
Under review as a conference paper at ICLR 2021

APPROXIMATE PROBABILISTIC INFERENCE
WITH COMPOSED FLOWS

Anonymous authors
Paper under double-blind review

ABSTRACT

We study the problem of probabilistic inference on the joint distribution defined
by a normalizing flow model. Given a pre-trained flow model p(x), we wish to
estimate p(x2 | x1) for some arbitrary partitioning of the variables x = (x1,x2).
We first show that this task is computationally hard for a large class of flow mod-
els. Motivated by this hardness result, we propose a framework for approximate
probabilistic inference. Specifically, our method trains a new generative model
with the property that its composition with the given model approximates the
target conditional distribution. By parametrizing this new distribution as another
flow model, we can efficiently train it using variational inference and also handle
conditioning under arbitrary differentiable transformations. Since the resulting ap-
proximate posterior remains a flow, it offers exact likelihood evaluation, inversion,
and efficient sampling. We provide an extensive empirical evidence showcasing the
flexibility of our method on a variety of inference tasks with applications to inverse
problems. We also experimentally demonstrate that our approach is comparable to
simple MCMC baselines in terms of sample quality. Further, we explain the failure
of naively applying variational inference and show that our method does not suffer
from the same issue.

1 INTRODUCTION

Generative modeling has seen an unprecedented growth in the recent years. Building on the success of
deep learning, deep generative models have shown impressive ability to model complex distributions
in a variety of domains and modalities. Among them, normalizing flow models (see Papamakarios
et al. (2019) and references therein) stand out due to their computational flexibility, as they offer
efficient sampling, likelihood evaluation, and inversion. While other types of models currently
outperform flow models in terms of likelihood and sample quality, flow models have the advantage
that they are relatively easy to train using maximum likelihood and do not suffer from issues that
other models possess (e.g. mode collapse for GANs, posterior collapse for VAEs, slow sampling
for autoregressive models). These characteristics make normalizing flows attractive for a variety
of downstream tasks, including density estimation, inverse problems, semi-supervised learning,
reinforcement learning, and audio synthesis (Ho et al., 2019; Asim et al., 2019; Atanov et al., 2019;
Ward et al., 2019; Oord et al., 2018).

Even with such computational flexibility, how to perform efficient probabilistic inference on a flow
model still remains largely unknown. This question is becoming increasingly important as generative
models increase in size and the computational resources necessary to train them from scratch are out
of reach for many researchers and practitioners1. If it was possible to perform probabilistic inference
on flow models, we could re-purpose these powerful pre-trained generators for numerous custom
tasks.

This is the central question we study in this paper: One wishes to estimate the conditional distribution
p(x2 | x1) from a given flow model p(x) for some partitioning of variables x = (x1,x2). Existing
methods for this task largely fall under two categories: Markov Chain Monte Carlo (MCMC) and
variational inference (VI). While MCMC methods can perform exact conditional sampling in theory,
they often have prohibitively long mixing time for complex high-dimensional distributions and also

1For example, Kingma & Dhariwal (2018) report that their largest model had 200M parameters and was
trained on 40 GPUs for a week.

1

Under review as a conference paper at ICLR 2021

do not provide likelihoods. On the other hand, VI allows for approximate likelihood evaluation
under the variational posterior and fast sampling, but at a lower sample quality compared to MCMC
counterparts.

We propose a novel method that leverages a powerful pre-trained flow model by constructing carefully
designed latent codes to generate conditional samples via variational inference. While this procedure
is intractable for latent variable models in general, the invertibility of the pre-trained model gives us a
tractable algorithm for learning a distribution in the latent space whose samples approximately match
the true conditional when fed into the pre-trained model.

Our contributions:

• We start with an interesting theoretical hardness result. We show that even though flow models
are designed to provide efficient inversion and sampling, even approximate sampling from the
exact conditional distribution is provably computationally intractable for a wide class of flow
models. This motivates our approach of smoothing the observation.

• We develop a method to estimate the target conditional distribution by composing a second flow
model (which we call the pre-generator) with the given model. In particular, this parametrization
allows us to employ variational inference and avoid unstable adversarial training as was explored
in existing work.

• The resulting approximate posterior retains the computational flexibility of a flow model and
can be used on a wide variety of downstream tasks that require fast sampling, exact likelihood
evaluation, or inversion. Compared to MCMC methods, it has the benefit of being able to generate
samples that are guaranteed to be i.i.d.

• We experimentally show that our approach is comparable to simple MCMC baselines in terms
of sample quality metrics such as Frechet Inception Distance (Heusel et al., 2017). We also
demonstrate that it achieves superior conditional likelihood estimation performance compared to
regular variational inference.

• We extend and validate our method for conditioning under arbitrary differentiable transformations
with applications to inverse problems. We qualitatively demonstrate its flexibility on various
complex inference tasks.

2 BACKGROUND

2.1 NORMALIZING FLOWS

Normalizing flow models (also known as invertible generative models) represent complex probability
distributions by transforming a simple input noise z (typically standard Gaussian) through a differen-
tiable bijection f : Rd → Rd. Since f is invertible, change of variables formula allows us to compute
the probability density of x = f(z):

log p(x) = log p(z) + log

∣∣∣∣det
df−1

dx
(x)

∣∣∣∣ ,
where df−1

dx denotes the Jacobian of the inverse transformation f−1 : x 7→ z. Flow models are
explicitly designed so that the above expression can be easily computed, including the log-determinant
term. This tractability allows them to be directly trained with maximum likelihood objective on data.

Starting from the early works of Dinh et al. (2015) and Rezende & Mohamed (2015), there has
been extensive research on invertible architectures for generative modeling. Many of them work by
composing a series of invertible layers, such as in RealNVP (Dinh et al., 2016), IAF (Kingma et al.,
2016), Glow (Kingma & Dhariwal, 2018), invertible ResNet (Behrmann et al., 2019), and Neural
Spline Flows (Durkan et al., 2019).

One of the simplest invertible layer construction is additive coupling layer introduced by Dinh et al.
(2015), which served as a basis for many other subsequently proposed models mentioned above. In
an additive coupling layer, the input variable is partitioned as x = (x1,x2) ∈ Rd1 × Rd2 . The layer
is parametrized by a neural network g(x1) : Rd1 → Rd2 used to additively transform x2. Thus the
layer’s output y = (y1,y2) ∈ Rd1 × Rd2 and its inverse can be computed as follows:{

y1 = x1

y2 = x2 + g(x1)
⇐⇒

{
x1 = y1
x2 = y2 − g(y1)

2

Under review as a conference paper at ICLR 2021

ε f̂ z f x

Figure 1: A flow chart of our conditional sampler. First the noise variable ε is sampled from N (0, Id). This
is fed into our pre-generator f̂ to output structured noise z, which is driving the pre-trained base model f to
generate conditional samples x. The central idea is that the pre-generator must produce structured noise z that
looks Gaussian (so that the samples are realistic) but also make the pre-trained base model f produce samples
that satisfy the conditioning. The final conditional sampler is thus defined by the composition of two flow
models.
Notably, the determinant of the Jacobian of this transformation is always 1 for any mapping g.

2.2 VARIATIONAL INFERENCE

Variational inference (VI) is a family of techniques for estimating the conditional distribution of
unobserved variables given observed ones (Jordan et al., 1999; Wainwright et al., 2008; Blei et al.,
2017). At its core, VI tries to find a tractable approximation of the true conditional density by
minimizing the KL divergence between them over a set of distributions called the variational family.

Within our context of probabilistic inference from a joint distribution p(x1,x2), the KL minimization
problem we solve is the following:

arg min
q∈Q

DKL(q(x2) ‖ p(x2 | x1 = x∗1)),

where x∗1 is some fixed observation and the variational familyQ is chosen such that efficient sampling
and likelihood evaluation are possible for all q ∈ Q. Note that q is tied to a particular x∗1 and is not
shared across different observations.

While the conditional density p(x2 | x1 = x∗1) is generally intractable to compute, we can efficiently
evaluate the joint density p(x1,x2) when it is given as a flow model. Thus, we instead perform
variational inference on the conditional joint distribution:

min
q∈Q

DKL(q(x2) ‖ p(x2 | x1 = x∗1)) = min
q∈Q

Ex2∼q[log q(x2)− log p(x1 = x∗1,x2)],

which is obtained by dropping the log p(x1 = x∗1) term that is constant w.r.t. q. We note that this
procedure is intractable for other types of latent variable models such as VAE or GAN.

3 HARDNESS OF CONDITIONAL SAMPLING ON FLOWS

Before we present our method, we first establish a hardness result for exact conditional sampling for
flow models that use additive coupling layer. Specifically, if an algorithm is able to efficiently sample
from the conditional distribution of a flow model with additive coupling layers, then this algorithm
can be used to solve NP-complete problems efficiently.
Theorem 1. (Informal) Suppose there is an efficient algorithm that can draw samples from the
conditional distribution p(x2 | x1) of a normalizing flow model p(x1,x2) implemented with additive
coupling layers as defined in Dinh et al. (2015). Then RP = NP .
Moreover, even approximating the true conditional distribution remains hard as long as we require
that the conditioning is exact. The formal statement of the above theorem and its corollary to the
approximate case can be found in Appendix A.

Importantly, this result implies that allowing approximate sampling does not affect the hardness of
the problem, as long as the hard constraint of exact conditioning (x1 = x∗1) is there. Thus we are
motivated to instead consider approximate conditioning where the conditioned variable x1 is not
required to match the given observation exactly. We also note that the class of flow models that
include additive coupling layers encompasses a large number of existing models (e.g. most of the
models in Section 2.1). Thus our hardness result applies to a variety of flow models used in practice.

4 APPROXIMATE PROBABILISTIC INFERENCE WITH COMPOSED FLOWS

Notation. Let pf (x) denote the base model, a fixed flow model defined by the invertible mapping
f : z 7→ x. The pre-generator pf̂ (z) is similarly defined by the invertible mapping f̂ : ε 7→ z
and represents a distribution in the latent space of the base model. We assume that all flow models
use standard Gaussian prior, i.e. z ∼ N (0, Id) → x = f(z) and ε ∼ N (0, Id) → z = f̂(ε). By
composing the base model and the pre-generator, we obtain the composed model pf◦f̂ (x) whose

samples are generated via ε ∼ N (0, Id)→ x = f(f̂(ε)). Figure 1 details this sampling procedure.

3

Under review as a conference paper at ICLR 2021

z

x2

x1 x̃1

f pσ

p(x | x̃1 = x∗1)

(a) Ambient VI

z

x2

x1 x̃1

f pσ

p(z | x̃
1 = x ∗

1)

(b) Latent VI

z

x y ỹ

f

T pσ

p(z | ỹ = y ∗)

(c) Latent VI with transformation

Figure 2: Graphical models depicting different ways we perform variational inference. Solid arrows
represent the generative direction, and dotted arrows indicate the variational direction.

Our method. Following the principle of leveraging the favorable geometry of the latent space
commonly employed in VI and MCMC literature, we also perform our inference in the latent space
of the base model. Because the base model maps Gaussian noise to samples, the pre-generator can
simply focus on putting probability mass in the regions of the latent space corresponding to the
conditional samples we wish to model. This is in contrast with regular variational inference, which
essentially trains an entirely new generative model from scratch to approximate the target conditional
density.

Motivated by this observation and the hardness of conditional sampling, we propose to perform
variational inference in the latent space on a smoothed version of the problem with Gaussian
smoothing. Specifically, we create a smoothed variable x̃1 distributed according to pσ(x̃1 | x1) =
N (x̃1;x1, σ

2Id) and condition on x̃1 = x∗1 instead. Here, σ is the smoothing parameter that controls
the tightness of this relaxation. We have experimented with non-Gaussian smoothing kernels such as
the one implicitly defined by the perceptual distance measure LPIPS (Zhang et al., 2018). While we
chose to use Gaussian smoothing because our preliminary results showed no appreciable difference,
we note that a more extensive tuning of the smoothing kernel may lead to a better sample quality,
which we leave for future work.

Thus the objective we would like to minimize is the KL divergence between our variational distribution
and the smoothed conditional density:

DKL(pf◦f̂ (x2) ‖ pf (x2 | x̃1 = x∗1)). (1)
For comparison, a direct application of variational inference in the image space (which we refer to as
Ambient VI) would minimize the following objective:

DKL(pg(x2) ‖ pf (x2 | x̃1 = x∗1)), (2)
where we write pg to denote the variational distribution that directly models f(x | ỹ = y∗) in the
ambient (image) space, parametrized by an invertible mapping g : z 7→ x.

Intractability of equation 1. Note that in our setting, we cannot directly approximate
pf (x2 | x̃1 = x∗1) because we only have access to the joint distribution pf (x1,x2) through the
base model. Fortunately, the VI loss for approximating the joint conditional pf (x | x̃1 = x∗1) is an
upper bound to eq. (1):

DKL(pf◦f̂ (x) ‖ pf (x | x̃1 = x∗1)) ≥ DKL(pf◦f̂ (x2) ‖ pf (x2 | x̃1 = x∗1)),

which we prove in Appendix B.2. Thus we are justified in our use of the joint VI loss instead of
eq. (1). Moreover, this concern vanishes for the general case where we observe a transformation of x,
as discussed below. Figures 2a and 2b show the graphical models reflecting this formulation.

Conditioning under differentiable transformations. The flexibility of VI allows us to easily extend
our method to conditioning under an arbitrary transformation. Concretely, let T (x) be a differentiable
function and y∗ be some fixed observation in the range of T . We now observe y = T (x) instead, so
we similarly define a smoothed variable ỹ distributed according to pσ(ỹ | y) = N (ỹ;y, σ2Id). We
estimate the conditional density pf (x | ỹ = y∗) by minimizing the following objective:

LOurs(f̂) , DKL(pf◦f̂ (x) ‖ pf (x | ỹ = y∗))

= DKL(pf̂ (z) ‖ pf (z)) + Ez∼pf̂

[
1

2σ2
‖T (f(z))− y∗‖22

]
,

(3)

where pf (z) denotes the prior distribution of the base model, i.e. N (0, Id). We provide the derivation
of eq. (3) in Appendix B.1. See Figure 2c for a comparison to Equation (1).

4

Under review as a conference paper at ICLR 2021

This loss function offers an intuitive interpretation. The first term tries to keep the learned distribution
pf◦f̂ close to the base distribution by pushing pf̂ to match the prior of the base model, while the
second term tries to match the observation y∗. Moreover, the above expectation can be rewritten in
terms of ε, which allows us to employ the reparametrization trick to obtain a low-variance gradient
estimator for training:

LOurs(f̂) = Ez∼pf̂

[
log pf̂ (z)− log pf (z) +

1

2σ2
‖T (f(z))− y∗‖22

]
= Eε∼N (0,Id)

[
log pf̂ (f̂(ε))− log pf (f̂(ε)) +

1

2σ2

∥∥∥T (f(f̂(ε)))− y∗
∥∥∥2
2

] (4)

5 RELATED WORK

Conditional Generative Models. There has been a large amount of work on conditional generative
modeling, with varying levels of flexibility for what can be conditioned on. In the simplest case, a
fixed set of observed variables can be directly fed into the model as an auxiliary conditioning input
(Mirza & Osindero, 2014; Sohn et al., 2015; Ardizzone et al., 2019). Some recent works proposed to
extend existing models to support conditioning on arbitrary subsets of variables (Ivanov et al., 2018;
Belghazi et al., 2019; Li et al., 2019). This is a much harder task as there are exponentially many
subsets of variables that can be conditioned on.

More relevant to our setting is (Engel et al., 2017), which studied conditional sampling from non-
invertible latent variable generators such as VAE and GAN. It proposes to adversarially train a
GAN-style generator within the latent space of a pre-trained latent variable model, thereby avoiding
the issue of intractability of variational inference for non-invertible models. Due to adversarial
training and the lack of invertibility of the base model, however, the learned conditional sampler loses
the computational flexibility of our method.

We highlight several reasons why one might prefer our approach over the above methods: (1) The
data used to train the given model may not be available, and only the generative model itself is made
public. (2) The given model is too costly to train from scratch. (3) We wish to perform custom
downstream tasks (e.g. compression, inversion) that are difficult to do with other parametrizations of
the posterior (4) We need to condition on a transformation of the variables, instead of just a subset of
them. (5) We want to get some insight on the distribution defined by the given model.

Markov Chain Monte Carlo Methods. When one is only concerned with generating samples,
MCMC techniques offer a promising alternative. Unlike variational inference and conditional models,
MCMC methods come with asymptotic guarantees to generate correct samples. Though directly
applying MCMC methods on complex high-dimensional posteriors parametrized by a neural network
often comes with many challenges in practice (Papamarkou et al., 2019), methods based on Langevin
Monte Carlo have shown promising results (Neal et al., 2011; Welling & Teh, 2011; Song & Ermon,
2019). Moreover, recent works by Parno & Marzouk (2018) and Hoffman et al. (2019) also leveraged
the favorable geometry of the latent space of a flow model to improve mixing of MCMC chains. This
idea was later adapted by Nijkamp et al. (2020) in the context of training energy-based models.

While our VI-based method lacks asymptotic guarantees, we hope to show that it is empirically
competitive with simple MCMC techniques. For this purpose, we consider two baselines: Langevin
dynamics and PL-MCMC (Cannella et al., 2020). PL-MCMC is particularly relevant as it also tackles
the task of conditional sampling from a flow model. Unlike our method, it constructs a Markov chain
in the latent space and uses Metropolis-Hastings to sample from the target conditional distribution
with asymptotic guarantees.

Inverse Problems with Generative Prior. In a linear inverse problem, a vector x ∈ Rd generates
a set of measurements y∗ = Ax ∈ Rm, where the number of measurements is much smaller than
the dimension: m � d. The goal is to reconstruct the vector x from y∗. While in general there
are (potentially infinitely) many possible values of x that agree with the given measurements, it is
possible to identify a unique solution when there is an additional structural assumption on x.

Classically, the simplifying structure was that x is sparse, and there has been extensive work in this
setting (Tibshirani, 1996; Candes et al., 2006; Donoho et al., 2006; Bickel et al., 2009; Baraniuk,
2007). Recent work has considered alternative structures, such as the vector x coming from a
generative model. Starting with Bora et al. (2017), there has been extensive work in this setting as

5

Under review as a conference paper at ICLR 2021

well (Grover & Ermon, 2019; Mardani et al., 2018; Heckel & Hand, 2019; Mixon & Villar, 2018;
Pandit et al., 2019). In particular, Asim et al. (2019) and Shamshad et al. (2019) utilized flow models
to solve inverse problems such as compressive sensing, image deblurring, and image inpainting.

It is important to note that the above approaches focus on recovering a single point estimate that
best matches the measurements. However, there can be many inputs that fit the measurements and
thus uncertainty in the reconstruction. Due to this shortcoming, several recent works focused on
recovering the distribution of x conditioned on the measurements (Tonolini et al., 2019; Zhang &
Jin, 2019; Adler & Öktem, 2018; 2019). We note that our approach differs from these, since they are
learning-based methods that require access to the training data. On the contrary, our work attempts to
perform conditional sampling using a given pre-trained generative model, leveraging all that previous
computation to solve a conditional task with reconstruction diversity.

6 QUANTITATIVE EXPERIMENTS

We validate the efficacy of our proposed method in terms of both sample quality and likelihood on
various inference tasks against three baselines: Ambient VI (as defined by the loss in Equation (2)),
Langevin Dynamics, and PL-MCMC. We also conduct our experiments on three different datasets
(MNIST, CIFAR-10, and CelebA-HQ) to ensure that our method works across a range of settings.

We report four different sample quality metrics: Frechet Inception Distance (FID), Learned Perceptual
Image Patch Similarity (LPIPS), and Inception Score (IS) for CIFAR-10 (Heusel et al., 2017; Zhang
et al., 2018; Salimans et al., 2016). While not strictly a measure of perceptual similarity, the average
mean squared error (MSE) is also reported for completeness.

For all our experiments, we use the multiscale RealNVP architecture (Dinh et al., 2016) for both
the base model and the pre-generator. We use Adam optimizer (Kingma & Ba, 2014) to optimize
the weights of the pre-generator using the loss defined in Equation (3). The images used to generate
observations were taken from the test set and were not used to train the base models. We refer the
reader to Appendix C for model hyperparameters and other details of our experiment setup.

Original Observed Conditional Samples Variance

Figure 3: Conditional samples generated by our method from observing the upper half of CelebA-HQ
faces. We see that our approach is able to produce diverse completions with different jaw lines, mouth
shapes, and facial expression.
6.1 IMAGE INPAINTING

We perform inpainting tasks using our approach, where we sample missing pixels conditioned on the
visible ones. We consider three different conditioning schemes: the bottom half (MNIST), the upper
half (CelebA-HQ), and randomly chosen subpixels (CIFAR-10). For MNIST, we use the smoothing
parameter value of σ = 0.1 and for CIFAR-10 and CelebA-HQ, we use σ = 0.05.

In Figure 3 we see that our approach produces natural and diverse samples for the missing part of
the image. The empirical pixelwise variance (normalized and averaged over the color channels) also
confirms that, while the observation is not perfectly matched, most of the high-variance regions are in
the unobserved parts as we expect.

We also quantitatively evaluate the quality of the generated samples using widely used sample quality
metrics, as shown in Table 1. As we can see, our method outperforms the baseline methods on most

6

Under review as a conference paper at ICLR 2021

of the metrics. Note that PL-MCMC results for CIFAR-10 and CelebA-HQ are omitted because it
was prohibitively slow to run for hundreds of images, as each MCMC chain required over 20,000
proposals. Cannella et al. (2020) also report using 25,000 proposals for their experiments.

Table 1: Sample quality metrics for image inpainting tasks on different datasets. The best value is
bolded for each metric. As shown below, our method achieves superior sample quality to all baselines.

MNIST CIFAR-10 (5-bit) CelebA-HQ (5-bit)

FID MSE LPIPS FID IS↑ MSE LPIPS FID MSE LPIPS

Ours 4.11 21.67 0.074 41.14 7.189 9.71 0.176 33.61 223.06 0.208
Langevin 14.34 36.51 0.135 47.53 6.732 9.31 0.201 30.33 323.47 0.229
Ambient VI 114.59 65.56 0.290 84.78 5.156 16.74 0.296 289.64 1060.66 0.587

PL-MCMC 21.20 59.89 0.190 N/A N/A

6.2 LIKELIHOOD ESTIMATION

Next, we evaluate our method on the task of conditional likelihood estimation. By varying the size of
the pre-generator, we also test the parameter efficiency of our method in comparison to Ambient VI.
Results are shown in Table 2; we see that our method is able to produce reasonable samples using
only about 1% of the base model’s parameters, confirming the effectiveness of inference in the latent
space.

Table 2: Conditional likelihood estimation performance (measured in bits per dimension) for different
pre-generator sizes on the MNIST imputation task. The first row shows the parameter count of the
pre-generator relative to the base model.

Observations

Parameters Ours Ambient VI Conditional Completions (ours)

1.2% 1.73 6.75

3.2% 1.64 3.17

10.6% 1.52 2.71

39.1% 1.47 2.99

7 QUALITATIVE EXPERIMENTS

Extracting Class-conditional Models: Here we present an interesting application of conditioning
under a complex transformation T . Since the only requirement for T is that it must be differentiable,
we can set it to be another neural network. For example, if T is a pre-trained binary classifier for a
specific attribute, we can extract a model conditioned on the presence (or the absence) of that attribute
from an unconditional base model.

We test this idea on the MNIST dataset. We trained 10 binary classifiers on the MNIST dataset, one
for each digit k = 0, . . . , 9, to predict whether the given image is k or not. By setting T to be each
of those classifiers, we were able to extract the class-conditional model pf (x | Label(x) ≈ k). See
Figure 4a for samples generated from the extracted models.

Inverse Problems: We additionally test the applicability of our method to linear inverse problems.
In Figure 5, we show the conditional samples obtained by our method on three different tasks:
image colorization, super-resolution (2×), and compressed sensing with 500 random Gaussian
measurements (for reference, CIFAR-10 images have 3072 dimensions). We notice that the generated
samples look natural, even when they do not match the original input perfectly, again showing our
method’s capability to generate semantically meaningful conditional samples and also provide sample
diversity.

7

Under review as a conference paper at ICLR 2021

(a) Each column contains samples from the
learned posterior conditioned on different
MNIST classes. We emphasize that the base
model was trained without class information.

Original Inpainting Samples

(b) Conditional samples from image inpainting
experiments done with Ambient VI.

Figure 4: Samples from class-conditional models extracted from the unconditional base model (left)
and various failure modes of Ambient VI (right).

Original Observed Conditional Samples Variance

SR
 (2

x)
C

ol
or

iz
at

io
n

C
om

pr
es

se
d

Se
ns

in
g

Figure 5: Results on various inverse problem tasks using our method.

7.1 WHY AMBIENT VI FAILS

From Table 1, notice that Ambient VI achieves significantly worse sample quality compared to other
methods. The low-quality samples from the image inpainting task in Figure 4b further confirm that
Ambient VI is unable to produce good conditional samples, even though the observation is matched
well. This may seem initially surprising but is a natural consequence of the VI objective. Recall that
our loss function decomposes into two terms: the KL term and the reconstruction term.

LOurs(f̂) = DKL(pf̂ (z) ‖ pf (z)) + Ez∼pf̂

[
1

2σ2
‖T (f(z))− y∗‖22

]
. (5)

If we alternatively derive the loss for Ambient VI, we arrive at an analogous objective:

LAmbient(g) = DKL(pg(x) ‖ pf (x)) + Ex∼pg
[

1

2σ2
‖T (x)− y∗‖22

]
. (6)

While these two loss functions seem like simple reparametrizations of each other via f , they behave
very differently during optimization due to the KL term. Notice that for both loss functions, the
first term is the reverse KL divergence between the variational distribution and the base distribution.
Because reverse KL divergence places no penalty whenever pf̂ or pg is zero regardless of pf ,
minimizing the reverse KL is known to have a mode-seeking behavior where variational distribution
fits a single mode of pf and ignores the rest of the support of pf (Murphy, 2013, Chapter 21.2.2).

8

Under review as a conference paper at ICLR 2021

In contrast, minimizing the forward KL has a zero-avoiding behavior and tries to cover all of pf ’s
support.

Figure 6: Contour plot of log pf (x)
around a random point in image space.

For our method, this is not a problem because the prior dis-
tribution of the base model pf (z) is a standard Gaussian and
hence unimodal. However, for Ambient VI, pf (x) is the base
model itself and is highly multimodal. This can be empirically
seen by visualizing the landscape of log pf (x) projected onto
a random 2D subspace. In Figure 6, we clearly see that pf (x)
has numerous local maxima. For Ambient VI, the variational
distribution collapses into one of these modes.

8 CONCLUSION

We proposed a new inference algorithm for distributions
parametrized by normalizing flow models. The need for approx-
imate inference is motivated by our theoretical hardness result
for exact inference, which is surprising given that it applies
to invertible models. We also presented a detailed empirical
evaluation of our method with both quantitative and qualitative
results on a wide range of tasks and datasets.

There are numerous directions for further research. For example, our method can be possibly extended
to other latent-variable generators such as VAEs and GANs (Kingma & Welling, 2013; Goodfellow
et al., 2014). A significant limitation of our work is that we need to re-train the pre-generator for each
observation. It may be possible to avoid retraining by amortizing the pre-generator over all possible
observations. Studying the various trade-offs resulting from such scheme would be an interesting
result similar in spirit to Cremer et al. (2018). Overall, we believe that the idea of a pre-generator
creating structured noise is a useful and general method for leveraging pre-trained generators to solve
new generative problems.

REFERENCES

Jonas Adler and Ozan Öktem. Deep bayesian inversion. arXiv preprint arXiv:1811.05910, 2018.

Jonas Adler and Ozan Öktem. Deep posterior sampling: Uncertainty quantification for large scale
inverse problems. 2019.

Lynton Ardizzone, Carsten Lüth, Jakob Kruse, Carsten Rother, and Ullrich Köthe. Guided image
generation with conditional invertible neural networks. arXiv preprint arXiv:1907.02392, 2019.

Muhammad Asim, Ali Ahmed, and Paul Hand. Invertible generative models for inverse problems:
mitigating representation error and dataset bias. arXiv preprint arXiv:1905.11672, 2019.

Andrei Atanov, Alexandra Volokhova, Arsenii Ashukha, Ivan Sosnovik, and Dmitry Vetrov. Semi-
conditional normalizing flows for semi-supervised learning. arXiv preprint arXiv:1905.00505,
2019.

Richard G Baraniuk. Compressive sensing. IEEE signal processing magazine, 24(4), 2007.

Jens Behrmann, David Duvenaud, and Jörn-Henrik Jacobsen. Invertible residual networks. Interna-
tional Conference on Machine Learning, 2019.

Mohamed Ishmael Belghazi, Maxime Oquab, Yann LeCun, and David Lopez-Paz. Learning about an
exponential amount of conditional distributions. arXiv preprint arXiv:1902.08401, 2019.

Peter J Bickel, Ya’acov Ritov, Alexandre B Tsybakov, et al. Simultaneous analysis of lasso and
dantzig selector. The Annals of Statistics, 37(4):1705–1732, 2009.

David M Blei, Alp Kucukelbir, and Jon D McAuliffe. Variational inference: A review for statisticians.
Journal of the American Statistical Association, 112(518):859–877, 2017.

Ashish Bora, Ajil Jalal, Eric Price, and Alexandros G Dimakis. Compressed sensing using generative
models. In International Conference on Machine Learning, pp. 537–546. JMLR. org, 2017.

9

Under review as a conference paper at ICLR 2021

Emmanuel J Candes, Justin K Romberg, and Terence Tao. Stable signal recovery from incomplete
and inaccurate measurements. Communications on Pure and Applied Mathematics: A Journal
Issued by the Courant Institute of Mathematical Sciences, 59(8):1207–1223, 2006.

Chris Cannella, Mohammadreza Soltani, and Vahid Tarokh. Projected latent markov chain monte
carlo: Conditional sampling of normalizing flows, 2020.

Chris Cremer, Xuechen Li, and David Duvenaud. Inference suboptimality in variational autoencoders.
arXiv preprint arXiv:1801.03558, 2018.

Laurent Dinh, David Krueger, and Yoshua Bengio. Nice: Non-linear independent components
estimation. In International Conference on Learning Representations 2015 workshop track, 2015.

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using Real NVP. In
International Conference on Learning Representations, 2016.

David L Donoho et al. Compressed sensing. IEEE Transactions on information theory, 52(4):
1289–1306, 2006.

Conor Durkan, Artur Bekasov, Iain Murray, and George Papamakarios. Neural spline flows. In
Neural Information Processing Systems, 2019.

Jesse Engel, Matthew Hoffman, and Adam Roberts. Latent constraints: Learning to generate
conditionally from unconditional generative models. arXiv preprint arXiv:1711.05772, 2017.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in neural informa-
tion processing systems, pp. 2672–2680, 2014.

Aditya Grover and Stefano Ermon. Uncertainty autoencoders: Learning compressed representations
via variational information maximization. In International Conference on Artificial Intelligence
and Statistics, 2019.

Reinhard Heckel and Paul Hand. Deep decoder: Concise image representations from untrained
non-convolutional networks. In International Conference on Learning Representations, 2019.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
trained by a two time-scale update rule converge to a local nash equilibrium. In Advances in neural
information processing systems, pp. 6626–6637, 2017.

Jonathan Ho, Xi Chen, Aravind Srinivas, Yan Duan, and Pieter Abbeel. Flow++: Improving flow-
based generative models with variational dequantization and architecture design. In International
Conference on Machine Learning, pp. 2722–2730, 2019.

Matthew Hoffman, Pavel Sountsov, Joshua V Dillon, Ian Langmore, Dustin Tran, and Srinivas
Vasudevan. Neutra-lizing bad geometry in hamiltonian monte carlo using neural transport. arXiv
preprint arXiv:1903.03704, 2019.

Oleg Ivanov, Michael Figurnov, and Dmitry Vetrov. Variational autoencoder with arbitrary condition-
ing. arXiv preprint arXiv:1806.02382, 2018.

Michael I Jordan, Zoubin Ghahramani, Tommi S Jaakkola, and Lawrence K Saul. An introduction to
variational methods for graphical models. Machine learning, 37(2):183–233, 1999.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Durk P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 convolutions. In
Neural Information Processing Systems, pp. 10215–10224, 2018.

10

Under review as a conference paper at ICLR 2021

Durk P Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever, and Max Welling.
Improved variational inference with inverse autoregressive flow. In Neural Information Processing
Systems, pp. 4743–4751, 2016.

Yang Li, Shoaib Akbar, and Junier B Oliva. Flow models for arbitrary conditional likelihoods. arXiv
preprint arXiv:1909.06319, 2019.

Morteza Mardani, Qingyun Sun, David Donoho, Vardan Papyan, Hatef Monajemi, Shreyas
Vasanawala, and John Pauly. Neural proximal gradient descent for compressive imaging. In
Neural Information Processing Systems, pp. 9573–9583, 2018.

Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets. arXiv preprint
arXiv:1411.1784, 2014.

Dustin G Mixon and Soledad Villar. Sunlayer: Stable denoising with generative networks. arXiv
preprint arXiv:1803.09319, 2018.

Kevin P. Murphy. Machine learning : a probabilistic perspective. MIT Press, Cambridge,
Mass. [u.a.], 2013. ISBN 9780262018029 0262018020. URL https://www.amazon.
com/Machine-Learning-Probabilistic-Perspective-Computation/dp/
0262018020/ref=sr_1_2?ie=UTF8&qid=1336857747&sr=8-2.

Radford M Neal et al. Mcmc using hamiltonian dynamics. Handbook of markov chain monte carlo,
2(11):2, 2011.

Erik Nijkamp, Ruiqi Gao, Pavel Sountsov, Srinivas Vasudevan, Bo Pang, Song-Chun Zhu, and
Ying Nian Wu. Learning energy-based model with flow-based backbone by neural transport mcmc.
arXiv preprint arXiv:2006.06897, 2020.

Aaron Oord, Yazhe Li, Igor Babuschkin, Karen Simonyan, Oriol Vinyals, Koray Kavukcuoglu,
George Driessche, Edward Lockhart, Luis Cobo, Florian Stimberg, et al. Parallel wavenet: Fast
high-fidelity speech synthesis. In International conference on machine learning, pp. 3918–3926.
PMLR, 2018.

Parthe Pandit, Mojtaba Sahraee, Sundeep Rangan, and Alyson K Fletcher. Asymptotics of map
inference in deep networks. arXiv preprint arXiv:1903.01293, 2019.

George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and Balaji
Lakshminarayanan. Normalizing flows for probabilistic modeling and inference. arXiv preprint
arXiv:1912.02762, 2019.

Theodore Papamarkou, Jacob Hinkle, M Todd Young, and David Womble. Challenges in bayesian
inference via markov chain monte carlo for neural networks. arXiv, pp. arXiv–1910, 2019.

Matthew D Parno and Youssef M Marzouk. Transport map accelerated markov chain monte carlo.
SIAM/ASA Journal on Uncertainty Quantification, 6(2):645–682, 2018.

Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In International
Conference on Machine Learning, pp. 1530–1538, 2015.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
Improved techniques for training gans. In Advances in neural information processing systems, pp.
2234–2242, 2016.

Fahad Shamshad, Asif Hanif, and Ali Ahmed. Subsampled fourier ptychography via pretrained
invertible and untrained network priors. In NeurIPS 2019 Workshop on Solving Inverse Problems
with Deep Networks, 2019.

Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning structured output representation using deep
conditional generative models. In Neural Information Processing Systems, pp. 3483–3491, 2015.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
In Advances in Neural Information Processing Systems, pp. 11918–11930, 2019.

11

https://www.amazon.com/Machine-Learning-Probabilistic-Perspective-Computation/dp/0262018020/ref=sr_1_2?ie=UTF8&qid=1336857747&sr=8-2
https://www.amazon.com/Machine-Learning-Probabilistic-Perspective-Computation/dp/0262018020/ref=sr_1_2?ie=UTF8&qid=1336857747&sr=8-2
https://www.amazon.com/Machine-Learning-Probabilistic-Perspective-Computation/dp/0262018020/ref=sr_1_2?ie=UTF8&qid=1336857747&sr=8-2

Under review as a conference paper at ICLR 2021

Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical
Society: Series B (Methodological), 58(1):267–288, 1996.

Francesco Tonolini, Ashley Lyons, Piergiorgio Caramazza, Daniele Faccio, and Roderick Murray-
Smith. Variational inference for computational imaging inverse problems. arXiv preprint
arXiv:1904.06264, 2019.

Martin J Wainwright, Michael I Jordan, et al. Graphical models, exponential families, and variational
inference. Foundations and Trends® in Machine Learning, 1(1–2):1–305, 2008.

Patrick Nadeem Ward, Ariella Smofsky, and Avishek Joey Bose. Improving exploration in soft-actor-
critic with normalizing flows policies. arXiv preprint arXiv:1906.02771, 2019.

Max Welling and Yee W Teh. Bayesian learning via stochastic gradient langevin dynamics. In
Proceedings of the 28th international conference on machine learning (ICML-11), pp. 681–688,
2011.

Chen Zhang and Bangti Jin. Probabilistic residual learning for aleatoric uncertainty in image
restoration. arXiv preprint arXiv:1908.01010, 2019.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 586–595, 2018.

12

Under review as a conference paper at ICLR 2021

A PROOF OF HARDNESS RESULTS

A.1 PRELIMINARIES

A Boolean variable is a variable that takes a value in {−1, 1}. A literal is a Boolean variable xi or
its negation ¬xi. A clause is set of literals combined with the OR operator, e.g., x1 ∨ ¬x2 ∨ x3. A
conjunctive normal form formula is a set of clauses joined by the AND operator, e.g., (x1 ∨ ¬x2 ∨
x3) ∧ (x1 ∨ ¬x3 ∨ x4). A satisfying assignment is an assignment to the variables such that the
Boolean formula is true.

The 3-SAT problem is the problem of deciding if a conjunctive normal form formula with three literals
per clause has a satisfying assignment. We will show that conditional sampling from flow models
allows us to solve the 3-SAT problem.

We ignore the issue of representing samples from the conditional distribution with a finite number of
bits. However the reduction is still valid if the samples are truncated to a constant number of bits.

A.2 DESIGN OF THE ADDITIVE COUPLING NETWORK

Given a conjunctive normal form with m clauses, we design a ReLU neural network with 3 hidden
layers such that the output is 0 if the input is far from a satisfying assignment, and the output is about
a large number M if the input is close to a satisfying assignment.

We will define the following scalar function

δε(x) =ReLU

(
1

ε
(x− (1− ε))

)
− ReLU

(
1

ε
(x− (1− ε))− 1

)
−ReLU

(
1

ε
(x− 1)

)
+ ReLU

(
1

ε
(x− 1)− 1

)
.

This function is 1 if the input is 1, 0 if the input x has |x − 1| ≥ ε and is a linear interpolation on
(1− ε, 1 + ε). Note that it can be implemented by a hidden layer of a neural network and a linear
transform, which can be absorbed in the following hidden layer. See Figure 7 for a plot of this
function.

Figure 7: Plot of the scalar function used to construct an additive coupling layer that can generate
samples of satisfying 3-SAT assignments.

For each variable xi, we create a transformed variable x̃i by applying x̃i = δε(xi)− δε(−xi). Note
that this function is 0 on (−∞,−1− ε] ∪ [−1 + ε, 1− ε] ∪ [1 + ε,∞), −1 at xi = −1, 1 at xi = 1,
and a smooth interpolation on the remaining values in the domain.

Every clause has at most 8 satisfying assignments. For each satisfying assignment we will create a
neuron with the following process: (1) get the relevant transformed values x̃i, x̃j , x̃k, (2) multiply
each variable by 1/3 if it is equal to 1 in the satisfying assignment and −1/3 if it is equal to −1 in
the satisfying assignment, (3) sum the scaled variables, (4) apply the δε function to the sum.

We will then sum all the neurons corresponding to a satisfying assignment for clause Cj to get the
value cj . The final output is the value M × ReLU(

∑
j cj − (m− 1)), where M is a large scalar.

13

Under review as a conference paper at ICLR 2021

We say that an input to the neural network x corresponds to a Boolean assignment x′ ∈ {−1, 1}d
if for every xi we have |xi − x′i| < ε. For ε < 1/3, if the input does not correspond to a satisfying
assignment of the given formula, then at least one of the values cj is 0. The remaining values of cj
are at most 1, so the sum in the output is at most (m− 1), thus the sum is at most zero, so the final
output is 0. However, if the input is a satisfying assignment, then every value of cj = 1, so the output
is M .

A.3 GENERATING SAT SOLUTIONS FROM THE CONDITIONAL DISTRIBUTION

Our flow model will take in Gaussian noise x1, . . . , xd, z ∼ N(0, 1). The values x1, . . . , xd will be
passed through to the output. The output variable y will be z + fM (x1, . . . , xd), where fM is the
neural network described in the previous section, and M is the parameter in the output to be decided
later.

Let A be all the valid satisfying assignments to the given formula. For each assignment a, we will
define Xa to be the region Xa = {x ∈ Rd : ‖a− x‖∞ ≤ ε}, where as above ε is some constant less
than 1/3. Let XA =

⋃
a∈AXa.

Given an element x ∈ Xa, we can recreate the corresponding satisfying assignment a. Thus if we
have an element of XA, we can certify that there is a satisfying assignment. We will show that the
distribution conditioned on y = M can generate satisfying assignments with high probability.

We have that

p(XA | y = M) =
p(y = M,XA)

p(y = M,XA) + p(y = M,XA)

If we can show that p(y = M,XA)� p(y = M,XA), then we have that the generated samples are
with high probability satisfying assignments.

Note that,
p(y = M,XA) = p(y = M | XA)P (XA) ≤ p(y = M | XA).

Also notice that if x ∈ XA, then fM (x) = 0. Thus y ∼ N (0, 1) and P (y = M | XA) =
Θ(exp(−M2/2)).

Now consider any satisfying assignment xa. Let X ′a be the region X ′a = {x ∈ Rd : ‖a − x‖∞ ≤
1

2m}. Note that for every x in this region we have fM (x) ≥ M/2. Additionally, we have that
P (X ′a) = Θ(m)−d. Thus for any x ∈ X ′a, we have p(Y = M | x) & exp(−M2/8). We can
conclude that

p(y = M,XA) ≥ p(Y = M,X ′a) =

∫
X′a

p(Y = M | x)p(x) dx & exp(−M2/8−Θ(d logm)).

For M = O(
√
d logm), we have that p(y = M,XA) is exponentially smaller than p(y = M,XA).

This implies that sampling from the distribution conditioned on y = M will return a satisfying
assignment with high probability.

A.4 HARDNESS OF APPROXIMATE SAMPLING

Definition 2. The complexity class RP is the class of decision problems with efficient random
algorithms that (1) output YES with probability 1/2 if the true answer is YES and (2) output NO
with probability 1 if the true answer is NO. It is widely believed that RP is a strict subset of NP .

A simple extension of the above theorem shows that even approximately matching the true conditional
distribution in terms of TV distance is computationally hard. The total variation (TV) distance is
defined as dTV(p, q) = supE |p(E)− q(E)| ≤ 1, where E is an event. The below corollary shows
that it is hard to conditionally sample from a distribution that is even slightly bounded away from 1.
Corollary 3. The conditional sampling problem remains hard even if we only require the algorithm
to sample from a distribution q such that dTV(p(· | x = x∗), q) ≤ 1 − 1/poly(d), where d is the
dimension of the distribution.

We show that the problem is still hard even if we require the algorithm to sample from a distribution
q such that dTV(p(x | y = y∗), q) ≥ 1/poly(d).

Consider the event XA from above. We saw that p(XA | y = M) ≥ 1− exp(−Ω(d)). We have that
dTV(p(· | y = M), q) ≥ 1− exp(−Ω(d)− q(XA)).

14

Under review as a conference paper at ICLR 2021

Suppose that the distribution q has q(XA) ≥ 1/poly(d). Then by sampling a polynomial number
of times from q we sample an element of XA, which allows us to find a satisfying assignment.
Thus if we can efficiently create such a distribution, we would be able to efficiently solve SAT
and RP = NP. As we are assuming this is false, we must have q(XA) ≤ 1/poly(d), which implies
dTV(p(· | y = M), q) ≥ 1− 1/poly(d).

B MISSING DERIVATIONS

B.1 DERIVATION OF EQUATION (3)

Here we present a detailed derivation of Equation (3). Note that this equality is true up to a constant
w.r.t. f̂ , which is fine as we use this as the optimization objective.
LOurs(f̂) , DKL(pf◦f̂ (x) ‖ pf (x | ỹ = y∗))

= Ex∼pf◦f̂
[
log pf◦f̂ (x)− log pf (x, ỹ = y∗)

]
+ log pf (ỹ = y∗)

A
= Ex∼pf◦f̂

[
log pf◦f̂ (x)− log pf (x)− log pσ(ỹ = y∗ | x)

]
B
= Ex∼pf◦f̂

[
log pf◦f̂ (x)− log pf (x)

]
+ Ex∼pf◦f̂ [− log pσ(ỹ = y∗ | y = T (x))]

= DKL(pf◦f̂ (x) ‖ pf (x)) + Ex∼pf◦f̂ [− log pσ(ỹ = y∗ | y = T (x))]

C
= DKL(pf̂ (z) ‖ pf (z)) + Ez∼pf̂

[
1

2σ2
‖T (f(z))− y∗‖22

]

In (A), we drop the log pf (ỹ = y∗) term as it is constant w.r.t. f̂ .
In (B), we use the conditional independence ỹ ⊥⊥ x | y.
In (C), we use the invariance of KL divergence under invertible transformation to rewrite the KL
divergence in terms of z.

B.2 JOINT VI VS. MARGINAL VI

We also provide a justification for using the joint VI loss as discussed in section 4. Specifically, we
show that the joint VI loss is an upper bound to the intractable marginal VI loss in eq. (1), which we
wish to minimize. For notational brevity, we write q(x) and q(z) to denote the variational posterior
pf◦f̂ (x) and the pre-generator pf̂ (z), respectively. Then,

(Joint KL)
= DKL(q(x) ‖ pf (x|x̃1 = x∗1))

= Eq(x1,x2) [log q(x1,x2)− log pf (x1,x2|x̃1 = x∗1)]

= Eq(x1,x2) [log q(x2) + log q(x1 | x2)− log pf (x2|x̃1 = x∗1)− log pf (x1 | x̃1 = x∗1,x2)]

= Eq(x2) [log q(x2)− log pf (x2|x̃1 = x∗1)]

+ Eq(x2)

[
Eq(x1|x2) [log q(x1 | x2)− log pf (x1 | x̃1 = x∗1,x2)]

]
= DKL(q(x2) ‖ pf (x2|x̃1 = x∗1)) + Eq(x2) [DKL(q(x1 | x2) ‖ pf (x1|x̃1 = x∗1,x2))]

≥ DKL(q(x2) ‖ pf (x2|x̃1 = x∗1))

= (Marginal KL),
where the last inequality is due to the nonnegativity of KL. Note that equality holds whenDKL(q(x1 |
x2) ‖ pf (x1|x̃1 = x∗1,x2)) = 0, i.e. when our variational posterior matches the true conditional.

C EXPERIMENT DETAILS

C.1 OUR ALGORITHM

C.2 EFFECTS OF THE SMOOTHING PARAMETER

The choice of variance for Gaussian smoothing is an important hyperparameter, so we provide some
empirical analysis of the effects of σ. As shown in Figure 8a, large values of σ cause the samples to
ignore the observation, whereas small values lead to unnatural samples as the learned distribution
becomes more degenerate. Visually, we achieve essentially negligible variance on the observed

15

Under review as a conference paper at ICLR 2021

Algorithm 1 Training the pre-generator for a given observation under transformation. We assume that
f̂ is an invertible neural network with parameters θ.

1: Input: y∗: observation we are conditioning on, T (x): differentiable transformation of x.
2: for i = 1 . . . num_steps do
3: for j = 1 . . .m do . generate m latent codes from pf̂ (z)

4: Sample ε(j) ∼ N (0, Id)

5: z(j) ← f̂(ε(j))
6: end for
7: L ← 1

m

m∑
j=1

[
log pf̂ (z(j))− log pnormal(z

(j)) + 1
2σ2

∥∥T (f(z(j)))− y∗
∥∥2
2

]
8: θ ← θ −∇θL . gradient step
9: end for

Algorithm 2 Sampling from the approximate posterior from the learned pre-generator.

1: Input: f : base model, f̂ : pre-generator trained on the given observation, n: number of samples.
2: for i = 1 . . . n do
3: Sample ε(i) ∼ N (0, Id)

4: x(i) = (x
(i)
1 ,x

(i)
2)← f(f̂(ε(i))) . Feed the noise through composed flow.

5: end for
6: if Partitioned Case then
7: Return {x(1)

2 , . . . ,x
(n)
2 } . Return only the unobserved portion of the samples.

8: else
9: Return {x(1), . . . ,x(n)}

10: end if

portion past σ = 0.01, but at the slight degradation in the sample quality. In Figure 8b, we also notice
that the difference between the true observation (x∗1) and generated observation (x̃1) stops improving
past σ = 1e−4. We tried annealing σ from a large value to a small positive target value to see if
that would help improve the sample quality at very small values of σ, but noticed no appreciable
difference. In practice, we recommend using the largest possible σ that produces observations that
are within the (task-specific) acceptable range of the true observation.

C.3 HYPERPARAMETERS: BASE MODEL AND PRE-GENERATOR

See Table 3 and Table 4 for the hyperparameters used to define the network architectures train them.
For the color datasets CIFAR-10 and CelebA-HQ, we used 5-bit pixel quantization following Kingma
& Dhariwal (2018). Additionally for CelebA-HQ, we used the same train-test split (27,000/3,000) of
Kingma & Dhariwal (2018) and resized the images to 64× 64 resolution. Uncurated samples from
the base models are included for reference in Figure 9.

Table 3: Hyperparameters used to train the base models used in our experiments.

Base Models MNIST CIFAR-10 CelebA-HQ

Image resolution 28× 28 32× 32 64× 64
Num. scales 3 6 6
Res. blocks per scale 8 12 10
Res. block channels 32 64 80
Bits per pixel 8 5 5
Batch size 128 64 32
Learning rate 0.001 0.001 0.001
Num. epochs 200
Test set bits-per-dim 1.053 1.725 1.268

16

Under review as a conference paper at ICLR 2021

Observed

(a) Each column contains samples from the learned
conditional sampler at different values of σ with
pixelwise variance computed using 32 samples.

−10−8−6−4−20
log10 σ

0.00

0.01

0.02

0.03

0.04

0.05

M
S

E
of

ob
se

rv
ed

p
ar

t

(b) MSE between x̃1 and x∗
1 at different values of σ.

Figure 8: Effect of the smoothing parameter on sample quality and tightness of approximate condi-
tioning.

Table 4: Hyperparameters used to define and train the pre-generator for each of our experiments.

Base Models MNIST CIFAR-10 CelebA-HQ

Image resolution 28× 28 32× 32 64× 64
Num. scales 3 4 3
Res. blocks per scale 3 4 3
Res. block channels 32 48 48
Batch size 64 32 8

Figure 9: Unconditional samples from the base models used for our experiments. From left: MNIST,
5-bit CIFAR-10, and 5-bit CelebA-HQ models.

C.4 HYPERPARAMETERS: IMAGE INPAINTING

We randomly chose 900/500/300 images from MNIST/CIFAR-10/CelebA-HQ test sets, applied
masks defined in Section 6.1, and generated samples conditioned on the remaining parts. FID and
other sample quality metrics were computed using 32 conditional samples per test image for VI
methods (ours and Ambient VI), 8 for Langevin Dynamics, and 6 for PL-MCMC. We note that using
more samples for VI methods do not unfairly affect the result of sample quality evaluation, i.e. there
was no appreciable difference when using 8 vs. 32 samples to compute FID. We used more samples
simply because it is much cheaper for VI methods to generate samples compared to MCMC methods.

For VI Methods (Ours & Ambient VI)

• Learning rate: 1e−3 for MNIST; 5e−4 for the others
• Number of training steps: 2000 for CelebA-HQ; 1000 for the others

For Langevin Dynamics

17

Under review as a conference paper at ICLR 2021

• Learning rate: 5e−4 for all datasets
• Length of chain: 1000 for CIFAR-10; 2000 for the others

For PL-MCMC

• Learning rate: 5e−4
• Length of chain: 2000 for MNIST
• σa = 1e−3, σp = 0.05

C.5 HYPERPARAMETERS: INVERSE PROBLEMS

Colorization Compressed Sensing Compressed Sensing Super-resolution

Learning rate 5e−4 5e−4 5e−4 5e−4
σ 0.05 0.05 0.05 0.05
Dataset CelebA-HQ CelebA-HQ CIFAR-10 CIFAR-10
Batch size 8 8 32 32
Number of steps 1000 2000 1000 1000

Engel et al. (2017); Parno & Marzouk (2018); Hoffman et al. (2019); Nijkamp et al. (2020)

18

	Introduction
	Background
	Normalizing Flows
	Variational Inference

	Hardness of Conditional Sampling on Flows
	Approximate Probabilistic Inference with Composed Flows
	Related Work
	Quantitative Experiments
	Image Inpainting
	Likelihood Estimation

	Qualitative Experiments
	Why Ambient VI Fails

	Conclusion
	Proof of Hardness Results
	Preliminaries
	Design of the Additive Coupling Network
	Generating SAT Solutions from the Conditional Distribution
	Hardness of Approximate Sampling

	Missing Derivations
	Derivation of eqn:loss
	Joint VI vs. Marginal VI

	Experiment Details
	Our Algorithm
	Effects of the smoothing parameter
	Hyperparameters: Base Model and Pre-generator
	Hyperparameters: Image Inpainting
	Hyperparameters: Inverse Problems

