Under review as submission to TMLR

Named Tensor Notation

Anonymous authors
Paper under double-blind review

Abstract

We propose a notation for tensors with named axes, which relieves the author, reader, and
future implementers of machine learning models from the burden of keeping track of the
order of axes and the purpose of each. The notation makes it easy to lift operations on
low-order tensors to higher order ones, for example, from images to minibatches of images,
or from an attention mechanism to multiple attention heads.

After a brief overview and formal definition of the notation, we illustrate it through several
examples from modern machine learning, from building blocks like attention and convolu-
tion to full models like Transformers and LeNet. We then discuss differential calculus in
our notation and compare with some alternative notations. Our proposals build on ideas
from many previous papers and software libraries. We hope that this document will en-
courage more authors to use named tensors, resulting in clearer papers and more precise
implementations.

1 Introduction

Formal descriptions of neural networks primarily adopt the notation of vectors and matrices from applied
linear algebra (Goodfellow et al., 2016). When used to describe vector spaces, this notation is both concise
and unambiguous. However, when applied to neural networks, these properties are lost. Consider the
equation for attention as notated in the Transformer paper (Vaswani et al., 2017):

: (QKT)
Attention(Q, K, V') = softmax V.
Vi
The equation relates @, K, and V (for query, key, and value, respectively) as sequences of feature vectors,
packed into possibly identically-sized matrices. While concise, even this short equation is ambiguous. Does
the product QK T sum over the sequence, or over the features? We know that it sums over columns, but
there is not enough information to know what the columns represent. Is the softmax taken over the query
sequence or the key sequence? The usual notation does not offer an answer. Perniciously, the implementation
of an incorrect interpretation might still run without errors. With the addition of more axes, like multiple
attention heads or multiple sentences in a minibatch, the notation becomes even more cumbersome.

We propose an alternative mathematical notation for tensors with named azes.® The notation has a formal
underpinning, but is hopefully intuitive enough that machine learning researchers can understand it without
much effort. In named tensor notation, the above equation becomes

Attention: R¥Y x Rseaxkey y Rgseaxval _, pval
QoK
Attention(Q, K, V') = softmax key o V.

seq \/ | key ‘ seq

The type signature introduces three named axes: the key axis is for features of queries and keys, the val axis
is for features of values, and the seq axis is for tokens in a sequence. This notation makes the types of each
input tensor explicit. Tensor @ is a query vector that is compared with key vectors, so it has a key axis.

1We follow NumPy in using the term azis. Other possible terms would be index, dimension, way, or mode (Tucker, 1964),
but we felt that axis had the least potential for confusion.

Under review as submission to TMLR

Tensor K is a sequence of key vectors, so it has seq and key axes. Tensor V is a sequence of value vectors,
so it has seq and val axes. Unlike with matrix notation, the reader is not required to remember whether seq
corresponds to rows or columns in either of these tensors.

The function itself uses the named axes to precisely apply operations. The expression Q ® K is a dot product
key

over the key axis shared between K and @); there is no ambiguity about rows or columns. Similarly, the
softmax function is annotated with the axis along which it is applied, removing any ambiguity or reliance
on convention.

Furthermore, named tensor notation naturally extends to lifting (also known as vectorizing and/or broad-
casting) a function to tensors with more axes. For example, if instead of being a tensor with the single axis
key, @ has three axes key, seq and batch (corresponding to tokens of a sequence and examples in a minibatch,
respectively) then the Attention function works as written, acting on each example in a minibatch in parallel.
Similarly, we can also add a heads axis to the inputs to get multiple attention heads. These additional axes
are often elided in neural network papers, possibly avoiding notational complexity, but possibly also hiding
critical model details.

Our contributions. This work proposes a mathematical notation for named tensors and a fully specified
semantic interpretation for the notation. Through examples we demonstrate that this notation enables
specifying machine learning models and operations in a succinct but yet precise manner. The need for
named tensors has been recognized by several software packages, including xarray (Hoyer & Hamman, 2017),
Nexus (Chen, 2017), tsalib (Sinha, 2018), NamedTensor (Rush, 2019), named tensors in PyTorch (Torch
Contributors, 2019), axisarrays (Bauman, 2018), and Dex (Maclaurin et al., 2019). While our notation is
inspired by these, our focus is on mathematical notation to be used in papers, rather than code. We hope
that, if adopted by researchers in papers, this notation will inspire software packages as well and eventually
lead to both clearer papers and more correct implementations.

2 Named Tensors

In standard notation, a vector, matrix, or tensor is indexed by an integer or sequence of integers; if it has
dimensions nq,...,n,, it can be thought of as a map that takes as input (i1,...,4,) € [n1] X - -+ X [n,] and
outputs a real number (or an element of a different field). For example, if A € R3*3, then the order of the
two axes matters: A; 3 and As; are not the same element. It is up to the reader to remember what each
axis of each tensor stands for. This problem is exacerbated in modern machine learning, where tensors have
multiple axes with different meanings (batches, channels, etc.), and different operations act on different axes.

In contrast, in a named tensor, each axis has a name that describes it and ensures there is no confusion
between axes. If it has axes axq[n1],...,ax,[n,] (with axy,...,ax, being distinct names), it can be thought
of as a map that takes as input a record {axq[i1],...,ax,.[i;]}, with i1 € [nq],...,4 € [n,], and outputs a
field element. The key difference is that, rather than taking as input an ordered tuple of indices, a named
tensor takes as input a record, which is an unordered set of named indices.

2.1 By example

For example, if A represents a 3 x 3 grayscale image, we can make it a named tensor like so (writing it two
equivalent ways to show that the order of axes does not matter):

Ae Rheight[B]Xwidth[S] — Rwidth[B]Xheight[fi]

width height

31 4 3 1 2
A =height|1 5 9| =width|1 5 6{.
2 6 5 4 9 5

Under review as submission to TMLR

We access elements of A using named indices, whose order again does not matter: Apeight(1),width(3) =
Awidth(3),height(1) = 4. We also allow partial indexing:

width height
Aneight(1) = [3 1 4] Ayidth(3) = [4 9 5]-

It does not matter if we write Apeight(1) OF Awigen(3) as row and column vectors. In many contexts, an axis
name is used with only one size. If so, we can simply write height for the unique axis with name height, as
in Rheightxwidth “\Wo can leave the size of an axis unspecified at first, and specify its size later (e.g., deferring
it to an appendix on experimental details). For example, we can specify |height| = |width| = 28 if we want
to prescribe the precise size of an image, or just write |height| = |width| to specify that it’s a square image.

What are good choices for axis names? We recommend meaningful words instead of single letters, and we
recommend words that describe a whole rather than its parts. For example, to represent a minibatch of
examples, we would name the axis batch; to represent a sequence of tokens, we would name the axis seq.
When no name for the whole is available, we recommend the plural form of the name of part. For example,
if we wanted A to have red, green, and blue channels, we would name the axis chans. Please see §4 for more
examples.

2.2 Formal definition

We now define formally the notation we use.
Definition 1 (Names, indices, and axes). An azis is a pair, written ax[I], where

o ax is the name of the axis, which is simply a string of letters. We write both names and variables
ranging over names using sans-serif font.

o I is a set of indices. In this paper, I is always of the form {1,...,n} for some n, so we abbreviate
ax[{1,...,n}] as ax[n].

In many contexts, there is only one axis with name ax, and so we refer to the axis simply as ax. The context
always makes it clear whether ax is a name or an axis. If ax is an axis, we write ind(ax) for its index set,
and we write |ax| as shorthand for |ind(ax)|.

Definition 2 (Named indices and records). If ax[I] is an axis and ¢ € I, then a named index is a pair, written
ax(i). A record is a set of named indices {ax;(i1), ..., ax,(i,)}, where ax, ... ax, are pairwise distinct names.

Definition 3 (Shapes). A shape is a set of axes, written ax;[[1] X - - - X ax,.[[,.], where axq, . .. ax, are pairwise
distinct names. We write () for the empty shape. A shape defines a set of records:

rec(axq[[1] X -+ x ax,.[I]) = {{axy (41),...,ax.(4-)} | 91 € I1,... i € I.}.

We say two shapes & and T are compatible if whenever ax[I] € S and ax[J] € T, then I = J. We say that
S and T are orthogonal if there is no ax such that ax[I] € S and ax[J] € T for any I, J. If t € recT and
S C T, then we write t|g for the unique record in recS such that t[g C t.

Definition 4 (Named tensors). Let F' be a field and let S be a shape. Then a named tensor over F with
shape S is a mapping from recS to F. We write the set of all named tensors with shape S as F'S.

We don’t make any distinction between a scalar (an element of F) and a named tensor with empty shape
(an element of F?).

If A € F®, then we access an element of A by applying it to a record s € recS; but we write this using the
usual subscript notation: Ay rather than A(s). To avoid clutter, in place of Alfax, (i1),...,ax, (in)}» We usually

write Ao (i1),...,ax, (z,)- When a named tensor is an expression like (A + B), we index it by surrounding it
with square brackets like this: [A + B]

axy (i1),..-,ax,. (1) -

We also allow partial indexing. If A is a tensor with shape 7 and s € recS where S C T, then we define A;
to be the named tensor with shape 7 \ S such that, for any ¢ € rec(7 \ S),

[As]t = AsUt-

Under review as submission to TMLR

(For the edge case T = 0, our definitions for indexing and partial indexing coincide: one gives a scalar and
the other gives a tensor with empty shape, but we don’t distinguish between the two.)
3 Operations

A significant benefit of named tensor notation is that it allows one to unambiguously specify operations
that map tensors to tensors, and defines precisely how operations can be lifted when an operation is applied
to tensors with more axes than are present in its signature and how broadcasting happens when different
arguments add different axes.

We start with the formal definition of named tensor operations, then show how this definition leads to many
common operations.

3.1 Formal definition

Definition 5 (Named tensor operation). Let Si,...,Sk, T be shapes. A named tensor operation with
signature FS1 x ... x FS — F7T is a function f : FS' x --. x FS — FT that takes as input tensors
Ay, ..., Ay of shapes Sy, ..., Sy respectively and maps it into a tensor B of shape 7.

We can now define how to lift such operations to higher-order tensors.
Definition 6 (lifting, unary). Let f: F$ — G7 be a function from tensors to tensors. For any shape S’
orthogonal to both S and 7', we can define the lift f& of f with the shape S’ to be the map

fS/: FSUS' N GTUS/

{fs' (A)} = f(A) forall A€ FSUS and s € recS.

Usually, we simply write f instead of fS/. That is, for every tensor A with shape R 2 S, we let f(A) =
FRAS(A).

If f is a multary function, we can lift each of its arguments to larger shapes, and we don’t have to add
the same axes to all the arguments; an axis present in one argument but not another is broadcast from the
former to the latter. We consider just the case of two arguments; three or more arguments are analogous.

Definition 7 (lifting, binary). Let f: FS x G7 — HY be a binary function from tensors to tensors. For
any shapes &’ and 7" that are compatible with each other and orthogonal to S and T, respectively, and
S"U T’ is orthogonal to U, we can lift f to:

fs’xT/ . Fsus/ « GTuT/ N HMUS’UT’

[fS’XT’(A,B)L =f(Ay,.By,,) forall Ac FSU5' B e FTUT s erec(S'UT).

Again, we usually write f instead of fS <7,

3.2 Elementwise operations and broadcasting

Any function from a scalar to a scalar can be applied elementwise to a named tensor. For example, given
the logistic sigmoid function,

c:R—>R
1
ol@) = 1+ exp(—zx)
we can lift it to tensors:
width
1 1 1
14+exp(—3) 1+exp(—1) 1+exp(—4)

G(A) = hEIght 1+ex113(71) 1+ex11;)(75) 1+ex113(79)

1 1
14+exp(—2) 1+4exp(—6) 1+4exp(—5)

Under review as submission to TMLR

Similarly for rectified linear units (relu(z) = max(0, z)), negation, and so on.

Similarly, any function R x R — R, like addition (4), real multiplication (which we write as ®), and so on,
can be applied to two named tensors with the same shape. But if we apply a binary function or operator to
tensors with different shapes, then broadcasting applies. For example, let

xc Rheight[B] y e]Rwidth[S]
2 width
z = height I Y= [1 4 1].

(We write x as a column just to make the broadcasting easier to visualize.) Then, to evaluate A + z, we
effectively replace x with a new tensor with a copy of = for every index of axis width. Likewise for A + y:

width width
3+2 1+2 442 3+1 144 441
A+x=height|14+7 54+7 9+7 A+y=height|1+1 5+4 9+1|.
2+1 6+1 5+1 2+1 6+4 5+1

3.3 Reductions

The same rules apply to functions from vectors to scalars, called reductions. We always specify which axis
a reduction applies to using a subscript (equivalent to the axis argument in NumPy and dim in PyTorch).
For example, we can define summation:

> RS R

ax
Z X = Z Xax(i)
ax

iel

and use it on A from above:

width
S A=Y Apgy = [3+1+2 145+6 4+9+5]
height i

height
S A= Awang) = [3+1+4 1+5+9 2+6+5].
width J

We can also write multiple names to sum over multiple axes:

Z A= ZZAheightu),width(j) =34+1+4+14+54+94+2+6+5.
height i 7
width

But a summation with an index variable (like 7 or j above) is a standard summation over values of that
variable, and a summation with no subscript is a standard summation over a set.

Other examples of reductions include:

normX /ZX2

min X = min{ X, | i € I} max X = max{ X, | i € I}
ax ax
meanX:iZX VarX:ig:(X—meanX)2
ax \ax| ax |ax| o ax

Under review as submission to TMLR

The vector dot-product is a function from two vectors to a scalar. We write it as follows:

— o —: R R 4 R

ax

XOoY = Z Kax(d) Yax(d)
aX i€l
The dot-product generalizes to named tensors to give the ubiquitous contraction operator, which can be
thought of as elementwise multiplication followed by summation over one axis:

width

A © x—ZAhe,ght(VTheight@) = [3-2+1-7+2-1 1.245-746-1 4-249-7+5-1]

height

3:-1+1-444-1
A © Y= ZAmdth(]) yWIdth(]) = helght 1-14+5- 4 1+9-.1
width 51 N - I

Again, we can write multiple names to contract multiple axes at once. A ® with no axis name under it
contracts zero axes and is equivalent to elementwise multiplication, so we use ® for elementwise multiplication
as well. The contraction operator can be used for many multiplication-like operations:

xr ® x= the,ght i) Theight(i) inner product

height

[© Ylheight(i),width(j) = Theight(i) Ywidth(j) outer product

Ao y= Z Awidth(i) Ywidth (i) matrix-vector product

width

r ® A= the,ght i) Aneight() vector-matrix product
height

A O B= Z Auidth(i) © Buwidth(s) matrix-matrix product (B € R""idthx‘”idth/)
width

3.4 Vectors to vectors
Functions from vectors to vectors (R*!] — R are particularly problematic in standard notation, which
does not provide any way (to our knowledge) of specifying which axis the operation should be performed
over. Such functions include:

exp A
>exp X

ax

softmax X =
ax

argmax X = lim softmax aX
ax Q=00 ax

hm softmax aX
- ax

argmin X =
ax

For example, we can clearly distinguish between two ways of performing a softmax on A:

width
B exp 3 exp 1 exp 4 T
exp 3+exp %+exp 2 exp l4+exp ngexp 6 exp 4+exp 8+exp 5
_ . exp exp exp
SOft_ma‘X A= hEIght exp 3+exp l4-exp 2 exp 14exp 5+exp 6 exp 4+exp 9+exp b
height exp 2 exp 6 exp 5
L exp 3+exp 14-exp 2 exp 14exp 5+4exp 6 exp 4-+exp 9+exp 5 |
width
B exp 3 exp 1 exp 4
exp 3+exp 1+exp 4 exp 3+exp 1+exp 4 exp 3+exp 1+exp 4
_ . exp 1l exp 5 exp 9
SOﬂ:’maX A= hEIght exp 14+exp 5+exp 9 exp l4+exp 5+exp 9 exp 1+exp 5+exp 9
width exp 2 exp 6 exp 5
| exp 2+exp 64exp 5 exp 2+exp 6+4exp 5 exp 2+exp 6+exp 5 |

Under review as submission to TMLR

3.5 Renaming and reshaping

It’s often useful to rename an axis (analogous to a transpose operation in standard notation). We can
accomplish this using a function from vectors to vectors, but with different input and output axes:

[_}axﬁax/: Rax[[] — RGX'U]
[Xarsan T (5) = Xax(i)

For example,

width

3 1 4
Aheight—>height’ = height/ 1 5 9].

2 6 5

We can also define notation for reshaping two or more axes into one axis:

layer
A(height width)—layer = 3 1 4 1 5 9 2 6 5]

The order of elements in the new axis is undefined. Authors who need a particular ordering may write a
more specific definition.
4 Worked Examples: Neural Networks

In this section we give a series of worked examples illustrating how standard neural network model com-
ponents can be written using named tensors. Appendix A builds some of these components into complete
specifications of the Transformer and LeNet.

4.1 Feedforward neural networks

A multi-layer, feedforward neural network with different-sized layers can be written as:

XO c Rinput

Xl _ O'(Wl ® XO +b1) Wl c Rhiddenlxinput bl c Rhiddenl
input

X2 _ U(W2 ® Xl + b2) W2 c Rhidden2><hidden1 b2 c Rhidden2
hidden;

X3 _ O'(W3 ® X2 + b3) W3 c Routxhidden2 b3 c Rout
hidden,

The layer sizes can be specified by writing |hidden; | = ny, etc. As noted above, ¢ is applied elementwise and
does not require additional annotation.

Alternatively, the layer equation can be abstracted by writing:

layer

FullConn' (z; W', ') = o (Wl ®z+ bl>
layer’ —layer

where
Wl c Rlayer' [ni] xlayer[n;_1]

bl e Rlayer/[m])

We assume FullConn' encapsulates both the equation for layer [as well as its parameters W', b (analogous
to what TensorFlow and PyTorch modules). Since we chose to use the same axis name layer for all the layers
(with different sizes n;), FullConn' temporarily computes its output over axis layer’, then renames it back to
layer. The network can be defined like this:

X0 c Rlayer[no]

Under review as submission to TMLR

X' = FullConn' (X?)
X? = FullConn®(X1)
X? = FullConn®(X?).

4.2 Recurrent neural networks

As a second example, we consider a simple (Elman) RNN. This model is similar to the feedforward network,
except that the number of timesteps is variable and parameters are shared over time. At each time step, it
produces a tensor with a new axis hidden’ which is then renamed hidden for the next step in the recursion.

z! e Rinput t=1,....n
Wb e Rhiddenhidden’ |hidden| = |hidden’|
Wi c Rinputxhidden’

be Rhidden'

hO c Rhidden

hf:a<wh ®o Kl4+wt @mt+b> t=1,....n

hidden nput hidden’ —hidden

4.3 Attention

In the introduction (§1), we describe difficulties in interpreting the equation for attention as used with
Transformers (Vaswani et al., 2017). In our notation, it looks like this:

Attention: R} x Reeaxkey , Reeaxval _, pval
QoK
Attention(Q, K, V') = softmax el oV

seq \/ ‘ key | seq

This definition takes a single query @ vector returns a single result vector (and actually could be further
reduced to a scalar values as val is not strictly necessary). To apply to a sequence, we can give @Q a seq’
axis, and the function will compute an output sequence. Providing @, K, and V with a heads axis lifts the
function to compute multiple attention heads.

For Transformers we often need to apply a mask to ensure attention is only applied to valid keys (e.g. for
causal language models). We can modify the equation to include this mask:

Attention: R¥®Y x Rseaxkey s Rseaxval o ppseq _, pval
QOK
Attention(Q, K, V, M) = softmax key +M] V.

seq \/ | key | seq

Appendix A.1 includes a full specification of the complete Transformer model using the named tensor nota-
tion.

4.4 Convolution

Standard neural network convolutions can be specified by “unrolling” a vector and then applying a standard
dot product. We define an axis-parameterized unrolling function that converts a one-axis tensor to a sequence
of kernel sized vectors:

unroll : Rseq[n] —y Rsed [n—|kernel|+1],kernel

seq
kernel

Under review as submission to TMLR

unroll X =Y, where
seq
kernel

}/;eq(i),kernel(j) = Xseq(i+j—1)~

A 1d convolution with input channels chans and output channels chans’ consists of unrolling along the seq
axis and then taking a dot product:

Convld: Rchansxseq[n] - RChans/Xseq[n’]
Convld(X;W,b) =W © unroll X +b

chans seq
kernel kernel

where

W e Rchans’ x chans x kernel

beR

Unrolling easily generalizes to higher-dimensional convolutions:

Conv2d : Rehansx height[h] x width[w] N Rchans'xheight[h’] x width[w’]

Conv2d(X;W,b) =W © unrollunroll X +b
chans height width
khkw kh kw

where

W e Rchans'xchansxkhka
beR.

4.5 Pooling

Pooling is similar to convolutions. We first define a function to partition a tensor into windows.

pOOl . Rseq[n] N Rseq[n/\kernel\],kernel

seq,kernel

pool X =Y, where

seq,kernel

}/seq(i),kemel(j) = Xseq((i—l)-\kernel|+j) .

Then we can define aggregations over kernel. We define max-pooling as:

MaxPoolldy, : R —y Reealn/#]
MaxPoolldy(X) = max pool X

kernel seq,kernel
|kernel| = k
MaXPOOl2dkh7kw : Rheight[h] Xwidth[w] N Rheight[h/kh] xwidth[w /kw]

MaxPool2dyp 1w (X) = max pool pool X
kh,kw height,kh width, kw

Ikh| = kh
[kw| = kw.

Under review as submission to TMLR

4.6 Normalization layers

Normalization layers are used in all large-scale deep learning models, with different architectures requiring
different types of normalization. However, despite their importance, the differences between them are often
not clearly communicated. For example, the PyTorch documentation (PyTorch Contributors, 2022) describes
all of them using the same equation (where € > 0 is a small constant for numerical stability):

X —mean(X)

Oy +
var(X) + e T8

Wu & He (2018) give essentially the same equation and explain the differences using a combination of
equations, words, and pictures. But they do not capture differences in v and 5 among different normalization
layers.

Critically, the layers do differ by which axes are standardized as well as their parameters. We define a single
named standardization function as:

standardize: R — R
X — mean(X)

ax

standardize(X) = ——
ax var(X) + e

ax

Then, we can define the three kinds of normalization layers, all with type RPatchxchansxlayer _, Tpbatchxchansx layer

While superficially similar, these functions differ in their standardized axes and their parameter shape.

BatchNorm(X;~, 8) = standardize(X) ® v+ 8 v, B € Rehans
batch,layer
InstanceNorm(X; v, 8) = standardize(X) ® v + 8 7, B € Rehans
layer
LayerNorm(X;~y,) = standardize(X) ® v + 8 7, B € Rehansilayer
layer,chans

5 Differentiation

Let f be a function from order-m tensors to order-n tensors and let Y = f(X). The partial derivatives of YV’
with respect to X form an order-(m + n) tensor: m “input” axes for the directions in which X could change
and n “output” axes for the change in Y.

For example, if f maps from vectors to vectors, then 2—}/{ is a matrix (the Jacobian). But using matrix
notation, there are conflicting conventions about whether the first axis is the input axis (“denominator
layout”) or the output axis (“numerator layout”). The derivative of a function from vectors to matrices or
matrices to vectors cannot be represented as a matrix at all, so one must resort to flattening the matrices

into vectors.

With non-named index notation, taking derivatives of higher-order tensors with respect to higher-order
tensors is not difficult (Laue et al., 2018), but again a convention must be adopted that the input axes come
after the output axes, and the output and input axes are separated with a comma.

5.1 Definition

With named tensors, axes are not ordered, so there is no need to establish and remember conventions about
whether the input or output axes come first. The only thing we have to worry about is if an input and
output axis have the same name, which we can handle using renaming.

Definition 8. Let f: RS — R7, where S and T are orthogonal, and let Y = f(X). Then the derivative
of Y at X is the tensor with shape S x T such that for all s € recS and ¢ € recT,

o] _ v
0X|,, 0X,

10

Under review as submission to TMLR

If X and Y’s shapes are not orthogonal, we take the derivative of Yr_,7 instead. (It’s also possible to
rename X, but we think it’s easier to think about renaming Y".) Assume 7 = ax; X - -- X ax,.. Then for each
ax;, choose a new name ax; not in either S or 7, and let 7’ = ax] X - -+ x ax,.. Then we seek the tensor of

partial derivatives

aYT%T' o Y,
ox |,, 0X,

5.2 Rules

To compute derivatives, we use the method of differentials (Magnus & Neudecker, 1985). Intuitively, the
differential of f(X) at X, written 0f(X;AX), is a tensor with the same shape as f(X) that linearly
approximates f at X + AX. We omit a formal definition here. Magnus & Neudecker prove that if 9f exists,
it is unique, and

Theorem 1. If f: RS — R7 where S and T are orthogonal, and Of exists at C, then for all A € RS*T,

If(C;AX) =A0AX (VAX € R%) iff orX) _
s 0X

Magnus & Neudecker state this result twice, one for vector-to-vector functions and once for matrix-to-matrix
functions (but omitting vector-to-matrix and matrix-to-vector functions). Here, we only need to state it once,
for functions from tensors to tensors of any shape.

In practice, we can write 0f(X;AX) simply as df, and AX never appears in our calculations. We find
differentials using rules like the following;:

AU +V)=aU + 8V

QAUGV)=0UV +U6IV
a(U) eV -UcIV

v V2
0y U=> oU

UGV)=0UOV+U 6V

U, = [0U],
aUvaxﬁax’ = [8U]axaax’

We will also make use of the chain rule,

_o1WU) oy FiRY SRV

O1(U) = "5

If we can get the differential of Y into so-called canonical form,

0Y = A® X + const. (1)
S

where “const.” stands for terms not depending on 90X, then by Theorem 1 we have

oY
ax A

In order to get equations into canonical form, some tricks are useful. First, contractions can be easier to
reason about if rewritten as sums of elementwise products:

A®B=) (A®B).

ax
ax

11

Under review as submission to TMLR

Second, renaming can be thought of as contraction with an identity matrix:

1 i=j
[Iax,ax’]ax(i),ax/(j) = {0 717&]

Aax—>ax’ = Z Iax,ax’ © A

ax

5.3 Example

Let us find the differential of the softmax operator:

Y = softmax X

ax

3Y(’9(exp X)

dexp X
ax
expX ©@0X ©) expX —expX © > (exp X ® 0X)
a (Z:epr)2

ax

=Y o (0X-Y 0dX).

ax

Next, use this to find the Jacobian, %. Since X and Y have the same shape, we rename Y:

aY’axﬁax’ = [Y O] (8X - Z Yo aX”ax%ax/

ax

= }/axﬁax/ O) (8Xax~>axl - Z Yo aX)

ax

=Yoo © Z Iax',ax ©0X — Z Y 00X

ax ax

= Z Y—axﬁax’ O] (Iax/,ax - Y) ©®o0X

ax

aY*ax~>ax’

ox = }/axﬂax/ © (IBX/,BX - Y)

To derive the rule for backpropagation, we assume there is a scalar L that depends on Y and that we already

know ng;. We want to find g—)L(.

oL
anga—Y@aY

:ZS—EL,@YG)(E)XfZY®8X)

ax

:Z%@Y@@X—Z%@Y@ZY@BX

oL AL
%:ZTY@YQGX%: axa—YGY OY ®0X
oL oL
_aZXYQ —m/—ax —aYQY ®0X

12

Under review as submission to TMLR

0y (320

5.4 Lifting

Let f: RS — R7, and let f’ be its derivative. If X € RS“Y where U is orthogonal to both S and T, recall
that Y = f(X) is defined by:

Finding the differential of Y is easy:
Y, = f(X,) ® 90X,
s
Y = f(X)®0X.
s
But although f’ can be to X using the usual lifting rules, it’s not the case that g—f(= f/(X), which would

have the wrong shape. The reason is that the contraction is only over S, not S UU. To get this into the
form (1):

Ny = Y _['(X) © OX e

s
= Z ZIZ/[,L{/ ® f,(X) ®o0X
s u
Yy
0X

In general, then, when we lift a function to new axes, we lift its derivative by multiplying by the identity
matrix for those axes.

=Iuu © f(X).

6 Alternatives and Related Work

6.1 Index notations

Among alternatives to standard vector and matrix notation, the most common one, which scales much
better to more than two axes, is index notation as used in physics (Ricci & Levi-Civita, 1901), including
the Einstein summation convention. Related notations are used in other fields as well (Harshman, 2001). In
this notation, axes are ordered, and every equation is written in terms of tensor components. If an index
appears on both sides of an equation, then the equation must hold for each value of the index, and if an
index appears twice on one side and not on the other, there is an implicit summation over that index.

Attention: R% x R™*d x RnXdv _y Rdv

[Attention(Q, K, V)], = softgnax (%) Vik.-
Because k appears on both sides, the equation must hold over all values of this index. But because ¢ and j
occur twice on only the right-hand side, they are both summed over. We would have to define exactly what
the ¢ under the softmax means (i is bound inside the softmax and free outside it), and since softmax doesn’t
distribute over addition, we would need to modify the summation convention so that the summation over j
occurs inside the softmax.

Aside from these correctable issues, this notation is concise and unambiguous. But it does not solve the main
problem we set out to solve, which is that ordered axes force the author and reader to remember the purpose
of each axis. The indices do act as symbolic names for axes (indeed, in abstract index notation (Penrose &
Rindler, 1984), they really are symbols, not variables), but they are temporary names; they could be totally
different in the next equation. It would be up to the author to choose to use consistent names, and to do so
correctly.

13

Under review as submission to TMLR

A second issue is that because it depends on repetition of indices to work, index notation can be more verbose
than our notation, particularly for reductions and contractions:

C =max A; C =max A

ax

C = A;B; C=A®B.

ax

Finally, index notation requires us to write out all indices explicitly. So if we wanted to lift attention to
minibatches (b € [B]), multiple heads (h € [H]) and multiple query tokens (i’ € [n']), we would write:

’ !
Attention : RBxHxn X dp % RBxHxnxdk % RBxHxnxdv N RBxHxn X dy

. Qbhirj Konij
[Attention(@Q, K V)]y,, = softmax <i/j£” Vonik-

We could adopt a convention that lifts a function on tensors to tensors that have extra axes to the left, but
such conventions tend to lead to messy reordering and squeezing/unsqueezing of axes. Named axes make
such conventions unnecessary.

6.2 Graphical notations

In the graphical notation of Penrose (1971), a node in the graph stands for a tensor, and its incident edges
stand for its indices. The edges are ordered from left to right. An edge connecting two nodes denotes
contraction. The notation of Alsberg (1997) is similar, except that edges are named, not ordered.

Graphs are commonly used in machine learning for representing probability models (Koller & Friedman,
2009). A node in the graph stands for a random variable, and an edge or hyperedge stands for a dependency
between variables. If random variables have finite domains, then a (hyper)edge with r endpoints can be
thought of as an r-th order tensor. A graph can then be thought of as a product and contraction. Extensions
that allow for a choice between two subgraphs (e.g., Minka & Winn, 2008) can be thought of as addition.

Our assessment of graphical notations like these is that, on the positive side, they have obvious value for
visualization, and they at least have the potential to represent indices in a purely unordered way. On the
negative side, these notations seem best suited for representing linear functions, and even for this purpose,
some other practical considerations are that drawing pictures requires more effort from the author, and that
pictures will have a less transparent relationship with their implementation in most programming languages.

6.3 Relational algebra

In relational algebra (Codd, 1970), the basic objects are sets of r-tuples, which could be thought of as
tensors of order r with Boolean-valued entries. In the original formulation, the members of the tuples, which
correspond to axes, were both named and ordered, although later definitions (e.g. Pirotte, 1982) made them
unordered.

Probabilistic variants of relational algebra also exist (e.g. Dey & Sarkar, 1996; Fuhr & Rolleke, 1997), whose
relations would correspond to tensors of probabilities.

While relational algebra and tensor notations are designed for totally different purposes, the notation of
relational algebra generally has a similar flavor to ours (for example, our contraction operator is similar to
the > operator, and our renaming operator is the same as the p operator).

7 Conclusions

Named tensor notation is a system of formal notation for representing operations between tensors in a
non-ambiguous way while remaining intuitive for practitioners. The system is motivated by challenges
that arise from taking notation designed for applied linear algebra and using it for representing neural
networks, as demonstrated through examples of canonical deep-learning components such as attention and
layer normalization. However, named tensors are not limited to specifying neural networks. We have also
explained how to integrate our notation with Magnus & Neudecker (1985)’s method of differentials for matrix

14

Under review as submission to TMLR

calculus. While there are other conventions that such as index notation that have some usage in the machine
learning community, these conventions either lack the conciseness of named tensors or are not well-suited to
non-linear operations. For these reasons, we encourage members of the machine learning community to try
out named tensor notation for teaching, research, and software documentation.

References

Bjgrn K. Alsberg. A diagram notation for n-mode array equations. Journal of Chemometrics, 11:251-266,
1997.

Matt Bauman. Axisarrays, 2018. URL https://github.com/JuliaArrays/AxisArrays.jl. Open-source
software.

Tongfei Chen. Typesafe abstractions for tensor operations. In Proceedings of the 8th ACM SIGPLAN
International Symposium on Scala, SCALA 2017, pp. 45-50, 2017. doi: 10.1145/3136000.3136001. URL
http://doi.acm.org/10.1145/3136000.3136001.

E. F. Codd. A relational model of data for large shared data banks. Commun. ACM, 13(6):377-387, jun
1970. doi: 10.1145/362384.362685.

Debabrata Dey and Sumit Sarkar. A probabilistic relational model and algebra. ACM Trans. Database Syst.,
21(3):339-369, September 1996. doi: 10.1145/232753.232796.

Norbert Fuhr and Thomas Rolleke. A probabilistic relational algebra for the integration of information
retrieval and database systems. ACM Trans. Inf. Syst., 15(1):32-66, January 1997. doi: 10.1145/239041.
239045.

Tan Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.

Richard A. Harshman. An index formalism that generalizes the capabilities of matrix notation and algebra
to n-way arrays. Journal of Chemometrics, 15:689-714, 2001. doi: 10.1002/cem.665.

Stephan Hoyer and Joe Hamman. xarray: N-D labeled arrays and datasets in Python. Journal of Open
Research Software, 5(1):10, 2017. doi: http://doi.org/10.5334 /jors.148.

Daphne Koller and Nir Friedman. Probabilistic Graphical Models: Principles and Techniques. MIT Press,
20009.

Soeren Laue, Matthias Mitterreiter, and Joachim Giesen. Computing higher order derivatives of ma-
trix and tensor expressions. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 31, pp. 2750—
2759. Curran Associates, Inc., 2018. URL https://proceedings.neurips.cc/paper/2018/file/
0a1bf96b7165e962e90cb14648c9462d-Paper . pdf.

Dougal Maclaurin, Alexey Radul, Matthew J. Johnson, and Dimitrios Vytiniotis. Dex: array programming
with typed indices. In NeurIPS Workshop on Program Transformations for ML, 2019. URL https:
//openreview.net/forum?id=rJxd7vsWPS.

Jan R. Magnus and H. Neudecker. Matrix differential calculus with applications to simple, Hadamard,
and Kronecker products. Journal of Mathematical Psychology, 29(4):474-492, 1985. doi: https://
doi.org/10.1016/0022-2496(85)90006-9. URL http://www.sciencedirect.com/science/article/pii/
0022249685900069.

Tom Minka and John Winn. Gates. In Proc. NeurIPS, pp. 1073-1080, 2008. URL https://papers.nips.
cc/paper/3379-gates.

R. Penrose and W. Rindler. Spinors and space-time, volume 1. Cambridge University Press, 1984.

Roger Penrose. Applications of negative dimensional tensors. In D. J. A. Welsh (ed.), Combinatorial
Mathematics and its Applications, pp. 221-244. Academic Press, 1971.

15

https://github.com/JuliaArrays/AxisArrays.jl
http://doi.acm.org/10.1145/3136000.3136001
https://proceedings.neurips.cc/paper/2018/file/0a1bf96b7165e962e90cb14648c9462d-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/0a1bf96b7165e962e90cb14648c9462d-Paper.pdf
https://openreview.net/forum?id=rJxd7vsWPS
https://openreview.net/forum?id=rJxd7vsWPS
http://www.sciencedirect.com/science/article/pii/0022249685900069
http://www.sciencedirect.com/science/article/pii/0022249685900069
https://papers.nips.cc/paper/3379-gates
https://papers.nips.cc/paper/3379-gates

Under review as submission to TMLR

Alain Pirotte. A precise definition of basic relational notations and of the relational algebra. ACM SIGMOD
Record, 13(1):30-45, 1982. doi: 10.1145/984514.984516.

PyTorch Contributors. PyTorch documentation, 2022. URL https://pytorch.org/docs/1.12/. version
1.12.

G. Ricci and T. Levi-Civita. Méthodes de calcul différentiel absolu et leurs applications. Mathematische
Annalen, 54:125-201, 1901.

Alexander Rush. Named tensors, 2019. URL https://github.com/harvardnlp/NamedTensor. Open-source
software.

Nishant Sinha. Tensor shape (annotation) library, 2018. URL https://github.com/ofnote/tsalib. Open-
source software.

Torch Contributors. Named tensors, 2019. URL https://pytorch.org/docs/stable/named_tensor.html.
PyTorch documentation.

L. R. Tucker. The extension of factor analysis to three-dimensional matrices. In H. Gulliksen and N. Fred-
eriksen (eds.), Contributions to Mathematical Psychology, pp. 110-127. Holt, Rinehart and Winston, New
York, 1964.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser,
and Illia Polosukhin. Attention is all you need. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neural Information Processing Systems,
volume 30, pp. 5998-6008. Curran Associates, Inc., 2017. URL https://proceedings.neurips.cc/
paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper . pdf.

Yuxin Wu and Kaiming He. Group normalization. In Proc. ECCV, 2018.

A Extended Examples

A.1 Transformer

We define a Transformer used autoregressively as a language model. The input is a sequence of one-hot
vectors, from which we compute word embeddings and positional encodings:

= {07 1}seq><vocab Z I=1
vocab
W =(E © I)\/|layer| E € Rvocabxlayer
vocab

Pc Rseqxlayer

P [sin((p — 1)/100000=V/Maverly 4 odd
sea(p).layer(d) = cos((p — 1)/100000=2)/llayerl) 4 even.

Then we use L layers of self-attention and feed-forward neural networks:
XO=—wa+rpr
T' = LayerNorm® (SelfAtt' (X°)) + X°
X! = LayerNorml,(FFNl(Tl)) + T

TL = LayerNorm” (SelfAtt™ (X L~1)) + X £~1
X% = LayerNorm” (FFN*(T)) + T*
O = softmax(F © XF)

vocab layer

16

https://pytorch.org/docs/1.12/
https://github.com/harvardnlp/NamedTensor
https://github.com/ofnote/tsalib
https://pytorch.org/docs/stable/named_tensor.html
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

Under review as submission to TMLR

where LayerNorm, SelfAtt and FFN are defined below.
Layer normalization (I =1,1',..., L, L’):
LayerNorm': R'&er — R'aver
LayerNorm'(X) = XNorm(X; 8',~").

layer

We defined attention in §4.3; the Transformer uses multi-head self-attention, in which queries, keys, and
values are all computed from the same sequence.

SelfAtt!: Reeaxlaver _, pseaxlayer

SelfAtt! (X) =V

where
|seq| = |seq|
|key| = |val| = |layer|/|heads|
Q = WZ’Q ® Xseq—>seq' Wl’Q c Rheadsxlayerxkey
layer
K =whE ® X whE e Rheadsxlayerxkey
layer
V=whv o X whv c [Rheadsxlayer xval
layer
Me Rseqxseq'
0 1<
M ; R -
eali) sea’ () {—oo otherwise
_ 1,0 : 1,0 heads x val x layer
Y=Ww © Attentlon(@a Ka Va M)seq/ﬁseq w eR
heads

val

Feedforward neural networks:

FFNl: Rlayer N Rlayer

FFN'(X) = X2
where
Xl _ relu(Wl’l o X _|_bl,1) Wl,l c Rhiddenxlayer bl,l c Rhidden
layer
X2 _ relu(Wl,Q ® Xl + bl,2) Wl,2 c Rlayerxhidden bl,2 c Rhidden.
hidden
A.2 LeNet

XO e Rbatch X chans[cg] X height X width

T! = relu(Conv' (X))

X' = MaxPool! (T")

T? = relu(Conv?(X 1))

X?= MaXPOOlz(T2)(height,width,chans)—)layer

X3 =relu(W? © X2+ %) W3 ¢ Rhiddenxlayer b3 ¢ Rhidden

layer

17

Under review as submission to TMLR

0= softmax(W4 ® X3 + b4) W4 c Rclassesxhidden b4 c Rclasses

classes hidden
As an alternative to the flattening operation in the equation for X?2, we could have written

X2 = MaxPool?(T?)

X3 — relu(W3 ® X2 + b3) W3 c Rhiddenxheightxwidthxchans.
height
width
chans

The convolution and pooling operations are defined as follows:
COIIVl (X) = CODVQd(X; le bl)chans’—mhans

where

wi c Rchans'[q]><chans[c,,_1]xkh[kh,]ka[kwl]
bl e Rchans/[cl]
and

MaxPool'(X) = MaxPool2d,: pu (X).

18

	Introduction
	Named Tensors
	By example
	Formal definition

	Operations
	Formal definition
	Elementwise operations and broadcasting
	Reductions
	Vectors to vectors
	Renaming and reshaping

	Worked Examples: Neural Networks
	Feedforward neural networks
	Recurrent neural networks
	Attention
	Convolution
	Pooling
	Normalization layers

	Differentiation
	Definition
	Rules
	Example
	Lifting

	Alternatives and Related Work
	Index notations
	Graphical notations
	Relational algebra

	Conclusions
	Extended Examples
	Transformer
	LeNet

