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Abstract

We present Branch-Train-Merge (BTM), a communication-efficient algorithm for
training of language models (LMs). BTM learns a set of independent EXPERT
LMs (ELMs), each specialized to a different domain, such as scientific or legal
text. New ELMs are learned by branching from (mixtures of) ELMs in the current
set, further training on new domains, and then merging the resulting models back
into the set for future use. These ELMs can be ensembled or averaged at inference
time. Experiments show that BTM improves in- and out-of-domain perplexities as
compared to compute-matched GPT-style transformer LMs. Our results suggest
that extreme parallelism could be used to efficiently scale LMs in future work.

1 Introduction

Training and inference in language models (LMs) typically require access to supercomputers that can
achieve the massive multi-node synchronization required to compute model activations and gradients
(Brown et al., 2020; Fedus et al., 2022; Zhang et al., 2022). We develop a new class of LMs that is
instead embarrassingly parallel: different parts of the model are independently trained on different
subsets of the data, with no need for multi-node training or inference (Figure 2).

Our new ELMFOREST1 model consists of a set of EXPERT LMs (ELMs), independently functional
LMs specialized to a domain in the training corpus, e.g., scientific or legal text, with no shared
parameters, which can be ensembled or parameter averaged to collapse back to a single LM at
inference time. Our Branch-Train-Merge (BTM) algorithm learns an ELMFOREST by repeatedly
adding new ELMs. Each new ELM is first branched by initializing a new LM with an average of
the parameters of relevant LMs in the current set, then further trained on new domains, and finally
merged into the ELMFOREST (Figure 3). The ELMFOREST is initalized with a single LM, trained
on heterogeneous data to establish strong shared representations for future domain specialization.

ELMFORESTs trained with BTM outperform GPT-style transformer LMs and a domain-specialized
mixture-of-experts baseline (Gururangan et al. 2022) across a range of computational budgets. We
release code and models.2

1Expert Language Models For Efficient Sparse Training
2URL anonymized for review.
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2 Methods

We define an ELMFOREST to be a set of EXPERT LMs (ELMs), each independently trained to
specialize to a different subset of a corpus. ELMs are inspired by the experts in earlier MoE models
(Jacobs et al., 1991), but we define ours to be domain specialists and specialize the full LM. Following
Gururangan et al. 2022, we define domains by provenance (the source of the document, e.g., legal
document, medical research paper).3 ELMs remain independent throughout training and inference.

ELMFORESTs support two inference modes. We perform output ensembling over the output probabil-
ities of multiple ELMs. Alternatively, we use parameter averaging (Izmailov et al., 2018; Wortsman
et al., 2022; Matena & Raffel, 2021) to collapse the ELMFOREST into a single LM, keeping inference
cost constant as ELMs are added to the set. We weight both inference operations with a domain
posterior, which estimates the relevance of each expert to the evaluation domain.4

2.1 BRANCH-TRAIN-MERGE (BTM)

BRANCH-TRAIN-MERGE training of ELMFOREST models is incremental and embarrassingly
parallel; EXPERT LMs are trained fully independently, starting from a seed LM (Appendix Figures 2
and 3). Each BTM iteration begins with an existing ELMFOREST E = {θi}ki=1. Each ELM θi
represents a corresponding domain di in the dataset of k domains DE = {di}ki=1 modeled by E. We
first describe the inductive case of k > 0, then describe how to train the initial model θ0.

Step 1 (Branch): Given some vector of weights w = {w1, w2, ..., wk} over the existing experts
θ1, θ2, ..., θk, we initialize the new expert with the weighted parameter average θk+1 ←

∑k
i=0 wiθi.

Step 2 (Train): We train the new ELM θk+1 on data domain dk+1 with the log likelihood objective.
None of the existing ELMs in E are involved in the training of the new ELM. We also refer to this
step as branched training to distinguish it from other training regimens.

Step 3 (Merge): We merge the new ELM θk+1 into E to create an updated set: E′ = E ∪ {θk+1}.

Step 0 (Initialization): In the first iteration of BTM, E = ∅; we have no ELMs in the set to branch
from. Instead of initializing the first ELMs randomly, we perform a seed phase, training a seed LM
θseed on some data corpus dseed to initialize the first batch of ELMs.

3 Experiments and Results

3.1 Experimental Setup

Data We use data from Gururangan et al. (2022), which consists of 8 diverse training and 8
evaluation (primarily English-language) domains. Details are in Appendix Table 7.

Model hyperparameters The model architecture is a randomly-initialized LM with the GPT-3
(Brown et al., 2020) architecture implemented in Fairseq (Ott et al., 2019). We use 125M (small),
350M (medium), 750M (large), 1.3B (xl) parameter models. Following Brown et al. 2020, we use the
GPT-2 (Radford et al., 2019) vocabulary of 50,264 BPE types, and train with 1,024-token sequences,
across document boundaries. We prepend a beginning-of-document token to each document.

Compared Models For our ELMFORESTs, we first conduct a seed phase to initialize the ensemble
with LM parameters, then conduct branched training on the ELMs (§2.1), all initialized with the
seed LM. Our baselines are (1) a transformer-LM, implemented with distributed data parallelism
(Li, 2021) 5; (2) DEMIX (Gururangan et al., 2022), where feedforward layers in the transformer are
trained to specialize as domain experts. These models are compute-matched.

3See §C.4 for a discussion on the possible limitations of this domain definition.
4Details of the method are in Appendix §A.1.
5This is identical to the DENSE model from Gururangan et al. (2022) – data from each domain is balanced,

which achieves better performance than without data balancing (Appendix Table 9).
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125M

T-LM DEMIX ELMFOREST
125M 512M 1B

Train 19.90.23 18.20.82 17.20.02

Eval 25.20.18 23.40.54 22.40.12

All 22.50.14 20.80.63 19.80.05

350M

T-LM DEMIX ELMFOREST
350M 1.8B 2.8B

Train 16.3 15.0 14.7
Eval 20.8 19.9 18.6

All 18.5 17.5 16.7

750M

T-LM DEMIX ELMFOREST
750M 3.8B 6B

Train 14.7 13.5 13.4
Eval 19.3 17.7 16.7

All 17.0 15.6 15.0

1.3B

T-LM DEMIX ELMFOREST
1.3B 7B 10.4B

Train 14.2 13.7 13.0
Eval 18.4 17.6 16.3

All 16.3 15.6 14.6

Table 1: ELMFORESTs trained with BTM outperform baselines. Average test-set perplexity (↓)
for each model scale across the 8 training, 8 evaluation, and 16 data domains. Total parameters are
shown for each model. At 125M parameters per GPU, we show the mean and standard deviation over
8 random seeds. For BTM, we show results with 50% of compute dedicated to the seed phase.

Eval Domains PPL (↓)
125M 350M 760M 1.3B

TRANSFORMER-LM 25.2 20.8 19.3 18.4
ELMFOREST parameter average (uniform weights) 31.0 22.4 20.8 19.5

Argmax ELM (one-hot weights) 28.3 22.3 22.3 20.3
ELMFOREST parameter average (posterior weights) 28.5 20.3 18.0 17.0

ELMFOREST ensemble 22.4 18.6 16.7 16.3

Table 2: ELMs can be combined through parameter averaging. Average test-set perplexity across
the 8 evaluation domains, comparing techniques to collapse ELMFOREST into a single LM.

Training settings To disentangle variations in GPU speed, we use number of updates as our
computational budget: 80k, 32k, 24k, and 12k updates on 16, 32, 64, and 128 GPUs in parallel for
the 125M, 350M, 750M, 1.3B parameter TRANSFORMER-LM and DEMIX baselines, respectively.
We use the same GPU counts for the seed phase in the ELMFOREST. For branched training, we
divide these GPUs equally among the ELMs. For all models, we fix the learning rate at 0.0005 with
a polynomial (linear) decay learning rate schedule and 8% warmup, which we found to be optimal
for most settings after a large grid search. We use a batch size of 16 for each GPU, with gradient
accumulation of 32 steps, and train with fp16. We train on NVIDIA V100 32GB GPUs.

3.2 Results

Ensembling results are shown in Table 1. At these model scales, ELMFOREST ensembles outperform
both the sparsely trained DEMIX LM and the densely trained TRANSFORMER-LM baselines.

While ELMFOREST substantially improves performance at lower training cost relative to the
TRANSFORMER-LM, it comes at the price of a larger model size and higher associated inference
costs when ensembling. Thus, we explore parameter averaging to combine experts for improved
generalization with no additional inference costs relative to the TRANSFORMER-LM baseline. Given
some weight vector w over k ELMs {θi, ..., θk}, we define a single model such that its parameters
are a weighted average of the ELM parameters, according to w: θ =

∑k
i=0 wiθi. For w, we consider:

Uniform: We set w to be a uniform; i.e., 1
k . This setting disregards the relevance of each ELM to the

target domain, assuming all ELMs should contribute equally to the average.

Argmax: We set w to be an indicator vector corresponding to the maximum probability in the domain
posterior, thus activating only the estimated best-performing ELM.

3



Posterior: We set w to be the domain posterior, computed on the validation set.

Results on the evaluation domains are in Table 2.6 Using uniform weights underperforms all baselines,
even TRANSFORMER-LMs, highlighting the importance of domain relevance in output ensembling
and parameter averaging ELMs. Using the argmax ELM outperforms uniform averaging for small
models, but not larger models. Weighting the average with the domain posterior outperforms all
other techniques, and consistently improves performance over TRANSFORMER-LMs at no additional
inference cost. Though parameter averaging does not reach the performance of output ensembling,
the lower inference costs and simplicity of deployment may make averaging the preferred inference
technique for resource-constrained applications.

In Figure 1, we fix the parameter average to use the domain posterior weights and vary the portion of
the compute budget dedicated to the seed phase and observe the effects on performance. We observe
that parameter averaging performance on training domains is relatively robust to seed training. On
evaluation domains, however, the smallest scale ELMFOREST does not achieve optimal performance
until about 60% or more updates are dedicated to seed training. This explains the poor performance
of the 125M parameter scale ELMFOREST average on evaluation domains in Table 2. Overall, results
suggest a strong effect of the seed phase on the viability of ELMFOREST averaging. ELMFOREST
averaging does not work with ELMs trained from random initialization (i.e., with no seed phase).
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Figure 1: The seed phase is vital to our ability to parameter average ELMs. Test perplexity
averaged across the 8 training (left) and 8 evaluation (right) domains when averaging ELMFOREST
with different seed training compute allocations for the 125M and 350M parameter LMs.

4 Related Work

Sparsely activated language models have been considered in a few forms (Evci et al., 2020; Mostafa &
Wang, 2019; Dettmers & Zettlemoyer, 2019), but most related to this work is the Mixture-of-Experts
(MoE) model (Jacobs et al., 1991; Lepikhin et al., 2021; Fedus et al., 2022; Lewis et al., 2021; Roller
et al., 2021). Of this line of work, ours is most closely related to DEMix layers Gururangan et al.
(2022), which replace transformer feedforward layers as domain experts.

Ensemble methods are classic techniques in machine learning (Breiman, 1996; Freund, 1995; Wolpert,
1992). Similar to our work, recent work has considered growing ensembles, in which new models are
trained sequentially on streaming data Caccia et al. (2021).

Our averaging mechanism is inspired by the model merging techniques in the vision and NLP literature
(Wortsman et al., 2022; Izmailov et al., 2018; Matena & Raffel, 2021). Our posterior weighted average
is highly related to Bayesian model averaging techniques used in classic ensembling methods (Fragoso
et al., 2018). Model averaging has also been explored for federated learning (McMahan et al., 2017).

6We display similar findings with training domains in Appendix Table 8.
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5 Conclusion

We introduce BTM, a new algorithm to train an ELMFOREST, which contains many EXPERT LMs.
Our experiments show that ELMFORESTs trained with BTM outperform compute-matched baselines,
when conducting inference through output ensembling or parameter averaging. These results provide
compelling evidence for the promise of scaling LMs with many smaller, independently trained ELMs.
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Suchin Gururangan, Ana Marasović, Swabha Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A. Smith. Don’t stop pretraining: Adapt language models to domains and tasks. In
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp.
8342–8360, Online, July 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.
acl-main.740. URL https://www.aclweb.org/anthology/2020.acl-main.740.

Suchin Gururangan, Mike Lewis, Ari Holtzman, Noah A. Smith, and Luke Zettlemoyer. DEMix
layers: Disentangling domains for modular language modeling. In Proceedings of the 2022
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pp. 5557–5576, Seattle, United States, July 2022. Association for
Computational Linguistics. URL https://aclanthology.org/2022.naacl-main.407.

Dan Hendrycks, Collin Burns, Anya Chen, and Spencer Ball. Cuad: An expert-annotated nlp dataset
for legal contract review, 2021.

Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, and Andrew Gordon Wilson.
Averaging weights leads to wider optima and better generalization, 2018. URL https://arxiv.
org/abs/1803.05407.

Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. Adaptive mixtures of
local experts. Neural computation, 3(1):79–87, 1991.

Angeliki Lazaridou, Adhiguna Kuncoro, Elena Gribovskaya, Devang Agrawal, Adam Liska, Tayfun
Terzi, Mai Gimenez, Cyprien de Masson d’Autume, Tomáš Kočiský, Sebastian Ruder, Dani
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Figure 2: Fully Synchronized vs. Embarrassingly Parallel Training (§2.1). (a) In fully synchro-
nized data-parallel training of a TRANSFORMER-LM, all parameters are synchronized across all
GPUs. This synchronization incurs hefty cross-node communication costs. (b) In embarrassingly
parallel training (our work), individual models are trained on each domain, eliminating expensive
cross-node parameter synchronization between those models.

Figure 3: BTM training process overview (§2.1). In the seed phase (Step 0), an LM is trained on
one data corpus. We branch, or copy, the parameters k times (Step 1), and continue to train each copy
on a unique data domain, resulting in k ELMs (Step 2), which are merged into the ELMFOREST
(Step 3). After the seed phase, ELMs are fully disconnected, with no communication between them.

A Additional method details

A.1 Finding the domain posterior for inference

Consider the probabilistic view of language modeling, where we estimate p(Xt | x<t). We introduce
a domain variable D, alongside each sequence. Then the next-step conditional distribution on the
history x<t is:

p(Xt | x<t)=

n∑
j=1

p(Xt | x<t, D = j) · p(D = j | x<t) (1)

We estimate a domain posterior, or a probability of a sequence belonging to each of the k domains
using Bayes’ rule:

p(D = j | x<t)=
p(x<t | D = j) · p(D = j)

p(x<t)
=

p(x<t | D = j) · p(D = j)∑k
j′=1 p(x<t | D = j′) · p(D = j′)

(2)

ELMs are used to compute the likelihood over contexts given a domain label. To compute the
cached prior, we maintain an exponential moving average of posterior probabilities over domains,
updated only at the end of each sequence block: p(D = j) =

∑N
i=1 λ

i · p(D = j | x(i)<T ). Following
Gururangan et al. 2022, we use N = 100 sequences (of length T = 1024 each) of development data,
and set EMA decay λ = 0.3. We fix this prior at test time for each domain.
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Average updates per second, normalized (↑)
fully synchronized partially synchronized BTM: embarrassingly parallel

(TRANSFORMER-LM) (DEMIX) (branched ELMs)

125M 1.00 1.01 1.05
350M 1.00 1.11 1.23
750M 1.00 1.01 1.27

1.3B 1.00 0.97 1.33

Table 3: BTM is more efficient (§B). Average updates per second (↑) for each setup and model
size, normalized by the average updates per second during fully synchronized training of the
TRANSFORMER-LM. The efficiency gains from embarrassingly parallel training (the branched
phase of BTM) become more substantial with larger model size – and more nodes used in parallel.

750M

Random ELM ELM
Ensemble FOREST FOREST
(seed init) (random init) (seed init)

Train 17.4 14.4 13.4
Eval 20.9 19.3 16.7

All 19.2 16.9 15.0

1.3B

Random ELM ELM
Ensemble FOREST FOREST
(seed init) (random init) (seed init)

Train 17.4 13.3 13.0
Eval 20.4 17.8 16.3

All 18.9 15.6 14.6

Table 4: Domain expert ensemble outperforms random split ensemble (§C.1). Average test-set
perplexity (↓) for our largest model scales across the 8 training, 8 evaluation, and all 16 domains. We
show similar results for the 125M and 350M parameter scale models in Appendix Figure 10.

Output ensembling naively requires a forward pass through all ELMs in the ELMFOREST, but we
observe in practice that the domain posterior is sparse, which suggests that top-k selection of EXPERT
LMs can reduce inference time costs with negligible effects on performance.

B Efficiency Comparison Results

Training ELMFORESTs requires less inter-GPU communication than TRANSFORMER-LM or DEMIX
models, since no synchronization occurs between GPUs assigned to different ELMs. This results in
higher updates per second and therefore shorter train times (Table 3). Additionally, the embarrassingly
parallel branched training provides flexibility in resource consumption; GPUs dedicated to different
ELMs may be online at different times, and ELMs may even be trained serially on the same GPUs.
Specifically, none of our branched training required more than 16 GPUs simultaneously, while
our TRANSFORMER-LM training experiments consumed 128 GPUs simultaneously. Empirically,
ELMFOREST training jobs were scheduled and run more quickly, and with less preemption, than the
TRANSFORMER-LM and DEMIX training jobs at the same overall budget.

C Analysis

In §3, we largely fix the training setup to conduct a controlled comparison of BTM to baseline
methods. We now analyze the importance of various training and inference decisions on language
modeling performance.

C.1 ELMFOREST outperforms parameter-matched ensembles

We compare our method to other LM ensembles to study the effect of increased parameter counts:

Random Ensemble (seed init) A set of LMs trained on random data splits, to assess the importance
of ELM domain specialization. We pool the training and development sets of the 8 train domains,
divide into 8 random splits, then conduct BTM on those splits, with 50% seed training.
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Figure 4: ELMFOREST ensembling performance is robust to most seed training compute
allocations (§C.2). Test perplexity averaged across the 8 training (left) or 8 evaluation (right)
domains (from §3.1) when fixing total compute budget but varying the portion allocated to seed
training.

ELMFOREST (random init) An ELMFOREST trained with BTM where all ELMs are randomly
initialized, to assess the effect of seed training. This is equivalent to setting the seed training compute
budget to zero updates. We fix the random initialization across models.

ELMFOREST (seed init) The ELMFOREST setting of §3. We conduct BTM on the 8 train
domains, and dedicate 50% of the updates in the budget to seed and to branched ELM training.

Results with the largest models are in Table 4.7 ELMFOREST (random init) nearly matches ELM-
FOREST on training domains but performs poorly on evaluation domains. The random ensemble is
consistently worse than both variants of ELMFOREST, showing that the performance improvement is
not only due to ensembling or increased total model size.8

C.2 ELMFOREST performance is robust to seed LM training compute allocation

The ELMFOREST (random init), which has no seed training, underperforms ELMFOREST (LM
init) in §C.1, indicating that seed training is essential. On the other hand, TRANSFORMER-LM,
equivalent to 100% seed training, also underperforms ELMFOREST (LM init) in §3, which suggests
the importance of branched ELM training. We now study the changes to performance when we vary
the portion of the compute budget dedicated to seed training. We control for the total compute budget
(across seed and branched training).

Our results, in Figure 4, show that the optimal amount of seed training is about 40–60% of the total
budget. At both ends of the full range, performance deteriorates, approaching the ELMFOREST
(random init) and TRANSFORMER-LM performance (at 0% and 100% seed training, respectively).

However, as little as 10% of seed training can be performed to result in strong gains over the
ELMFOREST (random init) and TRANSFORMER-LM. This suggests that the majority of BTM
training may focus on branched training to dramatically reduced computational costs (§B). The
optimal share of compute to use towards each training phase likely depends on many factors,
including the total compute budget. We leave more thorough study of this trend to future work.

7We display similar findings with smaller models in Appendix Table 10.
8We speculate that the random ensemble is poor because its constituent models make correlated errors during

evaluation (Gontijo-Lopes et al., 2022).
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Average Test PPL (↓)
Train Evaluation Overall

TRANSFORMER-LM 19.8 25.5 22.7

se
ed

co
rp

us 8 train domains 17.2 22.7 20.0
Wikipedia 17.7 23.2 20.5

C4 17.9 23.5 20.7
StackOverflow 18.4 24.6 21.5

JavaScript 19.2 24.9 22.0

Table 5: ELMFOREST ensembling performance is robust to seed training corpus (§C.3). Test set
perplexity averages on the 8 training, 8 evaluation, and all 16 data domains, using different training
corpora used in seed LM training. All models are of the 125M parameters per GPU scale.

C.3 ELMFOREST performance is robust to the choice of seed training corpus

We compare the effects of using different training corpora for seed training in BTM. Here, we fix
the compute budget allocations studied in §C.2 so that 50% of updates are allocated to seed training
and 50% to branched training. As seen in Table 5, our experiments using the most diverse corpora
for seed training resulted in the best performance, but even seed training on only JavaScript code
yielded better results than the compute-matched TRANSFORMER-LM baseline, and far better than
the ELMFOREST (random init) models in Table 1, which use identical random initialization. This
suggests that initializing ELMs with parameters of any model checkpoint is critical.

C.4 Limitations

The definition of a domain The nature of domains in NLP is a matter of active research. Textual
domains reflect language variation that stems from factors such as vocabulary differences (Blitzer
et al., 2006), sociolinguistic (Biber, 1988) or demographic (Rickford, 1985; Blodgett et al., 2016)
variables, community membership (Lucy & Bamman, 2021), end-tasks (Gururangan et al., 2020), or
temporal shifts (Lazaridou et al., 2021; Luu et al., 2021). In this work, we follow Gururangan et al.
(2022) and define domains by provenance, or the source of the document. Provenance labels yield
simple and interpretable segmentations of a corpus, which are useful for identifying ELMs in our
experiments. However, other methods for discovering domains, including unsupervised techniques
(Aharoni & Goldberg, 2020; Chronopoulou et al., 2022), may yield better expert assignments. We
leave experimentation with other definitions of domain for future work.

Domain posterior data requirement To calculate the domain posteriors used for our ensembling
and parameter averaging weights, we assume access to a small additional sample of data to train
the vector w. While it is easy to imagine that extra data may be available for most applications to
estimate the posterior, future work may explore the possibility of eliminating this requirement.

Other distributed training baselines Our TRANSFORMER-LM baseline is implemented with
distributed data-parallel. Model-parallel, fully sharded data-parallel, and other distributed training
strategies (Artetxe et al., 2021) confer different scaling patterns that may change the conclusions that
we report in this work. However, we expect that BTM will provide strong efficiency gains against
these alternatives.

Harms of language models BTM results in an LM whose test time behaviors can be controlled
with much stronger guarantees after training due to the isolation of domains in ELMs. However,
ELMFORESTs exposed to large datasets scraped from the Internet may contain toxic language (e.g.,
hatespeech) that are difficult to identify with coarse provenance domain labels, and nevertheless
result in harmful output from the ELMs (Gehman et al., 2020). Future work may explore recipes for
training and deploying ELMFORESTs to better support user safety.
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Category Link to Regex Dummy Token

Email https://regex101.com/r/ZqsF9x/1 <EMAIL>
DART https://regex101.com/r/0tQ6EN/1 <DART>
FB User ID https://regex101.com/r/GZl5EZ/1 <FB_USERID>
Phone Number https://regex101.com/r/YrDpPD/1 <PHONE_NUMBER>
Credit Card Number https://regex101.com/r/9NTO6W/1 <CREDIT_CARD_NUMBER>
Social Security Number https://regex101.com/r/V5GPNL/1 <SSN>
User handles https://regex101.com/r/vpey04/1 <USER>

Table 6: De-identification schema. We de-identify text using the regexes provided in the above links
for the categories listed.

Domain Corpus # Train (Eval.) Tokens

T
R

A
IN

IN
G

1B 30M NewsWire sentences (Chelba et al., 2014) 700M (10M)
CS 1.89M full-text CS papers from S2ORC (Lo et al., 2020) 4.5B (10M)
LEGAL 2.22M U.S. court opinions (Caselaw Access Project) 10.5B (10M)
MED 3.2M full-text medical papers from S2ORC (Lo et al., 2020) 9.5B (10M)
WEBTEXT† 8M Web documents (Gokaslan & Cohen, 2019) 6.5B (10M)
REALNEWS† 35M articles from REALNEWS Zellers et al. (2019) 15B (10M)
REDDIT Reddit comments from pushshift.io (Baumgartner et al., 2020) 25B (10M)
REVIEWS† 30M Amazon product reviews (Ni et al., 2019) 2.1B (10M)

Total 73.8B (80M)

Domain Corpus # Train (Eval.) Tokens

E
VA

L
U

A
T

IO
N

ACL PAPERS 1.5K NLP papers from ACL (Dasigi et al., 2021) 1M (1M)
BREAKING NEWS† 20K English news articles, scraped using (Ou-Yang, Lucas) 11M (1M)
CONTRACTS† 500 commercial legal contracts (Hendrycks et al., 2021) 1.5M (1M)
CORD-19 400K COVID-19 research papers (Wang et al., 2020) 60M (10M)
GITHUB 230K public Github code (Github Archive Project) 200M (10M)
GUTENBERG 3.2M copyright-expired books (Project Gutenberg) 3B (10M)
TWEETS† 1M English tweets from 2013-2018 8M (1M)
YELP REVIEWS† 6M Yelp restaurant reviews (Yelp Reviews) 600M (10M)

Table 7: Multi-domain data corpus used in §3 and §C. Details of this corpus, both training and
evaluation domains, including the size of our training and evaluation (i.e. validation and test) data in
whitespace-separated tokens. We borrow these datasets from Gururangan et al. (2022). † indicates
datasets we de-identify with regexes in Table 6. REDDIT was de-identified by Xu et al. (2021); we
use their version. Meta researchers did not collect any of the Reddit or Twitter data and the data was
not collected on behalf of Meta.

Train Domains PPL (↓)
125M 350M 760M 1.3B

TRANSFORMER-LM 19.9 16.3 14.7 14.2
ELMFOREST parameter average (uniform weights) 47.4 19.9 19.0 18.0

Argmax ELM (one-hot posterior) 18.0 15.3 14.1 13.8
ELMFOREST parameter average (posterior weights) 18.0 15.1 13.9 13.4

ELMFOREST ensemble 17.2 14.7 13.4 13.0
Table 8: Performance of ELM parameter averaging on training domains (§3.2). Average test-set
perplexity across the 8 training domains, from the models in Table 1, comparing techniques to collapse
ELMFOREST into a single LM. As with evaluation domain results in the main paper, parameter
averaging (with posterior weights) generally yields better average perplexities than TRANSFORMER-
LM at no additional inference cost, but underperforms ELMFOREST ensembling, which uses more
effective parameters and is included for comparison as a lower bound.

15

https://regex101.com/r/ZqsF9x/1
https://regex101.com/r/0tQ6EN/1
https://regex101.com/r/GZl5EZ/1
https://regex101.com/r/YrDpPD/1
https://regex101.com/r/9NTO6W/1
https://regex101.com/r/V5GPNL/1
https://regex101.com/r/vpey04/1


125M – 16 GPUs – 80k updates

T-LM T-LM DEMIX ELMFOREST RANDOM ELMFOREST
UNBALANCED (random init) ENSEMBLE (seed init)

125M 125M 512M 1B 1B 1B

Train 19.8 20.7 17.7 18.0 23.0 17.2
Novel 25.6 26.4 23.1 24.1 26.0 22.4

All 22.7 23.5 20.4 21.0 24.7 19.8

350M – 32 GPUs – 32k updates

T-LM T-LM DEMIX ELMFOREST RANDOM ELMFOREST
UNBALANCED (random init) ENSEMBLE (seed init)

350M 350M 1.8B 2.8B 2.8B 2.8B

Train 16.3 16.7 15.0 15.3 19.9 14.7
Novel 20.8 21.2 19.9 21.3 23.1 18.6

All 18.5 19.0 17.5 18.3 21.5 16.7

750M – 64 GPUs – 24k updates

T-LM T-LM DEMIX ELMFOREST RANDOM ELMFOREST
UNBALANCED (random init) ENSEMBLE (seed init)

750M 750M 3.8B 6B 6B 6B

Train 14.7 14.9 13.5 14.4 17.4 13.4
Novel 19.3 19.8 17.7 19.3 20.9 16.7

All 17.0 17.4 15.6 16.9 19.2 15.0

1.3B – 128 GPUs – 12k updates

T-LM T-LM DEMIX ELMFOREST RANDOM ELMFOREST
UNBALANCED (random init) ENSEMBLE (seed init)

1.3B 1.3B 7B 10.4B 10.4B 10.4B

Train 14.2 15.0 13.7 13.3 17.4 13.0
Novel 18.4 19.5 17.6 17.8 20.4 16.3

All 16.3 17.3 15.6 15.6 18.9 14.6

Table 9: ELMFORESTs trained with BTM outperform all baselines and ensemble variations
across multiple model scales. Average test-set perplexity (↓) for each model scale (125M, 350M,
750M, 1.3B parameters) across the 8 training, 8 novel, and all 16 domains described in §3.1. Total
compute budget (in update numbers) and GPU usage are shown for each model size, and total
parameters are shown for each model type at each size. TRANSFORMER-LMs (here, abbreviated to
T-LM) trained without balancing between data domains performs worse than T-LM trained with
data balancing; hence, we only compare against the balanced T-LM setting in §3. For ELMFOREST,
we show results with 50% dense training.

125M

Random ELM ELM
Ensemble FOREST FOREST
(seed init) (random init) (seed init)

Train 23.0 18.2 17.2
Eval 26.0 23.4 22.4

All 24.7 20.8 19.8

350M

Random ELM ELM
Ensemble FOREST FOREST
(seed init) (random init) (seed init)

Train 19.9 15.3 14.7
Eval 23.1 21.3 18.6

All 21.5 18.3 16.7
Table 10: Domain expert ensemble outperforms random split ensemble (§C.1). Average test-set
perplexity (↓) for our smallest model scales across the 8 training, 8 evaluation, and all 16 domains.
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w/ ELM
(Average Test PPL ↓)

–ELM
(∆ PPL)

8 train domains 17.2 (+9.4)

se
ed

co
rp

us

Wikipedia 17.7 (+11.9)
C4 17.9 (+11.8)

StackOverflow 18.4 (+12.7)
JavaScript 19.2 (+13.6)

Table 11: The ability to reduce the influence of domains through ELM removal is (mostly)
robust to seed training corpus (§C.3). We present the average test perplexity for the 8 train domains
in ELMFORESTs where all ELMs are active. We vary the seed training corpora. In parentheses, we
show the increase in perplexity when the ELM trained to specialize on each domain is removed at
inference time. Large increases are desired and suggest the ease of removing (e.g., stale or harmful)
data from the ELMFOREST’s distribution after training.
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