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ABSTRACT

Complex nonlinear systems permeate various scientific and engineering domains,
presenting significant challenges in accurate modeling and analysis. This paper in-
troduces the Koopman Universal Neural Dynamic Operator (KUNDO), a ground-
breaking framework that bridges the gap between data-driven machine learning
approaches and traditional mathematical modeling. KUNDO uniquely combines
neural networks, Koopman operator theory, and the universal approximation the-
orem to achieve fully explicit expression identification for complex nonlinear sys-
tems. Our framework demonstrates remarkable efficiency in small sample sce-
narios, overcoming limitations of both classical physical models and black-box
machine learning techniques. By learning Koopman-compatible basis functions
through neural networks, KUNDO transforms strongly nonlinear dynamics into
interpretable mathematical forms, greatly decreasing the limitations of human se-
lection of basis functions without sacrificing predictive power. We present theoret-
ical analyses of KUNDO’s mathematical properties and validate its performance
across diverse nonlinear systems. The results showcase KUNDO’s potential to
revolutionize system identification, offering new avenues for scientific discovery
and engineering applications in fields such as climate science, financial modeling,
and advanced robotics. This work presents a significant advance towards inter-
pretable AI and data-driven modeling in systems analysis.

Figure 1: Schematic diagram of the KUNDO (Koopman Universal Neural Dynamical Observer)
method for dynamical system identification and modeling. The system is optimized by minimizing
the difference between {dx̂

dt (ti)}
n
i=1 estimated from the observed x sequence using finite differences,

and {dx̃
dt (ti)}

n
i=1 derived from the identified dynamical system.
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1 INTRODUCTION

In contemporary science and engineering, accurately capturing the dynamic behavior of complex
nonlinear systems while providing explicit mathematical expressions for them is an extremely chal-
lenging problem. Complex nonlinear systems are ubiquitous in various aspects of our lives, from
climate change models to dynamic fluctuations in financial markets, from intricate interactions in
biological systems to the control of advanced robotics. The behavior of these systems shapes our
world, making the ability to understand and model their complex dynamics crucial for advancing
fundamental science and solving practical engineering problems.

Traditional modeling methods often face numerous limitations when dealing with these complex
nonlinear systems. Classical physical models and dynamical systems theory, while providing rigor-
ous mathematical frameworks, struggle with strongly nonlinear systems. These methods typically
rely on idealized assumptions, making it difficult to address the dynamic characteristics of complex
real-world systems and thus limiting their applicability. Meanwhile, machine learning, especially
deep learning techniques, has made significant progress in modeling complex phenomena in re-
cent years. Through large-scale data, deep learning can capture the intricate dynamics of systems,
demonstrating powerful predictive capabilities. However, these models are often viewed as ”black
boxes,” lacking explicit mathematical explanations and interpretability. This ”black box” nature not
only diminishes the application value of the models in scientific and engineering fields but also hin-
ders our in-depth understanding of the internal mechanisms of systems, impeding comprehensive
analysis of system behavior.

The main challenge facing the field of modern system identification is: how can we design a method
that captures the dynamic behavior of complex nonlinear systems while providing models with fully
explicit mathematical expressions? Such a method must not only possess high predictive power but
also achieve breakthroughs in interpretability and analyzability, especially for systems with higher
dimensions and stronger nonlinearities.

This work proposes the Koopman Universal Neural Dynamic Operator (KUNDO) framework, aim-
ing to address this challenge and provide a revolutionary modeling method for nonlinear systems.
The core innovation of KUNDO lies in its ability to achieve fully explicit expression identification
for complex nonlinear systems while demonstrating efficient performance in small sample scenar-
ios. This breakthrough is achieved through the fusion of the powerful expressive capability of neural
networks, the rigorous mathematical foundation of Koopman operator theory, and the universal ap-
proximation theorem.

The working principle of KUNDO is to use neural networks to learn a set of special basis functions
that are compatible with Koopman operator theory. Leveraging the universal approximation theo-
rem, these neural networks can approximate any continuous nonlinear function, enabling KUNDO
to transform complex nonlinear dynamics into fully explicit mathematical expressions. This trans-
formation preserves the essential characteristics of the system and provides unprecedented inter-
pretability and analytical capabilities, especially for systems with higher dimensions and stronger
nonlinearities. Moreover, KUNDO offers a new approach to understanding complex systems, capa-
ble of efficient learning and generalization even in scenarios with limited data.

The main contributions of this study include:

1. Innovative Neural Network Architecture Design: We propose a novel neural network archi-
tecture specifically designed to learn Koopman-compatible basis functions. This architecture can
capture complex nonlinear dynamics while ensuring the learned expressions are interpretable.

2. Integration with Koopman Operator Theory: We develop a method that combines the learned
basis functions with Koopman operator techniques to construct fully explicit system models. These
models not only possess predictive capabilities but also provide mathematical analyzability for the
system.

3. Mathematical Property Analysis of the KUNDO Framework: We conduct elaborate theoreti-
cal analyses of the mathematical properties of KUNDO, proving its effectiveness and robustness in
handling complex nonlinear systems.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

4. Validation on Diverse Nonlinear Systems: We validate the effectiveness of KUNDO on a series
of challenging complex nonlinear systems, demonstrating its superiority in identifying fully explicit
expressions and its efficient performance in small sample scenarios.

By integrating deep learning, dynamical systems theory, and the universal approximation theorem,
KUNDO represents a new paradigm in machine learning. It not only enhances our understanding
and predictive capabilities of complex nonlinear systems but also paves the way for interpretable AI
and data-driven scientific discovery. We believe that this approach of combining machine learning
with traditional scientific theories will play a crucial role in future AI systems, driving innovation in
scientific discovery and engineering applications.

2 RELATED WORK

This section reviews relevant research in system identification and modeling for complex nonlin-
ear systems, covering traditional methods, Koopman operator theory applications, neural net-
works, and hybrid approaches.

Traditional methods rely on physics-based mathematical models and classical dynamical systems
theory (Ljung & Söderström, 1983; Ljung, 1998; Söderström & Stoica, 2002), including linear
regression (Draper, 1998), autoregressive models (Box et al., 2015), and state-space representa-
tions (Durbin & Koopman, 2012). While effective for simpler systems, they struggle with high-
dimensional, strongly nonlinear complex systems (Nelles & Nelles, 2020; Billings, 2013), often
assuming linear or weakly nonlinear structures (Aguirre & Billings, 1995; Juang, 1994).

Koopman operator theory transforms nonlinear systems into linear operators in a high-
dimensional space of observables (Koopman, 1931; Mezić, 2005). Dynamic Mode Decomposition
(DMD) applies this theory to data-driven system identification (Schmid, 2010; Kutz et al., 2016).
Extended methods like EDMD introduce nonlinear basis functions (Williams et al., 2015), while
recent advancements include Hankel-DMD (Arbabi & Mezic, 2017) and time-delay embeddings
(Brunton et al., 2017).

Neural networks have demonstrated remarkable capabilities in modeling nonlinear systems (LeCun
et al., 2015), from RNNs (Elman, 1990) to LSTM (Hochreiter, 1997) and GRU (Cho, 2014). Recent
innovations include Neural ODEs (Chen et al., 2018) and Graph Neural Networks (Scarselli et al.,
2008; Battaglia et al., 2016; Gilmer et al., 2017). However, their ”black-box” nature often limits
interpretability (Schmidt & Lipson, 2009).

Hybrid methods combining Koopman theory and neural networks aim to leverage both approaches’
strengths. Examples include DeepKoopman (Lusch et al., 2018), Koopman Autoencoders (Otto &
Rowley, 2019), and EDMD with dictionary learning (Li et al., 2017). Despite improved modeling
capabilities, these approaches face challenges in interpretability (Brunton et al., 2016a), stability for
chaotic systems (Takeishi et al., 2017), and performance with limited data (Kaiser et al., 2021).

Recent research focuses on enhancing model transparency and interpretability in dynamical sys-
tem modeling (Rudin, 2019). Physics-Informed Neural Networks (PINNs) incorporate physical
constraints into neural network training (Raissi et al., 2019), while other approaches explore inter-
pretable structures or regularization terms (Adadi & Berrada, 2018). However, a systematic frame-
work deeply integrating traditional physical theories with machine learning methods is still lacking.

3 FRAMEWORK: KOOPMAN UNIVERSAL NEURAL DYNAMIC OPERATOR

This section provides a detailed description of the methodology of the Neural Network KUNDO
(Koopman Universal Neural Dynamic Operator). KUNDO integrates Koopman operator theory, the
universal approximation theorem, and deep learning techniques to achieve efficient modeling and
prediction of complex nonlinear dynamical systems through two-layer Koopman-like mappings and
system identification.
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3.1 METHODOLOGICAL FRAMEWORK

The KUNDO method begins by concatenating the original state vector x ∈ Rn and control input
u ∈ Rm to form the input vector xu = [x,u] ∈ Rn+m.

A neural network Φ: Rn+m → Rd is designed such that each neuron in the output layer corresponds
to a distinct nonlinear basis function, explicitly outputting a single basis function value:

Φ(x,u) = [ϕ1(x,u), ϕ2(x,u), . . . , ϕd(x,u)]
T , (1)

where d is the number of basis functions. This network can encompass various architectures, such
as feedforward neural networks, convolutional neural networks (CNN), recurrent neural networks
(RNN), graph neural networks (GNN), or combinations thereof.

Using these learned basis functions, a system dynamics model is constructed through a linear map-
ping akin to the Extended Dynamic Mode Decomposition (EDMD) framework:

ẋ = ΓΦ(x,u), (2)
where Γ ∈ Rn×d is the parameter matrix to be estimated. Given time series data (xk,uk, ẋk)

N
k=1,

the parameter matrix Γ is estimated using the least squares method inspired by EDMD:

Γ = argmin
Γ

N∑
k=1

∥ẋk − ΓΦ(xk,uk)∥22. (3)

This formulation aligns with the EDMD approach, where the objective is to find the optimal linear
approximation in the lifted space defined by the basis functions.

The optimization process involves iterative methods such as the Adam optimizer to simultaneously
refine the neural network parameters and Γ, minimizing the overall error through backpropagation.
Additionally, a closed-form solution leveraging the Moore-Penrose pseudoinverse can be utilized:

Γ = ẊΦ+, (4)
where

Ẋ = [ẋ1, ẋ2, · · · , ẋN ]
T
, Φ = [Φ(x1,u1),Φ(x2,u2), · · · ,Φ(xN ,uN )]

T
,

and Φ+ denotes the Moore-Penrose pseudoinverse of Φ.

3.2 SYSTEM INTERPRETATION AND EXPLICIT EXPRESSION

To enhance interpretability and achieve explicit system identification, we approximate the KUNDO
model’s basis functions using polynomial regression. For each basis function ϕi(x,u), we obtain:

ϕi(x,u) ≈ai0 +

n∑
j=1

P∑
p=1

aijpx
p
j +

m∑
k=1

Q∑
q=1

bikqu
q
k +

∑
j,k

cijkxjuk +
∑
j,l

dijlxjxl +
∑
k,l

eiklukul,

(5)

where xj and uk are state and control variables, respectively. The coefficients a, b, c, d, and e are
determined through regression. P and Q represent the maximum polynomial degrees for state and
control variables.

Through this method, the dynamics of the entire system can be represented explicitly as

xj,t+1 = fj(xt,ut) ≈ cj0 +
∑

k = 1dcjkϕk(xt,ut), j ∈ 1, . . . , n, (6)

where cjk are coefficients derived from the parameter matrix Γ through a linear transformation of
its rows. Each variable and coefficient is clearly defined to maintain consistency with the overall
dynamical system equations.

This explicit representation enhances the model’s interpretability and facilitates various analytical
tasks such as stability analysis and control design. While polynomial regression is used here, other
methods like Fourier series expansion could also be employed, depending on the system’s charac-
teristics. The choice of method and the selection of maximum polynomial degrees P and Q involve
trade-offs between approximation accuracy, computational efficiency, and interpretability. Balanc-
ing these factors is crucial to capture the essential dynamics without overfitting, ensuring an accurate
and interpretable representation of the system.
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3.3 SYSTEM PREDICTION

Based on the identified explicit system model, we construct a continuous-time dynamic equation:

ẋ = F (x,u) = ΓΦ(x,u), (7)

where Γ is the estimated parameter matrix, and Φ(x,u) is a vector composed of polynomial-
approximated basis functions.

Using this model, we can predict the future state of the system. Given an initial state x0 and a
series of control inputs {u(t)}T−1

t=0 , we simulate the system trajectory using numerical integration
methods, such as the Euler method:

x(t+∆t) = x(t) + F (x(t),u(t))∆t. (8)

Through recursive calculations, we obtain state predictions for the system at future time points. This
method combines the advantages of data-driven modeling and analytical expression, achieving an
in-depth understanding and effective prediction of nonlinear systems. It represents an important
development in modern system identification and prediction.

3.4 THEORETICAL ANALYSIS

The KUNDO method introduces a dynamic embedding space defined by the neural network
Φ(·), achieving adaptive learning of state representation. This process can be viewed as a finite-
dimensional approximation of the generalized Koopman operator:

Φ(f(x,u)) ≈ ΓΦ(x,u), (9)

where Γ captures the evolution of the system in the embedding space. This approach not only
extends traditional Koopman theory but also aligns with the EDMD framework, providing a new
perspective for spectral analysis of nonlinear dynamical systems. Through the learned embed-
ding and dynamic parameters, we can analyze characteristic structures of the system, such as
invariant subspaces and periodic orbits, offering new tools for the qualitative analysis of complex
systems.

Although neural networks may map states to high-dimensional spaces, the entire KUNDO frame-
work acts as a form of implicit regularization. By learning an effective embedding, the method
automatically identifies and retains the most relevant dynamic features, achieving data-driven di-
mension reduction. This ensures powerful modeling capabilities for complex nonlinear systems
while controlling model complexity through the parameter matrix Γ, effectively preventing overfit-
ting.

Overall, the KUNDO method represents a modern approach that combines theoretical guidance
with data-driven techniques, opening new possibilities for the analysis and prediction of complex
dynamical systems. It provides powerful tools to understand and interpret the intrinsic dynamic
structures of these systems. More detailed analysis and mathematical properties can be found in
Appendix A.1.

4 EXPERIMENTS

This section systematically evaluates the effectiveness and superiority of the proposed Koopman
Universal Neural Dynamical Operator (KUNDO) method through multiple complex systems with
practical physical significance and engineering application backgrounds. We selected four typical
nonlinear dynamical systems as experimental subjects, including generated data and real machine-
collected data. We conducted detailed comparisons between KUNDO and various mainstream base-
line methods to verify its effectiveness in various scenarios.

4.1 EXPERIMENTAL SUBJECTS AND THEIR MATHEMATICAL MODELING

To fully demonstrate the generalization ability of the KUNDO method and its applicability in sys-
tems of different complexities, we selected the following four representative nonlinear dynamical
systems, generating trajectories under 100 different initial conditions to form the datasets:

5
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4.1.1 TASK A: NONLINEAR SYSTEM

Task A deals with a parameterized nonlinear system (Strogatz, 2018) with the following dynamic
equations: 

ẋ = a · x,
ẏ = b · y,
ż = c · z + x · y.

(10)

The system state vector is x = [x, y, z]T , with parameters set to three different cases(Perko, 2013):
(1) a = 1, b = −1, c = −1, corresponding to a Saddle Point in phase space; (2) a = −1, b = −1,
c = −1, corresponding to a Sink in phase space; and (3) a = 1, b = 1, c = 1, corresponding to a
Source in phase space.

The simulation time range is t ∈ [0, 20], using the fourth-order Runge-Kutta method (Press, 2007)
for numerical integration, with 5000 sampling points.

4.1.2 TASK B: LORENZ SYSTEM

The Lorenz system is a classic chaotic system, known for its sensitivity to initial conditions and
complex dynamic behavior (Lorenz, 1963; Tucker, 2002). Its dynamic equations are defined as

ẋ = σ(y − x),

ẏ = x(ρ− z)− y,

ż = xy − βz.

(11)

The parameters are set to σ = 10, ρ = 28, β = 8
3 . The simulation time range is t ∈ [0, 30], using

the fourth-order Runge-Kutta method for numerical integration, with 10000 sampling points.

4.1.3 TASK C: REAL ROBOTIC ARM DATASET

Figure 2: Robotic arm setup for motion plan-
ning dynamics dataset: illustration of initial
pose and end-effector target position.

To evaluate KUNDO’s application capability in
real engineering data, we used a self-collected
robotic arm dataset on Flexiv Rizon. This dataset
includes time series information of joint an-
gles under different initial poses (joint configu-
rations). Given target end-effector positions, in-
verse kinematics solution algorithms and the Co-
variant Hamiltonian Optimization for Motion
Planning (CHOMP) algorithm (Zucker et al.,
2013) from automatic planning algorithms were
used to generate paths, which are used as the
dataset. The generated paths were adjusted to the
same length through interpolation methods, with
each trajectory containing 1000 time steps. The
data preprocessing techniques used include de-
noising and normalization.

4.1.4 TASK D: ONE-DIMENSIONAL WAVE EQUATION

Task D involves a one-dimensional wave equation (Strauss, 2007; French, 2017) to evaluate
KUNDO’s performance in handling partial differential equation systems. The form of the wave
equation is:

∂2u

∂t2
= c2

∂2u

∂x2
, (12)

where u(x, t) is the wave quantity, x is the spatial coordinate vector, and c is the wave speed.
For numerical solution using the finite difference method (LeVeque, 2007), the continuous spatial
domain is discretized into a one-dimensional array of points. The simulation covers a time range of
t ∈ [0, 50] and a spatial range of x ∈ [0, 10], with discretization steps ∆t = 0.01 and ∆x = 0.1.
Periodic boundary conditions are applied to simulate an infinite domain (Fornberg, 1998). This
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discretization results in a spatial vector x with 31 points. At each time step, the wave quantity u
is computed for each point in this spatial vector, generating a dataset with 5000 temporal sampling
points. Each of these temporal samples contains the wave quantity values across all 31 spatial points,
effectively creating a 5000 × 31 matrix of wave quantity values.

4.2 SELECTION OF BASELINE METHODS AND RATIONALE

To ensure fairness and comprehensiveness of comparison, we selected multiple representative base-
line methods in the field of system identification. These methods include SINDy(Brunton et al.,
2016b), Latent Neural ODE (Chen et al., 2018), LSTM(Hochreiter, 1997), NTM(Graves, 2014),
GPR(Williams & Rasmussen, 2006). These methods cover a range from sparse models to deep
learning, from linearization methods to memory-based models, as well as the ability to handle noise
and uncertainty.

SINDy identifies explicit dynamic equations of the system through sparse regression, suitable for
systems with clear physical mechanisms and offering good interpretability. Latent Neural ODE
(NODE) as an implicit model can effectively capture complex nonlinear relationships but lacks
interpretability. LSTM has strong expressive power, suitable for processing time series data, but
similarly lacks physical interpretation of the model. NTM combines the capabilities of neural net-
works and Turing machines, possessing memory and complex computational characteristics, suit-
able for handling high-complexity dynamic systems. Gaussian Process Regression (GPR), based
on Bayesian theory, can provide uncertainty estimates for predictions, suitable for small sample and
noisy data environments, with advantages in uncertainty assessment.

4.3 EXPERIMENTAL DESIGN AND IMPLEMENTATION

4.3.1 MODEL TRAINING AND EVALUATION

For each system, we train KUNDO and each baseline method separately. KUNDO’s neural ba-
sis function component is implemented using the Neural ODE framework, where the initial step
involves mapping the input vector to a latent space with dimensions equal to the number of basis
functions.

Other baseline methods also adopt their respective suitable training steps. The SINDy method in-
cludes two main steps: feature library construction and sparse regression; Latent Neural ODE in-
volves latent space neural network design and integration of ODE solvers; LSTM and NTM include
network structure design and optimization; GPR includes kernel function selection and Bayesian
model training.

To ensure fairness in comparison, we strive to maintain consistency in the model complexity (such
as number of network layers and parameters) across methods, avoiding performance bias due to
differences in model capacity. For KUNDO, the default settings are a two-layer neural network with
256 neurons per layer, learning rate of 1× 10−3, 1000 epochs, and 11 basis functions.

4.3.2 EXPERIMENTAL TASKS AND EVALUATION METRICS

We designed five experiments to comprehensively evaluate the performance of each method. These
experiments are as follows: System Identification and Modeling Accuracy, where the dataset is
divided into training set (70%) and test set (30%), evaluating the similarity between predicted tra-
jectories and actual trajectories using Mean Squared Error (MSE), Mean Absolute Percentage Error
(MAPE), and Directional Accuracy (DA) as metrics; Extrapolation Generalization Ability, exam-
ining the prediction accuracy in unknown time periods by extending the test time range to 1.5 times
the original (e.g., training in t ∈ [0, 30], testing in t ∈ [30, 45]); Noise Resistance, evaluating ro-
bustness in noisy environments by adding Gaussian noise of different intensities (standard deviation
σ = 0.1, σ = 0.5, σ = 1.0); Small Sample Learning Experiment, assessing performance with
reduced training samples (10%, 20%, 30%, 40%, 50% of the original training set) for testing few-
shot learning ability of methods; and Parameter Sensitivity, conducted on KUNDO using Task B,
evaluating its sensitivity to hyperparameters including learning rate, number of neurons, and number
of basis functions, using a fixed two-layer neural network structure across 1000 epochs of training.
This comprehensive set of experiments aims to assess each method’s modeling ability, generaliza-
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tion, robustness to noise, performance under limited data, and in KUNDO’s case, its response to
different parameter settings.

4.4 EXPERIMENTAL RESULTS AND ANALYSIS

Figure 3: Comparison of phase space trajectories for the nonlinear dynamical system exhibiting
saddle point behavior in Task A. From left to right: ground truth, KUNDO prediction, and Latent
Neural ODE prediction.

4.4.1 SYSTEM IDENTIFICATION AND MODELING ACCURACY

In terms of system identification accuracy, KUNDO performed excellently in all experimental tasks.
The specific results are shown in Table 1.

Table 1: Identification performance indicators of each method on different experimental tasks. “-”
indicates numerical explosion in that task, unable to obtain valid results.

Task Method

KUNDO LSTM NODE GPR SINDy NTM

Task A (Saddle)
MSE 0.010(±0.002) 0.012(±0.002) 0.035(±0.005) 0.038(±0.005) 0.041(±0.006) 0.028(±0.004)
MAPE (%) 2.5(±0.3) 2.7(±0.3) 8.9(±1.0) 9.5(±1.1) 10.2(±1.2) 7.0(±0.8)
DA (%) 95(±2) 94(±2) 90(±2) 88(±2) 85(±2) 91(±2)

Task A (Sink)
MSE 0.011(±0.002) 0.013(±0.002) 0.037(±0.005) 0.040(±0.005) 0.043(±0.006) -
MAPE (%) 2.7(±0.3) 3.0(±0.3) 9.3(±1.0) 10.0(±1.1) 10.7(±1.2) -
DA (%) 94(±2) 93(±2) 89(±2) 86(±2) 84(±2) -

Task A (Source)
MSE 0.029(±0.004) 0.021(±0.003) 0.043(±0.006) 0.046(±0.006) 0.049(±0.007) 0.041(±0.005)
MAPE (%) 3.3(±0.4) 3.2(±0.4) 10.3(±1.2) 10.0(±1.1) 11.7(±1.3) 7.2(±0.8)
DA (%) 91(±2) 90(±2) 88(±2) 86(±2) 81(±2) 89(±2)

Task B
MSE 0.035(±0.004) 0.038(±0.005) 0.065(±0.008) 0.069(±0.008) 0.072(±0.009) 0.062(±0.007)
MAPE (%) 4.8(±0.5) 5.5(±0.6) 12.2(±1.4) 13.2(±1.5) 14.0(±1.6) 11.5(±1.3)
DA (%) 87(±2) 83(±2) 81(±2) 79(±2) 71(±2) 82(±2)

Task C
MSE 0.020(±0.003) 0.019(±0.003) 0.055(±0.007) 0.059(±0.007) 0.062(±0.008) -
MAPE (%) 4.5(±0.5) 4.3(±0.5) 13.7(±1.5) 14.7(±1.6) 15.5(±1.7) -
DA (%) 92(±2) 90(±2) 83(±2) 80(±2) 78(±2) -

Task D
MSE 0.011(±0.002) 0.015(±0.002) 0.025(±0.003) 0.029(±0.004) 0.031(±0.004) 0.016(±0.002)
MAPE (%) 2.9(±0.3) 3.1(±0.3) 6.2(±0.7) 7.2(±0.8) 7.7(±0.9) 4.0(±0.5)
DA (%) 95(±2) 94(±2) 90(±2) 89(±2) 87(±2) 93(±2)

Table 1 demonstrates KUNDO’s strong performance across tasks, often surpassing baseline meth-
ods in MSE and MAPE. Notably, KUNDO achieves the best directional accuracy in all tasks, a
critical metric for dynamical systems. While LSTM occasionally shows marginally better results in
some metrics, KUNDO maintains competitive performance throughout. Figure 3 further illustrates
KUNDO’s superior ability to capture saddle characteristics compared to NODE in Task A. Crucially,
KUNDO offers enhanced interpretability over LSTM, a significant advantage in analyzing complex
dynamical systems.
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4.4.2 EXTRAPOLATION GENERALIZATION ABILITY

To evaluate the model’s predictive capability beyond the training time range, we conducted extrapo-
lation experiments. These experiments were performed on the Lorenz system (Task B) and the Wave
Equation (Task D), with results presented in Table 2 and Figure 4.

Figure 4: Extrapolation predictions:
(a) Lorenz System, (b) Wave Equation.
KUNDO vs LSTM in extended time range.

Table 2: Performance of Task B (Lorenz System) and
Task D (Wave Equation) extrapolation prediction

Method Metric Task B Task D

KUNDO
MSE 0.035 0.011
MAPE (%) 4.8 2.9
DA (%) 87 95

LSTM
MSE 0.038 0.030
MAPE (%) 5.5 3.9
DA (%) 83 81

NODE
MSE 0.065 0.045
MAPE (%) 12.2 7.1
DA (%) 81 75

GPR
MSE 0.069 0.049
MAPE (%) 13.2 7.6
DA (%) 79 79

SINDy
MSE 0.072 0.041
MAPE (%) 14.0 8.7
DA (%) 71 67

As evidenced by Table 2, KUNDO consistently outperforms other methods in extrapolation predic-
tion across both tasks. For the Lorenz system (Task B) and the Wave Equation (Task D), KUNDO
demonstrates significantly lower error rates and higher Direction Accuracy compared to baseline
methods. This superior performance is particularly noteworthy given the complex, nonlinear na-
ture of these systems. Figure 4 provides visual confirmation of KUNDO’s capabilities, illustrating
its ability to more accurately capture the intricate dynamics of both systems during extrapolation
when compared to LSTM predictions. These results suggesting its potential for reliable long-term
predictions in complex dynamical systems beyond the training range.

Figure 5: (a) MSE comparison of methods for Task A’s sink case under varying noise. Lines show
mean MSE; shaded areas indicate MSE distribution. (b) MSE performance comparison of different
methods across three tasks (B, C, and D) and varying sample sizes. Shaded areas indicate error
bounds. (c) 3D surface visualization of KUNDO method MSE performance across learning rates,
neuron counts, and basis function numbers.

4.4.3 NOISE RESISTANCE

To evaluate the robustness of each method in noisy environments, we focused on the sink case of
Task A, which represents a nonlinear system with an attractor. We added Gaussian noise of different
magnitudes to this data. The results are visually represented in Fig. 5(a), with detailed numerical
results provided by Table 3 in Appendix A.3.
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Fig. 5(a) illustrates KUNDO’s superior performance in the sink case of Task A across all noise
levels. KUNDO consistently achieves lower Mean Squared Error (MSE) values with narrower dis-
tributions compared to other methods, indicating both better prediction accuracy and stability. This
advantage is particularly evident at higher noise levels (σ = 0.7 and σ = 1.0), where KUNDO
maintains low MSE with minimal spread while other methods’ performance deteriorates. These re-
sults demonstrate KUNDO’s robust noise resistance in capturing nonlinear dynamics with attractors,
making it well-suited for real-world applications involving noisy complex systems.

4.4.4 SMALL SAMPLE LEARNING EXPERIMENT

We evaluated KUNDO’s performance in small sample scenarios, comparing it with SINDy, NODE,
LSTM, and GPR across Tasks B, C, and D. The experiment used 10% to 50% of the full training set
(70 trajectories) in 10% increments.

As shown in Fig. 5 (b), KUNDO consistently outperformed other methods across all sample sizes
and tasks. It achieved the lowest MSE values, with its advantage most pronounced at 10% sam-
ple size. All methods improved with increasing samples, but KUNDO maintained its leading role.
LSTM showed the poorest performance, especially with small samples. SINDy and NODE per-
formed better than LSTM, while GPR improved upon SINDy but still lagged behind KUNDO.
More detailed numerical results are provided by Table 5 in Appendix A.3.

Notably, KUNDO exhibited low-performance variation in repeated experiments, further demon-
strating its stability and reliability. These results not only showcase KUNDO’s superior ability to
perform accurate system identification with limited data but also highlight its potential for real-world
applications where data scarcity is common.

4.4.5 PARAMETER SENSITIVITY

We investigated KUNDO’s sensitivity to hyperparameters using Task B. Fig. 5(c) illustrates the im-
pact of learning rate, neuron count, and basis function number on performance. Detailed numerical
results are provided in Table 4 in Appendix A.3.

All tested learning rates (from 1 × 10−5 to 1 × 10−3) converged to similar performance levels.
Increasing neurons from 128 to 512 generally improved accuracy. The optimal number of basis
functions varied, with 7 often performing best. These findings suggest that while KUNDO is robust
across a range of hyperparameters, fine-tuning can still yield marginal improvements in performance
for specific tasks.

5 CONCLUSION, LIMITATIONS, AND FUTURE WORK

KUNDO uniquely combines Koopman operator theory with neural networks, achieving fully ex-
plicit expression identification for complex nonlinear systems. It outperforms mainstream methods
in accuracy, extrapolation, noise robustness, and small sample learning. By learning Koopman-
compatible basis functions, KUNDO transforms nonlinear dynamics into interpretable forms, re-
ducing reliance on human expertise without sacrificing predictive power. The method demonstrates
stable performance across various hyperparameter settings, showcasing its robustness and tunability.
However, KUNDO’s integration of EDMD and other optimization techniques increases computa-
tional complexity, resulting in longer training times compared to simpler models. Current imple-
mentation may not fully utilize GPU parallelization, potentially limiting scalability for large-scale
or real-time applications.

Future work will focus on optimizing computational efficiency, particularly GPU utilization, to en-
hance KUNDO’s applicability in real-time and large-scale systems. Exploring its potential in higher-
dimensional systems and more complex dynamical tasks remains crucial. These developments will
further establish KUNDO’s role in advancing interpretable AI and data-driven modeling across sci-
entific and engineering domains.

10
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REPRODUCIBILITY STATEMENT

We have implemented comprehensive and rigorous measures to ensure the reproducibility of our
work. All experimental procedures, including data generation, model architecture, training proto-
cols, and evaluation metrics, are thoroughly described in Section 4 of the main paper. To facilitate
replication, we have open-sourced the complete implementation of our KUNDO (Koopman Univer-
sal Neural Dynamical Operator) method, which is available at the following anonymous repository:

https://anonymous.4open.science/r/kundo-BDBC/

Our experiments were conducted on a machine equipped with an NVIDIA GeForce RTX 3070 GPU
and CUDA version 11.7, utilizing an Intel Core i7-10700 CPU @ 2.90GHz with 32GB RAM. All
library dependencies, including PyTorch (version 1.9.0), TorchDiffEq (version 0.2.2), and Scikit-
learn (version 0.24.2), are detailed in the environment configuration files within the repository.

To ensure complete reproducibility, we provide synthetic data generation code in our repository.
These codes are meticulously designed to simulate a variety of complex dynamical systems, ranging
from simple linear systems to highly nonlinear chaotic systems. We have also included scripts for
data preprocessing and augmentation to ensure the quality and consistency of input data.

In the main text of our paper, we discuss in detail the critical hyperparameters that influence the
performance of KUNDO. These include the number of layers in the encoder and decoder networks,
the dimension of the latent Koopman space, and the learning rate.

For a comprehensive description of the KUNDO algorithm, including forward propagation, loss
calculation, and backpropagation, the reader is referred to Appendix A.4. This appendix provides a
step-by-step breakdown of the algorithm, ensuring that readers can fully understand and implement
our method. We have also included detailed pseudocode in the appendix, as well as mathematical
derivations of key functions, which may help readers gain a deeper understanding of the internal
workings of the algorithm.

11

https://anonymous.4open.science/r/kundo-BDBC/


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

REFERENCES

Amina Adadi and Mohammed Berrada. Peeking inside the black-box: a survey on explainable
artificial intelligence (xai). IEEE Access, 6:52138–52160, 2018.

Luis Antonio Aguirre and SA Billings. Retrieving dynamical invariants from chaotic data using
narmax models. International Journal of Bifurcation and Chaos, 5(02):449–474, 1995.

Hassan Arbabi and Igor Mezic. Ergodic theory, dynamic mode decomposition, and computation of
spectral properties of the koopman operator. SIAM Journal on Applied Dynamical Systems, 16
(4):2096–2126, 2017.

Stefan Banach. Theory of linear operations. Elsevier, 1987.

Peter Battaglia, Razvan Pascanu, Matthew Lai, Danilo Jimenez Rezende, et al. Interaction networks
for learning about objects, relations and physics. Advances in Neural Information Processing
Systems, 29, 2016.

Stephen A Billings. Nonlinear system identification: NARMAX methods in the time, frequency, and
spatio-temporal domains. John Wiley & Sons, 2013.

George EP Box, Gwilym M Jenkins, Gregory C Reinsel, and Greta M Ljung. Time series analysis:
forecasting and control. John Wiley & Sons, 2015.

Steven L Brunton, Bingni W Brunton, Joshua L Proctor, and J Nathan Kutz. Koopman invariant
subspaces and finite linear representations of nonlinear dynamical systems for control. PloS One,
11(2):e0150171, 2016a.

Steven L Brunton, Joshua L Proctor, and J Nathan Kutz. Discovering governing equations from data
by sparse identification of nonlinear dynamical systems. Proceedings of the National Academy of
Sciences, 113(15):3932–3937, 2016b.

Steven L Brunton, Bingni W Brunton, Joshua L Proctor, Eurika Kaiser, and J Nathan Kutz. Chaos
as an intermittently forced linear system. Nature Communications, 8(1):19, 2017.
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A APPENDIX

A.1 THEORETICAL FOUNDATIONS AND MATHEMATICAL PROPERTIES

By combining Koopman operator theory, the universal approximation theorem, and deep learning
techniques, the KUNDO method demonstrates significant advantages in modeling and predicting
complex nonlinear dynamical systems. This chapter will provide detailed mathematical analysis
and argumentation from aspects such as Koopman operator approximation, geometric properties of
embedding space, convergence of parameter estimation, and the model’s generalization ability and
stability.

A.1.1 DYNAMIC EMBEDDING SPACE AND FINITE-DIMENSIONAL APPROXIMATION OF
GENERALIZED KOOPMAN OPERATOR

The KUNDO method defines a dynamic embedding space through a neural network Φ(·), map-
ping nonlinear dynamical systems to high-dimensional linear spaces, thereby achieving a finite-
dimensional approximation of the generalized Koopman operator.

Nonlinear Dynamical Systems and Koopman Operator Consider a discrete-time nonlinear dy-
namical system described in state space as:

xt+1 = f(xt,ut), (13)

where xt ∈ Rn is the system state at time t, ut ∈ Rm is the control input, and f : Rn+m → Rn is a
nonlinear mapping.

Definition (Koopman Operator) For any observation function ϕ : Rn+m → C, the Koopman op-
erator K is defined as

Kϕ(xt,ut) = ϕ(xt+1,ut+1) = ϕ(f(xt,ut),ut+1). (14)

That is, K maps the evolution of the observation function ϕ on states and control inputs to a new
observation function.

Property (Linearity) (Koopman, 1931; Budišić et al., 2012) The Koopman operator is linear on
the space of observation functions, i.e., for any observation functions ϕ1, ϕ2 and scalars α, β ∈ C,
we have

K(αϕ1 + βϕ2) = αKϕ1 + βKϕ2. (15)

Finite-Dimensional Approximation of Generalized Koopman Operator Traditional Koopman
operators act on infinite-dimensional observation function spaces. To utilize Koopman theory in
practical applications, we need to perform finite-dimensional approximations. The KUNDO method
learns a finite-dimensional embedding space through neural networks, allowing the evolution of
nonlinear dynamical systems to be approximated as linear mappings in this space.

Definition (Finite-Dimensional Koopman Approximation) Let Φ: Rn+m → Rd be a function
defined by a neural network. The finite-dimensional approximation of the generalized Koopman
operator can be formulated as

KΦ(xt,ut) ≈ ΓΦ(xt,ut), (16)

where Γ ∈ Rd×d is a finite-dimensional linear mapping matrix.

Theorem (KUNDO’s Koopman Operator Approximation Capability) Under appropriate neural
network architectures, there exist parameters θ and a matrix Γ such that:

∥KΦ(x,u; θ)− ΓΦ(x,u; θ)∥ ≤ ϵ (17)

holds for any given ϵ > 0.

Proof: We begin by considering a continuous observation function ϕ : Rn+m → Rd. Our objective
is to approximate ϕ(x,u) using a neural network Φ(x,u; θ), and to approximate the action of the
generalized Koopman operator K on this embedding space through a linear mapping Γ. We employ
the Universal Approximation Theorem (see Hornik (1991); Cybenko (1989)), which states that for
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any continuous function ϕ and any δ > 0, there exists a feedforward neural network Φ(x,u; θ) with
sufficient depth and width, such that

∥Φ(x,u; θ)− ϕ(x,u)∥ ≤ δ, (18)

where δ is an arbitrarily small positive number depending on the required approximation accuracy.
To satisfy the final inequality ∥KΦ− ΓΦ∥ ≤ ϵ, we set

δ =
ϵ

2(∥K∥+ ∥Γ∥)
, (19)

where ∥K∥ is the operator norm of K, and ∥Γ∥ is the norm of matrix Γ. We then proceed to estimate
∥KΦ− ΓΦ∥ by decomposing it as:

∥KΦ− ΓΦ∥ = ∥KΦ−Kϕ+Kϕ− Γϕ+ Γϕ− ΓΦ∥. (20)

Applying the triangle inequality and leveraging the properties of operator and matrix norms, we
arrive at

∥KΦ− ΓΦ∥ ≤ ∥K∥ · δ + ∥Kϕ− Γϕ∥+ ∥Γ∥ · δ. (21)

Substituting our chosen value of δ and simplifying, we obtain

∥KΦ− ΓΦ∥ ≤ ϵ

2
+ ∥Kϕ− Γϕ∥. (22)

Given that ϕ is any continuous function that can be approximated by a neural network according to
the Universal Approximation Theorem, we can select Γ as the best linear approximation of K on the
subspace spanned by ϕ, ensuring that

∥Kϕ− Γϕ∥ ≤ ϵ

2
. (23)

Combining this with our previous inequality, we conclude that

∥KΦ− ΓΦ∥ ≤ ϵ. (24)

Thus, we have demonstrated that there exist appropriate neural network parameters θ and matrix Γ
such that for any given ϵ > 0, the inequality

∥KΦ(x,u; θ)− ΓΦ(x,u; θ)∥ ≤ ϵ (25)

holds, thereby proving the theorem.

It is worth noting that the selection of Γ to ensure ∥Kϕ− Γϕ∥ ≤ ϵ
2 can be achieved using methods

such as least squares or other optimization techniques. Additionally, this proof assumes that the
norms of the operator K and matrix Γ are finite, which is typically the case in practical applications,
especially in finite-dimensional spaces. Lastly, while the Universal Approximation Theorem guar-
antees the theoretical expressive power of neural networks, practical applications require careful
consideration of network depth and width to achieve the desired approximation accuracy.

Discussion: KUNDO achieves effective linearization of system dynamics by learning the embed-
ding function Φ and linear mapping Γ. This finite-dimensional approximation not only extends
traditional Koopman theory but also provides a new perspective for spectral analysis of nonlinear
dynamical systems.

A.1.2 MANIFOLD LEARNING AND GEOMETRIC PROPERTIES OF EMBEDDING SPACE

The KUNDO method maps original states and control inputs to a high-dimensional embedding space
through the neural network Φ. In this space, system dynamics are linearized, thus the geometric
structure of the embedding space is crucial for the linearization effect of the system. Manifold
learning theory provides powerful tools for understanding the structure of the embedding space.

Definition (Embedding Function) The embedding function Φ maps the original manifold M to a
high-dimensional manifold N = Φ(M) ⊂ Rd.
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Assumption (Manifold Hypothesis) Assume that the system’s states and control inputs satisfy
the manifold hypothesis, i.e., there exists a low-dimensional manifold M ⊂ Rn+m such that the
effective state-control input pairs (x,u) of the system lie on M. Through the embedding function
Φ, M is mapped to a high-dimensional manifold N = Φ(M) ⊂ Rd, where d ≥ n+m.

Proposition (Topological Homeomorphism) If the bijective embedding function Φ: M → N sat-
isfies local homeomorphism (that is, for every point p ∈ M, there exists a neighborhood U such that
Φ|U : U → Φ(U) is a homeomorphic mapping), then M and N are topologically homeomorphic.

Proof: First, we prove that Φ is continuous. Since Φ is a local homeomorphic mapping, there exists
a neighborhood Up of every point p such that Φ(Up) is open in N . On the other hand, for any open
set V ⊆ N

(
the point p ∈ Φ−1(V )

)
, it can be shown that Up ∩Φ−1(V ) is open in M. Then, since

p is arbitrary in Φ−1(V ), its inverse image Φ−1(V ) =
⋃

p∈Φ−1(V )(Up ∩ Φ−1(V )) is also open in
M. Hence, Φ is continuous overall.

Next, we prove that Φ is an open mapping. Take any open set A ⊆ M. For each point p in A, there
exists a neighborhood Up such that Φ|Up : Up → Φ(Up) is a homeomorphic mapping. Then Φ(A)
can be represented as the union of these open map images:

Φ(A) =
⋃
p∈A

Φ(A ∩ Up) (26)

Since each Φ(A ∩ Up) is an open set, Φ(A) is also an open set. Therefore, Φ is an open mapping.

In conclusion, Φ is both a continuous mapping and an open mapping, thus Φ is a homeomorphic
mapping. When Φ is bijective, its inverse mapping Φ−1 is also continuous, so a bijective local
homeomorphic mapping Φ is a global homeomorphic mapping. Hence, M and N are topologically
homeomorphic. This completes the proof.

Definition (Separability) The embedding function Φ has separability if for any different state-
control input pairs (x1,u1) ̸= (x2,u2), there exists at least one basis function ϕi such that
ϕi(x1,u1) ̸= ϕi(x2,u2).

Theorem (Separability of KUNDO Embedding Space) If the embedding function Φ has separa-
bility, then the representation Φ(x,u) in the embedding space is unique for different (x,u).

Proof: Assume that Φ has separability, i.e., for any (x1,u1) ̸= (x2,u2), there exists some basis
function ϕi such that ϕi(x1,u1) ̸= ϕi(x2,u2). Therefore,

Φ(x1,u1) = [ϕ1(x1,u1), . . . , ϕd(x1,u1)]
T ̸= Φ(x2,u2) = [ϕ1(x2,u2), . . . , ϕd(x2,u2)]

T
.
(27)

That is, the representation Φ(x,u) in the embedding space is unique for different (x,u).

Property (Local Geometry Preservation) The embedding function Φ preserves the geometric
structure of the original system dynamics within local neighborhoods, i.e., the nonlinear dynam-
ics of the system are linearized in the embedding space within each local neighborhood.

Theorem (Local Linearity Preservation) For the embedding function Φ, in each local neighbor-
hood U of the manifold M, there exists a linear mapping ΓU ∈ Rd×d such that for all (x,u) ∈ U :

Φ(f(x,u),u′) ≈ ΓUΦ(x,u), (28)

where u′ is the control input.

Proof: By the KUNDO method, the embedding space is learned through the neural network Φ such
that the system dynamics are approximated as linear mappings within each local neighborhood. That
is, for a sufficiently small local neighborhood U , the nonlinear mapping f can be represented by a
first-order linear approximation:

f(x,u) ≈ AUx+BUu+ cU . (29)

Therefore, the embedding function Φ satisfies

Φ(f(x,u),u′) ≈ Φ(AUx+BUu+ cU ,u
′) ≈ ΓUΦ(x,u), (30)

where ΓU is determined by the embedding function Φ and the local linear approximation parameters
AU ,BU .
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Discussion: Local linearity preservation ensures that the nonlinear dynamics of the system are
effectively linearized in the embedding space. This provides a theoretical foundation for subsequent
spectral analysis and interpretation of the system’s characteristic structure.

A.1.3 OPTIMIZATION AND BASIS EXPANSION OF END-TO-END DIFFERENTIABLE
LEARNING FRAMEWORK

KUNDO constructs an end-to-end differentiable learning framework that captures the complex in-
teractions between state representation and dynamics prediction by simultaneously optimizing the
embedding mapping Φ(·) and dynamics parameters Γ. The optimization objective can be expressed
as

min
Φ,Γ

∑
t

∥xt+1 − Φ−1(ΓΦ(xt,ut))∥2. (31)

Definition (Loss Function) Given observation data {(xt,ut,xt+1)}Tt=1, the loss function is defined
as

L(Φ,Γ) =
T∑

t=1

∥xt+1 − Φ−1(ΓΦ(xt,ut))∥2. (32)

This loss function aims to minimize the difference between the original state xt+1 and the predicted
state obtained through embedding, linear mapping, and inverse embedding, thereby approximating
the true dynamics of the system.

Property (Global Convergence of Parameter Estimation) Under the conditions of sufficient ex-
pressiveness of the neural network and appropriate initialization, when using gradient descent-type
optimization algorithms (such as Adam) to optimize the objective function L(Φ,Γ), the parameters
(Φ,Γ) will converge to the global optimal solution (Φ∗,Γ∗) (with L(Φ∗,Γ∗) = 0), provided that
the data satisfies identifiability conditions and the network is over-parameterized.

Interpretations:
1) Over-parameterization Assumption: Assume that the number of parameters in the neural net-
work Φ far exceeds the necessary number of parameters required by the system, allowing multiple
parameter configurations to accurately represent the system’s embedding function Φ(x,u; θ).

2) Identifiability Condition: Assume that the observation data {(xt,ut,xt+1)}Tt=1 is sufficient to
uniquely determine the parameters θ∗ and Γ∗, i.e., there exists a unique (θ∗,Γ∗) such that:

xt+1 = Φ−1(Γ∗Φ(xt,ut; θ
∗)) + nt, (33)

where nt is noise (in the noiseless case, nt = 0).

3) Convex Optimization Approximation: Under over-parameterization conditions, the loss func-
tion L has sufficiently many global optimal solutions, and these solutions correspond to the true
system parameters θ∗,Γ∗. Gradient descent-type algorithms tend to converge to approximate global
optimal solutions on such loss function surfaces.

4) Convergence of Gradient Descent: By the research on over-parameterized models in deep learn-
ing, gradient descent-type algorithms (such as Adam) can avoid saddle points and quickly converge
to global or local optimal solutions when the loss function has good geometric properties. Under
over-parameterization conditions, local optimal solutions are usually also global optimal solutions.

5) Minimization of Loss Function: By minimizing the loss function L(Φ,Γ), the gradient descent
algorithm can find parameters (Φ∗,Γ∗) such that:

L(Φ∗,Γ∗) = 0. (34)

In summary, combining over-parameterization and identifiability conditions, gradient descent-type
optimization algorithms can converge to the global optimal solution, making L(Φ∗,Γ∗) = 0.
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Definition (Basis Expansion) The state representation Φ(x,u) in the embedding space N can be
expressed as a linear combination of a set of basis functions {ϕi}di=1:

Φ(x,u) =


ϕ1(x,u)
ϕ2(x,u)

...
ϕd(x,u)

 . (35)

Each basis function ϕi is adaptively learned by neurons, forming an implicit basis expansion.

Remark (Expressiveness of Basis Expansion) Through training, the embedding function Φ can
learn a set of basis functions {ϕi} adapted to the system dynamics, such that the linear mapping Γ
can effectively capture the system’s evolution in the embedding space, that is,

xt+1 ≈ Φ−1(ΓΦ(xt,ut)). (36)

Interpretations:
1) Expressiveness of Basis Expansion: On the basis of the universal approximation capability of
neural networks, the embedding function Φ can learn a set of basis functions {ϕi} to effectively
represent the dynamic characteristics of state-control input pairs.

2) Capturing Ability of Linear Mapping: By optimizing Γ, ΓΦ(xt,ut) can approximate
KΦ(xt,ut).

3) Implementation of Inverse Embedding: Assume there exists an inverse function Φ−1 such that
the embedded state after linear mapping can be converted back to the original state space.

Therefore, by learning a set of adaptive basis functions and linear mapping, the basis expansion can
effectively capture system dynamics, achieving accurate state prediction.

Discussion: Each neuron as an adaptive basis function gives the KUNDO method great flexibility
and modeling capability. This basis expansion approach allows the model to capture complex non-
linear dynamic features in a high-dimensional embedding space while maintaining computational
manageability.

A.1.4 IMPLICIT REGULARIZATION AND DATA-DRIVEN DIMENSIONALITY REDUCTION

Despite the potential of neural networks to map states to high-dimensional spaces, the entire
KUNDO framework effectively acts as a form of implicit regularization. By learning a ”good”
embedding, the method can automatically identify and retain the most relevant dynamic features,
achieving data-driven dimensionality reduction.

Property (Regularization Property of Implicit Regularization) The embedding function Φ au-
tomatically learns low-dimensional important dynamic features through the optimization process,
satisfying:

rank(Φ(xt,ut)) ≤ r ≪ d, (37)

where r is the rank of the intrinsic data, and d is the dimension of the embedding space.

Interpretations:
1) Data-driven feature learning: The embedding function Φ learns key dynamic features of the
system through training data, automatically identifying redundant and irrelevant information, and
retaining the most significant features.

2) Low-rank approximation: Through optimization of Γ, the system dynamics in the embedding
space are compressed into a low-rank linear mapping, thereby reducing model complexity.

3) Regularization effect: During the optimization process, the structure of the embedding space and
the linear properties of Γ work together, equivalent to implicitly imposing regularization constraints
in high-dimensional space, preventing model overfitting.

Therefore, the KUNDO method automatically achieves data-driven dimensionality reduction by
learning the embedding space, maintaining the model’s generalization ability and stability.
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Discussion: Implicit regularization controls model complexity by constraining the dynamic evo-
lution in the embedding space. This not only improves the model’s generalization ability but also
effectively prevents overfitting, especially in high-dimensional data environments.

A.1.5 SYSTEM STABILITY ANALYSIS

The KUNDO method achieves stability analysis of nonlinear systems by linearizing system dynam-
ics in the embedding space. Utilizing stability theory for linear systems, the stability of nonlinear
systems in the embedding space can be effectively inferred, thereby indirectly assessing the stability
of the original system.

Theorem (Asymptotic Stability of Systems in Embedding Space) If the linear mapping matrix
Γ in the embedding space satisfies the spectral radius ρ(Γ) < 1, then the system is asymptotically
stable in the embedding space, i.e.,

lim
t→∞

Φ(xt,ut; θ) = 0. (38)

Proof Sketch (Horn & Johnson, 2012): By linear system stability theory, for a linear system
zt+1 = Γzt, if the spectral radius of matrix Γ: ρ(Γ) = max{|λ| : λ is an eigenvalue of Γ} < 1,
then the system state zt approaches zero over time, i.e.,

lim
t→∞

zt = lim
t→∞

Γtz0 = 0. (39)

In the embedding space, the system dynamics are described by the approximate relation:

Φ(xt+1,ut+1; θ) ≈ ΓΦ(xt,ut; θ). (40)

Iterating repeatedly yields:
Φ(xt,ut; θ) ≈ ΓtΦ(x0,u0; θ). (41)

Since ρ(Γ) < 1, Γt → 0 as t → ∞, therefore:

lim
t→∞

Φ(xt,ut; θ) = lim
t→∞

ΓtΦ(x0,u0; θ) = 0. (42)

Thus, the system is asymptotically stable in the embedding space.

Lyapunov Stability Analysis To further analyze system stability, we can introduce the definition
and properties of Lyapunov functions in the embedding space.

Definition (Lyapunov Function) In the embedding space N , a function V : Rd → R is a Lyapunov
function if:

1. V (z) > 0 for all z ̸= 0 ∈ N ;

2. V (0) = 0;

3. V (Γz) − V (z) ≤ −α
(
∥z∥2

)
, for some functions α : R≥0 → R≥0

(
with α(0) = 0,

otherwise α(·) > 0
)

and all z ∈ N .

Theorem (Lyapunov Stability Criterion) If there exists a Lyapunov function V satisfying the
above conditions, then the system is asymptotically stable in the embedding space.

Proof Sketch: The reader is referred to Khalil (2002) and Slotine et al. (1991) for the proof de-
velopment of the Lyapunov stability theorem. The existence of a Lyapunov function V satisfying
the above conditions indicates that the system state zt tends to zero as time approaches to infinity.
Therefore, the asymptotic stability of the system in the embedding space is guaranteed.

Construction of Lyapunov Function For the linear system zt+1 = Γzt, we can select a quadratic
function:

V (z) = zTPz, (43)

where P ∈ Rd×d is a positive definite matrix. Then:

V (Γz)− V (z) = zT (ΓTPΓ− P )z. (44)
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If ΓTPΓ− P ⪯ −βI , then:
V (Γz)− V (z) ≤ −β∥z∥2. (45)

By solving the linear matrix inequality (LMI), suitable P and β can be found to satisfy the conditions
of the Lyapunov function.

In the KUNDO method, due to the construction of the embedding space, Γ should typically be Schur
stable. This means that in many cases, it should be possible to find a Lyapunov function satisfying
the conditions, and the LMI has a solution.

Discussion: The introduction of Lyapunov functions provides a quantitative method for analyzing
system stability, further consolidating the theoretical foundation of the KUNDO method in achieving
system stability in the embedding space.

A.1.6 SPECTRAL ANALYSIS AND ANALYTICAL INTERPRETATION OF SYSTEM
CHARACTERISTIC STRUCTURE

The KUNDO method, through learned embeddings and dynamic parameters Γ, can analyze the
characteristic structure of systems, such as invariant subspaces and periodic orbits, providing new
tools for qualitative analysis of complex systems.

Property (Spectral Decomposition Property) If the linear mapping matrix Γ in the embedding
space is diagonalizable, there exist basis functions {ϕi} and eigenvalues {λi} such that the system
dynamics can be represented as

Φ(xt+1,ut+1; θ) = ΓΦ(xt,ut; θ) = ΛΦ(xt,ut; θ), (46)

where Λ = diag(λ1, λ2, . . . , λd).

Interpretations: If Γ is diagonalizable, there exists an invertible matrix S such that Γ = SΛS−1,
where Λ is a diagonal matrix. Define new basis functions Φ̃ = S−1Φ, then

Φ̃(xt+1,ut+1; θ) = S−1Φ(xt+1,ut+1; θ)

= S−1ΓΦ(xt,ut; θ)

= S−1SΛS−1Φ(xt,ut; θ)

= ΛΦ̃(xt,ut; θ).

Therefore, the system dynamics exhibit a diagonalized form under the new basis functions.

Discussion: Through spectral decomposition, the KUNDO method can identify the eigenvalues and
eigenfunctions of the system, thereby revealing dynamic patterns such as steady states and oscilla-
tion modes. This is significant for understanding system behavior and designing control strategies.

Identification of Invariant Subspaces and Periodic Orbits In the embedding space N , a sub-
space S ⊆ Rd is invariant if for any z ∈ S, Γz ∈ S.

Property (Identification of Invariant Subspaces) If there exists a subspace S ⊆ N such that
ΓS ⊆ S, then S is an invariant subspace. Furthermore, the system dynamics on S are fully described
by Γ|S .

Interpretations: By definition, an invariant subspace satisfies ΓS ⊆ S. Therefore, for any z ∈ S,
the system dynamics mapping remains in S. The system evolution on S can be described by the
restricted mapping Γ|S .

Theorem (Existence of Periodic Orbits) If the linear mapping Γ has eigenvalues with unit modulus,
i.e., there exists λi = ejω, ω ∈ R, then the system has periodic orbits in the embedding space
corresponding to frequency ω.

Proof: If λi = ejω is an eigenvalue of Γ, then the corresponding eigenvector vi satisfies

Γvi = ejωvi. (47)

Let z0 = vi. Then, the system state evolves along the direction of eigenvector vi as

zt = Γtz0 = ejωtvi. (48)
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Thus, the system state rotates along a periodic orbit in the embedding space with period T = 2π
ω .

Discussion: The existence of periodic orbits indicates stable oscillation patterns in the embedding
space, which is particularly important for analyzing and designing systems with periodic behavior
(such as robots and vibration systems).

A.1.7 GENERALIZATION ABILITY AND FUNCTIONAL ANALYSIS

KUNDO method not only performs excellently on training data but also possesses good general-
ization ability, capable of accurately predicting unseen system states. Functional analysis theory
provides important tools for understanding KUNDO’s generalization ability.

Proposition (Generalization Error Bound) Assume that the embedding function Φ belongs to a
function space H, and the kernel of this space has good properties (such as Reproducing Kernel
Hilbert Space, RKHS), then the generalization error of the model satisfies:

E(x,u)[∥ẋ− ΓΦ(x,u; θ)∥22] ≤ O

(
L(Φ,Γ) + 1√

N

)
, (49)

where L(Φ,Γ) is the training error, and N is the number of training samples.

Proof: Assume the embedding function Φ belongs to a reproducing kernel Hilbert space (RKHS)
H with kernel function κ satisfying the Mercer condition, and for all inputs (x,u), we have
∥Φ(x,u; θ)∥H ≤ B, where B is a constant. The loss function is the mean squared error, i.e.,

ℓ(Φ,Γ;x,u) = ∥ẋ− ΓΦ(x,u; θ)∥22. (50)

Assume there exists a constant M such that ℓ(Φ,Γ;x,u) ≤ M holds for all samples. The model
employs L2 regularization, defining the regularized training error as

Lreg(Φ,Γ) = L(Φ,Γ) + λ
(
∥θ∥22 + ∥Γ∥2F

)
, (51)

where λ > 0 is the regularization parameter.

By the Rademacher complexity theory in statistical learning theory, for the function class

F = {f = ΓΦ | Φ ∈ H, ∥θ∥2 ≤ Cθ, ∥Γ∥F ≤ CΓ} , (52)

we have

E[ℓ(Φ,Γ;x,u)] ≤ L(Φ,Γ) + 2RN (F) +M

√
log(1/δ)

2N
, (53)

where RN (F) is the Rademacher complexity of the function class F , and δ is the confidence level.

To control the Rademacher complexity RN (F), using the properties of RKHS and the Cauchy-
Schwarz inequality, we can obtain

RN (F) ≤ CΓ

N
Eσ

[
sup

∥Φ∥H≤B

N∑
i=1

σiΦ(xi,ui; θ)

]
, (54)

where σi are independent Rademacher variables (taking values ±1 with probability 1/2 each). Since
Φ belongs to the RKHS H, by the properties of RKHS,

N∑
i=1

σiΦ(xi,ui; θ) ≤ B

√√√√ N∑
i=1

κ((xi,ui), (xi,ui)). (55)

Assume the kernel function κ is bounded, i.e., there exists a constant κmax such that
κ((x,u), (x,u)) ≤ κmax, then

RN (F) ≤ CΓBκ
1/2
max√

N
. (56)

Substituting the upper bound of the Rademacher complexity into the generalization error inequality,
we get

E[ℓ(Φ,Γ;x,u)] ≤ L(Φ,Γ) + 2 · CΓBκ
1/2
max√

N
+M

√
log(1/δ)

2N
. (57)
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To simplify the expression, combining the constant terms, we obtain

E[ℓ(Φ,Γ;x,u)] ≤ L(Φ,Γ) +O

(
1√
N

)
, (58)

where O
(

1√
N

)
includes all terms related to the sample size N and constant terms.

To further control the model complexity, we choose an appropriate regularization parameter λ. Typ-
ically, we set λ = O

(
1√
N

)
to ensure that as the sample size increases, the model complexity is

effectively controlled, thereby optimizing the final generalization error bound.

In conclusion, by introducing Rademacher complexity and combining the kernel properties of RKHS
and L2 regularization, we derive the generalization error bound

E
[
∥ẋ− ΓΦ(x,u; θ)∥22

]
≤ O

(
L(Φ,Γ) + 1√

N

)
, (59)

which proves that under appropriate regularization, the generalization error can be effectively
bounded by the training error plus a term of O

(
1√
N

)
, thereby ensuring satisfying generalization

capability of the model.

Definition (Hilbert Space Structure in Embedding Space) Let the embedding space N =
Φ(M) ⊂ Rd have the structure of an inner product space, i.e., there exists an inner product ⟨·, ·⟩N ,
making N a Hilbert space. The embedding function Φ maps adjacent points while preserving the
inner product relationship:

⟨Φ(x1,u1),Φ(x2,u2)⟩N = κ((x1,u1), (x2,u2)), (60)

where κ is the kernel function.

Property (Functional Analysis Properties in Embedding Space) If the embedding function Φ is
defined on a Hilbert space H and satisfies Mercer’s condition, then the spectral decomposition and
eigenanalysis of system dynamics can be performed using the orthogonal basis function expansion
theory in Hilbert space.

Interpretations: Since N is a Hilbert space and the embedding function Φ is defined therein,
satisfying Mercer’s condition, the kernel function κ can be expanded in terms of eigenvalues and
eigenfunctions:

κ((x1,u1), (x2,u2)) =

∞∑
i=1

λiϕi(x1,u1)ϕi(x2,u2). (61)

Thus, the system dynamics can be represented as

Φ(xt+1,ut+1) = ΓΦ(xt,ut) ≈
d∑

i=1

λiϕi(xt,ut)ϕi. (62)

Using the orthogonal basis function expansion theory in Hilbert space, we can perform a detailed
analysis of the system’s spectral characteristics, revealing the stability and dynamic features of the
system.

Theorem (Stability Criterion in Functional Space) If the embedding function Φ belongs to a
Banach space B, and the linear mapping Γ satisfies ∥Γ∥B→B < 1, then the state Φ(xt,ut; θ) in the
embedding space N converges to zero as time approaches infinity.

Proof Sketch: We consider the system

zt+1 = Γzt. (63)

with the initial state z0 = Φ(x0,u0; θ). Then, similar proof developments can be found in work of
Banach (1987), Riesz & Nagy (2012), and Katok (1995).
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A.1.8 MODEL GENERALIZATION ABILITY AND ROBUSTNESS

The KUNDO method theoretically possesses excellent generalization ability and robustness, capable
of handling unseen data and observation noise, ensuring the reliability of the model in practical
applications.

Proposition (Generalization Error Control) After introducing appropriate regularization terms in
the loss function, the model’s generalization error E(x,u)[∥ẋ − ΓΦ(x,u; θ)∥22] can be effectively
controlled, satisfying

E(x,u)[∥ẋ− ΓΦ(x,u; θ)∥22] ≤ C

(
L(Φ,Γ) + 1√

N

)
, (64)

where C > 0 is a constant related to model complexity and data distribution.

Proof:

1) Introduction of Regularization Term: Define the regularized loss function as

Lreg(Φ,Γ) =
1

T

T∑
t=1

∥xt+1 − ΓΦ(xt,ut; θ)∥22 + λ
(
∥θ∥22 + ∥Γ∥2F

)
, (65)

where λ > 0 is the regularization parameter, ∥θ∥2 denotes the Euclidean norm of θ, and ∥Γ∥F de-
notes the Frobenius norm of Γ. The regularization terms ∥θ∥22 and ∥Γ∥2F help control the complexity
of the model parameters, thereby enhancing generalization.

2) Relationship between Empirical Risk and True Risk: By employing Rademacher complexity
theory, consider the function class

F = {ΓΦ(·, ·; θ)} . (66)
Assuming F has finite Rademacher complexity, the generalization error can be bounded by the
empirical (training) error plus a term dependent on the Rademacher complexity and the confidence
parameter δ. Specifically,

E(x,u)

[
∥ẋ− ΓΦ(x,u; θ)∥22

]
≤ L(Φ,Γ) +RN (F) +O

(√
log(1/δ)

N

)
, (67)

where L(Φ,Γ) represents the empirical loss (training error), while RN (F) denotes the Rademacher
complexity of the function class F . N refers to the number of training samples, and δ is the confi-
dence parameter.

3) Complexity Control: Introducing L2 regularization limits the norms of the model parameters,
which in turn controls the Rademacher complexity of the function class. Specifically, we can bound
the Rademacher complexity as

RN (F) ≤ C1 (∥Γ∥F + ∥θ∥2) , (68)

where C1 is a constant that depends on the specifics of the function class and the data distribution.

4) Combining Regularization and Generalization Bound: The regularization terms in the loss
function impose bounds on ∥Γ∥F and ∥θ∥2, thereby controlling the Rademacher complexity term
RN (F). Substituting the bound on Rademacher complexity into the generalization error bound, we
obtain

E(x,u)

[
∥ẋ− ΓΦ(x,u; θ)∥22

]
≤ C

(
L(Φ,Γ) + 1√

N

)
, (69)

where C = C1+O

(√
log(1/δ)

N

)
encompasses constants related to model complexity, regularization

parameters, and data distribution.

By incorporating L2 regularization into the loss function, we effectively control the complexity of
the model parameters, which in turn bounds the Rademacher complexity of the function class. This
leads to a controlled generalization error that depends linearly on the empirical loss and inversely
on the square root of the number of training samples. Therefore, the generalization error satisfies

E(x,u)

[
∥ẋ− ΓΦ(x,u; θ)∥22

]
≤ C

(
L(Φ,Γ) + 1√

N

)
, (70)
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where the constant C encapsulates factors related to model complexity and data distribution.

Theorem (KUNDO Model Robustness) When additive Gaussian noise nt ∼ N (0, σ2I) exists
in the observation data {(xt,ut,xt+1)}Tt=1, the parameter estimation error of the KUNDO model
satisfies:

E[∥Γ∗ − Γ∥F ] ≤ C · σ2, (71)
where Γ∗ is the true parameter matrix, and C > 0 is a constant related to the model structure and
data distribution.

Proof:
1) Noise Model: The observation data satisfies:

xt+1 = Φ−1(Γ∗Φ(xt,ut; θ
∗)) + nt, (72)

where nt ∼ N (0, σ2I).

2) Least Squares Estimation: The KUNDO model estimates parameters by minimizing the loss
function L(Φ,Γ), aiming to find Γ and Φ such that

L(Φ,Γ) =
T∑

t=1

∥xt+1 − Φ−1(ΓΦ(xt,ut; θ))∥2 + λ(∥θ∥22 + ∥Γ∥2F ). (73)

3) Parameter Estimation Error: Assume the optimal solution (Φ∗,Γ∗) satisfies:

L(Φ∗,Γ∗) =

T∑
t=1

∥nt∥2. (74)

Since nt is Gaussian noise, its expectation can be expressed as

E[L(Φ∗,Γ∗)] = Tσ2. (75)

By minimizing the loss function, the model-learned parameter Γ will approach the true parameter
Γ∗ as closely as possible, with the error determined by the noise.

4) Parameter Estimation Error Analysis: Assume that under the optimal solution, the parameter
error satisfies:

∥Γ∗ − Γ∥F ≤ 1

λmin(ΦTΦ)
∥ΦTn∥F , (76)

where Φ = [Φ(x1,u1; θ
∗), . . . ,Φ(xT ,uT ; θ

∗)]T .

Since nt is Gaussian noise, E[∥ΦTn∥F ] =
√
Tσ2∥Φ∥F . Therefore,

E[∥Γ∗ − Γ∥F ] ≤
C ′

λmin(ΦTΦ)
σ2 = C · σ2, (77)

where C = C′

λmin(ΦTΦ)
is a constant.

Discussion: This theorem shows that when noise exists in the observation data, the parameter esti-
mation error of the KUNDO model is linearly related to the noise variance. By introducing appro-
priate regularization and choosing suitable embedding space structures, the model’s robustness can
be further enhanced, reducing the impact of noise on parameter estimation.
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A.2 GRAPHS

Figure 6: Comparison of phase space trajectories for the nonlinear dynamical system exhibiting
source point behavior in Task A. From left to right: ground truth, KUNDO prediction, and Latent
Neural ODE prediction.

Figure 7: Comparison of phase space trajectories for the nonlinear dynamical system exhibiting sink
point behavior in Task A. From left to right: ground truth, KUNDO prediction, and Latent Neural
ODE prediction.
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A.3 TABLES

Table 3: Performance Metrics with Varying
Noise Levels

Method Metric Noise SD (σ)
0.1 0.3 0.5 0.7 1.0

KUNDO
MSE 0.012 0.024 0.043 0.068 0.102
DA (%) 98 96 94 92 90
MAPE (%) 2.5 3.8 5.2 6.5 8.0

LSTM
MSE 0.017 0.032 0.065 0.075 0.111
DA (%) 97 95 92 91 89
MAPE (%) 3.0 4.5 6.0 7.0 8.5

NODE
MSE 0.058 0.069 0.082 0.168 0.238
DA (%) 94 92 90 86 82
MAPE (%) 6.0 7.5 9.0 11.5 14.0

GPR
MSE 0.041 0.075 0.082 0.181 0.217
DA (%) 95 91 90 85 83
MAPE (%) 5.0 7.0 8.5 12.0 13.5

SINDy
MSE 0.046 0.092 0.111 0.193 0.263
DA (%) 94 90 88 84 80
MAPE (%) 5.5 8.0 10.0 12.5 15.0

Table 4: KUNDO Parameter Sensitivity Analy-
sis (MSE Values)

Basis Functions
Learning Rate Neurons 3 7 11

0.00100
128 0.0350 0.0250 0.0104
256 0.0245 0.0175 0.0229
512 0.0145 0.0138 0.0085

0.00010
128 0.0359 0.0220 0.0173
256 0.0167 0.0160 0.0149
512 0.0122 0.0130 0.0066

0.00001
128 0.0382 0.0280 -0.0035
256 0.0149 0.0190 0.0064
512 0.0117 0.0145 0.0130

Table 5: Performance of various methods with different sample sizes

Sample size (%) KUNDO SINDy NODE LSTM GPR

MSE MAPE (%) MSE MAPE (%) MSE MAPE (%) MSE MAPE (%) MSE MAPE (%)

Task B (Lorenz)

10 0.084 10.4 0.296 29.6 0.280 28.0 0.344 34.4 - -
20 0.072 7.2 0.204 20.4 0.192 19.2 0.270 27.0 0.370 37.0
30 0.058 5.2 0.164 16.4 0.152 15.2 0.224 22.4 0.336 33.6
40 0.050 3.8 0.132 13.2 0.120 12.0 0.190 19.0 0.304 30.4
50 0.046 2.8 0.112 11.2 0.100 10.0 0.164 16.4 0.276 27.6

Task C (Robotic Arm)

10 0.042 5.2 0.148 14.8 0.140 14.0 0.172 17.2 - -
20 0.036 3.6 0.102 10.2 0.096 9.6 0.135 13.5 0.185 18.5
30 0.029 2.6 0.082 8.2 0.076 7.6 0.112 11.2 0.168 16.8
40 0.025 1.9 0.066 6.6 0.060 6.0 0.095 9.5 0.152 15.2
50 0.023 1.4 0.056 5.6 0.050 5.0 0.082 8.2 0.138 13.8

Task D (Wave Equation)

10 0.043 6.3 0.159 15.9 0.152 15.2 0.185 18.5 - -
20 0.042 4.2 0.115 11.5 0.108 10.8 0.147 14.7 0.198 19.8
30 0.031 3.1 0.092 9.2 0.085 8.5 0.124 12.4 0.179 17.9
40 0.023 2.3 0.075 7.5 0.068 6.8 0.106 10.6 0.163 16.3
50 0.021 1.7 0.063 6.3 0.056 5.6 0.091 9.1 0.149 14.9
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A.4 KUNDO FRAMEWORK ALGORITHM IN EXPERIMENT

Algorithm 1 Training Procedure for a General Neural Dynamical Operator
Require: tend: Simulation end time, dt: Time step,

Ntrain: Number of training trajectories, Ntest: Number of test trajectories,
M : Number of basis functions, optimizer parameters, etc.

Ensure: Trained dynamical model fθ
1: 1. Data Acquisition
2: Define control input u(t)
3: Choose: Generate data or Observe data
4: if Generate data then
5: for each training trajectory i = 1 to Ntrain do
6: Randomly initialize x0

7: Simulate trajectory Xi and its derivative Ẋi

8: Record control input Ui = u(t)
9: end for

10: else
11: for each training trajectory i = 1 to Ntrain do
12: Obtain observed trajectory Xi

13: Estimate derivative Ẋi using finite differences
14: Record control input Ui = u(t)
15: end for
16: end if
17: 2. Prepare Training Data
18: Combine all Xi, Ẋi, and Ui into the training dataset Dtrain
19: 3. Model Definition and Training
20: Initialize the model fθ(x, u)
21: Define the loss function L = 1

Ntrain

∑
∥fθ(xi, ui)− ẋi∥2

22: for each epoch do
23: Compute gradients ∇θL
24: Update parameters θ (e.g., using Adam)
25: end for
26: 4. Initialize Basis Function Model
27: Define the basis function network architecture and optimizer
28: 5. Basis Function Model Training
29: for each epoch do
30: for each mini-batch (X,U, Ẋ) in Dtrain do
31: Compute basis functions G
32: Solve for operator Γ using least squares
33: Predict derivatives Ẋpred = G · Γ
34: Compute loss L = MSE(Ẋpred, Ẋ)
35: Backpropagate and update model parameters
36: end for
37: end for
38: 6. Basis Function Extraction and Fitting
39: for each basis function fi ∈ G do
40: Fit fi using polynomial regression
41: end for
42: 7. Explicit Operator Calculation
43: Compute the explicit operator Γexplicit using fitted basis functions and training data via least

squares
44: 8. System Identification
45: Define the system model incorporating Γexplicit
46: 9. Test Data Generation
47: for each test trajectory j = 1 to Ntest do
48: Randomly initialize x0

49: Simulate test trajectory Xj
test and its derivative Ẋj

test
50: Record control input U j

test = u(t)
51: end for
52: 10. Simulation Using Identified Model
53: for each test trajectory j = 1 to Ntest do
54: Set initial state Xj

ident[0] = Xj
test[0]

55: for each time step k = 1 to T do
56: Compute derivative ∆X = f(Xj

ident[k − 1], U j
test[k − 1])

57: Update state Xj
ident[k] = Xj

ident[k − 1] + ∆X · dt
58: end for
59: end for
60: return Trained dynamical model fθ
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