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Abstract

In recent years Recurrent Neural Networks (RNNs) were successfully used to
model the way neural activity drives task-related behavior in animals, operating un-
der the implicit assumption that the obtained solutions are universal. Observations
in both neuroscience and machine learning challenge this assumption. Animals can
approach a given task with a variety of strategies, and training machine learning
algorithms introduces the phenomenon of underspecification. These observations
imply that every task is associated with a space of solutions. To date, the structure
of this space is not understood, limiting the approach of comparing RNNs with
neural data. Here, we characterize the space of solutions associated with various
tasks. We first study a simple two-neuron network on a task that leads to multiple
solutions. We trace the nature of the final solution back to the network’s initial
connectivity and identify discrete dynamical regimes that underlie this diversity.
We then examine three neuroscience-inspired tasks: Delayed discrimination, In-
terval discrimination, and Time reproduction. For each task, we find a rich set of
solutions. One layer of variability can be found directly in the neural activity of
the networks. An additional layer is uncovered by testing the trained networks’
ability to extrapolate, as a perturbation to a system often reveals hidden structure.
Furthermore, we relate extrapolation patterns to specific dynamical objects and
effective algorithms found by the networks. We introduce a tool to derive the
reduced dynamics of networks by generating a compact directed graph describing
the essence of the dynamics with regards to behavioral inputs and outputs. Using
this representation, we can partition the solutions to each task into a handful of
types and show that neural features can partially predict them. Taken together,
our results shed light on the concept of the space of solutions and its uses both in
Machine learning and in Neuroscience.

1 Introduction

Modern machine learning operates in an over-parameterized regime, implying that many different
parameter-sets can achieve low error on a given training set (1). This observation implies that
for every task, there exists a space of solutions that can implement it. What are the properties of
such a solution space? Are networks able to learn solutions that capture the intended underlying
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phenomena or do they reach artificial shortcuts that do not generalize well? What biases networks
to prefer one solution over the other? These questions remain largely unanswered. A parallel
phenomenon occurs in Neuroscience. When animals are instructed to perform a task in a controlled
environment, they exhibit both neural and behavioral variability, which stem from different task-
strategies (2; 3; 4; 5; 6; 7; 8; 9; 10; 11). In Computational Neuroscience trained Recurrent Neural
Networks (RNNs) are used as a tool to explain functions and mechanisms that are observed in brain
dynamics (12). In fact, various recent studies have matched the activity of trained RNNs to that of
experimental recording (13; 14; 15; 16; 17; 18; 19). In light of the variability that undoubtedly exists
on both sides of the comparison, these results seem puzzling. In this work, we present multiple tasks
for which trained RNNs produce a rich space of qualitatively different solutions. We argue that to
properly use artificial networks, and RNNs in particular, as models of neural circuits that support a
given task, it is necessary to chart the space of solutions that arises from training.

Here, we first apply this approach to a simple two-neuron network and demonstrate how distinct
solutions arise. We then study three tasks inspired by the neuroscience literature: interval reproduction
(20), delayed discrimination (21), and interval discrimination (22). We show that different networks
with identical hyperparameters find qualitatively different solutions. We find one layer of variability
within the neural activity in response to stimuli from the training set. Since by design the output of
all networks is identical during training, this layer is akin to multiple realizability (23). Next, we
expose an additional layer of variability when we challenge the networks with inputs that are outside
the distribution of the training set and systematically characterize the responses. Furthermore, we
manage to show that the diversity revealed with these challenging inputs corresponds to qualitatively
different computations performed by the network. To chart the space of solutions, we introduce a
tool that reduces the dynamics of a network into a graph that captures the essence of the computation
performed. Applying it to all networks partitions the space into a handful of possible reduced
dynamics. Additionally, these classes can be partially predicted using experimentally accessible
neural activity obtained only in response to trained stimuli.

2 Related work

Recent work, (24) studied the effects of modeling choices over the dynamics of the trained solutions,
in a few canonical tasks. They trained thousands of RNNs, while systematically controlling the
hyperparameters, and analyzed the geometrical and topological aspects of each solution. They
concluded that while the geometry of different solutions can vary significantly across different
architectures, the underlying computation and dynamical objects are widely universal. Our results are
superficially opposite to theirs. This is probably due both to the choice of tasks and to challenging
networks with unexpected inputs.

The authors of (25) show that deep networks trained on vision tasks develop different internal
representations, especially in the higher layers. While reaching similar conclusions on the need to
use populations of networks for neuroscience comparisons, the analysis of feedforward networks
naturally focuses on representations rather than on dynamics. While writing this manuscript, we were
made aware of recent work by (26) that takes a very similar approach to ours. Apart from the different
tasks, architectures and learning rules studied there, our analysis of the two-neuron network also
provides a tangible example of discrete basins of attraction in solution space. An underspecified two-
dimensional epidemiological model was studied by (1). The variability in solutions there, however,
was continuous. Specifically, all solutions were connected on a single manifold and the dynamics of
the system did not undergo bifurcations along this manifold.

Underspecification was also highlighted in neuroscience models that are not based on artificial neural
networks (27) and is observed more generally in complex systems (28).

3 What constitutes a solution?

Before comparing how the different networks solve the various tasks, it is worth dwelling on the
concept of a solution. This is not a trivial concept and can be related to fundamental philosophical
questions. Aristotle suggested (29) the four causes of understanding an object: its material form, its
formal description, its efficient cause (creation process), and its final cause (purpose). We can draw
an analogy to our understanding of RNN solutions, and ask: What is their architecture (material),
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what is their underlying algorithm or dynamics (formal), which optimization process led to their final
state (efficient), and what task do they solve (final). Because our motivation stems from comparing
networks to biological data, we take an operative approach that relies on measures that could in
principle be obtained experimentally. We thus consider two of these pillars: either the neural activity
of the network while performing the task (formal description), or its predictions for unexpected
stimuli (purpose).

4 Space of solutions in a 2D RNN task

We first study the space of solutions in an extremely simple scenario that nevertheless shows qualita-
tively different solutions. We consider a 2-neuron continuous-time network (Figure 1A), in which the
state of the network x ∈ R2 evolves according to:

ẋ = −x+Wφ(x), x(0) =

[
1
0

]
(1)

For the task, we require that x(T ) =

[
0
1

]
(Figure 1B). We choose φ := tanh and T = 10.

Accordingly we define a loss:

L =
1

2

∥∥∥∥x(T )− [
0
1

]∥∥∥∥2 . (2)

The system has four parameters, given by the elements of W ∈ R2×2. We train 10000 randomly
initialized networks to minimize L and discover solutions with qualitatively different dynamics. We
select three representative examples. (Figure 1 D,E,F). The first example implements a stable fixed
point near the target, the second implements a limit cycle near the target, and the third exhibits
transient amplification passing through the target before gradually decaying to zero.

To visualize the space of solutions, we consider a 2D plane in the 4D parameter space containing
the three aforementioned solutions. We find that this plane explains 94 percent of the variance of all
solutions (compared to 95 percent by the first two principal components), and is thus a representative
description of solution space. The shading in Figure 1C shows the loss along this plane, indicating
that some solutions lie along a single continuous manifold, while others inhabit discrete islands.
Linearizing the dynamics at the origin allows us to obtain a bifurcation diagram on this plane (Figure
1C, red and black lines), showing the existence of a bifurcation along the continuous manifold. In
the simpler case of a linear network, we can also show how the discrete and continuous solution sets
arise (see supplementary section 2.1)

We thus conclude that the network converges to qualitatively different solutions. These can be
attributed to discrete basins of attraction in parameter space and dynamical bifurcations of the system
occurring within and across these basins.

5 Neuroscience Tasks

Guided by the results from the two-neuron network, we examine three more complex, neuroscience-
inspired, tasks Figure 2. A priori, it is not clear whether such tasks will exhibit more or less variable
solutions. On the one hand, a complex task might lend itself to multiple algorithmic solutions. On
the other hand, a complex task represents more constraints on the network and hence might lead to
convergence to a unique solution. More details can be found in the supplementary material subsection
Section 2.1.2

In the Delayed discrimination task (21), two pulses of varying amplitudes (f1, f2 ∈ [2, 10]) are
presented, separated by a varying delay (td ∈ [5, 24]) Figure 2A. The lower panel shows the correct
output in response to various stimulus combinations, which is independent of td and partitions the
(f1, f2) plane.
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Figure 1: Two-neuron network. A Network architecture, with the four trainable parameters. B The
task defined in phase space. The initial state is fixed (green). The task is for the network to be
at a final state (red) at time T = 10. C A 2-D slice of the 4-D parameter space containing three
selected solutions (black markers). Heatmap denotes task loss evaluated along the slice. Overlaid is a
bifurcation diagram along the slice; lines indicate dynamical bifurcations and text indicates regions
with a stable origin, non-trivial fixed point attractors and limit cycles (LC). D, E, F Phase portraits of
the three selected solutions marked in C, trajectories taken by each of the networks during the task
(t < T , thick purple) and subsequently (t > T , thin purple). Heatmaps denote speed of dynamics
q := 1

2 ‖ẋ‖
2(30)

.

In the Interval discrimination task (22), two pulses of equal amplitude are presented at times t1 and
t1 + t2, where t1, t2 ∈ [10, 30] and t1 6= t2. The network should produce an output pulse whos sign
indicates whether t2 > t1 or not Figure 2B. The lower panel once more shows the desired output.

Finally, in the Interval reproduction task (20) the network receives two input pulses – Ready and
Set – separated by tin time steps. The task is to generate an output pulse tout = tin time steps after
the Set pulse. The training intervals were drawn from a uniform distribution tin ∈ [20, 50]. The lower
panel shows the desired output, where having only one parameter defining the trials (tin) allows us to
display the entire trial output on each line. Trials aligned to the Ready pulse (Figure 2B, red). This
results in the Set pulse (yellow) forming a line with slope 1.0 and the Go pulse (green) a line with
slope 0.5. Figure 2C shows the output of a trained network matching this pattern.

For each task we trained 400 Vanilla networks, with N = {20, 30, 40, 50} hidden units. See the
Supplementary material subsectionSection 2.1.3 for more details regarding the training process, as
well as results from GRU and LSTM networks trained on the interval reproduction task.
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Figure 2: The three tasks. A Delayed discrimination task. Top: The network is presented with two
pulses with amplitudes f1 and f2 respectively, separated by a variable delay, and should respond with
a pulse with an amplitude equal to sign(f1 − f2). Bottom: The desired output for all training data,
for each delay, f1, f2 the color of the 3D matrix is the expected response. B Interval discrimination
task. Top: The network is presented with two pulses with a unit amplitude, that arrive at times t1 and
t2 − t1. In response, it should produce a pulse with amplitude that is equal to sign(t2 − t1). Bottom:
Desired output for all t1 and t2 combinations. C Interval reproduction (Ready-Set-Go) task. Top:
The network is presented with two pulses (Ready and Set, provided through separate input channels)
separated by tin time-steps. The desired output is a Go pulse, delayed by tout = tin steps from the
Set pulse. Bottom: Desired output for all trials, with Ready, Set and Go depicted in red, yellow and
green respectively..

5.1 Multiple neural dynamics solve the same task

We demonstrate the diversity of neural dynamics in different solutions by showing a couple of
examples from each task. The left side of Figure 3AB shows the activity of two networks solving
the interval reproduction task projected onto the first principal components. It is possible to infer
two distinct algorithms for solving the timing problem from these plots. Because the task requires
counting time in two distinct epochs – from Ready to Set and from Set to Go – we focus on these
to explain the algorithms. The network in panel B uses the same phase space trajectory for both
epochs, effectively counting from the maximal delay (tin = 50) downwards upon the Ready pulse,
and moving to an earlier point upon the Set pulse. This is in contrast to the network in panel A,
in which the Set pulse leads to a different area in phase space. Furthermore, the almost circular
trajectory of the Ready-Set epoch hints at the oscillatory behavior that will be discussed below.

The delayed discrimination task also admits multiple solutions. In this case, we consider activity
during the delay period. Figure 3CD show several delay trajectories, corresponding to different f1
values. The network in panel D converges to approximate fixed points for each such value, while
the network in panel C converges to limit cycles. Note that the network was trained with variable
delays (31), and hence the second stimulus arrives at random phases of these cycles. Nevertheless,
both networks perform well on the training set.

Interval discrimination contains two timing-epochs – from the onset of the trial to the first pulse,
and between the two pulses. The network in panel E uses the same trajectory in phase space for
both epochs, similar to panel A of the interval reproduction task. The second example exhibits both
oscillatory behavior and distinct trajectories for the two phases.

Taken together, these examples show that networks trained with identical hyperparameters, and
reaching similar performance nevertheless develop qualitatively different neural dynamics to solve
the same task.
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5.2 Extrapolation

On the behavioral side, we challenge networks with stimuli that are outside of the trained distribution.
Since each of our tasks is parametric, testing the networks on extrapolation while increasing each
parameter is a natural choice. The middle column of Figure 3 shows the results of this challenge for
the various networks, which often shows traces of the neural diversity described above.

The almost circular Ready-Set neural trajectory of panel A apparently results in a limit cycle, as
revealed by the extrapolation plot. Similarly, the fact that the Ready-Set trajectory of panel B
leads directly to the Go pulse is reflected in the vertical Go line that precedes the Set pulse in the
extrapolation plot. Other features, such as the fact that a Set pulse delivered after the Go pulse results
in a second output, are only revealed through extrapolation and cannot be deduced from the PCA of
neural activity during the training set.

In the delayed discrimination task, the oscillations shown in panel C were not reflected in the output on
the training region. Extrapolating to larger amplitudes and delays, however, reveals output oscillations
as depicted on the top face of the extrapolation cube.

In the interval discrimination task (panels E,F), the relation between neural trajectories and extrap-
olation behavior is less clear. But in this case, as in all others, the striking differences between
different solutions are manifested both in the training neural activity and in the response to behavioral
challenges.

5.3 Reduced Dynamics

Part of the motivation for looking into extrapolation patterns is uncovering the algorithm that networks
use to solve the task. Within the framework of neural dynamics (18; 12) this corresponds to mapping
the dynamical objects used by the network and their relation to behavioral inputs and outputs. Previous
works focused on fixed point topology to achieve this goal (30; 24; 14). The tasks considered in the
present work are mostly dependent on transient dynamics and hence require a different approach. To
this end, we developed a tool to compress the state space while preserving the essential dynamics and
the behavioral information. Briefly, the method generates trajectories by combining long stretches
of autonomous dynamics with behavioral inputs. The trajectories are then merged and compressed
into a graph. Each node represents areas in phase space that have a given output and share the same
input-dependent past and future. The edges represent autonomous dynamics (black) or the various
inputs (colors). The full details of the algorithm are in the supplementary material subsection 2.2.
The left column of Figure 3 shows such reduced dynamics for all the example networks. Examining
these graphs can reveal the dynamics driving extrapolation patterns.

The network of panel A has a limit cycle, which is depicted by the red node that has a black self-loop.
Furthermore, the graph shows that after the Go pulse, the network can still respond to an additional
Set pulse. The fact that the network of panel B utilizes the same trajectory for both epochs is reflected
in the yellow self-loop in the corresponding graph. The graph also shows that a Go pulse can occur
before the Set pulse.

The delayed discrimination task has more input types and therefore was less compressed by the
algorithm. As a result, the graphs can show both the logic of comparison during the training set and the
extrapolation patterns with the limit cycles. A Similar scenario holds for the interval discrimination
task.

5.4 A space of solutions

The examples described above suggest that similar to the two-neuron case, trained networks converge
into distinct solutions which can be characterized both by neural signatures and by behavioral ones.
In the case of the two-neuron network, the parameter space is only four-dimensional, and most of the
solutions are in a two-dimensional subspace. Hence, we could span most of it and understand the
solution types via the linearized dynamics around the origin. In the more complex tasks, the reduced
dynamics graphs serve as a method to characterize the space of solutions. We computed the reduced
dynamics for all 400 networks of each task and found that they only contain a few different graphs.
Figure 4E shows the number of networks of each type for the interval reproduction task. The four
major graphs and their corresponding representative extrapolation plots are shown in panels A-D.
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5.5 Inferring reduced dynamics from neural activity

The reduced dynamics described above are obtained by simulating the networks for very long times,
to obtain their asymptotic behavior. In a neuroscience setting, such information is not readily available.
Is it possible to infer this asymptotic behavior from neural activity during the training set? To answer
this question, we extracted a set of features, as detailed in the supplementary material. The features
mostly measure the relationship between neural activity in the different epochs of the task. Other
features measure geometrical properties of a single epoch, as in the curvature of the Ready-Set
trajectory, which was inspired by networks like Figure 3A. While we tried to include features that are
natural descriptors of the neural activity, there is some arbitrariness in our choice. We chose to err
on the side of including more features, and later rely on cross-validation to avoid overfitting in our
predictions (32).

For each task, we trained and evaluated a classifier to predict the reduced dynamics of the pool of
networks from the neural features. Figure 4F shows the resulting confusion matrix for the interval
reproduction task (other tasks are in the supplementary material Figures 8 and 9). Cohen’s kappa (33)
was used to summarize the prediction quality, showing an above-chance performance.

5.6 Different architecture and tasks

The diversity of solutions reported here arise from identical hyperparameters and random initialization.
To probe the biases introduced by changing hyperparameters, we tested the effect of varying network
architecture for the interval reproduction task. The supplementary material shows results from
training this task using LSTM and GRU networks. We find that some solution classes are shared
between architectures, and some only appear in certain architectures (Figure 5A). Furthermore, these
choices bias the solutions, as reflected in the different histograms. For instance, the example of
Figure 5B did not occur in any of the 400 Vanilla networks, but was the most common type in GRU
networks. Despite these biases, there are solutions that appear under all architectures, as exemplified
in Figure 5C,D,E.

The chosen tasks so far emphasized variability. We also examined a context-dependent integration
task, which was previously shown to exhibit a universal solution (24). The supplementary material
shows an analysis of the response of networks to various behavioral challenges. We find that there
is considerable variability in the response of networks to challenges, but of a quantitative rather
than a qualitative nature. Furthermore, we also quantified various aspects of neural variability in
these networks. We did not find significant correlations between the various behavioral and neural
measures, suggesting that there are many axes of individuality for these networks.

6 Discussion

In recent years, trained RNNs were successfully used to model biological circuits. Specifically, these
networks converged to solutions that were similar to those of their biological counterparts. This
observation is puzzling for any complex system and particularly regarding the brain, a complex
biological system in which variability is the rule rather than the exception. Inspired by this puzzle, we
study the space of solutions of RNNs for both a simple two-neuron network and three neuroscience-
inspired tasks. Through an interplay between observation, analysis, and perturbation in the form of
extrapolation, we discovered for each task qualitatively different solutions. By analyzing the neural
activity of these networks, we observed that the variety of behavioral phenotypes originate from only
a handful of distinct dynamical mechanisms. To affirm these observations and describe the essence of
each solution, we introduced a tool that summarizes the network computation in a reduced-dynamics
graph that contains the essence of the dynamics as they relate to behavioral inputs and outputs. By
extracting neural features from the training activity, we showed that the solution type can be partially
predicted from experimentally accessible measurements.

We show using a 2D continuous-time RNN that qualitatively different dynamical topologies can arise
in the context of a single task and that learning can find different solutions depending on initialization.
In a related study, the authors analyze a low-D continuous-time GRU and find a large diversity of
dynamical topologies (34). They find that the 2D GRU finds topologically different solutions to
variants of a working memory task depending on the input statistics. Such a modification to the
task, although subtle, modifies the loss landscape and learning dynamics. In our work we emphasize
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that such topological diversity of solutions can arise for the same task, that is to say within the
same loss landscape. Both our work and theirs identify the implications of topological diversity for
generalization.

Asking a seemingly trivial question - "what is a solution?", highlights a complex and vital topic.
Even though artificial and biological networks are being compared regularly, and there is a common
intuitive understanding of what properties are relevant for this comparison, the precise definitions
of "solution" or "mechanism" are rarely discussed (23). Is dynamical similarity within the training
regime sufficient for asserting two solutions are alike? What is the proper way to test subjects’
performance on a learned task? Can we answer these questions while considering the specifics of
each task? Under what conditions can we safely assume that there exists a universal solution? We
believe that every study that models neural circuits should be explicit about such meta-concerns. In
this work, we charted solutions with an operational approach in mind and considered solutions as
different as long as they qualitatively differ either in their neural activity within the training set or
in their behavioral prediction on extrapolation trials. The reduced dynamics tool is our attempt to
describe and differentiate solutions according to the criteria that we consider important.

Our work has several limitations that should be noted. We focused on the variability arising with
identical hyperparameters and therefore did not systematically explore the effect of changing them.
Specifically, how network size, learning algorithm, and choice of architecture bias the solutions
remains to be explored.

The space of solutions for a given task is, above all else, a property of the task itself. We showed
examples of three tasks that have substantial variability, and of one task (context dependent integration)
that has much less variability. Yet, we do not know why some tasks admit multiple solutions and
others do not. We conjecture that the tasks presented in (24) require an informative output at all
points in time, whereas the tasks we considered require an informative output only once at the end of
the trial.

The reduced-dynamics tool relies on a set of trajectories as a starting point. We opted to include
regions in phase space that are reachable with task-consistent inputs (similar to (30)). While exploring
the full phase space is not feasible, our choice may limit the description obtained by our tool. Finally,
the space of solutions was described for networks that have already learned to perform a task. It
remains to be seen whether it can be used as a map in which to understand how the process of learning
itself takes place.

To conclude, we found that RNNs can produce a diverse set of solutions to the same computational
tasks. These solutions represent distinct algorithms and are supported by corresponding dynamical
objects. The solutions are isolated in parameter space, causing the initial conditions to largely
determine the outcome. Furthermore, we showed that experimentally accessible tools can be used
to indirectly characterize the asymptotic properties of the solutions. We believe that exploring the
space of solutions can advance neuroscience, machine learning, and their intersection – making more
rigorous comparisons of models to data.
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Figure 3: Diverse solutions for the same tasks. Two example networks are shown for each task
(rows). Left column: two-dimensional PCA of the network activity. Middle column: Network output
in response to extrapolation across task parameters. Right column: the reduced dynamics of the
networks. (A,B) Solutions to the time production task. The PCA plots show the activity from the
Ready pulse (red dot and black line), as well as from the Set pulse (yellow) up to the beginning of the
output production, for three different task parameters (colorbar). Note that in A the Ready-Set epoch
is separated from the Set-Go, whereas in B these epochs converge. (C,D) Solutions to the delayed
discrimination task. The PCA plots show the activity between the two input pulses, for various f1
amplitudes. The memory of the different amplitudes is kept either via limit cycles (C) or slow points
(D). (E,F) Solutions to the interval discrimination task. The PCA plots show activity from trial onset
(black dot and line), as well as from the first pulse (yellow) until the maximal delay, for three different
t1 values (colorbar). Note the convergence of the two epochs to the same trajectory in E, similar to B.
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Figure 4: The space of solutions for the interval reproduction task. A-D Representative extrapolation
plots (left) and reduced dynamics graphs (right) for the four most common solution types. E
Distribution of solution types for the 400 networks trained. The four solutions shown account for
93% of the networks. F Neural features obtained during the training set can partially predict the
solution type that includes extrapolation dynamics. The confusion matrix shows the result of this
prediction. Note that the first two solution types are mixed by this prediction, but their dynamics
during the training intervals is similar and they only differ in the dynamics after the Go pulse.
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Figure 5: Architecture biases, but does not determine the solution. A A histogram of the six most
common reduced dynamics across all three architectures for the time-reproduction task, shown by
stacking the architecture-specific histograms on top of one another. B, C The reduced dynamics
(left) and the extrapolation patterns (right) of the second and third most common solutions across all
architectures, but rarely occur within the Vanilla networks. D, E, F The 2D PCA of the dynamics of
three networks from all three architectures (Vanilla, GRU, LSTM), that reach the solution shown in
panel B.
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