relies solely on visual data—fails to resolve Question-1
correctly. By contrast, AudioCLIP, augmented with auditory
input, achieves the correct prediction. However, audio-
only approaches remain error-prone: in question-2, accurate
reasoning requires synthesizing both auditory features (e.g.,
sound texture) and dynamic visual cues (e.g., small size).
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Question: Which of the objects would 
you have to dry your hands after 
touching?
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Question: Which object would be more 
likely to cause a scratch on one's finger?
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Fig. 4: Qualitative Results of baseline w/ and w/o our proposed method, where ‘Material’ refers to the material of the object.
The correct answers are depicted in green while the incorrect ones are depicted in red.

While AudioCLIP falters due to insufficient motion model-
ing, our DCL integrates multimodal dynamics to maintain
robustness. Figure 4(c) demonstrates a critical edge case
where the two objects share nearly identical geometries and
manual interaction patterns. Baseline models fail here, but
our DCL (DSE+) resolves question-1 by exploiting audio-
derived material plasticity cues (e.g., distinguishing plastic
deformability from wood rigidity). The second question
requires modeling the comparative relationship between
the two objects, where DCL (DSE+) uniquely succeeds
through contrastive binary loss optimization. This approach
explicitly guides attention to pairwise physical property
interactions, proving effective for object pair comparative
tasks. Figure 4(d) illustrates a failure case, where the input
video of Object-1 simultaneously contains two distinct objects
(a knife and a stone). All models struggle to determine which
object’s characteristics are being queried, leading to incor-
rect predictions. This exceptional case stems from dataset
limitation rather than the models’ design, and adopting the
advanced object detection model can mitigate the issue. More
results refer to the supplementary material.

5.3 Ablation Study

In this section, we conduct ablation studies to evaluate the
contribution of each module in our proposed method.

5.3.1 DSE and DSE+
The Disentangled Sequential Encoder (DSE) is designed to
decompose the sampled video features into two distinct
components: static factors and dynamic factors. To evaluate
the effectiveness of DSE and DSE+, we analyze their perfor-
mance from three perspectives: The independent application

of DSE and DSE+, the number of frames to disentangle, and
the impact of disentanglement on the CLM.
The independent application of DSE and DSE+. Table 2
presents a performance comparison between our proposed
Disentangled Sequential Encoder (DSE), its enhanced version
(DSE+), and various baseline models. As illustrated in rows 3,
7, and 11 of Table 2, the integration of DSE leads to absolute
performance improvements of 1.2%, 1.0%, and 1.1% for the
three baselines, respectively, with AudioCLIP achieving the
highest performance. A similar trend is observed in the PACS-
Material subset. Compared to the approach in rows 2, 6, and
10, which employs a Multi-Layer Perceptron (MLP) with
the same number of parameters as DSE, the incorporation
of DSE results in enhanced accuracy across both problem
subsets. This demonstrates that DSE effectively improves the
representation of physical characteristics in video features.
Furthermore, the adoption of DSE+ further enhances baseline
performance. As shown in rows 4, 8, and 12 of Table 2, DSE+
achieves absolute improvements of 2.5%, 2.5%, and 3.7%,
respectively, across the three baselines, compared to the non-
decoupling approach. Additionally, when compared to DSE,
DSE+ yields absolute accuracy gains of 1.3%, 1.5%, and 2.5%
on the PACS dataset. These improvements are also consistent
in the PACS-Material subset. In contrast to previous methods
that relied solely on contrastive learning within sample
features, incorporating binary contrastive losses enhances
the distinctiveness between object pairs, further improving
the model’s accuracy.

The number of frames to disentangled. We extract con-
tinuous dynamic features and consistent static features from
the sampled T video frames. Intuitively, a larger number of
sampled frames is expected to enhance the disentanglement
performance. To evaluate this, we conducted experiments
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Fig. 5: Performance comparison of various hyperparameters. Figures (a) and (b) show the performance of AudioCLIP with
different frame lengths T in DSE and DSE+ on the PACS and PACS-Material datasets. Figures (c) and (d) illustrate the
performance of AudioCLIP with varying numbers of top-K physical knowledge relationships on the same datasets.

TABLE 2: Quantitative results of baselines with our DSE and
DSE+. MLP denotes a fully connected layer with the same
number of parameters as DSE.

Baseline Model
Accuracy (%)

PACS ∆ PACS-Material ∆

Late Fusion [53] 55.0 ± 1.1 - 67.4 ± 1.5 -

Late Fusion [53] w/ MLP 54.9 ± 0.9 -0.1 67.7 ± 1.1 +0.3

Late Fusion [53] w/ DSE 56.2 ± 0.8 +1.2 68.5 ± 1.2 +0.9

Late Fusion [53] w/ DSE+ 57.5 ± 0.7 +2.5 69.1 ± 1.1 +1.7

CLIP [55] 56.3 ± 0.7 - 72.4 ± 1.1 -

CLIP [55] w/ MLP 56.5 ± 0.5 +0.3 72.6 ± 1.2 +0.2

CLIP [55] w/ DSE 57.0 ± 0.6 1.0 73.2 ± 1.1 0.8

CLIP [55] w/ DSE+ 58.5 ± 0.6 +2.5 74.1 ± 1.4 +1.7

AudioCLIP [56] 60.0 ± 0.9 - 75.9 ± 1.1 -

AudioCLIP [56] w/ MLP 60.3 ± 0.8 +0.3 76.2 ± 1.3 +0.3

AudioCLIP [56] w/ DSE 61.1 ± 0.8 +1.1 76.0 ± 1.0 +1.0

AudioCLIP [56] w/ DSE+ 63.7 ± 0.9 +3.7 78.2 ± 1.4 +3.2

under four conditions with varying numbers of frames
(T = 3, 8, 15, 20), as summarized in Figure 5. The results
demonstrate that the accuracy of both PACS and PACS-
material peaks at T = 8. Notably, increasing the number
of frames to T = 15 or T = 20 does not yield further
improvements in accuracy, despite the associated increase
in computational cost. Conversely, the lowest performance
is achieved when T = 3, indicating that an insufficient
number of frames adversely affects the disentanglement
process. Hence the number of sampled frames impacts the
final disentanglement performance, with both excessively
high and low values leading to suboptimal results.

The Impact of Disentanglement on the CLM. We investi-
gated whether physical knowledge relationships (denoted as
A) could remain effective in the absence of disentangled static
and dynamic factors. As shown in Table 3, we conducted
experiments by replacing the DSE with an MLP to eliminate
the effects of disentanglement while keeping the number
of parameters consistent. Without the DSE, establishing
physical knowledge relationships between objects using
only visual features from CLIP (CLIP w/ A) resulted in
accuracy reductions of 1.8% and 20.9% for PACS and PACS-
Material, respectively, compared to CLIP DSE w/ A. In
contrast, incorporating the DSE (CLIP DSE w/ A) led
to accuracy improvements of 3.1% and 23.0% for PACS

TABLE 3: Ablation study of CLIP and AudioCLIP with DSE,
DSE+, Physical Knowledge Relationship (A) and Counterfac-
tual Relation Intervention (C)

Baseline Model
Accuracy (%)

PACS ∆ PACS-Material ∆

CLIP [55] 56.3 - 72.4 -

CLIP [55] w/ A 54.5 -1.8 51.5 -20.9

CLIP [55] DSE w/ A 57.8 +1.5 74.5 +2.1

CLIP [55] DSE+ w/ A 59.8 +3.5 76.6 +4.2

CLIP [55] w/ A,C 56.4 +0.1 68.9 -3.5

CLIP [55] DSE w/ A,C 58.4 +2.1 75.4 +3.0

CLIP [55] DSE+ w/ A,C 60.6 +3.7 77.5 +5.1

AudioCLIP [56] 60.0 - 75.9 -

AudioCLIP [56] w/ A 59.9 -0.1 70.3 -5.6

AudioCLIP [56] DSE w/ A 61.9 +1.9 75.8 -0.1

AudioCLIP [56] DSE+ w/ A 61.2 +1.2 75.2 -0.7

AudioCLIP [56] w/ A,C 60.9 +0.9 75.1 -0.8

AudioCLIP [56] DSE w/ A,C 63.2 +3.2 76.2 +0.3

AudioCLIP [56] DSE+ w/ A,C 65.3 +5.3 79.7 +3.8

and PACS-Material, respectively. This not only mitigated
the performance degradation associated with introducing
physical knowledge relationships but also enhanced the
baseline performance. A similar trend was observed in
AudioCLIP, where the AudioCLIP DSE w/ A improved
accuracy by 2.3% and 4.4% in the two subsets, respectively,
compared to AudioCLIP w/ A. However, in the case of
AudioCLIP on the PACS-Material subset, the AudioCLIP
DSE w/ A still underperformed compared to the standard
AudioCLIP, highlighting the importance of counterfactual
interventions in material-related tasks.

5.3.2 CLM

The Counterfactual Intervention Module (CLM) is designed
to establish relationships based on physical knowledge across
static, dynamic, and audio features, while also implementing
counterfactual relation intervention to enhance reasoning ca-
pabilities and interpretability. To evaluate the effectiveness of
the CLM, we analyze its performance from two perspectives:
(1) the effectiveness of physical knowledge relationships and
(2) the effectiveness of counterfactual relation intervention.
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Fig. 6: Visualized results of top-5 physical knowledge relationship, where ‘top-5’ indicates the five objects that have similar
characteristics to the origin, and ‘physical property’ indicates the similar physical properties of these objects.

Effectiveness of physical knowledge relationships. The
physical knowledge relationship aims to aggregate features
of objects with similar or identical physical properties. As
shown in rows 2, 5, 9, and 10 of Table 3, establishing
relationships among objects within a batch without decou-
pling does not improve performance. For instance, ‘CLIP A’
experiences a 20.9% decline on the PACS-Material subset,
and ‘AudioCLIP A’ decreases by 5.6%. However, as indicated
in rows 3 and 4 of Table 3, incorporating the DSE before
applying the physical knowledge relationship improves
accuracy on PACS by 1.5%. Furthermore, with the proposed
DSE+, accuracy increases to 3.5%. Similar trends are observed
in the PACS-Material subset. These results suggest that the
Physical Knowledge Relationship cannot effectively model
visual features mixed with extraneous information; instead, it
requires purer features, such as decoupled static and dynamic
features.

Moreover, Figure 6 illustrates four objects and their top-5
similar objects. For example, the first row shows an object
characterized by softness, with four of its top-5 similar
objects also exhibiting softness. This demonstrates that the
physical knowledge relationship successfully models the
property of softness and aids in reasoning about objects
with similar properties. Similarly, the third row features
an object characterized by rockiness, and its top-5 similar
objects predominantly share this characteristic. While the
puzzle in the fourth column does not exhibit rockiness, we
attribute this discrepancy to noise in the physical knowledge
relationship, which is expected to diminish as the dataset
size increases.

To further evaluate the effectiveness of the physical
knowledge relationship, we tested different values of K . As
shown in Figure 5(c) and (d), varying K significantly impacts
the results. Specifically, when K = 2 or K = 8, the accuracy
on PACS slightly decreases, while the optimal performance
is achieved at K = 5. This occurs because a small K value
introduces insufficient physical knowledge, whereas a large
K value introduces noise into the relationships. Notably,
after incorporating the counterfactual module, the model’s
sensitivity to the K value decreases, demonstrating that the
counterfactual module enhances the reasoning capability of
physical knowledge relationships.

Effectiveness of Counterfactual Relation Interven-
tion. Table 3 presents the results of an ablation study on
Counterfactual Relation Intervention. As shown in rows 5

and 12, applying intervention ‘C’ to relationship ‘A’ improves
accuracy on the PACS dataset by 1.9% and 1.0%, respectively.
While the improvement is not significant compared to
the CLIP baseline, the intervention successfully mitigates
the negative impact associated with ‘A’. These findings
further validate that the physical knowledge relationship can
effectively model both static and dynamic factors, leading to
more accurate relationship modeling after intervention.

5.4 The Results of Incomplete Modalities
In this section, we evaluate the effectiveness of the Incom-
plete Multi-Modal Learning Module (IMLM) introduced in
Section 4.5. First, we define the lower-bound and upper-
bound metrics and describe the dataset composition. Subse-
quently, we compare the performance of various methods on
datasets with incomplete modalities.

5.4.1 Lower-Bound and Upper-Bound of the results
Following [62], we establish the following experimental
scenarios:

• Lower-Bound involves training using only a single
modality, such as exclusively using single 100% video
data or 100% audio data. These results represent the
baseline performance for single-modal learning.

• Upper-Bound: This scenario involves training using
two complete modalities simultaneously. In our ex-
periments, we use 100% video data and 100% audio
data to establish the upper-bound performance.

• Missing ratio α of Data: It simulates incomplete data
conditions. When video data is missing, we use 100%
audio data combined with αv video data. Conversely,
when audio data is missing, we use 100% video data
combined with αa audio data.

5.4.2 Experiment Results
As illustrated in Table 4, we employ AudioCLIP as the
baseline to demonstrate the performance of DCL and RDCL
under conditions of modality incompleteness. In the first and
second rows of Table 4, the accuracy on PACS progressively
declines as the rate of missing data αa increases (from 61.5
at αa = 10% to 54.1 at αa = 70%). Our proposed RDCL
for modality data completion can mitigate this decline in
accuracy (from 61.7 to 64.1 at αa = 10%, approaching the
High Boundary 65.3). A similar trend can be observed in the
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TABLE 4: The accuracy under incomplete modality conditions is evaluated for three scenarios: (1) “Audio" is missing; (2)
“Video" is missing; and (3) “Audio&Video" both are missing simultaneously. “N/A” denotes results were unavailable.

Missing data / Method High
Boundary

10% 30% 50% 70% 90% Low
Boundary

Audio / DCL 65.3 61.7 61.2 60.6 54.1 58.5 59.0

Audio / RDCL 65.3 64.1 63.2 62.6 60.5 61.8 59.0

Video / DCL 65.3 62.4 60.5 60.0 60.1 59.3 58.1

Video / RDCL 65.3 63.1 63.1 62.5 61.4 61.1 58.1

Audio & Video / DCL 65.3 61.3 58.8 N/A N/A N/A 50.4

Audio & Video / RDCL 65.3 62.5 59.6 N/A N/A N/A 50.4

TABLE 5: Performance evaluation of different modal inputs
on AudioCLIP [56]. (I: Image, V: Video, A: Audio, T: VLM-
Assisted Reasoning). “✓” indicates the presence of a specific
input modality.

I A V T DCL Accuracy (%)

PACS PACS-Material

✓ 59.2 73.5

✓ 57.9 66.0

✓ 58.7 70.2

✓ 63.4 77.0

✓ ✓ ✓ 60.0 75.9

✓ ✓ 60.1 76.3

✓ ✓ 58.2 69.4

✓ ✓ 64.4 77.4

✓ ✓ ✓ ✓ ✓ 66.5 80.3

results w.r.t video data, as shown in the 3-th and 4-th rows. A
comparison of rows 2 and 4 shows that RDCL performs better
under missing-audio than missing-video, as it leverages both
static and dynamic factors to supplement shared features,
whereas only audio features are available for missing-audio.
When both modalities are missing (rows 5 and 6), RDCL
effectively extracts shared semantic information representing
physical knowledge from available features to compensate
for the missing data, highlighting its robust resilience.

6 ANALYSIS

6.1 Impact of visual bias

Visual information strongly biases model predictions due
to its frequent co-occurrence with specific labels. As shown
in Fig 7(a), we examined material types for object pairs
in the PACS dataset and observed a long-tail distribution,
with some combinations appearing far more frequently than
others. For example, the <plastic, metal> pair appears 370
times more frequently than the <plastic, styrofoam> pair,
which occurs only 3 times. This imbalance causes models to
depend on visual features, leading to incorrect predictions
overly. When encountering the rare <plastic, styrofoam> pair,
the model might mistakenly classify the second object as
“metal” due to learned visual biases. Table 5 shows that

(b) Illustration of the VLM assisted reasoning
Objectively describe the object in the 
person’s hand (within the red frame) in a 
brief paragraph, focusing on its physical 
characteristics.

It has a light - yellow color and a porous texture. The 
sponge appears to be of a medium - large size, and its 
surface is uneven due to the numerous small holes that 
give it a soft and absorbent quality. 

0

200

400

600

800

1000

C
ou

nt

(a) Distribution of Material Types in Object Pairs

pl
as

tic
_ p

las
tic

m
eta

l_p
ap

er
m

rta
l_t

ex
til

es
pl

as
tic

_s
to

ne
gla

ss_
pl

an
t

m
in

er
als

_p
ain

t

…

so
ap

_w
ax

Fig. 7: (a) The material type distribution of object pairs in the
training set. (b) Example of the prompt and VLM generated
responses.

the model underperformed in single-modality setups (I, V,
A) compared to the full multimodal approach (I+A+V). By
integrating our proposed Decoupled Contrastive Learning
(DCL) framework into the video modality (V w/ DCL), the
model successfully disentangled visual information, built
physical knowledge relationships, reduced visual bias, and
achieved improved results. Further analysis and results are
available in the supplementary materials.

6.2 Impact of VLM-Assisted Reasoning
To further leverage the reasoning ability of the large language-
vision model, we employed a widely used Vision-Language
Model (Doubao-1.5-vision-pro) to generate descriptive in-
terpretations of the input visual information for its physical
properties, as shown in Fig 7(b). These descriptions were then
incorporated as additional inputs into our proposed model.
As illustrated in Table 5, the inclusion of VLM-generated
auxiliary reasoning information (I, A, V, T) further enhanced
the model’s performance compared to using only visual and
auditory data (I, A, V). This improvement demonstrates the
utility of VLM-derived insights in aiding model inference.
More details are provided in the supplementary materials.
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7 CONCLUSION

In this paper, we presented a Robust Disentangled Coun-
terfactual Learning for physical audiovisual commonsense
reasoning, in which a Disentangled Sequential Encoder
decoupled the video into time-invariant and time-varied
factors, respectively. Furthermore, we modeled the physical
knowledge relationship among objects as an affinity matrix
and apply counterfactual relation intervention to emphasize
the physical commonalities. In addition, an incomplete
multi-modal learning method was utilized to recover the
missing modality and alleviate the noisy disruption. As
a plug-and-play component, our method can be readily
incorporated and experimental results demonstrated its
potential to significantly enhance multiple baselines. In the
future, we will apply our proposed method to robotic and
embodied AI.
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In this supplementary material, we provide a compre-
hensive algorithm underlying our proposed model, encom-
passing both the DCL and RDCL in Section 1. Section 2
includes derivations and supplementary experimental results.
Additionally, Section 3 presents more samples and statistical
analyses of the VLM-Assisted Reasoning Dataset introduced
in our main paper.

1 ALGORITHM OF DCL AND RDCL
In this section, we introduce the detailed algorithms for
Disentangled Counterfactual Learning (DCL) in Section 1.1
and Robust Disentangled Counterfactual Learning (RDCL)
in Section 1.2 for Physical Commonsense Reasoning.

1.1 DCL

The overall framework of the proposed DCL algorithm is
outlined in Algorithm 1. The model takes as input a training
batch consisting of paired video-audio data along with
associated physical knowledge questions. It outputs the final
prediction, denoted as ŶTIE .

1.2 RDCL

Unlike DCL, which processes complete multimodal inputs,
RDCL is designed to handle incomplete modalities. As an
illustrative example, we consider scenarios where audio data
are missing. The corresponding algorithm is presented in
Algorithm 2.

2 DRIVATIONS AND MORE EXPERIMENTAL RESULTS

2.1 Approximate Estimation of the Objective Function

In Section 4.2 Disentangled Sequential Encoder of our
main paper, our goal is to maximize the log-likelihood of
x1:T . However, due to the computational complexity asso-
ciated with high-dimensional integrals, directly obtaining

This work is partly supported by the Funds for the NSFC Project under Grant
62202063, Beijing Natural Science Foundation (L243027). (Corresponding
author: Mengshi Qi (email: qms@bupt.edu.cn))
M. Qi, C. Lv, and H. Ma are with the State Key Laboratory of Networking and
Switching Technology, Beijing University of Posts and Telecommunications,
China.

Algorithm 1: Disentangled Counterfactual Learn-
ing (DCL) Batch-Wise Training

Input: Training batch {⟨v1, v2⟩i, ⟨a1, a2⟩i, qi}Bi=1,
Batch size B,
Pretrained image encoder Eimg(θ),
Pretrained audio encoder Eaud(θ),
Pretrained text encoder Etext(θ),
Labels {YGT,i}Bi=1,
Number of frames T
Output: Predicted answers {ŶTIE,i}Bi=1

1 Encode features:
2 for j ∈ {1, 2} do
3 Xvj = {Xvj

1 , X
vj
2 , · · · , Xvj

T } ← Eimg(vj)
4 Xaj ← Eaud(aj)
5 end
6 Xt ← Etext(q)
7 for each sample in the batch do
8 Disentangle static factors Xv

s and dynamic factors
Xv

z from Xv via DSE in Section 4.2.
9 end

10 Compute the adjacency matrix AX using Eq. (15),
(16), and (17).

11 Obtain the fused feature F1, F2 using Eq.(14).
12 Construct intervened features X∗ using Eq. (20), and

compute the intervened adjacency matrix A∗ using
Eqs. (15), (16) and (17).

13 Predict the ŶX,AX
and ŶX∗,AX∗ using Eq.(18)

14 Use ŶTIE obtained from Eq.(19) as the output.

log p(x1:T ) is challenging. To address this issue, we employ
the Evidence Lower Bound (ELBO) as an approximation to
the log-likelihood.

For the input sequence x1:T , Eq.( 1) in Figure 1 shown
adapted from the standard VAE framework [?], noticing
that either the prior or the approximate posterior factorizes
over s and z1:T . For the entire dataset, let pD represent
the empirical data distribution, which assigns a probability
mass of 1/N to each of the N training sequences in D. The
aggregated posteriors are defined as shown in Eq.( 2), Eq.( 3),
and Eq.( 4) in Figure 2. By rearranging terms and applying
similar operations to x, we arrive at Eq. (6) and Eq. (7) in
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Figure 2. Finally, integrating the above derivations, we obtain
the dataset ELBO by subtracting a distinct KL divergence
from the data log-likelihood, as illustrated in Eq. 8 in Figure 3.

2.2 Sensitivity Analysis of Parameters
We conducted a sensitivity analysis on the parameters γ
and θ as defined in Eq. (6) of the main paper, with results
presented in Figure 8. Specifically, we evaluated γ over the
range {0.01, 0.1, 1, 10} and θ over the range {0.5, 5, 50, 500}.
The results denote that our proposed DCL method exhibits
strong robustness to variations in both γ and θ, achieving
consistent and stable performance across all tested parameter
configurations.

2.3 Analysis of dynamic factors
Our DSE+ method separates video features into static (time-
invariant) and dynamic (time-varying) factors. Figure 5
shows t-SNE visualizations of these factors alongside raw
video features. While raw features appear scattered, dynamic
factors extracted by DSE+ exhibit clear clustering, as high-
lighted by red circles. For example, Figure 5(b) shows objects
with similar dynamic characteristics, such as small size and
lightweight, positioned adjacently. The upper portion of
Figure 5 illustrates a cluster where actions consistently depict
a hand grasping and striking the object, reflecting their
lightweight characteristics. In contrast to raw features, DSE+
successfully captures this dynamic information. Similarly,
the lower section highlights another cluster with shared
thickness-related properties, further demonstrating DSE+’s
ability to extract dynamic physical characteristics.

2.4 Additional Qualitative Results
As shown in Figure 9, we present more visualization results
comparing our proposed method with other baseline models.
It can be seen from the figures that our proposed DCL
method outperforms the original process.

2.5 Impact of visual bias
As illustrated in Figure 4, we show the absolute accuracy
differences for specific object pairs. Accuracy for pairs in the
lowest 25% of occurrence frequency improves notably after
applying DCL, demonstrating its effectiveness in reducing
visual bias for less frequent pairs. However, for some high-
frequency pairs (e.g., “paper-foam” and “paper-textiles”), a
slight accuracy decrease occurs after DCL. This is because
dominant visual bias previously led to correct but unreliable
predictions, while DCL mitigates this bias, revealing the
model’s robust performance.

3 VLM-ASSISTED REASONING DATASET

3.1 More examples of VLM-Assisted Reasoning Dataset
Figure 11 illustrates the prompts used for the Vision-
Language Model (VLM), with subfigures (a)–(f) showcasing
its assisted reasoning outputs across various samples. A fail-
ure case is evident in Figure 11(f), where the VLM excessively
emphasizes object-specific details (e.g., identifying the type
of wine) while overlooking the physical characteristics of
the glass bottle. Future work will focus on developing more
targeted prompting strategies to address such limitations.

3.2 Dataset Statistics
We obtained corresponding VLM descriptions for each object
in the PACS dataset, resulting in 1,526 descriptions. The
average length of these descriptions is 74.05 words, with a
maximum length of 118 words and a minimum length of
41 words. The corresponding word cloud is illustrated in
Figure 6 and the Top-50 Material Types in the Object Pair
are shown in Figure 7. The generated data is available at
https://github.com/MICLAB-BUPT/DCL.

Algorithm 2: Robust Disentangled Counterfactual
Learning (RDCL) Batch-Wise Training

Input: Training batch {⟨v1, v2⟩i, ⟨a1, a2⟩i, qi}Bi=1,
Batch size B,
Pretrained image encoder Eimg(θ),
Pretrained audio encoder Eaud(θ),
Pretrained text encoder Etext(θ),
Labels {YGT,i}Bi=1,
Number of frames T , proportion of missing data in
object 1’s video av1.
Output: Predicted answers {ŶTIE,i}Bi=1

1 Encode features:
2 for j ∈ {1, 2} do
3 Xvj = {Xvj

1 , X
vj
2 , · · · , Xvj

T } ← Eimg(vj)
4 Xaj ← Eaud(aj)
5 end
6 Xt ← Etext(q)
7 Obtain the set of missing data set Bmiss and the

complete data set Bcom using Eq.(27).
8 For each sample i in the batch:
9 if i ∈ Bcom then

10 for each sample in the Bcom do
11 Disentangle static factors Xv

s and dynamic
factors Xv

z from Xv via DSE in Section 4.2.
12 end
13 Use unique encoder and shared encoder to

encode Xv
s , Xv

z , and Xa using Eqs.(24) and (25),
obtaining runiquem and rsharem ,m ∈ {a, z, s}.

14 end
15 else
16 Use Eqs. (29) and (30) to complete the missing

information.
17 end
18 Compute the adjacency matrix AX using Eqs. (15),

(16), and (17).
19 Obtain the fused features F1 and F2 using Eq.(14).
20 Construct the intervened features X∗ using Eq. (20),

and compute the intervened adjacency matrix A∗

using Eqs. (15), (16), and (17).
21 Predict ŶX,AX

and ŶX∗,AX∗ using Eq.(18).
22 Use ŶTIE obtained from Eq.(19) as the output.
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log p(x1:T )

≥−KL[q(s, z1:T |x1:T )||p(s, z1:T |x1:T )] + log p(x1:T )

=Eq(s,z1:T |x1:T ) [log p(s, z1:T |x1:T )− log q(s, z1:T |x1:T ) + log p(x1:T )]

=Eq(s,z1:T |x1:T )[log p(x1:T |s, z1:T )− log q(s, z1:T |x1:T ) + log p(s, z1:T )]

=Eq(s,z1:T |x1:T )[log p(x1:T |s, z1:T )− log q(s|x1:T )− log p(z1:T |x1:T ) + log p(s) + log p(z1:T )]

=Eq(z1:T ,s|x1:T )


log p(x1:T |s, z1:T )︸ ︷︷ ︸

Reconstruction term

−KL[q(s|x1:T )||p(s)]︸ ︷︷ ︸
s-regression

−KL[q(z1:T |x1:T )||p(z1:T )]︸ ︷︷ ︸
z-regression


 .

(1)

Fig. 1: The ELBO derivation for the input sequence x1:T .

q(s) = Ex1:T∼pD
[q(s|x1:T )] =

1

N

∑

x1:T∈D

q(s|x1:T ), (2)

q(z1:T ) = Ex1:T∼pD
[q(z1:T |x1:T )] =

1

N

∑

x1:T∈D

q(z1:T |x1:T ), (3)

q(s, z1:T ) = Ex1:T∼pD
[q(s|x1:T )q(z1:T |x1:T )] =

1

N

∑

x1:T∈D

q(s|x1:T )q(z1:T |x1:T ). (4)

Ex1:T∼pD
[KL[q(s|x1:T )||p(s)]]

=Ex1:T∼pD
Eq(s|x1:T )[log q(s|x1:T )− log q(s) + log q(s)− log p(s)]

=Eq(x1:T ,s) log

[
q(s|x1:T )

q(s)

]
+ Eq(x1:T ,s)[log q(s)− log p(s)]

=Iq(x1:T ; s) +KL[q(s)||p(s)].

(5)

KL[q(s)||p(s)] = Ex1:T∼pD
[KL[q(s|x1:T )||p(s)]]− Iq(x1:T ; s). (6)

KL[q(z1:T )||p(z1:T )] = Ex1:T∼pD
[KL[q(z1:T |x1:T )||p(z1:T )]]− Iq(x1:T ; z1:T ). (7)

Fig. 2: Aggregated equations and their relationships.

1

N

∑

x1:T∈D

log p(x1:T ) = Ex1:T∼pD
[log p(x1:T )]

≥Ex1:T∼pD
[log p(x1:T )−KL[q(s, z1:T )||p(s, z1:T |x1:T )]]

=Ex1:T∼pD
[Eq(s,z1:T |x1:T )[log p(x1:T )− log q(s, z1:T ) + log p(s, z1:T |x1:T )]]

=Ex1:T∼pD
[Eq(s,z1:T |x1:T )[log p(x1:T )− log q(s, z1:T ) + log p(x1:T |s, z1:T ) + log p(s, z1:T )− log p(x1:T )]]

=Ex1:T∼pD
[Eq(s,z1:T |x1:T )[log p(x1:T |s, z1:T )− log q(s, z1:T ) + log p(s, z1:T )]]

=Ex1:T∼pD
[Eq(s,z1:T |x1:T )[log p(x1:T |s, z1:T )]]− Ex1:T∼pD

[Eq(s,z1:T |x1:T )[log q(s, z1:T )− log p(s, z1:T )]]

=Ex1:T∼pD
[Eq(s,z1:T |x1:T )[log p(x1:T |s, z1:T )]]−KL[q(s, z1:T )||p(s, z1:T )]

=Ex1:T∼pD
[Eq(s,z1:T |x1:T )[log p(x1:T |s, z1:T )]]− Iq(s; z1:T )−KL[q(s)||p(s)]−KL[q(z1:T )||p(z1:T )]

=Ex1:T∼pD
[Eq(s,z1:T |x1:T )[log p(x1:T |s, z1:T )]]
− Ex1:T∼pD

[KL[q(s|x1:T )||p(s)]]− Ex1:T∼pD
[KL[q(z1:T |x1:T )||p(z1:T )]]

+ Iq(s;x1:T ) + Iq(z1:T ;x1:T )− Iq(s; z1:T ).

(8)

Fig. 3: Derivation of the ELBO for a dataset by subtracting a KL-divergence term from the data log-likelihood.
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goo_textiles (1)

glass_powder (1)

rubber_foam (7)

paper_wax (7)

glass_minerals (14)

paper_textiles (57)

paper_foam (52)

𝜟 Accuracy score (%)

100.0 

50.0 

40.0 

33.3 

33.3 

-14.3 

-15.4 

-40.0 -20.0 0.0 20.0 40.0 60.0 80.0 100.0 120.0

V vs. V w/ DCL(DSE+) on PACS

Fig. 4: Absolute differences in accuracy scores between two
configurations: AudioCLIP with DCL using solely video
input (V w/ DCL) and AudioCLIP utilizing only video
input (V). The parenthetical value indicates the frequency of
occurrence, measured at 11.5 instances within the final 25%
of the training dataset.

(b) dynamic factor (c) static factor

Similar in weight, size…

Similar in thinkness…

(a) video feature

Fig. 5: T-SNE visualization of video features before applying
DSE+ (a), along with dynamic factors (b) and static factors
(c) obtained after DSE+. The red circles indicate clusters that
have been manually identified as containing samples with
similar physical properties. We provide examples of these
clusters based on shared attributes, including weight and
thickness.

Fig. 6: Word Cloud for VLM-Assisted Reasoning
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Top-50 Material Types in Object Pair
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Fig. 7: Frequency of Material Types for Object Pairs in the
PACS Training Set.
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Fig. 8: Performance comparisons of various hyperparameters in Eq. (6) are presented. Figures (a) and (b) display the
performance of AudioCLIP with different values of γ in LDSE on the PACS and PACS-Material datasets. Figures (c) and (d)
show the performance of AudioCLIP with varying θ in LDSE on the same datasets.

Question：
Which object would survive the longest if 
thrown to the bottom of the ocean?

(a)

object1 object2

Question:
Which object would you choose to put 

inside the other object?

object1 object2

(b) (c)

Question：
If presented with three of each object, which 
would a juggler prefer to use to show off his 
skill?

Question:
Which object is more likely to survive 
being tapped with a hammer?

Materials : plastic Materials : glass Materials : plastic Materials : plastic

Question：
Which object would be harder to hide in 
your palm?

Question：
Which object could more easily sand 
down an uneven wooden surface?

Question:
If both objects were wet, which would 
cause a drying towel to become more 
moist?

object1 object2

Question:
Which object would fill a shoe more?

Materials : plastic Materials : rubber

Question：
If both objects had a rough surface 
texture, which would be better to scrape 
against wall paper in order to remove it?

CLIP : Object2
CLIP w/ DCL : Object2

AudioCLIP :
Object2

AudioCLIP w/ DCL :
Object1

CLIP w/ DCL(DSE+) :

AudioCLIP w/ DCL (DSE+):
Object1
Object1

CLIP : Object2
CLIP w/ DCL : Object2

AudioCLIP :
Object2

AudioCLIP w/ DCL :
Object2

CLIP w/ DCL(DSE+) :

AudioCLIP w/ DCL (DSE+):
Object1
Object1

CLIP : Object2
CLIP w/ DCL : Object2

AudioCLIP :
Object1

AudioCLIP w/ DCL :
Object1

CLIP w/ DCL(DSE+) :

AudioCLIP w/ DCL (DSE+):
Object1
Object1

CLIP : Object1
CLIP w/ DCL : Object2

AudioCLIP :
Object2

AudioCLIP w/ DCL :
Object1

CLIP w/ DCL(DSE+) :

AudioCLIP w/ DCL (DSE+):
Object2
Object2

CLIP : Object1
CLIP w/ DCL : Object2

AudioCLIP :
Object2

AudioCLIP w/ DCL :
Object1

CLIP w/ DCL(DSE+) :

AudioCLIP w/ DCL (DSE+):
Object2
Object2

CLIP : Object1
CLIP w/ DCL : Object1

AudioCLIP :
Object2

AudioCLIP w/ DCL :
Object1

CLIP w/ DCL(DSE+) :

AudioCLIP w/ DCL (DSE+):
Object1
Object2

CLIP : Object2
CLIP w/ DCL : Object2

AudioCLIP :
Object1

AudioCLIP w/ DCL :
Object2

CLIP w/ DCL(DSE+) :

AudioCLIP w/ DCL (DSE+):
Object2
Object1

CLIP : Object1
CLIP w/ DCL : Object2

AudioCLIP :
Object2

AudioCLIP w/ DCL :
Object1

CLIP w/ DCL(DSE+) :

AudioCLIP w/ DCL (DSE+):
Object2
Object2

CLIP : Object1
CLIP w/ DCL : Object1

AudioCLIP :
Object1

AudioCLIP w/ DCL :
Object2

CLIP w/ DCL(DSE+) :

AudioCLIP w/ DCL (DSE+):
Object2
Object2

Fig. 9: Qualitative Results of baseline w/ and w/o our proposed method, where “Material” refers to the material of the
object. The correct answers are depicted in green while the incorrect ones are depicted in red.
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Question：
If I needed to store the two objects in an 
efficient way, which would go on the inside?

object1 object2

Question：
If a dumbbell was dropped on both 
objects, which would be less likely to 
break?

Materials : plastic Materials : plastic

Question：
If given infinite amounts of both objects, 
which would be more helpful to cover a 
window and block out sunlight?

Question：
Which object would be less likely to retain 
it's shape if the other was placed on top of it?

Question：
Which object would a throwing dart be less 
likely to stick into?

(a)

object1 object2object1 object2

(b) (c)

Question：
If placed in a hot fire, which object could 
be later removed and placed into a pot to 
heat up some water for tea?

Question：
Which object would be harder to balance 
upright on it's own?

Materials : glass Materials : fomaMaterials : plastic Materials : textiles

Question：
Which object would be more likely to be 
used by a spy that actually was a secret 
weapon?

Question：
Which object would survive the longest if 
thrown to the bottom of the ocean?

Question：
Which object could you press into 
playdough and be able to recognize the 
picture it made?

CLIP : Object2
CLIP w/ DCL : Object1

AudioCLIP :
Object1

AudioCLIP w/ DCL :
Object1

CLIP w/ DCL(DSE+) :

AudioCLIP w/ DCL (DSE+):
Object1
Object1

CLIP : Object1
CLIP w/ DCL : Object1

AudioCLIP :
Object1

AudioCLIP w/ DCL :
Object1

CLIP w/ DCL(DSE+) :

AudioCLIP w/ DCL (DSE+):
Object1
Object1

CLIP : Object1
CLIP w/ DCL : Object2

AudioCLIP :
Object2

AudioCLIP w/ DCL :
Object1

CLIP w/ DCL(DSE+) :

AudioCLIP w/ DCL (DSE+):
Object2
Object2

CLIP : Object2
CLIP w/ DCL : Object1

AudioCLIP :
Object1

AudioCLIP w/ DCL :
Object2

CLIP w/ DCL(DSE+) :

AudioCLIP w/ DCL (DSE+):
Object1
Object1

CLIP : Object1
CLIP w/ DCL : Object1

AudioCLIP :
Object2

AudioCLIP w/ DCL :
Object1

CLIP w/ DCL(DSE+) :

AudioCLIP w/ DCL (DSE+):
Object1
Object2

CLIP : Object2
CLIP w/ DCL : Object2

AudioCLIP :
Object2

AudioCLIP w/ DCL :
Object1

CLIP w/ DCL(DSE+) :

AudioCLIP w/ DCL (DSE+):
Object1
Object1

CLIP : Object2
CLIP w/ DCL : Object2

AudioCLIP :
Object2

AudioCLIP w/ DCL :
Object2

CLIP w/ DCL(DSE+) :

AudioCLIP w/ DCL (DSE+):
Object2
Object2

CLIP : Object2
CLIP w/ DCL : Object2

AudioCLIP :
Object2

AudioCLIP w/ DCL :
Object2

CLIP w/ DCL(DSE+) :

AudioCLIP w/ DCL (DSE+):
Object2
Object2

CLIP : Object1
CLIP w/ DCL : Object2

AudioCLIP :
Object2

AudioCLIP w/ DCL :
Object1

CLIP w/ DCL(DSE+) :

AudioCLIP w/ DCL (DSE+):
Object2
Object2

CLIP : Object2
CLIP w/ DCL : Object2

AudioCLIP :
Object2

AudioCLIP w/ DCL :
Object2

CLIP w/ DCL(DSE+) :

AudioCLIP w/ DCL (DSE+):
Object2
Object2

Fig. 10: Qualitative Results of baseline w/ and w/o our proposed method, where “Material” refers to the material of the
object. The correct answers are depicted in green while the incorrect ones are depicted in red.
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The object is a semi - circular wooden item. It has a smooth surface 
with visible wood grain patterns, indicating it is likely made of a 
natural wood material. The edges appear to be slightly rounded, giving 
it a comfortable feel. Its light brown color and organic texture suggest 
it could be a hand - crafted or artisanal piece, perhaps used for 
decorative or functional purposes like a small tray or a part of a craft 
project. 

The object is a rectangular - shaped lighter. It has a metallic sheen, 
suggesting it is made of metal. The lighter features a hinge mechanism 
near the top, indicating that the lid can be opened to expose the 
ignition area. Its sleek and compact design makes it easy to hold and 
operate with one hand. 

VLM-Assisted ReasoningInput image

The object in the person's hand, within the red - frame, appears to be a 
smooth, translucent, and possibly flexible item. It has a light, neutral 
color and seems to be held gently by fingers with vibrant blue and 
glitter - accented nail polish. The texture looks consistent and soft, 
suggesting it could be made of a gel - like or rubbery material. 

The object in the person's hand is a cylindrical - shaped cup, likely 
made of paper or a similar disposable material. It has a light - colored 
liquid inside, possibly a beverage like coffee or milk. The cup features 
a flat lid with a small opening, presumably for sipping, and there 
appears to be a label or text on the side, though it's not clearly legible 
due to the image's quality and lighting. The overall design suggests it 
is a typical take - away cup for a hot or cold drink.

The object in the person's hand is a round - shaped pouch. It features a 
smooth, light - purple surface with a metallic zipper running along its 
top edge. The zipper has a small pull tab, and the stitching around the 
zipper is neat and visible, adding to the pouch's structured appearance. 
The material of the pouch appears to be somewhat flexible, likely 
made of a synthetic fabric or leather - like material. 

Prompt: Objectively describe the object in the person’s hand (within the red frame) in a brief 
paragraph, focusing on its physical characteristics.

(a)

(b)

(c)

(d)

(e)

(e)

Failure Case
The object in the person's hand is a bottle of Cruzan Blueberry 
Lemonade Rum. It has a clear glass body with a label prominently 
displaying the brand name \"CRUZAN\" in bold, white - outlined 
letters, and \"Blueberry Lemonade Rum\" written below in a script -
like font. The liquid inside has a light, golden - yellow hue. The bottle 
has a metallic screw - on cap at the top, and the overall shape is typical 
of a spirit bottle, with a narrow neck and a wider base.

Fig. 11: Prompt Text, Input Image, and Corresponding Response of the VLM (i.e., Doubao-1.5-Vision-Pro)


