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ABSTRACT

Out-of-distribution (OOD) detection holds significant importance across various ap-
plications. While semantic and domain-shift OOD problems are well-documented,
this work focuses on the nuances of covariate shifts, which entail subtle pertur-
bations or variations in the data distribution. These disturbances have proven to
negatively impact machine learning performance. We have found that existing
OOD detection methods often struggle to effectively distinguish covariate shifts
from in-distribution instances, emphasizing the need for specialized solutions.
Therefore, we propose DisCoNet, an Adversarial Variational Autoencoder (VAE)
that rethinks the Generative Adversarial Networks paradigm. Instead of priori-
tizing the generator as the network’s core, we focus on the discriminator, using
the generator as a supporting training tool. DisCoNet uses the VAE’s suboptimal
outputs as negative samples to train the discriminator, thereby improving its ability
to delineate the boundary between in-distribution samples and covariate shifts. By
tightening this in-distribution boundary, DisCoNet achieves state-of-the-art results
in public OOD detection benchmarks. The proposed model not only excels in
detecting covariate shifts, achieving 98.9% AUROC on ImageNet-1K(-C), but also
outperforms all prior methods on public semantic OOD benchmarks. With a model
size of ≤ 25MB, it is highly effective on Far-OOD (OpenImage-O (99.4%) and
iNaturalist (100.0%)) and Near-OOD (SSB-hard (99.9%) and NINCO (99.7%))
detection. The code will be made publicly available.

1 INTRODUCTION

Out-of-distribution (OOD) detection consists of identifying whether a given test sample significantly
deviates from the known information of in-distribution (ID) data. It is mainly employed as a
preliminary step in image-based systems, aiming to mitigate the risks associated with feeding OOD
inputs to a model. Besides safeguarding a system against erroneous predictions, it also facilitates the
safe handling of OOD samples, either by rejection or transfer to human intervention. However, the
significance of OOD lies not only in bolstering the reliability of image processing systems, but also in
its standalone role for anomaly and fault detection. A simple example of this use case can be found in
the visual inspection of industrial image data, where it is easy to acquire imagery of normal samples
yet virtually impossible to define the expected defects (Roth et al., 2022). In the OOD context, these
anomalies can be broadly classified into two types: (1) anomalous objects in images which refer to
unexpected or rare items appearing in the frame, and (2) faulty equipment or products which refer to
malfunctions or irregularities in the machinery or products under inspection. As a consequence, this
task is typically cast as an OOD classification problem.

OOD detection comprises various types of shifts in data. (1) Semantic shifts, such as encountering
unseen classes, and (2) domain shifts, like distinguishing between real images and drawings, have
easily established boundaries and are well-defined in literature (Hendrycks & Gimpel, 2016; Li
et al., 2017). On the other hand, (3) covariate shifts, which involve perturbations in data or subtle
changes in its expected variability, are often conflated with domain shifts (Yang et al., 2021). It
is essential to differentiate covariate shifts, since they pose unique challenges requiring tailored
detection mechanisms.
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Figure 1 illustrates the proposed framework for interpreting shifts in a data distribution. In our
definition, the ID range covers an expected semantic shift, containing a pre-defined number of
different classes, as exemplified by CIFAR-10 (Krizhevsky et al., 2009), along with some degree of
variability in terms of domain and covariate shifts. For instance, the introduction of a novel class such
as the spiders in ImageNet-200 (Le & Yang, 2015) represents an OOD semantic shift, as CIFAR-10
lacks such examples. An extreme change in domain, such as a hand-drawn representation of a plane
from the Sketch dataset (Eitz et al., 2012), is considered OOD, despite the retaining of semantic
relevance within the ID set. Additionally, substantial covariate shifts, such as image blurring in the
case of a horse image from CIFAR-10(-C) (Hendrycks & Dietterich, 2019), are also classified as
OOD, even though there are no explicit alterations in semantic or domain concepts.

Figure 1: Diagram illustrating data distribution shifts. Variations in the z-axis define semantic
shifts, domain shifts represent new contexts like sketches with unchanged semantics and variability,
and covariate shifts indicate changes within the same domain and semantic content, such as image
perturbations (e.g., blurring).

Various unsupervised OOD detection methods employing generative models like Variational Autoen-
coders (VAEs) (Pinaya et al., 2021), Generative Adversarial Networks (GANs) (Schlegl et al., 2017),
Normalizing Flows (NFs) (Kobyzev et al., 2020) and more recently Denoising Diffusion Probabilistic
Models (DDPMs) (Wyatt et al., 2022) have already been explored. The detection of anomalous data
is usually performed by assessing whether they deviate from the learned representation manifold, or
by comparing the reconstructed and original images in pixel space. DDPMs exhibit superior mode
coverage compared to GANs and VAEs, albeit with much slower sampling rates (Xiao et al., 2021).
NFs present a good framework for OOD detection, but it is well documented that they often assign
a higher likelihood to OOD samples than the ID data (Kirichenko et al., 2020). However, these
approaches have focused mainly on semantic and domain-shift detection, rather than covariate shift.
Furthermore, the efficiency of these methods is often disregarded.

In this paper, we demonstrate that training a discriminator in an Adversarial VAE framework, using
both reconstructed and generated images, results in an excellent OOD detector. Within this covariate
shift-focused framework, the model can not only address covariate shift detection but also tackle
semantic OOD samples, all while significantly accelerating detection speed compared to prior work.
Since the proposed approach is trained end-to-end, the generated sample and image reconstruction
quality are refined during training and utilized as OOD samples to improve the discriminator, yielding
the quality of these counterfactual examples irrelevant. The main contributions of this work are as
follows.

• Redefinition of adversarial training by inverting the roles of the generator and discriminator,
using the generator to distill information about in-distribution boundaries, enabling the
discriminator to separate in-distribution and out-of-distribution samples effectively.

• DisCoNet, a lightweight unsupervised framework specifically designed for OOD detection.
• State-of-the-art performance in detecting both covariate and semantic OOD shifts, as demon-

strated by extensive evaluations that reveal significant improvements over existing methods.
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2 RELATED WORK

2.1 SEMANTIC SHIFT AND COVARIATE SHIFT OOD

OOD detection literature predominantly focuses on semantic shift and typically falls into two
categories: (a) supervised, which requires labels or OOD data, and (b) unsupervised, which relies
solely on in-distribution data (Yang et al., 2021). Given the nature of the OOD detection problem,
OOD data are typically not available and, as such, unsupervised methods are generally preferred.
While the primary aim of this research is covariate shift OOD identification, we provide a brief
overview of recent unsupervised advancements in semantic OOD detection that may be useful for
covariate OOD detection. Covariate shift occurs when images have consistent semantic and domain
content, but are recorded under deviating imaging settings and conditions, or corrupted in a post-
processing step. Hence, the degree of variance under these conditions can deteriorate semantic and
domain content. This study focuses on covariate shifts within the same domain, as these subtle
distribution shifts can cause significant drops in the classification performance of machine learning
models, as seen in adversarial attacks (Adhikarla et al., 2023).

2.2 GENERATIVE-BASED METHODS FOR OOD DETECTION

A widely used and initially intuitive approach for OOD detection involves fitting a generative model
p(x; θ) to a data distribution x and evaluating the likelihood of unseen samples under this model,
assuming that OOD samples will have lower likelihoods (Bishop, 1994). However, this assumption
has been challenged, with various generative models assigning higher likelihoods to certain OOD
samples (Hendrycks et al., 2018; Nalisnick et al., 2018). To address this, different approaches
have been proposed, including using the Watanabe-Akaike Information Criterion (WAIC) (Choi
et al., 2018), specific likelihood ratios (Serrà et al., 2019; Xiao et al., 2020), and hierarchical
VAEs (Havtorn et al., 2021). These methods aim to correct for likelihood estimation errors, population-
level background statistics, and model feature dominance. Another approach suggests labeling
samples as OOD if their likelihoods fall outside the typical range of a model (Chali et al., 2023; Abdi
et al., 2024), i.e., a sample may be classified as OOD not only if its likelihood is lower than that of ID
data, but also if it is higher (Morningstar et al., 2021).

2.3 RECONSTRUCTION-BASED METHODS FOR OOD DETECTION

Reconstruction-based methods involve training a model R to reconstruct inputs x from the training
distribution, such that we obtain x̂ = R(x). The rationale is that if R has an information bottleneck it
will struggle to accurately reconstruct OOD inputs. However, these methods face practical challenges,
including difficulty in tuning the information bottleneck size (Pimentel et al., 2014; Denouden et al.,
2018). If it is too small, ID samples may not be faithfully reconstructed; if it is too large, the model
can learn the identity function, allowing OOD samples to be reconstructed with low error. Some
approaches address these issues by using the Mahalanobis distance in the Autoencoder’s feature
space as an OOD metric (Denouden et al., 2018), or by introducing a memory module to discourage
OOD sample reconstruction (Gong et al., 2019). However, none of these methods fully resolve the
bottleneck selection issue. To tackle this limitation, DDPMs have been employed, leveraging noise
bottlenecks (Wyatt et al., 2022) and reconstructions from a range of noise values without the need for
dataset-specific tuning (Graham et al., 2023) or of corrupted inputs (Liu et al., 2023).

2.4 FEATURE-BASED AND LOGIT-BASED METHODS FOR OOD DETECTION

Several scoring functions have been devised to differentiate between ID and OOD examples, leverag-
ing characteristics of ID samples, but not represented in OOD ones, and vice versa. These functions
primarily stem from three sources: (1) probability-based measures, such as maximum softmax
probabilities (Hendrycks & Gimpel, 2016), and minimum Kullback-Leibler (KL) divergence between
softmax and mean class-conditional distributions (Hendrycks et al., 2019); (2) logit-based functions,
including maximum logits (Hendrycks et al., 2019), and the use of the logsumexp function com-
puted over logits (Liu et al., 2020); (3) feature-based functions, involving the norm of the residual
between a feature and its low-dimensional embeddings (Ndiour et al., 2020), as well as minimum
Mahalanobis distance between a feature and class centroids (Lee et al., 2018). Some hybrid methods
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combine both logit and feature scores for OOD detection (Wang et al., 2022), while more recent
works have introduced masked image modeling pretraining into OOD detection with promising
results (Li et al., 2023a; 2024). However, the detection speed of these methods is severely constrained
by their transformer-based backbones.

2.5 ADVERSARIAL VARIATIONAL AUTOENCODERS

The VAE (Kingma & Welling, 2013) consists of an encoder that predicts the parameters µ and σ of
the variational distribution of the input data, and a decoder that takes a sample from this distribution to
reconstruct the input. VAEs are trained to maximize the Evidence Lower Bound (ELBO), which bal-
ances reconstruction fidelity with the latent space regularization to ensure that it follows a predefined
probability distribution, typically Gaussian. Using latent space as a bottleneck restricts the informa-
tion that can pass through, leading to uncertainty and blurriness in the reconstructions (Dai & Wipf,
2019). Additionally, the pixel-wise reconstruction error and the high dimensionality of natural image
manifolds pose challenges for VAEs in generating high-quality and realistic samples. While natural
images are assumed to lie on low-dimensional manifolds due to local scale redundancy (Kretzmer,
1952), textures exist in higher-dimensional manifolds, making them difficult to capture.

GANs (Goodfellow et al., 2014) consist of two neural networks with adversarial objectives: the
generator learns to map a random vector to the data space; the discriminator acts as a classifier trained
to differentiate real samples from generated ones. Despite their success in generation tasks, GANs
suffer from two primary limitations compared to VAEs. The first is mode collapse, which occurs
when the generator produces only a few different types repeatedly, making it easily recognizable by
the discriminator. Consequently, the discriminator’s feedback lacks useful information (Thanh-Tung
& Tran, 2020). Additionally, GANs lack an encoder network, which limits their ability to perform
reconstruction and latent space manipulation.

The VAE and GAN have been combined by incorporating a discriminator to enhance the realism
of VAE reconstructions (Larsen et al., 2016). Alternatively, the BiGAN (Donahue et al., 2016)
architecture features an encoder, generator, and discriminator, aiming for good unsupervised feature
representations but tends to produce less accurate reconstructions. Other approaches have adapted
this VAE/GAN combination to fully utilize the strengths of each architecture to improve the realism
of the images produced by the model (Plumerault et al., 2021). The objective of DisCoNet is to retain
the adversarial benefits and the mode coverage of the hybrid strategy, without the final goal of image
generation, thereby reducing computational requirements.

3 DISCONET

3.1 OVERVIEW

A prevalent generative-based approach to OOD detection involves leveraging a trained model to assess
the likelihood of new, unseen samples. Similarly, an adversarially trained discriminator can provide a
boundary for the ID set, by assessing the probability of a sample being real (ID) or synthetic (OOD).
By adjusting where the discriminator learns to draw this boundary, we can create an OOD detector.

Figure 2: Overview of DisCoNet. During inference, only the Discriminator is used.

It is on this premise that we propose a Discrimative Covariate Shift Network, DisCoNet. DisCoNet
is an Adversarial VAE-inspired architecture, as shown in Figure 2, in which both the VAE and the
discriminator are trained adversarially. DisCoNet’s approach combines generative and reconstruction-
based strategies to distill information about the ID set and OOD boundaries to the discriminator
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during training in an unsupervised manner. Unlike traditional adversarial methods, DisCoNet’s focus
is on leveraging the generator’s output as a tool to refine the discriminator.

The VAE is trained to reduce the standard ELBO loss, while also producing samples (generated
images using the VAE decoder) that can fool the discriminator. The discriminator is trained to
not only distinguish between generated and real images, as in the standard GAN setup, but also
reconstructed images. Reconstructions from VAEs typically lack detail, i.e., they have a sub-optimal
high-frequency representation (Lin et al., 2023), which can be found in certain types of covariate
shifts, such as blurriness. On the other hand, images generated from GANs often exhibit severe
high-frequency differences, leading the discriminator to focus excessively on these components (Li
et al., 2023b). This focus can hinder the generator’s ability to capture low-frequency components. By
training the discriminator on reconstructions and generations, and encouraging both to appear more
realistic, the discriminator’s boundaries of the ID frequency spectrum become tighter, strengthening
its ability to detect OOD samples, as illustrated in Figure 3.

Figure 3: Covariate shifts can be simulated by reconstructed and generated images. Encouraging
more realism helps to tighten the border between the ID and the OOD sets.

3.2 TRAINING

The VAE in DisCoNet’s framework remains unchanged compared to the traditional VAE, with
parameters θ and composed of an encoder EθE and a decoder GθG responsible for generating an image
output. The VAE is a parameterized model given by qθE(z|x(i)) = N (z;µ(i), σ2(i)I), where µ(i) and
σ2(i) are outputs of EθE . The prior distribution of the latent codes is p(z) = N (z; 0, I). The VAE loss
function combines a reconstruction term and a latent space regularization term, as demonstrated in
the original paper by Kingma & Welling (2013) and in adversarial implementations (Plumerault et al.,
2021). The reconstruction term optimizes the encoding-decoding process, while the regularization
term aligns the encoder distributions with a standard normal distribution. The latter is represented
by the KL-divergence between the predicted distribution and a standard Gaussian. Both terms are
represented in Figure 2 and can be written as

LVanillaVAE = ∥x(i) − GθG(z)∥2 −
1

2

dim(z)∑
j=1

(
1 + log

(
σ
2(i)
j

)
− µ

2(i)
j − σ

2(i)
j

)
. (1)

An additional model, the discriminator D, parameterized by ϕ, is added to the traditional VAE
architecture. It has two main goals, as shown in Figure 2. First, it must discern between real images
and images either reconstructed from zreal or generated from random noise zfake. This can be achieved
by minimizing the cross-entropy function

LD = Ex∼p(x) [log (1−Dϕ(x))]

+ Ex∼pθG (x|zreal) [log (Dϕ(x))] + Ex∼pθG (x|zfake) [log (Dϕ(x))] .
(2)

This suggests that in addition to the discriminator’s initial goal of improving generated images
(sampled from random noise), it also pushes the reconstructions toward more realism. Therefore,
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an adversarial loss term, which encourages the VAE to generate or reconstruct images that fool the
discriminator, is added to the loss function, so that

LAdv = Ex∼pθG (x|zreal) [1− log (Dϕ(x))] + Ex∼pθG (x|zfake) [1− log (Dϕ(x))] . (3)

The final DisCoNet loss function is thus a weighted combination of both the Vanilla VAE loss and
the adversarial loss, which results in

LTotal = ∥x(i) − GθG(z)∥2 −
ωKL

2

dim(z)∑
j=1

(
1 + log

(
σ
2(i)
j

)
− µ

2(i)
j − σ

2(i)
j

)
+ ωRecEx∼pθG (x|zreal) [1− log (Dϕ(x))] + ωGenEx∼pθG (x|zfake) [1− log (Dϕ(x))] .

(4)

3.3 INFERENCE

During test time, only the discriminator is utilized through a single forward pass across the network
to determine the probability of a sample belonging to the ID set. However, we aim to express the
results as anomaly scores A, ideally attributing an anomaly score of 0 to an ID sample, and a score of
1 to an OOD sample. This score can be defined as

A(x) = −Dϕ(x) + 1. (5)

4 BENCHMARK METHODOLOGY

4.1 DATASETS

In OOD detection benchmarks, the conventional approach involves designating an entire dataset as
ID and then compiling multiple datasets that lack any semantic overlap with the ID categories to act
as OOD sets.

To ensure consistency in the benchmarking process, we adhere to the methodology proposed by
OpenOOD (Yang et al., 2022). Our evaluation encompasses three tasks: (1) Near-OOD, which
exhibits slight semantic variation compared to ID datasets; (2) Far-OOD, which encompasses both
semantic and domain shifts; and (3) Covariate Shift OOD, involving corruptions within the ID
set. Three datasets are defined as ID: CIFAR-10 (Krizhevsky et al., 2009), ImageNet-200 (Le &
Yang, 2015), and ImageNet-1K (Russakovsky et al., 2015). Further details on dataset selection and
availability are summarized in Appendix A.1.

4.2 EVALUATION METRICS

The evaluation metrics employed in OpenOOD by Yang et al. (2022) are adopted for this work. These
two main evaluation metrics are: (1) AUROC, which measures the area under the Receiver Operating
Characteristic (ROC) curve, and displays the relationship between True Positive Rate (TPR) and
False Positive Rate (FPR); and (2) FPR@95, which measures the FPR when the TPR is equal to
95%, with lower scores indicating better performance. The full results are provided in the form
"AUROC/FPR@95%".

4.3 SELECTED MODELS

A set of SOTA models representing the various approaches to OOD detection are trained and employed
as baselines for extensive validation of the proposed approach. GLOW (Kingma & Dhariwal, 2018)
represents generative-based methods, allowing assessment through both Log-Likelihood and the
recently proposed typicality (Chali et al., 2023) metric. DDPM-OOD (Graham et al., 2023) is the
selected reconstruction-based technique. For feature-based and logit-based methodologies, we opt
for MOODv2 (Li et al., 2024), a state-of-the-art model for semantic OOD detection. To explore
adversarial techniques, a Deep Convolutional GAN (DC-GAN) (Radford et al., 2015) provides a
baseline, alongside a Prescribed GAN (Dieng et al., 2019) to investigate the impact of mode collapse
mitigation strategies. For the ImageNet-1K benchmark, we compare against the available public
models instead of retraining models that have shown limited effectiveness. Specifically, we evaluate
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our method against MOODv2, NNGuide (Park et al., 2023), and SCALE (Xu et al., 2023), which report
SOTA performance on Near-OOD and Far-OOD detection for these datasets. The implementation
details are provided in Appendix A.2 and the source code will be publicly released.

5 EXPERIMENTS & RESULTS

This section describes the conducted experiments and presents the key results. It covers Covariate
Shift OOD detection, as well as Near-OOD and Far-OOD detection performance for the selected
models. Additional detailed experimental results can be found in the supplemental materials.

5.1 COVARIATE SHIFT OOD

As shown in Table 1, DisCoNet consistently outperforms all other models in detecting OOD covariate
shifts across CIFAR-10, ImageNet-200, and ImageNet-1K, achieving the highest average detection
scores across all corruption intensities. DDPM-OOD shows improved detection on ImageNet-200
compared to CIFAR-10, while MOODv2 demonstrates a decrease in OOD detection. NNGuide
demonstrates robust performance for higher intensities. SCALE’s results are not reported due to
difficulties in implementing Covariate Shift within their framework. Detailed performance analyses
for each model, including per corruption type and intensity, can be found in Appendices A.4, A.5,
and A.6.

Table 1: Covariate shift OOD benchmark results for models trained on CIFAR-10 and ImageNet-200.

ID Model Corruption Intensity Average
1 2 3 4 5

C
IF

A
R

-1
0

GLOW (Kingma & Dhariwal, 2018) 60.7/71.9 57.5/71.5 58.4/69.5 58.7/68.4 58.7/66.3 58.9/69.5
GLOW (Chali et al., 2023) (Typ.) 41.9/90.8 42.9/85.5 41.2/86.8 40.7/84.8 41.2/81.2 41.6/85.8

DDPM-OOD (Graham et al., 2023) 59.1/88.5 64.3/81.7 68.7/73.5 71.3/70.6 75.3/63.0 67.8/75.5
MOODv2 (Li et al., 2024) 72.0/82.1 74.9/78.8 76.9/76.1 78.7/73.8 82.1/69.2 76.9/76.0

DC-GAN (Radford et al., 2015) 52.6/92.8 53.9/91.5 54.9/90.9 55.7/90.2 56.6/89.3 54.7/90.9
PresGAN (Dieng et al., 2019) 63.1/86.9 70.9/78.2 73.2/70.8 75.8/65.4 79.5/60.0 72.5/72.3

DisCoNet (Prop.) 90.0/30.3 97.4/9.2 96.0/10.1 98.2/5.4 99.3/2.0 96.2/11.4

Im
ag

eN
et

-2
00

GLOW (Kingma & Dhariwal, 2018) 35.2/91.0 38.4/81.9 37.0/79.0 35.8/78.4 34.7/78.4 36.2/81.7
GLOW (Chali et al., 2023) (Typ.) 50.6/86.0 48.8/82.8 49.9/78.9 51.7/75.0 53.8/71.4 51.0/78.8

DDPM-OOD (Graham et al., 2023) 67.6/75.5 71.7/69.6 76.8/60.3 79.5/52.5 81.9/48.4 75.5/61.3
MOODv2 (Li et al., 2024) 59.8/89.1 62.8/87.3 67.1/84.2 72.2/80.5 77.1/76.3 67.8/83.5

DC-GAN (Radford et al., 2015) 57.6/87.7 58.7/86.4 59.9/84.9 61.2/83.3 62.1/81.9 59.9/84.8
PresGAN (Dieng et al., 2019) 61.2/88.5 64.3/86.1 68.1/80.4 70.6/74.1 70.9/70.1 67.0/79.9

DisCoNet (Prop.) 99.7/1.9 99.7/1.7 99.7/2.0 99.8/1.3 99.8/0.8 99.7/1.5

IN
-1

K MOODv2 (Li et al., 2024) 60.3/88.9 65.4/82.8 69.7/76.2 75.3/67.4 81.8/54.3 70.5/73.9
NNGuide (Park et al., 2023) 64.3/82.0 72.3/71.9 78.9/61.2 86.0/46.2 91.4/32.0 78.6/58.7

DisCoNet (Prop.) 97.3/9.2 98.6/5.1 99.2/2.8 99.7/1.2 99.8/0.8 98.9/3.8

5.2 NEAR-OOD AND FAR-OOD

Table 2: Near-OOD and Far-OOD detection benchmark results for models trained on CIFAR-10.

Model Near-OOD Far-OOD
CIFAR-100 TIN MNIST SVHN DTD Places365

GLOW (Kingma & Dhariwal, 2018) 51.7/96.2 48.5/94.4 0.0/100.0 7.2/99.3 62.8/96.8 66.3/91.9
GLOW (Chali et al., 2023) (Typ.) 47.4/97.0 65.6/81.5 100.0/0.0 91.3/19.3 29.5/99.9 25.3/98.6

DDPM-OOD (Graham et al., 2023) 56.5/92.6 63.0/87.5 31.6/98.7 95.8/28.1 88.1/59.5 62.8/85.9
MOODv2 (Li et al., 2024) 89.2/45.7 96.1/18.6 99.1/0.7 97.0/18.2 100.0/0.0 99.9/0.2

DC-GAN (Radford et al., 2015) 50.1/97.0 55.5/94.4 42.2/95.4 62.9/87.4 61.4/93.8 58.0/91.6
PresGAN (Dieng et al., 2019) 51.6/94.3 55.4/93.0 24.8/98.7 87.0/51.6 34.0/99.6 65.9/86.5

DisCoNet (Prop.) 75.0/75.4 91.4/37.6 100.0/0.0 100.0/0.0 66.2/97.3 92.6/34.0
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Table 2 presents the Near-OOD and Far-OOD detection scores, obtained by the selected models
when trained with CIFAR-10 as the ID set. MOODv2 shows a clear advantage in Near-OOD tasks
and delivers consistent results in Far-OOD scenarios, almost matching DisCoNet in the few datasets
where it is not the best performer. Among the adversarial methods, DisCoNet achieves the best results
across all datasets, although its performance on CIFAR-100 and DTD is less impressive.

Table 3 depicts the Near-OOD and Far-OOD scores achieved by the selected models when trained on
ImageNet-200 as the ID set. In this case, DisCoNet emerges as the clearly best-performing approach
overall, illustrating image scaling benefits. MOODv2 comes close behind. Moreover, the GLOW
model trained on Log-Likelihood also performs significantly better when trained at higher resolutions.

Table 3: Near-OOD and Far-OOD detection benchmark results for models trained on ImageNet-200.

Model Near-OOD Far-OOD
SSB-hard NINCO iNaturalist DTD OpenImage-O

GLOW (Kingma & Dhariwal, 2018) 84.5/88.7 81.7/97.0 99.2/0.5 87.7/84.0 88.5/88.7
GLOW (Chali et al., 2023) (Typ.) 65.0/94.0 69.5/94.3 49.6/98.7 66.0/99.9 56.4/99.8

DDPM-OOD (Graham et al., 2023) 61.4/89.9 64.7/90.4 54.3/88.0 61.0/99.3 50.7/96.6
MOODv2 (Li et al., 2024) 96.6/12.7 99.4/2.0 100.0/0.1 99.0/4.3 99.8/0.8

DC-GAN (Radford et al., 2015) 55.6/94.4 56.8/94.3 45.3/95.4 54.4/98.0 50.7/98.2
PresGAN (Dieng et al., 2019) 57.3/93.2 48.9/96.5 92.6/41.7 23.1/99.7 61.7/92.7

DisCoNet (Prop.) 100.0/0.0 100.0/0.0 100.0/0.0 99.5/0.9 100.0/0.0

Table 4 illustrates that the image scaling benefits observed in ImageNet-200 persist in ImageNet-1K,
with DisCoNet outperforming SOTA methods in 4 out of 5 benchmarks. However, as noted in the
CIFAR-10 experiments, DisCoNet exhibits some inconsistencies when evaluated on the DTD dataset.

Table 4: Near-OOD and Far-OOD detection benchmark results for models trained on ImageNet-1K.
Results are obtained from the respective research papers where available or recomputed (*) and
reported following the OpenOODv1.5 benchmark.

Model Near-OOD Far-OOD
SSB-hard NINCO iNaturalist DTD OpenImage-O

MOODv2 (Li et al., 2024) 85.0/58.1* 92.7/38.2* 99.6/1.8 94.3/24.7 97.4/13.6
SCALE (Xu et al., 2023) 77.4/67.7 85.4/51.8 98.0/9.5 97.6/11.9 94.0/28.2

NNGuide (Park et al., 2023) 84.7/54.7* 93.7/28.9* 99.9/1.8 99.4/17.0 99.1/10.8

DisCoNet (Prop.) 99.9/0.0 99.7/0.1 100.0/0.0 87.6/84.0 99.4/0.3

5.3 DISCONET ABLATION STUDY

To evaluate the impact of using both reconstructions and generated images for training DisCoNet’s
discriminator, we have performed an ablation experiment in which we train models using (1) only
reconstructions, (2) only with generated images, and (3) both reconstructed and generated images. The
corruptions applied to images in CIFAR-10(-C) and ImageNet-200(-C) shift their frequency spectrum.
This was used to propose splitting the corruptions into two major groups: Lower Frequency refers to
corruptions that reduce high-frequency components (e.g., Gaussian Blur), while Higher Frequency
refers to those that increase high-frequency components (e.g., Impulse Noise). Appendix A.7
provides experimental evidence of their impact on the frequency spectrum, while Table 30 displays
the proposed split.

As anticipated, Table 5 indicates that models trained solely on reconstructions excel at detecting
low-frequency corruptions, but struggle with high-frequency ones. In contrast, models trained on
generated images perform better at identifying high-frequency corruptions. Interestingly, these
models demonstrate a good ability to detect low-frequency corruptions, indicating that this approach
covers a broader spectrum of perturbations. Detailed results for every corruption are provided in
Appendix A.8.
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Table 5: Ablation study showing the impact of using reconstructed or generated images during
DisCoNet’s training.

Corruption CIFAR-10(-C) ImageNet-200(-C)
Recon. Generated Both Recon. Generated Both

Lower Frequency 96.5/12.1 75.7/66.4 97.5/8.7 100.0/0.0 97.1/11.5 100.0/0.0
Higher Frequency 24.0/94.1 81.1/52.2 95.2/13.4 92.8/11.0 98.1/8.1 99.5/2.9

Average 54.6/59.6 78.8/58.2 96.2/11.4 96.2/5.8 97.6/9.7 99.7/1.5

5.4 ADVERSARIAL ATTACKS

To test the model’s robustness to adversarial attacks, we follow Azizmalayeri et al. (2022) and employ
both black box (Gaussian Noise) and white box (Projected Gradient Descent, PGD) approaches,
adapting the torchattacks library for single-channel binary OOD prediction. These attacks are
applied to the model trained on ImageNet-200, and its performance is assessed on the ImageNet-200
ID test set versus Near-OOD test sets.

Table 6: Adversarial attack on the ImageNet-200-trained DisCoNet. Attacks on the ID set vs. the
Near OOD test sets (Average of SSB-hard and NINCO) are compared.

ID Attack vs. OOD Clean OOD PGD 5 OOD PGD 10 OOD PGD 20 GN σ 0.1 GN σ 8
255

Clean 100.0/0.0 100.0/0.0 85.5/54.5 19.6/99.7 100.0/0.0 100.0/0.1
PGD 1 100.0/0.0 100.0/0.0 75.1/73.6 11.1/99.9 100.0/0.0 100.0/0.0
PGD 5 100.0/0.0 100.0/0.0 75.1/73.8 11.0/99.9 100.0/0.0 100.0/0.0

PGD 10 100.0/0.0 100.0/0.0 75.0/73.8 11.0/99.9 100.0/0.0 100.0/0.0
GN σ 0.1 99.9/0.2 99.9/0.2 0.1/100.0 0.0/100.0 99.9/0.2 99.9/0.2
GN σ 8

255
100.0/0.0 100.0/0.0 57.6/90.2 4.3/99.9 100.0/0.0 100.0/0.0

As shown in Table 6, the model attains near-perfect AUROC across all black box attacks, which are
treated as covariate shifts. Even the weakest Gaussian Noise perturbation (STD 8/255) introduces
less variation than Severity 1 in ImageNet-200(-C). For white box attacks, we employ PGD with
default settings (Mądry et al., 2017), increasing the number of steps to intensify the attack. The model
remains robust up to 5 steps, with performance degradation observed only at higher iterations. The
largest performance drop occurs when ID data is perturbed by Gaussian Noise (treated as OOD in
prior experiments) and OOD data undergoes over 10 PGD steps. Although this scenario is unrealistic,
the model exhibits strong overall robustness to standard adversarial threats.

6 DISCUSSION

Covariate Shift OOD. The extensive validation across multiple datasets and models demonstrates
that DisCoNet outperforms the other models in detecting Covariate Shifts by a large margin. The
results indicate that relying solely on a GAN, even with enhancements from PresGAN aiming
at mitigating mode collapse, is insufficient to achieve high performance. In Section 3, we have
hypothesized, supported by literature findings (Lin et al., 2023; Li et al., 2023b), that training a
discriminator with VAE reconstructions would enhance its sensitivity to corruptions that dampen the
high-frequency spectrum. Alternatively, training a discriminator with generated images improves
its ability to detect high-frequency amplification. The ablation study results in Table 5 validate the
hypothesis from Section 3. Models trained exclusively on reconstructed images, which are typically
blurrier, present significantly higher classification scores in identifying low-frequency corrupted
images as OOD compared to high-frequency ones. This inability to detect high-frequency corruptions
is particularly evident in CIFAR-10(-C). This behavior can be explained easily: reconstructed images
lack significant high-frequency components, leading the discriminator to simply learn to classify
images with low high-frequency content as fake and images with high-frequency content as real. This
is further supported by the AUROC scores achieved on the noise-related perturbations in CIFAR-
10(-C), where the model erroneously considers these samples closer to being ID than the actual ID
samples. Conversely, models trained on generated images perform better in detecting high-frequency
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corruptions, as expected. Surprisingly, their ability to detect low-frequency corruptions is remarkably
high, indicating that using this method covers a broader spectrum of perturbations.

Near-OOD and Far-OOD. DisCoNet performs well in both Near-OOD and Far-OOD detection
scenarios, outperforming other approaches when using ImageNet-200 as the ID dataset and continuing
to consistently rank first in the ImageNet-1K analysis. Additionally, in the CIFAR-10 benchmark,
DisCoNet ranks second only to MOODv2 in various Far-OOD tests; CIFAR-10 poses a greater
challenge for DisCoNet because its pixelated resolution inherently introduces corruptions, making it
harder for the model to assign low scores to ID samples.

Deployment Scenarios. There are generally two main deployment scenarios for OOD detection
algorithms: (1) The OOD detection algorithm is the primary focus, deployed as a standalone
application. (2) The OOD detection algorithm operates alongside a main image processing algorithm,
ensuring its safe and effective use. An OOD algorithm must be practical and effective in real-world
scenarios, delivering strong detection performance while being highly deployable. Deployability
should be assessed in the following four critical areas.

1. Accessibility: Evaluated by the compute requirements necessary for the algorithm.

2. Development Cycle: Measured by the time required for model training and deployment.

3. Inference Speed: The time it takes for the algorithm to make predictions during deployment.

4. Accuracy: The ability of the algorithm to provide highly accurate OOD detection.

An ideal OOD detection algorithm excels in all the above dimensions, ensuring it can be effectively
utilized in various practical applications. As detailed in our results and Appendix A.3, DisCoNet
excels in all criteria. The model achieves SOTA OOD detection results, while utilizing substantially
smaller and faster models. Table 12 indicates that DisCoNet is up to 3 orders of magnitude faster
than MOODv2 and up to 4 orders of magnitude quicker than GLOW and the DDPM-OOD. Training
is also much more efficient than GLOW and DDPM-OOD, as demonstrated in Table 11, making it a
strong candidate for applications that require fast development cycles.

7 LIMITATIONS & FUTURE WORK

One potential limitation of DisCoNet is that, while it has demonstrated promising results on 128×128
resolution images, further evaluation on higher resolutions is required to fully assess its scalability.
Although performance improvements have been observed with increasing resolution, additional
experiments with larger image sizes are necessary to draw definitive conclusions. Future research
should prioritize applying DisCoNet to high-resolution domains. Additionally, with regard to
covariate shift detection, only three models have been evaluated on ImageNet-1K to date, highlighting
the need for broader benchmarking. Despite DisCoNet’s strong performance, future efforts will focus
on ensuring a more extensive comparison. Future work will focus on gaining a deeper understanding
of DisCoNet’s internal mechanisms, particularly how it processes changes in the frequency spectrum
from a signal processing perspective.

8 CONCLUSION

This paper introduces DisCoNet, a novel approach for OOD detection, with a focus on covariate
shift detection. Contrary to standard VAE or GAN training objectives, DisCoNet utilizes a combi-
nation of both reconstructed and generated images to address a broad range of frequency-spectrum
perturbations for improved performance. To the best of our knowledge, the model demonstrates state-
of-the-art OOD detection performance, achieving an AUROC of 96.2% on CIFAR-10(-C), 99.7%
on ImageNet-200(-C) and 98.9% on ImageNet-1k(-C). Additionally, DisCoNet shows excellent
performance in semantic OOD detection tasks, surpassing or matching current SOTA methods such
as MOODv2, NNGuide and SCALE on ImageNet-200 and ImageNet-1K. DisCoNet’s lightweight
and fast architecture, along with its efficient training cycles, make it a practical choice for real-world
and real-time applications requiring low computational resources.
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A APPENDIX/SUPPLEMENTAL MATERIAL

The supplementary material is organized as follows: Appendix A.1 covers the datasets used in
this work. Appendix A.2 describes the implementation details of the employed models while
Appendix A.3 covers the compute resources required for training and evaluating the models. Ap-
pendix A.4 provides detailed results on the CIFAR-10 Covariate Shift OOD detection benchmark,
while results for ImageNet-200 and ImageNet-1K are covered in Appendix A.5 and Appendix A.6,
respectively. Appendix A.7 explains the impact of each corruption in the frequency spectrum. Finally,
a series of ablation experiments are provided in Appendix A.8.

A.1 DATA AVAILABILITY

Three datasets are defined as ID: CIFAR-10 (Krizhevsky et al., 2009), ImageNet-200 (Le & Yang,
2015), and ImageNet-1K (Russakovsky et al., 2015).

CIFAR-10 is a 10-class general object classification dataset with 50k training and 10k test images.
Near-OOD is assessed using CIFAR-100 (Krizhevsky et al., 2009) and ImageNet-200. The Far-OOD
benchmark includes MNIST, SVHN (Netzer et al., 2011), DTD, and Places365. Covariate Shift is
evaluated with CIFAR-10(-C) (Hendrycks & Dietterich, 2019).

ImageNet-200 is a subset of ImageNet with 200 classes. For Near-OOD, SSB-hard (Vaze et al., 2021)
and NINCO (He et al., 2021) are used. Far-OOD includes iNaturalist (Huang & Li, 2021), DTD, and
OpenImage-O (Wang et al., 2022). Covariate Shift is evaluated using ImageNet-200(-C) (Hendrycks
& Dietterich, 2019).

ImageNet-1K contains 1000 classes. The Near-OOD and Far-OOD datasets correspond to those used
for ImageNet-200. Covariate Shift is evaluated using ImageNet-1K(-C) (Hendrycks & Dietterich,
2019).

The OOD benchmark used to evaluate and compare the selected models closely follows the one
proposed in OpenOOD by Yang et al. (2022), which contains all the datasets mentioned in Table 7,
except for CIFAR-10(-C).

Table 7: Datasets used for the OOD benchmark. Legend: ∗dataset not present in OpenOOD.

ID Near-OOD Far-OOD Covar. Shift OOD Resolution
CIFAR-10 CIFAR-100, TIN MNIST, SVHN, DTD, Places365 CIFAR-10(-C)∗ 32×32 px

ImageNet-200 SSB-hard, NINCO iNaturalist, DTD, OpenImage-O ImageNet-200(-C) 64×64 px

ImageNet-1K SSB-hard, NINCO iNaturalist, DTD, OpenImage-O ImageNet-1K(-C) 128×128 px

CIFAR-10(-C), ImageNet-200(-C), and ImageNet-1K(-C) were downloaded from their source 1.
Additionally, we used the original and publicly available splits for ImageNet-200 2 and ImageNet-
1K 3. The remaining datasets and files containing training and evaluation splits were downloaded
from OpenOOD’s publicly available repository 4. For convenience, DisCoNet’s repository includes a
script that automatically downloads these datasets and contains the split files.

A.2 IMPLEMENTATION DETAILS

This appendix provides the required implementation details of the employed models for reproducibil-
ity.

A.2.1 GLOW

Utilizing Normalizing Flows for OOD detection involves modeling the ID data distributions through
invertible transformations, maximizing the log-likelihood training objective. In this study, we utilize

1https://github.com/hendrycks/robustness
2https://www.kaggle.com/datasets/nikhilshingadiya/TinyImageNet200
3https://www.kaggle.com/c/imagenet-object-localization-challenge/data
4https://github.com/jingkang50/openood
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the GLOW (Kingma & Dhariwal, 2018) architecture, as publicly available 5 under an MIT License.
Additionally, inspired by recent advancements in typicality (Chali et al., 2023; Viviers et al., 2024),
we incorporate the approximate mass-augmented log-likelihood objective in the model’s training
objective. Denoting the average log-likelihood (LL) of the model, parameterized by θ, evaluated over
a batch of input data x as L(x; θ), the revised training objective is expressed as

min
θ

(
−L(x; θ) + α

∥∥∥∥∂L(x; θ)∂x

∥∥∥∥) . (6)

Here, α > 0 serves as a hyperparameter governing the balance between local likelihood enhancement
and gradient magnitude reduction, with α = 2 employed in our GLOW implementation. For every
dataset, we employed a GLOW architecture with 3 blocks of 32 affine coupling layers and 512 hidden
units. All networks were trained using the Adam optimizer, with a learning rate of 5e−4. During
testing, we compute the per-sample LL and gradient score.

A.2.2 DDPM-OOD

We implemented DDPM-OOD following the specifications outlined by Graham et al. (2023) and
as publicly available 6 under an Apache 2.0 License. The method employs a time-conditioned
UNet (Ronneberger et al., 2015) architecture with a simplified training objective where the variance
is set to time-dependent constants and the model is trained to directly predict the noise ϵ at each
timestep t, such that

L(θ) = Et,x0,ϵ

[
∥ϵ− ϵθ(xt)∥2

]
. (7)

The objective is to reconstruct an input xt across multiple timesteps (t), employing the DDPM
sampling strategy, which necessitates t steps for each reconstruction x̂0,t, with each step involving
a model evaluation. To improve efficiency, we utilize the PLMS sampler (Liu et al., 2022), a
recent advancement in rapid sampling for diffusion models. During the evaluation, we assess the
reconstructions using both the mean-squared error (MSE) between the reconstructed and input images
and the Learned Perceptual Image Patch Similarity (LPIPS) metric (Zhang et al., 2018). The latter
evaluates perceptual similarity based on deep feature distances. For each of the N reconstructions,
we compute these two similarity measurements. Subsequently, we average these scores to derive an
OOD score for each input.

The model architecture is implemented exactly as described in (Graham et al., 2023). For training,
we set T = 1000 and employed a linear noise schedule, with βt ranging from 0.0015 to 0.0195. The
training process spanned 300 epochs, utilizing the Adam optimizer with a learning rate of 2.5e−5.
During the testing, we utilized the PLMS sampler configured to 100 timesteps and, in line with
AnoDDPM (Wyatt et al., 2022), we only tested reconstructions from T = 250 for covariate shift. For
the semantic shift experiments we utilize the full denoising schedule as investigated and suggested in
(Graham et al., 2023).

A.2.3 MOODV2

For the implementation of MOODv2, we follow the guidelines provided in (Li et al., 2024) and made
publicly available 7 under no official license. This work reduces the complexity of MOODv1 (Li et al.,
2023a) while increasing the detection performance. In MOODv1, three steps were required: first,
pre-train the Masked Image Modeling Vision Transformer (ViT) on the ImageNet-21k (Russakovsky
et al., 2015) dataset; then the ViT must be fine-tuned on the same dataset; finally, the ViT is fine-tuned
on the ID dataset. This becomes very expensive when dealing with a substantial number of ID
datasets. However, through experimental validation, MOODv2 has demonstrated that a well-prepared
masked image modeling model does not require additional fine-tuning.

The selected encoder is a BEiTv2 (Peng et al.), already pre-trained and fine-tuned on ImageNet-21k
and provided in the aforementioned repository. Regarding the OOD score function, following the

5https://github.com/y0ast/Glow-PyTorch
6https://github.com/marksgraham/ddpm-ood
7https://github.com/dvlab-research/MOOD
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author’s recommendations, ViM (Wang et al., 2022) is utilized, which merges features and logits
extracted from the trained image encoder. Here, li represents the i-th logit of feature x in the training
set X; α denotes a model-specific constant; R (with dimensions N × (N −D)) corresponds to the
portion of the eigenvector matrix Q of X , ranging from the (D + 1)-th column to the last, where N
stands for the principal dimension; and C signifies the number of classes. Mathematically, the score
can be expressed as

s(x) =
eα

√
xTRRT x∑C

i=1 e
li + eα

√
xTRRT x

. (8)

A.2.4 NNGUIDE

For the implementation of NNGuide, the guidelines in (Park et al., 2023) were followed, as well
as the publicly available code 8 under the Apache 2.0 License. NNGuide is a post-hoc, training-
free inference method designed to improve classifier-based OOD detection scores by leveraging
nearest neighbors in the ID dataset. This method aims to mitigate the overconfidence issue in Far-
OOD samples while preserving fine-grained detection for Near-OOD instances. This is achieved
by augmenting a classifier’s confidence score, Sbase(x), using a guidance term G(x), which is the
confidence-weighted average similarity of the nearest neighbors, ensuring that the score respects the
data manifold’s boundary geometry. The guidance term is defined as the average similarity between
the test input and its high-confidence nearest neighbors and can be formulated as

SNNGuide(x) = Sbase(x) ·G(x). (9)

A.2.5 SCALE

For the implementation of SCALE, the approach described by Xu et al. (2023) was followed, with the
code made publicly available 9 under the MIT License. SCALE is a post-hoc enhancement method
for OOD detection focusing on scaling network activations, rather than pruning them, using a simple
but effective technique. The scaling factor r, derived from the activations, is applied uniformly across
all features, preserving the model’s logit ordinality and maintaining ID accuracy. Mathematically, the
calculation of the logits with the scaled activations can be formulated as

z′ = W · (a ◦ sf(a)) + b, where sf(a)j = exp(r). (10)

Furthermore, SCALE incorporates a training-time enhancement technique called Intermediate Tensor
Shaping (ISH). ISH applies the same scaling concept during training to enhance OOD detection by
emphasizing samples with stronger ID characteristics.

A.2.6 DC-GAN

To implement a DC-GAN, we comply with the architecture guidelines defined in (Radford et al.,
2015). No pooling layers were used, instead strided convolutions are present in the discriminator, and
fractional-strided convolutions in the generator. Additionally, batch normalization is incorporated
into the generator and discriminator. Furthermore, we employ ReLU activation in the generator for all
layers except the output layer, which utilizes Tanh activation. In contrast, we employ LeakyReLU
activation in the discriminator for all layers. The code used is based on a publicly unlicensed available
repository 10, although our implementation is provided in DisCoNet’s repository.

For MNIST and CIFAR-10 datasets, with a resolution of 32×32 px, both the generator and the
discriminator are constructed with 4 layers. In contrast, the ImageNet-200 dataset, with a resolution
of 64×64 px, utilizes models with 5 layers. Throughout the architecture, the number of filters halves
after each layer for the generator, while doubling for the discriminator. Both the generator and
discriminator are optimized using the Adam optimizer, with β1 set to 0.5 and β2 set to 0.999. The
discriminator learning rate lrD and the generator learning rate lrG for each ID dataset is specified in
Table 8, along with additional implementation details.

8https://github.com/roomo7time/nnguide
9https://github.com/kai422/SCALE

10https://github.com/TeeyoHuang/conditional-GAN
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Table 8: Hyperparameters used for DC-GAN’s training.

ID Dataset Latent Dimension Generator Filters Discriminator Filters lrD lrG

CIFAR-10 1024 256, 128, 64, 3 64, 128, 256, 1 2e−4 2e−4

ImageNet-200 1024 512, 256, 128, 64, 3 64, 128, 256, 512, 1 2e−4 2e−4

At test time, only the discriminator is utilized through a forward pass across the network to determine
the probability of a sample belonging to the ID set. To calculate the anomaly score we follow
Equation 5.

A.2.7 PRESCRIBED GAN

To implement PresGAN, we follow the recommendations presented by Dieng et al. (2019) and the
official code repository 11, which does not state a license. An adapted version of this model is provided
in DisCoNet’s repository. PresGAN tackles two main limitations of the DC-GAN: mode collapse,
which causes GANs to learn distributions with low support; and the lack of a probability density,
making it impossible to evaluate generalization using predictive log-likelihood. PresGANs introduce
noise to the output of a density network and optimize an entropy-regularized adversarial loss. This
noise enables tractable approximations of the predictive log-likelihood and enhances training stability.
The entropy regularizer encourages PresGANs to capture all modes of the data distribution. Fitting
PresGANs involves computing intractable gradients of the entropy regularization term, which is
addressed by using unbiased stochastic estimates. With θ and ϕ representing the Generator and
Discriminator parameters, LGAN (θ, ϕ) the generator’s adversarial loss, λ the hyperparameter that
controls the strength of the entropy regularization, and pθ(x) the generative distribution induced by
the generative process, the generator’s training objective can be described by

LPresGAN (θ, ϕ) = LGAN (θ, ϕ) + λEpθ(x) [log pθ(x)] . (11)

The generator and discriminator are similar to the ones used in the DC-GAN described in Ap-
pendix A.2.6 and summarized in Table 8. The latent dimension, generator filters, and discriminator
filters are parameters shared by both. However, PresGAN requires the variance to be learned. To
stabilize training and avoid failure cases, the variance σ of the generative distribution is truncated. Fol-
lowing the authors’ recommendations, we defined the hyperparameters σmax and σmin that truncate
the variance, the entropy regularization strength λ, and the generator learning rate, the discriminator
learning rate and the sigma learning rate as shown in Table 9. The generator, discriminator, and σ are
optimized using the Adam optimizer, with β1 set to 0.5 and β2 set to 0.999.

Table 9: Hyperparameters used for PresGAN’s training.

ID Dataset σmax σmin λ lrD lrG lrσ

CIFAR-10 0.3 1e−3 5e−4 2e−4 2e−4 2e−4

ImageNet-200 0.3 1e−3 5e−4 2e−4 2e−4 2e−4

A.2.8 DISCONET

DisCoNet is an Adversarial VAE, comprised of a VAE and a Discriminator. The VAE features an
Encoder (EθE ), consisting of convolutional layers with a kernel size of 3, stride 2, padding 1, and
output padding of 1, followed by Batch Normalization and a LeakyReLU activation function. The
number of filters doubles with each layer. Encoded features are then flattened and passed through
two distinct fully connected layers, one estimating zµ and the other zσ, with outputs the size of the
latent dimension. These outputs undergo the reparametrization trick to generate z, which is then
fed into the VAE’s decoder, referred to as the Generator (GθG ). The Generator comprises transposed
convolutions, followed by Batch Normalization and a LeakyReLU activation, with the same kernel
size, stride, padding, and output padding as the Encoder. However, the number of filters halves

11https://github.com/adjidieng/PresGANs
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after each layer. A final convolutional layer with a kernel size of 3 and padding of 1, followed by
a Tanh activation, generates the final output image. The generated image is subsequently fed into
a Discriminator (Dϕ). The Discriminator shares the same architecture as the Encoder but replaces
the two fully connected layers with a single one that generates an output of size 1, followed by a
Sigmoid activation. The training process of DisCoNet is covered in detail in Subsection 3.2, but
can be summarized by Algorithm 1.

Algorithm 1 Training algorithm of DisCoNet.

Initialize parameters of models θ, ϕ
while training do
xreal ← batch of images from dataset
zrealµ , zrealσ ← EθE(x

real)

zreal ← zrealµ + ϵrealz
real
σ with ϵreal ∼ N (0, I)

xrec ← GθG(z
real)

zfake ← ϵfake with ϵfake ∼ N (0, I)
xfake ← GθG(z

fake)
xrec ← GθG(z

real)
Dreal ← Dϕ(x

real)
Drec, Dfake ← Dϕ(x

rec),Dϕ(x
fake)

θ←̄∇θLVAE(θ)
ϕ←̄∇ϕLD(ϕ)

end while

The VAE and the Discriminator are optimized using the Adam optimizer, with β1 set to 0.9 and β2 set
to 0.999. Both models share the same learning rate, represented by lr. As demonstrated in Equation4,
three weighing terms are required to train the model: ωKL, ωRec and ωGen. The weighing terms were
fixed for all datasets, with ωKL = 1e−4, ωRec = 1e−3 and ωGen = 1e−3. For each of the ID datasets,
the hyperparameters used for training the DisCoNet can be found in Table 10.

Table 10: Hyperparameters used for DisCoNet’s training.

ID Dataset Latent Dimension Encoder Filters Generator Filters lr
CIFAR-10 1024 64, 128, 256, 512 512, 256, 128, 64 5e−4

ImageNet-200 1024 64, 128, 256, 512 512, 256, 128, 64 5e−4

ImageNet-1K 1024 64, 128, 256, 512, 1024 1024, 512, 256, 128, 64 1e−4

The developed code is based on a publicly available repository 12 under the Apache 2.0 License.

A.3 COMPUTE RESOURCES

This appendix describes the computational resources required to train the selected models on each
dataset. Furthermore, each model’s inference time is reported, allowing for an assessment of its
suitability for real-world applications.

A.3.1 TRAINING

The adversarial models were trained on a system featuring an NVIDIA TITAN Xp GPU with 12
GB VRAM, paired with a 6-core, 12-thread AMD Ryzen 5500 CPU and 16 GB RAM, referred to
as System A. MOODv2, NNGuide, and SCALE did not require additional training. GLOW and
DDPM-OOD models were trained on a system with an NVIDIA TITAN RTX GPU (24 GB VRAM),
a 24-core, 48-thread AMD EPYC 7402P CPU, and 48 GB RAM, referred to as System B. DisCoNet
was trained on ImageNet-1K using a system equipped with an NVIDIA H100 Tensor Core GPU (94
GB VRAM), a 32-core, 64-thread AMD EPYC 9334 CPU, and 768 GB RAM, referred to as System
C. More information can be found in Table 11.

12https://github.com/AntixK/PyTorch-VAE
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Table 11: Summary of the compute resources required for training.

ID Dataset Model Batch Size Epochs Trainable Parameters Total Time (s) System

CIFAR-10

GLOW (LL) 32 250 44,235,312 166,912 B
GLOW (Typ.) 32 250 44,235,312 166,912 B
DDPM-OOD 512 300 17,714,563 10,531 B

DC-GAN 512 200 5,516,928 2,254 A
PresGAN 512 200 5,517,952 13,837 A
DisCoNet 512 250 10,993,861 5,015 A

ImageNet-200

GLOW (LL) 12 250 44,235,312 401,825 B
GLOW (Typ.) 12 250 44,235,312 401,825 B
DDPM-OOD 128 300 17,714,563 74,772 B

DC-GAN 512 200 13,911,680 19,846 A
PresGAN 512 100 13,915,776 40,637 A
DisCoNet 512 140 29,886,661 15,044 A

ImageNet-1K DisCoNet 1,256 140 69,240,517 111,471 C

A.3.2 INFERENCE

To determine the expected time it takes for the selected models to evaluate each image, we tested
them all on System A. Each model had a fixed batch size of 512 and processed 10 batches, except
for GLOW, which needs to compute one image at a time, and DDPM-OOD on ImageNet-200 due
to VRAM limitations. The time it takes to process each batch was measured from when the images
were fed into the model to when the anomaly scores were determined. Table 12 displays the average
inference times measured per batch during the evaluation.

Table 12: Inference times of the tested models. Legend: ∗batch size of 1; †batch size of 128.

ID Dataset Model Model Parameters Inference Time (ms)

CIFAR-10

GLOW (LL) 44,235,312 33,689.6∗

GLOW (Typ.) 44,235,312 91.289,6∗

DDPM-OOD 17,714,563 85,525.0
MOODv2 86,530,984 5,117.9
DC-GAN 663,296 3.8
PresGAN 663,296 3.5
DisCoNet 1,556,994 3.6

ImageNet-200

GLOW (LL) 44,235,312 36,711.7∗

GLOW (Typ.) 44,235,312 99,121.7∗

DDPM-OOD 17,714,563 170,334.8†

MOODv2 86,530,984 5,148.5
DC-GAN 2,765,568 16.6
PresGAN 2,765,568 16.3
DisCoNet 1,569,282 10.9

ImageNet-1K

MOODv2 86,530,984 5,179.3
NNGuide 83,590,140 2,896.8
SCALE 25,557,032 963.5

DisCoNet 6,307,330 77.3

A.4 DETAILED COVARIATE SHIFT RESULTS ON CIFAR-10

This appendix contains the performance metrics per corruption achieved on the CIFAR-10 Covariate
Shift OOD benchmark for every evaluated model.

A.4.1 GLOW WITH LOG-LIKELIHOOD

Table 13 results indicate that, when trained using the Log-Likelihood objective, GLOW is very
sensitive to noise-related corruptions, achieving a good separation between ID and OOD samples.
However, for high-frequency dampening perturbations, such as blurring, the performance decreases
drastically.
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Table 13: Covariate shift OOD benchmark for GLOW with log-likelihood trained on CIFAR-10.

Corruption Corruption Intensity Average1 2 3 4 5
Brightness 57.9/93.6 63.6/91.3 67.7/89.8 71.2/88.7 73.6/88.2 66.8/90.3
Contrast 39.2/95.6 20.9/98.6 14.9/98.7 8.8/99.3 2.2/99.8 17.2/98.4

Defocus Blur 44.2/95.7 31.8/97.0 21.0/98.1 17.7/98.6 9.3/99.0 24.8/97.7
Elastic Transform 38.9/95.8 34.2/96.8 27.8/97.1 36.2/96.5 51.5/93.9 37.7/96.0

Fog 44.7/95.0 33.7/96.1 27.8/96.6 24.2/96.5 22.1/95.2 30.5/95.9
Frost 74.0/78.0 79.5/79.0 82.9/66.1 83.2/60.2 84.3/48.2 80.8/66.3

Gaussian Blur 44.3/95.7 21.3/98.0 14.2/98.6 9.8/99.0 5.2/99.3 19.0/98.1
Gaussian Noise 100.0/0.0 100.0/0.0 100.0/0.0 100.0/0.0 100.0/0.0 100.0/0.0

Glass Blur 87.8/65.4 84.7/77.3 79.3/83.9 87.6/69.9 82.8/78.1 84.4/74.9
Impulse Noise 99.5/2.4 100.0/0.0 100.0/0.0 100.0/0.0 100.0/0.0 99.9/0.5

JPEG Compression 49.3/90.9 44.2/93.8 42.0/94.5 39.9/95.7 36.2/96.2 42.3/94.2
Motion Blur 34.2/96.5 26.8/97.1 21.8/97.7 21.7/97.5 18.2/98.4 24.5/97.4

Pixelate 57.1/93.6 62.0/92.3 63.5/91.4 67.2/90.3 67.0/90.8 63.4/91.7
Saturate 23.9/97.4 12.1/98.7 69.4/88.2 88.0/52.1 92.2/42.8 57.1/75.8

Shot Noise 99.9/0.0 100.0/0.0 100.0/0.0 100.0/0.0 100.0/0.0 100.0/0.0
Snow 63.0/88.6 75.0/80.0 72.0/81.7 70.9/87.0 71.1/90.9 70.4/85.6

Spatter 68.0/84.3 81.1/64.5 88.6/39.6 75.2/70.5 88.4/39.6 80.3/59.7
Speckle Noise 99.7/0.1 99.9/0.0 99.9/0.0 99.9/0.0 100.0/0.0 99.9/0.0

Zoom Blur 27.7/97.1 21.1/97.8 17.2/98.6 14.4/98.6 11.5/98.6 18.4/98.1
Average 60.7/71.9 57.5/71.5 58.4/69.5 58.7/68.4 58.7/66.3 58.9/69.5

A.4.2 GLOW WITH TYPICALITY

The results in Table 14 significantly differ from the ones shown by the model trained using Log-
Likelihood. GLOW trained with Typicality performs significantly worse for the detection of noisy
corruptions. Its best OOD detection scores occur for blur detection, although performance is limited.

Table 14: Covariate shift OOD benchmark for GLOW with typicality trained on CIFAR-10.

Corruption Corruption Intensity Average1 2 3 4 5
Brightness 49.3/95.8 44.7/96.7 39.6/97.0 35.2/97.7 29.0/98.6 39.6/97.2
Contrast 60.4/90.6 66.1/81.4 71.5/73.0 77.7/62.3 91.2/30.3 73.4/67.5

Defocus Blur 55.7/92.0 60.2/83.9 65.6/73.1 72.4/59.5 80.1/45.2 66.8/70.7
Elastic Transform 53.6/89.7 55.9/86.1 59.3/79.9 48.9/86.7 34.6/94.0 50.5/87.3

Fog 58.9/92.4 62.5/88.3 65.0/83.6 66.1/80.0 69.1/74.1 64.3/83.7
Frost 36.1/97.3 29.7/98.7 25.6/99.8 26.3/99.5 25.9/99.7 28.7/99.0

Gaussian Blur 55.4/92.9 65.1/74.9 71.1/62.5 76.5/53.4 85.5/36.6 70.7/64.1
Gaussian Noise 0.0/100.0 0.0/100.0 0.2/100.0 0.2/100.0 0.5/100.0 0.2/100.0

Glass Blur 14.8/100.0 17.2/99.8 19.8/99.0 14.8/100.0 16.8/99.5 16.7/99.7
Impulse Noise 13.3/99.1 11.0/100.0 12.4/100.0 19.3/100.0 29.3/99.8 17.1/99.8

JPEG Compression 83.1/54.0 84.5/47.8 85.0/47.2 84.9/44.4 84.1/47.0 84.3/48.1
Motion Blur 59.2/86.5 62.8/80.7 66.1/78.2 66.1/76.0 68.9/71.4 64.6/78.6

Pixelate 41.6/96.1 36.2/96.8 33.2/96.8 29.0/97.3 27.0/97.3 33.4/96.9
Saturate 71.8/68.0 92.6/24.3 45.3/97.6 17.6/99.8 9.4/100.0 47.3/77.9

Shot Noise 0.5/100.0 0.4/100.0 0.3/100.0 0.4/100.0 0.7/100.0 0.5/100.0
Snow 46.3/94.8 40.1/96.3 40.6/96.2 39.7/95.8 40.0/96.2 41.3/95.9

Spatter 33.3/96.8 20.2/97.6 12.6/98.0 26.4/97.3 14.0/98.3 21.3/97.6
Speckle Noise 0.7/100.0 0.6/100.0 0.6/100.0 0.8/100.0 1.8/100.0 0.9/100.0

Zoom Blur 62.1/80.0 66.2/72.1 69.2/66.9 72.0/61.1 75.6/54.7 69.0/67.0
Average 41.9/90.8 42.9/85.5 41.2/86.8 40.7/84.8 41.2/81.2 41.6/85.8

A.4.3 DDPM-OOD

Table 15 shows that, like the GLOW Log-Likelihood model, the DDPM-OOD model is more sensitive
to noise corruptions. Nonetheless, the decrease in performance for other corruption types is less
pronounced than for both GLOW models. The scores are determined using T=20 and LPIPS + MSE.
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Table 15: Covariate shift OOD benchmark for DDPM-OOD trained on CIFAR-10.

Corruption Corruption Intensity Average1 2 3 4 5
Brightness 52.4/94.9 51.1/95.6 52.1/95.9 51.8/96.1 50.7/97.5 51.6/96.0
Contrast 48.2/95.3 48.4/95.3 48.2/95.6 46.0/95.9 44.7/95.9 47.1/95.6

Defocus Blur 48.7/94.8 49.7/95.5 57.2/92.8 69.9/89.9 91.1/51.0 63.3/84.8
Elastic Transform 51.9/94.0 51.7/93.9 55.4/94.0 52.4/93.1 49.9/93.6 52.3/93.7

Fog 54.4/92.3 62.5/86.0 69.2/78.1 76.7/73.7 85.6/54.2 69.7/76.9
Frost 52.0/96.5 54.5/97.3 61.5/95.3 64.1/95.1 70.5/86.4 60.5/94.1

Gaussian Blur 48.6/95.3 58.1/93.5 70.0/88.0 81.7/78.0 94.9/32.2 70.6/77.4
Gaussian Noise 75.9/78.1 92.0/30.3 98.3/4.8 99.2/2.1 99.6/1.1 93.0/23.3

Glass Blur 75.8/79.2 73.6/80.6 64.9/86.5 79.4/76.6 71.9/81.0 73.1/80.8
Impulse Noise 88.9/41.4 98.4/4.8 99.7/0.9 100.0/0.0 100.0/0.0 97.4/9.4

JPEG Compression 54.5/93.9 55.7/92.4 56.4/92.7 56.3/91.5 58.8/90.2 56.3/92.1
Motion Blur 54.4/93.6 63.5/91.2 71.9/86.3 72.1/88.8 79.1/82.1 68.2/88.4

Pixelate 50.4/95.3 54.1/94.0 53.3/93.5 57.4/91.3 61.8/91.2 55.4/93.1
Saturation 53.5/95.9 60.7/94.9 51.3/95.3 55.9/92.2 61.5/91.4 56.6/93.9
Shot Noise 67.6/85.5 79.9/64.6 95.8/15.8 97.8/7.3 99.3/2.1 88.1/35.1

Snow 58.6/93.6 67.3/89.2 64.3/91.3 60.1/94.4 57.0/96.7 61.5/93.0
Spatter 57.6/91.8 67.2/83.3 73.3/79.3 64.2/84.1 77.1/68.0 67.9/81.3

Speckle Noise 68.4/79.4 68.4/79.4 93.6/25.1 97.9/7.6 99.2/2.2 85.5/38.7
Zoom Blur 61.7/91.4 64.4/90.2 69.1/85.8 72.6/84.5 78.3/80.0 69.2/86.4
Average 59.1/88.5 64.3/81.7 68.7/73.5 71.3/70.6 75.3/63.0 67.8/75.5

A.4.4 MOODV2
Table 16 shows MOODv2’s well-balanced performance across all corruption types, with no discernible
trends indicating which are easier to detect. Furthermore, a direct correlation exists between detection
performance and corruption intensity.

Table 16: Covariate shift OOD benchmark for MOODv2 trained on CIFAR-10.

Corruption Corruption Intensity Average1 2 3 4 5
Brightness 65.8/87.9 66.3/87.7 67.1/87.3 68.1/86.5 70.8/83.5 67.6/86.6
Contrast 64.8/88.6 64.6/88.7 65.0/88.5 66.2/87.9 72.6/83.1 66.6/87.4

Defocus Blur 66.9/86.9 69.8/84.8 72.2/83.0 74.3/82.3 77.4/80.9 72.1/83.6
Elastic Transform 78.3/73.2 76.3/77.0 77.1/78.2 82.2/71.4 86.1/64.3 80.0/72.8

Fog 66.4/87.9 70.4/85.5 74.7/80.7 79.8/75.3 85.8/66.7 75.4/79.2
Frost 68.4/86.7 71.0/84.5 73.8/82.3 74.3/81.5 76.8/79.2 72.9/82.9

Gaussian Blur 67.1/86.7 73.4/81.9 75.2/80.8 76.5/80.0 79.1/78.5 74.2/81.6
Gaussian Noise 79.1/73.0 83.2/64.1 86.8/55.7 88.2/51.8 89.6/48.0 85.4/58.5

Glass Blur 86.0/65.6 86.7/63.2 87.0/62.8 89.9/57.4 90.1/56.2 88.0/61.0
Impulse Noise 74.0/81.8 76.6/77.6 78.3/74.0 81.1/69.7 83.8/65.8 78.8/73.8

JPEG Compression 72.7/84.3 76.3/81.0 77.5/79.5 78.7/78.2 80.6/76.0 77.2/79.8
Motion Blur 73.4/81.8 77.8/77.3 81.9/71.8 81.6/72.1 84.7/67.6 79.9/74.1

Pixelate 66.8/87.2 70.7/84.1 70.6/84.3 76.0/78.8 86.0/66.5 74.0/80.2
Saturate 63.5/89.6 64.6/89.4 67.6/86.6 71.8/83.3 76.0/79.0 68.7/85.6

Shot Noise 75.4/79.0 78.5/73.6 83.9/62.4 85.9/57.6 88.6/51.3 82.5/64.8
Snow 75.4/79.2 81.7/71.4 81.2/71.3 81.1/71.8 82.3/69.6 80.3/72.7

Spatter 75.4/80.4 81.1/72.6 83.0/68.7 77.0/79.1 81.0/71.3 79.5/74.5
Speckle Noise 73.6/80.5 78.3/73.7 80.5/70.0 84.4/61.8 87.7/54.1 80.9/68.0

Zoom Blur 75.8/79.3 75.3/79.7 76.8/77.7 77.8/76.3 80.2/72.4 77.2/77.1
Average 72.0/82.1 74.9/78.8 76.9/76.1 78.7/73.8 82.1/69.2 76.9/76.0

A.4.5 DC-GAN

The DC-GAN, as demonstrated in Table 17, does not achieve good performance for Covariate Shift
OOD detection. The best results it achieves concern the detection of noisy corruptions, but with a
very limited ceiling when compared to the other models.
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Table 17: Covariate shift OOD benchmark for the DC-GAN trained on CIFAR-10.

Corruption Corruption Intensity Average1 2 3 4 5
Brightness 47.9/96.0 46.1/96.8 44.4/97.3 43.1/97.6 41.6/98.0 44.6/97.1
Contrast 56.5/87.8 61.5/78.1 65.3/72.9 72.1/64.7 82.7/59.0 67.6/72.5

Defocus Blur 51.1/94.3 52.2/93.3 52.5/92.8 52.7/92.6 52.2/91.9 52.2/93.0
Elastic Transform 54.4/91.9 54.4/91.8 54.3/91.4 55.6/90.1 57.4/89.0 55.2/90.9

Fog 55.4/89.4 57.5/83.5 57.5/81.8 56.6/80.6 55.8/80.0 56.6/83.1
Frost 47.1/95.4 46.0/95.6 47.5/94.4 49.1/93.5 51.6/91.4 48.2/94.1

Gaussian Blur 51.1/94.4 52.6/93.0 52.6/92.7 52.4/92.4 52.0/92.0 52.1/92.9
Gaussian Noise 59.2/91.0 64.9/88.8 68.1/86.6 68.3/87.4 68.5/87.8 65.8/88.3

Glass Blur 59.6/88.5 60.1/88.2 61.4/86.7 60.2/87.4 62.9/84.3 60.8/87.0
Impulse Noise 44.0/95.9 46.3/96.5 50.0/96.0 53.5/96.1 53.5/97.0 49.5/96.3

JPEG Compression 52.3/93.4 53.2/92.7 53.5/92.4 53.9/92.1 54.1/91.6 53.4/92.4
Motion Blur 52.8/92.8 53.7/91.7 54.3/90.5 54.4/90.4 54.9/89.7 54.0/91.0

Pixelate 52.5/94.2 54.3/93.3 54.1/93.2 58.4/91.0 60.8/89.3 56.0/92.2
Saturate 51.4/90.7 47.8/91.7 44.7/98.1 40.3/99.4 38.6/99.7 44.5/95.9

Shot Noise 55.8/92.8 59.8/91.4 65.7/88.6 66.9/88.0 68.2/87.4 63.3/89.6
Snow 50.0/94.5 49.7/94.6 49.2/94.5 48.8/94.8 45.5/95.4 48.6/94.7

Spatter 50.4/94.4 51.0/94.2 52.2/93.6 53.0/94.2 53.8/93.6 52.1/94.0
Speckle Noise 55.5/92.8 60.7/90.9 63.2/89.8 66.7/88.0 68.3/87.4 62.9/89.8

Zoom Blur 52.2/93.3 52.5/92.8 52.6/92.8 52.5/92.8 52.4/92.4 52.5/92.8
Average 52.6/92.8 53.9/91.5 54.9/90.8 55.7/90.2 56.6/89.3 54.7/90.9

A.4.6 PRESGAN

Table 18 reveals a large performance leap when compared to DC-GAN, indicating that the mode
collapse mitigation is effective in helping define the ID set boundary. The best results still occur for
the same corruption type. However, performance metrics consistently improve across the board.

Table 18: Covariate shift OOD benchmark for the Prescribed GAN trained on CIFAR-10.

Corruption Corruption Intensity Average1 2 3 4 5
Brightness 50.5/94.9 52.1/94.6 54.3/93.6 57.6/92.5 65.6/88.2 56.0/92.7
Contrast 57.4/91.3 68.0/85.6 72.5/83.4 73.4/84.7 70.8/92.2 68.4/87.4

Defocus Blur 52.0/94.0 56.3/92.3 60.4/90.2 64.0/87.8 71.1/80.7 60.8/89.0
Elastic Transform 57.6/91.3 59.2/91.3 63.4/89.1 68.8/83.6 75.3/74.4 64.8/85.9

Fog 57.6/91.2 70.3/82.9 78.0/72.2 84.9/58.9 91.9/37.1 76.6/68.5
Frost 62.8/89.1 71.7/82.6 80.0/68.6 79.7/70.9 83.9/60.2 75.6/74.3

Gaussian Blur 52.3/93.9 60.6/89.5 64.0/87.0 67.0/84.8 72.3/80.1 63.3/87.1
Gaussian Noise 77.7/74.9 91.6/40.4 97.6/11.5 98.7/5.3 99.3/2.3 93.0/26.9

Glass Blur 84.2/58.2 83.1/61.8 81.3/65.6 88.5/48.3 87.3/50.8 84.9/57.0
Impulse Noise 76.2/77.3 90.2/44.4 96.0/19.8 99.4/2.2 99.9/0.3 92.3/28.8

JPEG Compression 60.0/91.0 65.4/87.3 66.9/85.6 69.0/83.9 71.5/82.0 66.5/86.0
Motion Blur 58.4/91.3 64.8/87.5 67.9/84.3 68.4/84.0 70.8/82.5 66.0/85.9

Pixelate 56.4/92.4 60.3/90.9 62.5/89.2 71.2/80.8 77.4/72.9 65.5/85.3
Saturate 76.5/76.8 80.5/70.3 40.8/97.8 45.7/97.6 54.4/96.3 59.6/87.8

Shot Noise 69.1/86.6 80.3/72.0 94.1/30.9 96.7/16.3 98.7/5.3 87.8/42.2
Snow 63.3/89.6 77.3/74.2 79.0/72.5 84.4/61.2 86.6/56.7 78.1/70.8

Spatter 57.4/92.5 68.2/85.5 79.1/71.3 61.7/90.3 68.7/84.5 67.0/84.8
Speckle Noise 69.7/85.0 85.4/62.9 90.6/46.1 96.0/21.3 98.2/8.6 88.0/44.8

Zoom Blur 60.0/90.1 61.3/89.1 62.9/87.4 64.8/87.2 67.2/84.6 63.2/87.7
Average 63.1/86.9 70.9/78.2 73.2/70.8 75.8/65.4 79.5/60.0 72.5/72.3

A.4.7 DISCONET

DisCoNet’s performance, as showcased by Table 19, is vastly superior to all the other evaluated
models for this task. Although DisCoNet, similarly to most models, is better at detecting noise-related
shifts, the detection performance it shows for all the evaluated types of anomalies is consistently high.
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Table 19: Covariate shift OOD benchmark for the DisCoNet trained on CIFAR-10.

Corruption Corruption Intensity Average1 2 3 4 5
Brightness 55.9/91.5 72.4/76.0 87.7/46.9 96.2/18.2 99.8/0.6 82.4/46.6
Contrast 93.0/31.9 100.0/0.0 100.0/0.0 100.0/0.0 100.0/0.0 98.6/6.4

Defocus Blur 79.8/67.9 100.0/0.1 100.0/0.0 100.0/0.0 100.0/0.0 95.9/13.6
Elastic Transform 99.6/1.5 100.0/0.1 100.0/0.0 100.0/0.0 100.0/0.0 99.9/0.3

Fog 66.5/86.2 96.3/17.7 99.9/0.4 100.0/0.0 100.0/0.0 92.5/20.9
Frost 98.5/7.5 100.0/0.1 100.0/0.0 100.0/0.0 100.0/0.0 99.7/1.5

Gaussian Blur 78.4/71.3 100.0/0.0 100.0/0.0 100.0/0.0 100.0/0.0 95.7/14.3
Gaussian Noise 100.0/0.0 100.0/0.0 100.0/0.0 100.0/0.0 100.0/0.0 100.0/0.0

Glass Blur 100.0/0.1 99.9/0.3 99.9/0.2 100.0/0.0 100.0/0.1 100.0/0.2
Impulse Noise 99.9/0.5 100.0/0.0 100.0/0.0 100.0/0.0 100.0/0.0 100.0/0.1

JPEG Compression 92.7/33.3 96.9/14.7 97.8/10.3 98.4/7.2 99.2/3.6 97.0/13.8
Motion Blur 100.0/0.1 100.0/0.0 100.0/0.0 100.0/0.0 100.0/0.0 100.0/0.0

Pixelate 73.9/77.5 89.8/42.7 92.3/34.7 99.1/3.8 99.9/0.3 91.0/31.8
Saturation 91.6/31.1 95.7/16.3 46.2/96.2 74.2/64.9 88.3/34.1 79.2/48.5
Shot Noise 99.9/0.2 100.0/0.0 100.0/0.0 100.0/0.0 100.0/0.0 100.0/0.0

Snow 93.9/26.6 99.7/1.5 99.6/2.3 99.8/0.8 100.0/0.0 98.6/6.2
Spatter 86.8/48.0 99.2/4.4 100.0/0.0 98.4/8.0 99.9/0.1 96.8/12.1

Speckle Noise 99.9/0.2 100.0/0.0 100.0/0.0 100.0/0.0 100.0/0.0 100.0/0.0
Zoom Blur 100.0/0.0 100.0/0.0 100.0/0.0 100.0/0.0 100.0/0.0 100.0/0.0
Average 90.0/30.3 97.4/9.2 96.0/10.1 98.2/5.4 99.3/2.0 96.2/11.4

A.5 DETAILED COVARIATE SHIFT RESULTS ON IMAGENET-200

This appendix contains the performance metrics per corruption achieved on the ImageNet-200
Covariate Shift OOD benchmark for every evaluated model.

A.5.1 GLOW WITH LOG-LIKELIHOOD

Table 20 demonstrates that the model behaves similarly to CIFAR-10(-C). It can detect noisy corrup-
tions, especially at levels larger than or equal to two. However, it constantly deems blurry corruptions
to be more in-distribution than uncorrupted samples. This results in an extremely low average
AUROC and performance that does not improve with the severity of the corruption.

Table 20: Covariate shift OOD benchmark for GLOW trained with log-likelihood on ImageNet-200.

Corruption Corruption Intensity Average1 2 3 4 5
Brightness 38.0/96.5 42.4/95.9 45.6/95.6 47.6/95.9 48.2/96.5 44.4/96.1
Contrast 5.8/99.8 3.0/99.8 1.1/99.9 0.2/100.0 0.0/100.0 2.0/99.9

Defocus Blur 17.3/98.1 14.1/98.2 9.9/99.3 5.1/99.7 4.0/99.8 10.1/99.0
Elastic Transform 23.8/98.0 22.1/98.0 18.5/98.1 19.1/98.1 21.5/97.8 21.0/98.0

Fog 18.7/98.1 12.9/99.3 9.2/99.6 5.7/99.8 4.0/99.8 10.1/99.3
Frost 41.9/93.7 43.4/92.1 42.8/91.5 43.7/90.2 44.6/88.6 43.3/91.2

Gaussian Noise 65.6/65.5 97.5/6.9 99.7/0.8 100.0/0.2 100.0/0.0 92.6/14.7
Glass Blur 50.2/93.8 23.9/97.5 15.4/98.1 11.7/98.2 6.5/99.5 21.5/97.4

Impulse Noise 69.2/64.7 94.3/16.7 99.7/0.5 100.0/0.1 100.0/0.0 92.6/16.4
JPEG Compression 17.4/98.1 17.5/98.2 14.2/98.8 12.6/99.4 9.1/99.7 14.2/98.8

Motion Blur 21.9/98.0 17.4/98.1 14.4/98.2 12.2/98.6 10.6/98.9 15.3/98.4
Pixelate 32.7/97.0 32.3/96.9 33.0/96.6 30.6/97.0 28.5/97.3 31.4/97.0

Shot Noise 66.1/71.7 89.0/43.9 96.6/15.0 98.4/3.0 99.3/0.8 89.9/26.9
Snow 42.6/93.6 54.4/88.7 45.0/93.8 40.7/96.0 36.3/97.3 43.8/93.9

Zoom Blur 16.1/98.1 12.2/98.5 10.4/98.9 8.7/99.4 7.4/99.5 11.0/98.9
Average 35.2/91.0 38.4/81.9 37.0/79.0 35.8/78.4 34.7/78.4 36.2/81.7
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A.5.2 GLOW WITH TYPICALITY

The GLOW model trained with the Typicality objective behaves similarly to its CIFAR-10(-C)
counterpart, as demonstrated in Table 21. This model is better at detecting shifts related to high-
frequency dampening, such as Fog. On the other hand, corruptions that add high-frequency content,
such as Impulse Noise, are considered to be more ID than real samples.

Table 21: Covariate shift OOD benchmark for GLOW trained with typicality on ImageNet-200.

Corruption Corruption Intensity Average1 2 3 4 5
Brightness 43.6/96.0 37.4/97.8 33.1/98.6 29.8/99.0 28.1/99.1 34.4/98.1
Contrast 81.0/48.7 86.9/36.3 92.6/22.5 97.4/7.0 99.2/3.4 91.4/23.6

Defocus Blur 59.3/79.3 61.5/74.4 66.0/66.8 73.1/53.0 75.8/48.4 67.2/64.4
Elastic Transform 56.7/85.4 57.4/83.7 59.3/79.8 58.0/80.6 56.3/83.0 57.6/82.5

Fog 65.1/73.1 71.9/62.9 76.9/54.3 82.6/45.9 86.4/36.5 76.6/54.5
Frost 44.9/95.0 46.2/93.9 48.8/91.4 49.7/90.5 50.8/90.1 48.1/92.2

Gaussian Noise 27.1/97.4 4.3/99.2 0.5/99.8 0.2/100.0 0.0/100.0 6.4/99.3
Glass Blur 45.7/94.6 57.6/80.8 61.9/72.1 64.6/67.6 70.6/56.9 60.1/74.4

Impulse Noise 22.3/98.1 5.0/99.2 0.4/100.0 0.1/100.0 0.0/100.0 5.5/99.5
JPEG Compression 64.5/79.8 65.7/80.9 69.9/74.4 73.9/70.8 81.1/58.7 71.0/72.9

Motion Blur 56.6/83.9 59.2/79.1 61.2/74.4 63.1/71.6 64.7/69.4 61.0/75.7
Pixelate 52.9/90.2 53.7/89.1 53.0/89.4 55.5/84.7 60.4/78.5 55.1/86.4

Shot Noise 27.7/97.4 13.8/99.0 5.2/99.6 2.8/99.8 1.3/100.0 10.1/99.2
Snow 51.3/92.2 47.8/94.3 54.2/91.4 57.9/90.2 63.2/85.8 54.9/90.8

Zoom Blur 60.2/78.2 63.4/71.6 65.2/68.4 67.4/63.8 69.1/61.2 65.1/68.6
Average 50.6/86.0 48.8/82.8 49.9/78.9 51.7/75.0 53.8/71.4 51.0/78.8

A.5.3 DDPM-OOD

For the DDPM-OOD model trained on ImageNet-200, we observe a paradigm inversion, according
to the results found in Table 22. This model is better at detecting shifts related to high-frequency
dampening, such as Defocus Blur, than corruptions that increase the high-frequency content present
in the data distribution. The scores are determined using T=20 and LPIPS + MSE.

Table 22: Covariate shift OOD benchmark for DDPM-OOD trained on ImageNet-200.

Corruption Corruption Intensity Average1 2 3 4 5
Brightness 61.4/85.4 55.3/90.3 51.7/91.1 51.8/91.1 52.8/91.8 54.6/89.9
Contrast 83.4/57.5 87.2/46.9 91.4/38.5 95.8/18.4 96.9/15.6 90.9/35.4

Defocus Blur 84.2/58.1 90.7/39.2 96.2/17.7 99.3/1.3 99.8/0.9 94.0/23.4
Elastic Transform 75.7/73.9 76.0/73.6 82.0/61.1 80.3/66.1 76.3/71.0 78.1/69.1

Fog 81.9/60.5 90.9/32.8 95.5/19.5 98.6/5.9 99.3/2.2 93.2/24.2
Frost 52.5/88.5 54.7/89.4 61.6/85.1 65.2/80.9 68.6/79.0 60.5/84.6

Gaussian Noise 47.0/90.9 60.0/86.3 71.5/75.4 77.0/65.1 79.0/64.6 66.9/76.5
Glass Blur 63.1/82.2 74.9/73.7 81.2/62.0 86.8/47.6 95.6/19.1 80.3/56.9

Impulse Noise 55.6/87.0 63.2/82.4 73.9/70.5 78.8/60.8 79.6/60.2 70.2/72.2
JPEG Compression 70.1/78.9 67.3/81.8 73.9/78.3 72.5/76.0 76.9/70.5 72.1/77.1

Motion Blur 80.0/66.2 84.2/59.2 90.6/39.1 94.1/22.6 95.9/16.5 88.9/40.7
Pixelate 64.0/82.2 65.1/83.6 71.8/74.1 76.0/68.4 80.4/64.0 71.4/74.5

Shot Noise 50.8/91.9 54.4/89.9 63.4/83.6 69.7/80.2 74.9/72.6 62.6/83.6
Snow 55.4/87.0 59.5/84.1 52.9/88.9 50.9/88.1 54.3/87.6 54.6/87.1

Zoom Blur 88.1/42.1 92.5/31.0 95.3/19.7 96.3/15.6 97.7/11.0 94.0/23.9
Average 67.6/75.5 71.7/69.6 76.8/60.3 79.5/52.5 81.9/48.4 75.5/61.3

A.5.4 MOODV2

For the model evaluated in ImageNet-200, there is an evident tendency in the detection performance:
the best results occur for corruptions that filter high-frequency components. The intensity of the
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corruption plays an important role for MOODv2 in this dataset, which achieves very low scores for
Intensity 1 in every corruption tested, as demonstrated in Table 23.

Table 23: Covariate shift OOD benchmark for MOODv2 trained on ImageNet-200.

Corruption Corruption Intensity Average1 2 3 4 5
Brightness 54.3/91.8 55.4/91.4 57.7/90.3 61.6/88.4 66.6/85.0 59.1/89.4
Contrast 58.5/92.0 61.0/91.8 65.6/91.1 75.4/89.5 84.8/86.7 69.1/90.2

Defocus Blur 62.9/86.3 65.6/84.8 69.5/83.1 80.7/71.4 85.3/61.9 72.8/77.5
Elastic Transform 66.3/83.1 64.5/85.2 67.2/82.5 72.4/77.3 80.6/67.2 70.2/79.1

Fog 56.7/92.4 60.4/91.8 64.7/90.7 72.7/85.5 80.6/79.1 67.0/87.9
Frost 56.8/90.8 58.8/90.6 60.5/90.7 62.1/90.6 63.9/90.4 60.4/90.6

Gaussian Noise 58.8/89.0 63.2/87.9 70.8/82.9 75.3/79.5 79.3/75.7 69.5/83.0
Glass Blur 66.2/86.8 74.2/75.4 82.2/63.7 86.3/61.7 87.2/64.2 79.2/70.3

Impulse Noise 60.5/89.6 63.5/86.7 70.0/82.8 74.6/80.6 81.8/75.7 70.1/83.1
JPEG Compression 57.2/92.0 56.4/93.2 58.3/92.0 59.7/91.7 64.9/88.8 59.3/91.5

Motion Blur 61.0/87.4 64.6/85.4 68.1/82.8 71.8/79.8 75.4/75.6 68.2/82.2
Pixelate 55.9/91.6 60.1/88.1 65.2/83.9 67.1/83.8 72.4/80.1 64.1/85.5

Shot Noise 57.7/90.2 60.8/88.7 66.4/85.3 71.5/81.4 79.1/75.0 67.1/84.1
Snow 59.4/90.1 64.5/88.0 67.3/85.4 73.0/80.4 72.1/81.9 67.3/85.2

Zoom Blur 65.4/84.0 69.4/79.9 73.5/74.9 78.7/66.4 83.0/57.5 74.0/72.5
Average 59.8/89.1 62.8/87.3 67.1/84.1 72.2/80.5 77.1/76.3 67.8/83.5

A.5.5 DC-GAN

Once again, the DC-GAN performance is subpar for the detection of Covariate Shift OOD samples.
With the exception of the Snow corruption, as shown in Table 24, the model severely struggles to
separate ID samples from OOD samples. Despite its limited detection capabilities, performance
increases with the severity of the corruptions and it is more consistent than the one shown by GLOW
in this task.

Table 24: Covariate shift OOD benchmark for the DC-GAN trained on ImageNet-200.

Corruption Corruption Intensity Average1 2 3 4 5
Brightness 54.3/92.6 55.1/94.0 57.8/94.2 61.8/93.8 66.8/92.5 59.2/93.4
Contrast 52.8/83.8 53.2/84.2 53.3/85.3 47.8/88.9 42.9/91.1 50.0/86.7

Defocus Blur 59.7/86.4 60.5/85.5 62.8/82.2 65.8/77.7 66.4/76.6 63.0/81.7
Elastic Transform 58.5/88.3 58.4/88.2 59.4/86.7 60.3/85.4 60.6/84.7 59.5/86.6

Fog 56.9/81.7 58.4/76.8 60.1/73.2 63.5/67.4 66.8/62.2 61.1/72.3
Frost 62.2/87.7 65.6/83.6 66.7/80.6 68.3/77.6 69.5/74.9 66.4/80.9

Gaussian Noise 56.8/89.2 55.2/88.8 54.5/90.0 55.0/90.7 55.5/91.2 55.4/90.0
Glass Blur 56.7/87.8 61.4/83.0 63.7/79.9 65.2/76.5 66.0/74.1 62.6/80.2

Impulse Noise 55.7/89.6 54.9/89.8 55.5/90.6 56.4/90.7 56.9/92.2 55.9/90.6
JPEG Compression 55.2/90.2 54.5/91.2 55.3/90.2 55.2/90.4 55.1/90.0 55.1/90.4

Motion Blur 58.5/88.0 60.2/85.9 61.5/84.2 62.5/83.0 63.3/81.2 61.2/84.5
Pixelate 55.5/90.4 57.8/88.7 56.4/88.9 57.8/88.0 58.8/87.0 57.3/88.6

Shot Noise 56.8/89.5 56.5/89.5 55.7/90.1 56.1/90.2 57.7/90.7 56.6/90.0
Snow 63.1/85.8 65.4/83.1 71.9/76.2 78.0/68.2 80.9/61.0 71.9/74.9

Zoom Blur 61.3/85.1 63.0/83.0 63.7/81.7 64.3/80.6 64.8/79.9 63.4/82.0
Average 57.6/87.7 58.7/86.4 59.9/84.9 61.2/83.3 62.1/81.9 59.9/84.8

A.5.6 PRESGAN

Table 25 shows that the PresGAN model trained on ImageNet-200 displays the same behavior as the
one trained on CIFAR-10, i.e., the best results occur for the same type of corruptions. It also shows a
significant improvement when compared to the DC-GAN, showing once more the positive effects of
its strategy to achieve better mode coverage during training.
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Table 25: Covariate shift OOD benchmark for the Prescribed GAN trained on ImageNet-200.

Corruption Corruption Intensity Average1 2 3 4 5
Brightness 50.5/93.4 48.1/94.0 48.7/94.2 49.0/94.4 48.5/94.7 49.0/94.1
Contrast 45.5/93.2 44.4/93.2 42.4/93.9 38.5/94.9 36.3/95.0 41.4/94.0

Defocus Blur 63.5/87.6 64.2/86.9 65.7/86.0 60.2/89.1 55.3/91.2 61.8/88.2
Elastic Transform 59.4/90.6 62.0/89.1 63.7/87.7 73.4/80.2 80.0/73.4 67.7/84.2

Fog 66.2/85.0 71.4/80.0 74.7/75.8 79.8/67.9 83.6/60.1 75.2/73.8
Frost 58.6/90.2 60.6/89.3 62.1/87.2 64.9/85.9 67.4/83.7 62.7/87.2

Gaussian Noise 61.9/89.0 76.5/78.4 88.7/53.6 93.9/32.5 96.8/15.8 83.6/53.8
Glass Blur 72.8/81.3 70.8/82.1 70.5/82.7 67.5/84.8 62.0/88.6 68.7/83.9

Impulse Noise 66.3/86.3 74.9/80.0 89.7/49.9 95.4/24.6 99.0/4.0 85.1/49.0
JPEG Compression 58.0/90.9 58.7/90.2 59.7/89.9 61.3/89.5 63.8/88.0 60.3/89.7

Motion Blur 62.3/88.6 63.5/87.7 65.2/86.3 65.7/86.0 65.9/85.7 64.5/86.8
Pixelate 61.3/89.3 64.1/87.8 66.9/86.2 71.2/83.3 68.9/84.8 66.5/86.3

Shot Noise 63.8/88.2 72.5/82.2 81.8/70.9 89.2/52.4 95.2/25.2 80.5/63.8
Snow 64.2/87.1 69.6/83.5 77.7/75.2 86.5/58.0 80.3/73.2 75.7/75.4

Zoom Blur 63.6/87.5 63.7/87.3 63.9/86.8 62.8/88.0 60.9/88.7 63.0/87.6
Average 61.2/88.5 64.3/86.1 68.1/80.4 70.6/74.1 70.9/70.1 67.0/79.9

A.5.7 DISCONET

As demonstrated in Table 26, DisCoNet excels at detecting every type of corruption at every available
intensity. The performance gap observed when compared to the other models is pronounced for every
evaluated scenario.

Table 26: Covariate shift OOD benchmark for the DisCoNet trained on ImageNet-200.

Corruption Corruption Intensity Average1 2 3 4 5
Brightness 99.6/1.7 98.3/10.2 98.1/12.6 98.8/7.4 99.3/2.4 98.8/6.9
Contrast 100.0/0.0 100.0/0.0 100.0/0.0 100.0/0.0 100.0/0.0 100.0/0.0

Defocus Blur 100.0/0.0 100.0/0.0 100.0/0.0 100.0/0.0 100.0/0.0 100.0/0.0
Elastic Transform 100.0/0.0 100.0/0.0 100.0/0.0 100.0/0.0 100.0/0.0 100.0/0.0

Fog 100.0/0.0 100.0/0.0 100.0/0.0 100.0/0.0 100.0/0.0 100.0/0.0
Frost 98.2/11.5 98.8/6.8 99.2/3.9 99.3/2.9 99.4/2.3 99.0/5.5

Gaussian Noise 100.0/0.0 100.0/0.0 100.0/0.0 100.0/0.0 100.0/0.0 100.0/0.0
Glass Blur 99.6/1.6 100.0/0.0 100.0/0.0 100.0/0.0 100.0/0.0 99.9/0.3

Impulse Noise 99.9/0.1 99.9/0.2 99.9/0.1 100.0/0.0 100.0/0.0 99.9/0.1
JPEG Compression 100.0/0.0 100.0/0.0 100.0/0.0 100.0/0.0 100.0/0.0 100.0/0.0

Motion Blur 100.0/0.0 100.0/0.0 100.0/0.0 100.0/0.0 100.0/0.0 100.0/0.0
Pixelate 100.0/0.0 100.0/0.0 100.0/0.0 100.0/0.0 100.0/0.0 100.0/0.0

Shot Noise 100.0/0.0 100.0/0.0 100.0/0.0 100.0/0.0 100.0/0.0 100.0/0.0
Snow 97.8/13.3 98.7/8.0 97.9/13.9 98.5/9.5 98.7/7.2 98.3/10.4

Zoom Blur 100.0/0.0 100.0/0.0 100.0/0.0 100.0/0.0 100.0/0.0 100.0/0.0
Average 99.7/1.9 99.7/1.7 99.7/2.0 99.8/1.3 99.8/0.8 99.7/1.5

A.6 DETAILED COVARIATE SHIFT RESULTS ON IMAGENET-1K

This appendix contains the performance metrics per corruption achieved on the ImageNet-1K Covari-
ate Shift OOD benchmark for every evaluated model.

A.6.1 MOODV2

MOODv2 operates similarly in ImageNet-1K as it did in ImageNet-200; the best results are obtained
for corruptions that filter high-frequency components. Table 27 shows that it scores very low for
Intensity 1 in all corruption tests.
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Table 27: Covariate shift OOD benchmark for MOODv2 evaluated on ImageNet-1K.

Corruption Corruption Intensity Average1 2 3 4 5
Brightness 54.2/93.8 55.2/93.2 56.9/92.2 59.2/90.6 62.2/88.2 57.5/91.6
Contrast 59.6/91.6 61.7/90.4 66.1/87.7 77.5/76.6 86.4/54.9 70.3/80.2

Defocus Blur 69.6/80.3 76.0/70.7 85.5/51.0 91.8/33.9 95.4/21.0 83.7/51.4
Elastic Transform 60.2/88.5 75.9/62.7 63.2/85.1 70.8/75.3 87.1/44.2 71.4/71.1

Fog 70.0/82.5 77.3/71.5 89.2/40.0 93.3/25.6 97.0/11.4 85.3/46.2
Frost 61.8/88.8 70.3/79.9 75.6/71.7 77.1/69.7 80.0/63.5 72.9/74.7

Glass Blur 60.6/90.6 72.1/78.0 81.6/62.0 88.9/44.4 96.5/17.6 79.9/58.5
Gaussian Blur 58.0/90.0 60.0/87.7 64.8/82.8 71.5/74.1 80.3/59.0 66.9/78.7

Gaussian Noise 63.2/86.3 70.2/77.8 83.9/51.0 87.9/41.4 93.3/26.5 79.7/56.6
Impulse Noise 57.2/89.8 60.4/86.8 63.6/83.5 71.0/74.6 78.9/61.6 66.2/79.3

JPEG Compression 63.5/88.0 65.9/85.7 67.6/83.8 71.9/77.6 77.5/68.5 69.2/80.7
Motion Blur 58.7/90.2 63.1/85.9 70.5/77.0 80.0/61.0 85.8/48.5 71.6/72.5

Pixelate 55.8/92.2 57.5/90.9 61.0/87.9 67.7/81.0 83.8/57.1 65.2/81.8
Saturate 54.0/93.4 55.6/92.2 55.4/93.1 60.3/90.0 65.2/85.2 58.1/90.8

Shot Noise 58.3/89.7 61.0/86.8 65.3/82.1 73.7/70.7 80.1/59.1 67.7/77.7
Snow 62.3/87.4 70.8/77.8 70.7/78.9 75.6/71.4 77.2/67.7 71.3/76.6

Spatter 55.3/92.9 59.1/90.2 62.0/87.8 64.2/85.7 69.4/80.0 62.0/87.3
Speckle Noise 57.6/90.4 59.1/88.8 63.9/83.7 67.4/79.3 72.3/72.0 64.1/82.8

Zoom Blur 65.8/83.7 71.9/75.5 76.7/67.1 81.3/58.3 86.5/46.2 76.5/66.1
Average 60.3/88.9 65.4/82.8 69.7/76.2 75.3/67.4 81.8/54.3 70.5/73.9

A.6.2 NNGUIDE

NNGuide surpasses the performance of MOODv2, as demonstrated by the results in Table 28,
particularly for higher corruption intensities. Nonetheless, it also suffers from significantly low scores
at Intensity 1 across all corruption tests.

Table 28: Covariate shift OOD benchmark for NNGuide evaluated on ImageNet-1K.

Corruption Corruption Intensity Average1 2 3 4 5
Brightness 56.5/90.0 58.8/88.5 62.7/85.6 68.3/80.5 74.7/72.6 64.2/83.4
Contrast 54.1/91.3 61.9/86.2 75.0/72.1 93.3/27.8 99.2/3.0 76.7/56.1

Defocus Blur 74.7/69.2 81.2/57.6 90.3/36.5 94.7/22.6 97.2/13.0 87.6/39.8
Elastic Transform 64.8/83.3 80.4/65.4 77.6/66.9 86.4/51.0 95.7/22.1 81.0/57.7

Fog 69.5/79.0 74.6/73.2 80.7/63.9 84.5/55.3 92.2/32.8 80.3/60.8
Frost 71.7/73.9 84.8/49.8 91.0/33.4 91.7/31.0 94.2/22.7 86.7/42.2

Gaussian Blur 50.3/93.5 65.9/81.8 77.6/67.9 85.9/51.7 94.7/23.6 74.9/63.7
Gaussian Noise 66.2/82.5 74.4/73.1 84.9/53.6 93.8/27.1 98.6/6.4 83.6/48.5

Glass Blur 76.6/68.1 86.4/47.7 96.1/16.5 97.6/10.5 98.6/6.2 91.1/29.8
Impulse Noise 78.1/67.9 82.3/61.0 85.9/52.5 93.8/27.6 98.3/8.2 87.7/43.5

JPEG Compression 63.4/84.7 66.6/81.5 69.3/78.4 77.6/66.5 87.2/46.5 72.8/71.5
Motion Blur 69.3/76.6 78.8/62.3 88.7/41.2 94.9/22.1 97.0/14.0 85.7/43.2

Pixelate 63.3/86.5 65.2/84.9 75.6/71.9 86.9/48.2 92.2/32.1 76.7/64.7
Saturate 47.3/96.3 49.9/95.2 45.5/96.9 57.2/94.6 66.5/91.2 53.3/94.8

Shot Noise 68.1/80.7 77.2/69.5 86.1/51.7 95.0/23.1 97.9/10.3 84.9/47.1
Snow 74.9/74.5 89.2/42.3 87.6/48.4 92.8/31.5 95.2/21.5 87.9/43.7

Spatter 43.5/97.1 55.6/95.7 65.0/93.6 71.2/91.4 78.2/87.1 62.7/93.0
Speckle Noise 52.0/95.1 57.2/93.2 71.5/84.2 78.6/75.7 85.4/62.5 68.9/82.2

Zoom Blur 77.2/68.8 83.4/57.8 87.6/47.8 90.5/39.5 92.9/31.3 86.3/49.0
Average 64.3/82.0 72.3/71.9 78.9/61.2 86.0/46.2 91.4/32.0 78.6/58.7

A.6.3 DISCONET

As seen in Table 29, DisCoNet excels at detecting every sort of corruption at each possible intensity
on ImageNet-1K. This behavior is similar to what was observed in the other two datasets.
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Table 29: Covariate shift OOD benchmark for DisCoNet trained on ImageNet-1K.

Corruption Corruption Intensity Average1 2 3 4 5
Brightness 94.5/21.8 98.8/5.9 99.9/0.2 100.0/0.0 100.0/0.0 98.6/5.6
Contrast 100.0/0.0 100.0/0.0 100.0/0.0 100.0/0.0 100.0/0.0 100.0/0.0

Defocus Blur 100.0/0.0 100.0/0.0 100.0/0.0 100.0/0.0 100.0/0.0 100.0/0.0
Elastic transform 93.3/24.9 97.7/11.8 99.6/1.6 99.9/0.2 100.0/0.0 98.1/7.7

Fog 99.6/1.5 100.0/0.0 100.0/0.0 100.0/0.0 100.0/0.0 99.9/0.3
Frost 100.0/0.0 100.0/0.0 100.0/0.0 100.0/0.0 100.0/0.0 100.0/0.0

Gaussian Blur 98.8/5.9 100.0/0.0 100.0/0.0 100.0/0.0 100.0/0.0 99.8/1.2
Gaussian Noise 99.8/0.9 100.0/0.0 100.0/0.0 100.0/0.0 100.0/0.0 100.0/0.2

Glass Blur 99.9/0.3 100.0/0.0 100.0/0.0 100.0/0.0 100.0/0.0 100.0/0.1
Impulse Noise 100.0/0.0 100.0/0.0 100.0/0.0 100.0/0.0 100.0/0.0 100.00/0.0

JPEG Compression 90.2/31.8 92.0/26.4 93.0/24.1 95.0/19.6 96.9/14.3 93.4/23.3
Motion Blur 99.4/2.6 100.0/0.0 100.0/0.0 100.0/0.0 100.0/0.0 99.9/0.5

Pixelate 95.4/19.3 96.3/16.7 98.9/5.4 99.9/0.4 100.0/0.1 98.1/8.4
Saturate 88.1/30.7 89.9/30.7 94.4/22.0 99.4/2.9 100.0/0.0 94.3/17.3

Shot Noise 99.5/2.2 100.0/0.1 100.0/0.0 100.0/0.0 100.0/0.0 99.9/0.5
Snow 100.0/0.0 100.0/0.0 100.0/0.0 100.0/0.0 100.0/0.0 100.00/0.0

Spatter 93.1/24.0 99.5/2.3 100.0/0.0 100.0/0.0 100.0/0.0 98.5/5.3
Speckle Noise 98.0/9.5 99.3/3.1 100.0/0.0 100.0/0.0 100.0/0.0 99.5/2.5

Zoom Blur 100.0/0.1 100.0/0.0 100.0/0.0 100.0/0.0 100.0/0.0 100.0/0.0
Average 97.3/9.2 98.6/5.1 99.2/2.8 99.7/1.2 99.8/0.8 98.9/3.8

A.7 FREQUENCY IMPACT OF CORRUPTIONS

To assess the impact of corruptions on the frequency spectrum, we first calculated CIFAR-10’s
average Power Spectral Density (PSD) at its original resolution of 32×32 pixels. This involved
computing the Fast Fourier Transform (FFT) on each channel of every image in the dataset. We
aggregated all FFTs and, following Li et al. (2023b), determined the average Radial Profile of the
dataset through Azimuthal averaging using a publicly available toolkit 13. The frequency radius is
the distance from the center of the FFT that represents the zero-frequency component; larger radii
correspond to higher frequencies, with a maximum radius of 22 for this image size. We repeated this
process for each corruption at maximum intensity (severity 5 per the benchmark), and the Relative
Radial Profile of the PSD was calculated by dividing the Radial profile of each corrupted dataset by
that of the uncorrupted dataset. Based on their effect on the frequency spectrum, it is possible to
divide the corruptions into two categories: those that enhance high-frequency content and those that
reduce it. Our analysis focuses on radii greater than 13, which represent higher frequency components,
up to 21, since the final component contains only very residual information.

Figure 4: Relative radial profile of the PSD for the corruptions that dampen higher frequencies.

13https://github.com/keflavich/image_tools
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As shown in Figure 4, this group of 8 corruptions leads to a dampening of the spectral components at
higher frequency radius levels. The impact varies among the corruptions; for instance, the effect is
quite pronounced in the case of Contrast, whereas it is more gradual and subtle in the case of JPEG
Compression, approaching almost borderline levels.

Figure 5: Relative radial profile of the PSD for the corruptions that amplify higher frequencies.

As Figure 5 demonstrates, this set of 11 corruptions results in an amplification of spectral components
at higher frequency radius levels. The degree of this increase varies among the corruptions. For
example, Gaussian Noise, Impulse Noise, and Speckle Noise exhibit a significant amplification of
these components, while other corruptions like Brightness show a more moderate albeit consistent
increase.

These outcomes were used to propose the splitting of the corruptions found in CIFAR-10(-C),
ImageNet-200(-C) and ImageNet-1K(-C) into two distinct categories: Lower Frequency refers to
corruptions that decrease higher frequencies, while Higher Frequency refers to those that increase
high-frequency components. The proposed split for the corruptions is summarized in Table 30. It
should be noted that four of the listed corruptions are not present in ImageNet-200(-C), mainly
Gaussian Blur, Saturate, Spatter, and Speckle Noise.

Table 30: Corruptions categorized by frequency spectrum effects. Legend: ∗only present in CIFAR-
10(-C).

Type Corruptions

Higher Frequency Brightness, Frost, Gaussian Noise, Glass Blur, Impulse Noise, Pixelate,
Saturate∗, Shot Noise, Snow, Spatter∗, Speckle Noise∗

Lower Frequency Contrast, Defocus Blur, Elastic Transform, Fog, Gaussian Blur∗, JPEG
Compression, Motion Blur, Zoom Blur

A.8 DISCONET ABLATION STUDY

For the ablation study, we trained models using only reconstructions and only generated images, then
analyzed their performance per type of corruption in terms of frequency, following the split proposed
in Appendix A.7. The main goal was to demonstrate that the effectiveness of DisCoNet comes from
this dual training strategy and not merely from the adversarial setting.

Table 31 demonstrates a clear pattern: models trained solely on reconstructions excel at detecting low-
frequency corruptions, whereas models trained exclusively on generated images are more effective
at recognizing high-frequency corruptions. However, for certain borderline cases identified in
Appendix A.7, such as Brightness and Pixelate, this paradigm shows a slight shift.
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Table 31: Ablation study showing the impact of using reconstructed or generated images during
DisCoNet’s training.

Corruption CIFAR-10(-C) ImageNet-200(-C)
Recon. Generated Both Recon. Generated Both

Brightness 18.7/99.6 60.4/90.4 82.4/46.6 99.9/0.1 94.3/22.2 98.8/6.9
Contrast 99.2/3.9 78.3/58.1 98.6/6.4 100.0/0.0 99.8/0.3 100.0/0.0

Defocus Blur 98.6/6.4 74.0/68.3 95.9/13.6 100.0/0.0 99.7/0.2 100.0/0.0
Elastic Transform 99.9/0.5 69.9/79.6 99.9/0.3 100.0/0.0 99.0/3.9 100.0/0.0

Fog 89.3/31.1 75.5/62.6 92.5/20.9 100.0/0.0 98.2/8.1 100.0/0.0
Frost 46.0/99.6 82.6/59.1 99.7/1.5 99.9/0.2 99.8/0.1 99.0/5.5

Gaussian Blur 98.4/6.9 79.6/57.9 95.7/14.3 — — —
Gaussian Noise 8.8/99.6 97.3/11.6 100.0/0.0 90.2/0.0 99.9/0.1 100.0/0.0

Glass Blur 34.8/83.8 66.3/84.2 100.0/0.2 100.0/0.0 99.3/3.8 99.9/0.3
Impulse Noise 0.1/100.0 96.1/15.2 100.0/0.1 67.1/43.8 99.7/0.6 99.9/0.1

JPEG Compression 86.8/47.7 61.3/89.7 97.0/13.8 100.0/0.0 84.2/64.8 100.0/0.0
Motion Blur 100.0/0.0 86.0/50.1 100.0/0.0 100.0/0.0 99.1/3.2 100.0/0.0

Pixelate 78.5/62.9 68.9/81.1 91.0/31.8 100.0/0.0 91.8/38.0 100.0/0.0
Saturate 37.4/91.0 66.5/71.5 79.2/48.5 — — —

Shot Noise 13.6/99.3 95.2/18.9 100.0/0.0 86.1/19.3 99.8/0.2 100.0/0.0
Snow 14.3/100.0 82.0/65.3 98.6/6.2 99.1/5.0 97.6/9.7 98.3/10.4

Spatter 2.8/100.0 80.4/62.7 96.8/12.1 — — —
Speckle Noise 9.4/99.7 96.5/14.3 100.0/0.0 — — —

Zoom Blur 100.0/0.0 80.9/65.3 100.0/0.0 100.0/0.0 99.8/0.1 100.0/0.0
Lower Frequency 96.5/12.1 75.7/66.4 97.5/8.7 100.0/0.0 97.1/11.5 100.0/0.0
Higher Frequency 24.0/94.1 81.1/52.2 95.2/13.4 92.8/11.0 98.1/8.1 99.5/2.9

Average 54.6/59.6 78.8/58.2 96.2/11.4 96.2/5.8 97.6/9.7 99.7/1.5
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