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ABSTRACT

Modeling the evolution of physical dynamics is a foundational problem in science
and engineering, and it is regarded as the modeling of an operator mapping between
infinite-dimensional functional spaces. Operator learning methods, learning the
underlying infinite-dimensional operator in a high-dimensional latent space, have
shown significant potential in modeling physical dynamics. However, there remains
insufficient research on how to approximate an infinite-dimensional operator using
a finite-dimensional parameter space. Inappropriate dimensionality representation
of the underlying operator leads to convergence difficulties, decreasing general-
ization capability, and violating the physical consistency. To address the problem,
we present Neural Manifold Operator (NMO) to learn the intrinsic dimension
representation of underlying operators by calculating the minimum dimensional
submanifold representation in the latent space. NMO achieves state-of-the-art
performance in statistical and physical metrics and gains 23.35% average improve-
ment on three real-world scenarios and four equation-governed scenarios across
a wide range of multi-disciplinary fields. Our paradigm has been demonstrated
universal effectiveness across various model structure implementations, including
Multi-Layer Perceptron, Convolutional Neural Network, and Transformer. Ex-
perimentally, we prove that the intrinsic dimension calculated by our paradigm is
the optimal dimensional representation of the underlying operators. Our code is
available at https://anonymous.4open.science/r/Neural Manifold Operator.

1 INTRODUCTION

Modeling the evolution of physical dynamics is the foundation for studying and predicting physical
systems, which is a common challenge in science and engineering (Bender, 2000). Throughout
the history of science, analytical models of physical dynamics (e.g. Newton’s laws of motion)
derived from the first principle are used to study the evolution of physical systems and make physical
dynamics predictable (Kibble & Berkshire, 2004), which breeds a lot of real-world applications,
such as numerical weather prediction systems (Bauer et al., 2015). However, when facing real-world
scenarios, such physical systems with high degrees of freedom and complexity make solving the
model and quantifying its evolution harder, which generally means higher computational costs and
more approximate assumptions to compromise.

With the rapid development of deep learning, a new paradigm for modeling and predicting physical
dynamics is widely discussed. Deep learning models can learn underlying physical relationships
from data and predict the future state at a lower cost, which leads to many achievements in the
study, modeling and prediction of physical dynamics (De Bézenac et al., 2019). Different from
other areas in deep learning, learning the evolution of physical dynamics is generally equivalent to
learning nonlinear infinite-dimensional operator mappings between Banach space (Temam, 2012),
which requires deep learning models to have enough generalization capable of learning the intrinsic
dynamics of the physics system, instead of local fitting for training data.

Learning the intrinsic dynamics of physics systems is critical for deep learning models. Although
several studies regard physics variables as computer vision tasks and get good performance in
statistical metrics, these methods usually get poor performance in physics consistency and are hard
to generalize into similar scenarios in the same physics system (e.g. different initial conditions
or configure parameters). Recently, operator learning, a class of deep learning methods designed
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Figure 1: The prediction visualization of NMO in several scenarios.

for learning infinite-dimension operators (Kovachki et al., 2023; Lu et al., 2021), has been widely
employed for modeling physical systems. Such methods generally project the original physics
space into higher-dimensional latent space and parameterize the underlying operators describing the
evolution of physical dynamics by neural network structures. However, the determination of the latent
space dimension in these methods is generally subjective and empirical, and even it may change in
the same physical system with different configured parameters. However, the redundant dimension
representation of the underlying operators leads to several problems including the convergence
difficulty, reducing the generalization capability, and even destroying the physics consistency of
physical systems. Therefore, how to approximate the infinite-dimension operator using an appropriate
finite-dimension parameter space is the key problem for further developing operator learning methods.

To address the problem, we propose Neural Manifold Operator (NMO), an operator learning paradigm
for learning the intrinsic dimension representation of the underlying operator. By calculating the
minimum dimensional submanifold representation of the variables in the latent space, NMO can
adaptively determine the intrinsic dimension of the physical system. By projecting the latent space
into a compact space of the intrinsic dimension, NMO enables efficient and accurate learning of
the underlying operators and preserves the physics consistency of the system. We introduce several
benchmarks, including real-world scenarios and equation-governed scenarios which encompass
complex weather and ocean systems, as well as chaotic and interacting physical dynamics, aiming
to evaluate the capacity of our model for approximation, generalization, and preserving physical
properties. Compared to several baseline models, NMO achieves state-of-the-art performance in
statistical and physical metrics. We experimentally demonstrate that the intrinsic dimension calculated
by our paradigm is the optimal dimension of the latent space in efficiency and accuracy. Our paradigm
applies to various physical systems and different neural network structure implementations.

In summary, our contributions are as follows:

• Limitations of high-dimensional latent representation: We analyze several shortcomings
of redundant dimensionality of latent space and experimentally demonstrate that the intrinsic
dimension is the optimal dimension representation.

• Generic operator learning paradigm: NMO is a generic operator learning paradigm for
various network structure implementations including Multi-Layer Perceptron, Convolutional
Neural Network, and Transformer.

• Benefits in multi-disciplinary areas: NMO achieves state-of-the-art performance in several
real-world and equation-governed scenarios, ranging from mathematics, physics, chemistry
and earth science.

• Efficiency and Accuracy: By intrinsic dimension projection, NMO significantly reduces
the training parameters and effectively improves the capability of generalization and physical
consistency.

2 PRELIMINARIES

2.1 DEEP LEARNING FOR PHYSICAL DYNAMICS

In recent years, it has been produced a lot of elaborative deep learning methods for learning physical
dynamics. Due to the similar tensor shape, modeling physical systems is often viewed as computer
vision problems. Several state-of-the-art models designed for computer vision tasks (e.g. image super-
resolution or video prediction) are used to model physics dynamics. However, physics inconsistency,
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unexplainability, and poor generalization limit further development. More deep-learning methods
guided by physics theory have been designed, which can be roughly categorized into equation-
constraint, interpretable-structure, and operator learning methods.

Equation-constraint methods Incorporating physical laws into the loss function, physics-informed
machine learning methods (Karniadakis et al., 2021) ensure that the prediction result satisfies specific
physical properties, and even achieve unsupervised prediction for equation-governed dynamics
(Erichson et al., 2019; Wang et al., 2020; Zhu et al., 2021; Shokouhi et al., 2021; Wang et al.,
2019; Wang & Perdikaris, 2023). However, for complicated scenarios such as real-world dynamics,
incomplete physics laws and imbalance of loss function terms makes optimization for the neural
networks significantly hard limit the performance of the models (Rohrhofer et al., 2022; Wang et al.,
2022b).

Interpretable-structure methods Interpretable-structure methods for learning physical dynamics
use the mathematical equivariance between deep learning structure and physical equations to design
architectures, which incorporate more physical inductive bias. PDE-Net (Long et al., 2018) proves
the similar mathematical properties of the convolution operation as the difference operator and
leverages the theory to develop a framework for learning time-dependent partial differential equations.
Neural ODE (Chen et al., 2018) demonstrates that continuous Residual Networks(He et al., 2016)
can be mathematically expressed as ordinary differential equations, and is utilized for predicting the
dynamics systems (Kiani Shahvandi et al., 2022; Höge et al., 2022; Mehta et al., 2021). Based on
Noether’s theorem, equivariant deep learning methods incorporate geometric symmetry into neural
networks by equivariant group transformation for constrain conservation of physical systems (Gerken
et al., 2021; Wang et al., 2020; Dehmamy et al., 2021; Villar et al., 2021; Brandstetter et al., 2022b;a;
Walters et al., 2020). However, such models with strong physics inductive bias in structure may
not be generic applicable in different physics scenarios, and even degrade the performance and
generalization capability of the model in real-world dynamics with noisy or incomplete data (Wang
et al., 2022a).

Operator-learning methods Operator learning methods are designed for learning mappings be-
tween infinite-dimensional function spaces. Based on the universal approximation theorem (Cybenko,
1989; Hornik et al., 1989), DeepONet (Lu et al., 2021) learns the target operator by sampling the
function space. Koopman theory (Koopman, 1931) inspires several methods designed to approximate
the infinite-dimension Koopman operator in the observation space (Lusch et al., 2018; Yeung et al.,
2019; Xiong et al., 2023a;b). Besides, Green’s function-based models convert infinite-dimensional
operator mappings into kernel integral parameterization (Li et al., 2020a; Kovachki et al., 2021; Li
et al., 2020b; 2021; 2020c; Tripura & Chakraborty, 2022). However, these methods learn the underly-
ing operators in a high-dimensional latent space, but further discussion about the dimension of latent
space is still lacking. Accurately representing infinite-dimensional operators in finite-dimensional
parameter space remains a challenge.

2.2 DIMENSION REPRESENTATION OF OPERATORS

The intrinsic dimension can be conceptualized as the minimum number of variables or parameters
required for a minimal representation, which is often regarded as the minimal number of hidden
neurons for the deep learning model to represent the target. Estimating the intrinsic dimension of
physical systems is good for learning the underlying intrinsic dynamics behind the data (Champion
et al., 2019; Floryan & Graham, 2022), finding parameterized surrogate models and building reduced
order models (Bai et al., 2005; Lee & Carlberg, 2020; Fresca et al., 2021). For operator-learning
methods, finite dimension representation for infinite operators is indispensable. Low-rank Neural
Operator (Kovachki et al., 2021) reconstructs r-rank operator by SVD. Dynamic Mode Decomposition
(Schmid, 2010; 2022) and several Koopman-based deep learning methods (Yeung et al., 2019; Xiong
et al., 2023a;b) have been developed to identify the invariant subspace of the Koopman operator,
allowing for finite-dimensional linear representations of complex dynamic systems. NOMAD learns a
low-dimensional representation of solution with a nonlinear manifold decoder (Seidman et al., 2022).
With a new universal approximation theorem under minimal assumptions for the underlying operator,
PCA-Net partially overcomes the general curse of dimensionality for operator learning (Lanthaler,
2023). However, it still lacks a unified paradigm designed for learning the intrinsic dimension
representation of operators that is applicable to various physical systems and model structures.
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Figure 2: Overview of NMO.

3 NEURAL MANIFOLD OPERATOR

3.1 PROBLEM DEFINITION

Considered a physics variable X on the bounded D ⊂ Rd. To study the temporal evolution of the
physical variables, it is natural to formulate the dynamical system as

dX

dt
= f(X). (1)

The time evolution of the physics variables X can be represented as

Xt+ε = F(Xt, t) = Xt +

∫ t+ε

t

f(Xτ , τ)dτ, (2)

where the evolution mapping is f : Rd → Rd.

The aim of our architecture is that build an approximation of G to parameterize the flow mapping of
the physics variables from the finite observation of the physics system by constructing a parametric
map

G : Xt ×Θ → Xt+ε (3)

with the finite-dimensional parameter space Θ. Naturally, a series of measurements of physics
variables on the bounded D ⊂ Rd can be defined as X0:n = {X(t, ·) : t = t0, t1, · · · , tn}. By
defining a loss function and the specific optimization algorithm, the optimal parameter θ† ∈ Θ can be
calculated by a finite collection of observation X0:t and its future state Xt:t+ε. Our architecture is
designed for learning the infinite operator, which describes the evolution of the physics variable, to
generalize the whole physics system in Banach space.

3.2 OVERALL ARCHITECTURE

There are three main structures in our architecture: an encoder P : Rd → RdL for projecting from
physics space to latent space, a decoder Q : RdL → Rd for projecting from latent space to physics
space, and time evolution operator K :

{
vt : Dt → RdL

}
→

{
vt+ε : Dt+ε → RdL

}
to learn the

evolution of physics systems in latent space.

In the pretraining stage, the encoder and decoder are trained by a self-supervision strategy for
reconstructing. The goal of the stage is to learn the high-dimensional representation of the physics
variable in latent space. When the encoder and decoder are trained to converge, the latent variable
V ∈ dL is the latent representation of the physics variable. The reconstruction process is achieved as

Xt = Q ◦ P(Xt). (4)

After the self-supervision pretraining process for reconstructing, the physics variable X is projected
into a latent variable V in higher dimension latent space RdL by the encoder P , which means there
exists an m-dimensional Riemann submanifold M of RdL to represent the latent variable. The
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m-dimensional Riemann submanifold in over-dimensional space can be calculated by the manifold
learning algorithm described in Section 3.3.2. The dimension of the submanifold M can be considered
as the intrinsic dimension did of the latent variable. Therefore, linear projection L : RdL → Rdid

are introduced to learn the underlying operator of physics systems in a compact space by the time
evolution operator module. In summary, our overall architecture is outlined as

Gθ := Q ◦ L−1 ◦ Kid ◦ L ◦ P, (5)

where Kid is the intrinsic dimension representation of the operator and L : RdL → Rdid is the linear
projection. By defining a cost function L, the optimal parameter to representation for the evolution
operators is calculated by solving the optimal question expressed as

min
θ∈Θ

E [L (G,Gθ)] . (6)

3.3 LATENT SPACE PROJECTION NETWORK

3.3.1 PROJECTION NETWORK STRUCTURE

The function of the projection network is projecting between physical space and latent space for the
physics variables Xt ∈ Rd and latent variables Vt ∈ RdL , which is mainly composed by an encoder
P : Rd → RdL and a decoder Q : RdL → Rd. The projection network is trained in the pretraining
process by self-supervision latent reconstruction with the L2 loss function:

Lrec = ||Q ◦ P(Xt)−Xt||22. (7)

The structure of encoder P and decoder Q are mainly composed of a series of convolution modules
and transposed convolution modules respectively. The detailed structural design can be found in
Appendix X.

3.3.2 INTRINSIC DIMENSION CALCULATION

The latent variables can be viewed as V = {V1, . . . ,Vn} composed by n independent and identically
distributed vectors in latent space RdL . There exists that the latent variables V can be constrained into
a m-dimensional Riemannian submanifold M in RdL , where m is less than dL. The smallest existing
m is considered as the intrinsic dimension of the manifold. Therefore, the goal of the manifold
algorithm is to calculate minimal m.

The latent variables can be seen as the observation points of the submanifold. The methods of
calculating intrinsic dimension can be viewed as a question about the estimation of density functional
of the observation points (Costa et al., 2005):

log

∫
B(v0,r)

g(f(v))µ(dv), (8)

where g is an associated metric of the submanifold M and B(v0, r) is the ball with radius r centered
at points v0. Given suitable function g, the density functional can be approximated by the number
of observation points falling into set B(v0, r). Tk (v0), the distance from the observation point v0
and its k-nearest neighbor, is related to the choice of r (Pettis et al., 1979). The number of the
observation points falling into the k-nearest ball B(v0, Tk (v0)) can be approximated by a Poisson
process, and maximum likelihood estimation can be used to calculate the intrinsic dimension in local
as the following form (Levina & Bickel, 2004; Costa et al., 2005):

m̂0 =
1

k − 1

k−1∑
j=1

log
Tk (v0)

Tj (v0)
. (9)

The intrinsic dimension m of the manifold M can be approximated by the average of all observation
points as (Levina & Bickel, 2004; Chen et al., 2022):

m̂ =
1

n

n∑
i=1

m̂k, m = E (m̂(v)) . (10)
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3.4 TIME EVOLUTION OPERATOR

Having calculated the intrinsic dimension, the latent variable Vt is linearly transformed into its
compact representation Wt. The time evolution operator Kid is used to learn the underlying evolution
of physics dynamics in compact latent space Rdid . We decompose the time evolution operator into
three operators to learn the underlying evolution relationship in various scales. The generic form of
the time evolution operator module is

Kid = Ku ◦ Ke ◦ Kd, (11)

where ◦ denotes operator decomposition, downsampling operator Kd : Wt → TWt
, evolution capture

operator Ke : TWt
→ TWt+ε

and upsampling operator Ku : TWt+ε
→ Wt+ε. According to our

theory, an appropriate parameterization space enables neural networks to learn intrinsic dynamics and
the theory applies to various structures. Therefore, we design three different implementations for evo-
lution capture operator Ke based on Multi-Layer Perception, Convolution Networks, and Transformer
respectively. When the encoder and decoder network have been trained in the pretraining process and
its parameters are frozen, the Time Evolution Operator module is trained by the supervision strategy.
The Time Evolution Operator will converge to the underlying evolution operator by minimizing the
loss function

Lpred = ||Gθ(Xt)−Xt+ε||22. (12)

4 EXPERIMENTS

Benchmarks. As shown in Table 1, we use real-world scenarios and equation-governed scenarios
to evaluate our model which includes 7 datasets. Here are the descriptions of these datasets.

(1) SEVIR (Veillette et al., 2020) includes satellite and radar weather data, which we use to eval-
uate our model’s accuracy in forecasting short-term severe weather events like thunderstorms and
intense precipitation. (2) Kurushio is a strong western boundary current, which is a challenge
for Earth system modeling and prediction. The Kuroshio stream dataset is the vector data of sea
surface stream velocity from the Copernicus Marine Environment Monitoring Service (CMEMS).
(3) Typhoon (Bessho et al., 2016) is a three-layer water vapor channel dataset covering the East
and Southeast Asian Pacific coastal regions. We use it to test the model’s ability to predict water
vapor distribution in the next 36 hours, thereby achieving preliminary typhoon forecasting. (4)
Navier-Stokes equation (Li et al., 2020a) describes the dynamics and mass transport of the general
fluid. We select the two-dimensional equations for an incompressible viscous fluid with a viscosity
coefficient of 10−5 to test our model for learning complicated fluid dynamics with high Reynolds
numbers. The evolution of vorticity is computed from the equation solved by the pseudo-spectral
method. (5) Shallow-Water equations (Takamoto et al., 2022) describes the fluid in the shallow
water approximation and barotropic system, which is often used for large-scale geophysical flows and
tsunami simulations. The dataset is well-suited for testing the performance in mass conservation and
long-term prediction. (6) Rayleigh-Bénard convection (Chirila, 2018; Wang et al., 2020) describes
the turbulent flow arises from convection induced by bottom heating, which is the main mechanics of
the El Niño and Southern Oscillation. The dataset is simulated by the Lattice Boltzmann Method,
which is appropriate for testing the ability of our model to learn turbulence and energy conservation.
(7) Diffusion-Reaction equation (Takamoto et al., 2022) models the interplay between the diffusion
of substances and their chemical reactions, often used to describe processes in materials, biology,
and the environment. The dataset, calculated by the standard finite volume solver, is a challenging
benchmark due to there are two non-linearly coupled variables, the activator and the inhibitor.

Baselines. Several advanced and representative models in computer vision, time series prediction,
neural operator and partial differential equations solving, are used for evaluating our model. U-
Net (Ronneberger et al., 2015), Residual Networks (ResNet) (He et al., 2016) and Swin-Transformer
(Swin) (Liu et al., 2021) are representative and mainstream computer vision backbone model, which
is often used for various tasks. SimVP-v2 (Tan et al., 2022), PredRNN-V2 (Wang et al., 2022c) are
representative general models for time series prediction. EarthFormer (Gao et al., 2022) is designed
for the time series of the Earth system. Fourier Neural Operator (FNO) (Li et al., 2020a) is one of the
most representative neural operator models designed for learning mapping between Banach space.
Turbulence-Flow Net (TF-Net) (Wang et al., 2020) and Latent Spectral Models (LSM) (Wu et al.,
2023) are advanced physics-guided models incorporating physics knowledge into inductive bias.
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Table 1: Performance comparison with 9 baseline models in all scenarios. RMSE is used for the
evaluation of these models, with a smaller RMSE value indicating greater accuracy. Since FNO is
designed for single variables prediction, we only evaluate these models in single variables scenarios
to ensure optimal performance of the baseline models. The underline indicates the most accurate
result in baseline models. The bold font indicates the most accurate of all models. The asterisk (*)
denotes GPU memory overflow (exceeding 40GB). The forward slash (/) indicates that the original
model is only designed for single variable prediction.

MODEL
REAL-WORLD SCENARIOS EQUATION-GOVERNED SCENARIOS

SEVIR KUROSHIO TYPHOON
NAVIER
STOKES

SHALLOW
WATER

RAYLEIGH-BÉNARD
CONVECTION

DIFFUSION
REACTION

U-NET 2.0280 0.0591 0.0546 0.4451 0.0890 0.3977 0.0612
RESNET 2.0787 0.0709 0.1246 0.5246 0.0730 0.5746 0.0820
PREDRNN-V2 1.9741 0.0651 0.0234 0.5196 0.0970 2.2965 0.1201
SWIN-TRANSFORMER 2.0067 0.1682 0.0273 0.4741 0.0434 1.6852 *
SIMVP-V2 0.7943 0.0658 0.0193 0.3872 0.0098 2.3804 0.0043
EARTHFORMER 0.2877 0.1612 0.0671 0.4472 * 1.5746 *
TF-NET 2.1946 0.1033 0.0172 0.4243 0.0860 0.2076 0.0037
FNO 1.0099 / / 0.2547 0.0045 / 0.0008
LSM 1.2569 / / 0.2863 0.0087 / 0.0009

NMO 0.1698 0.0404 0.0161 0.2487 0.0028 0.1418 0.0007
PROMOTION 41.01% 31.64% 6.40% 2.35% 37.78% 31.74% 12.5%

NMONMO
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Figure 3: The training time and RMSE performance rankings (from lowest to highest) of various
models on SEVIR and Navier-Stokes equation scenario.

4.1 EVALUATION METRICS

4.1.1 STATISTICAL METRIC

Root Mean Square Error. Root Mean Square Error (RMSE) is a widely accepted metric for
quantifying the statistical performance of the deep learning model, which can reflect the average error
of the prediction result.

4.1.2 PHYSICAL METRICS

Although statistical metrics can evaluate the pixel-wise performance of models, more physics metrics
are indispensable to evaluate whether models learn the physical properties rather than local fitting.
There are three physical metrics in specific scenarios.

Mass Conservation. For incompressible shallow water wave equation with free surface and closed
boundary, the prediction variable h not only describes the depth of water but also is proportional to the
mass of the water column. Therefore, the total mass of the system can be calculated by the variable
h to evaluate whether the models preserve first-order conserved quantities. The mass conservation
formula of the 2-dimensional shallow water equations can be expressed as

d

dt

∫∫
D

hdxdy = 0, (13)

where D is the computational domain of the equations in 2-dimensional Euclidean space R2.
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Figure 4: Left: Relative mass error at each time step and visualization of prediction results of
each model on the Shallow-Water equations scenario. Mid: Turbulence energy spectrum on the
Rayleigh-Bénard convection scenario. Right: The average of absolute divergence convection at
each time step and RMSE associated with the prediction step of each model on the Rayleigh-Bénard
convection scenario.

Energy Conservation. For the Rayleigh-Bénard convection scenario, the turbulence energy spec-
trum indicates the kinetic energy contained in eddies with wavenumber k. The turbulence energy
spectrum is calculated by mean turbulence kinetic energy after Fourier transformation. The metric is
appropriate for analyzing energy consistency in different ranges of wavenumber. The energy spectral
E(k) is calculated by∫ ∞

0

E(k)dk =
1

2T

T∑
t=0

[(ux(t)− ūx)
2 + (uy(t)− ūy)

2], (14)

where ux and uy is the component of velocity with respect to the x-axis and y-axis, the bar symbol
means time average, t is the time step and T denotes the prediction length.

Divergence. Derived by the continuity equation, the divergence of velocity ∇ ·u should be zero for
the incompressible fluid parcel, which is the closure condition and fundamental constraint of mass
conservation in fluid dynamics. Calculating the average of absolute divergence in the whole fluid
field as a physical metric at each time step indicates whether the model learns the intrinsic dynamics
of fluid transportation. The divergence formula can be expressed as

∇ · u =
∂ux

∂x
+

∂uy

∂y
= 0, (15)

where u = {ux, uy} is a 2-dimensional velocity vector.

4.2 ACCURACY AND EFFICIENCY

As shown in Table 1, we evaluate NMO and 9 baseline models in real-world scenarios and equation-
governed scenarios. NMO achieves state-of-the-art performance in all scenarios. On average, NMO
outperforms the best baseline method on each benchmark by 23.35%. For real-world earth system
scenarios, NMO outperforms the EarthFormer by 63.98% averagely. For fluid dynamics scenarios,
NMO outperforms TF-Net with a strong fluid inductive bias by 62.73% averagely. According to
Figure 3, NMO not only achieves the best accuracy but also the fastest training speed through a
lightweight implementation.

4.3 PHYSICAL CONSISTENCY ANALYSIS

As Figure 4 shown, NMO achieves the best performance in three physics metrics. It is demonstrated
that NMO learns the physical property of mass conservation in the Shallow-Water equations scenario,
explaining why NMO performs well in long-term predictions. For the Rayleigh-Bénard convection
scenario, the energy spectrum of NMO closely matches the target. Specifically, in terms of the
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Figure 5: The prediction performance of various dimensions of the time evolution operator. The
dotted lines represent the intrinsic dimension in each scenario.

Table 2: Ablation study for different dimensions of time evolution operator. Three types imple-
mentation of time evolution operator implementations including Multi-Layer Perceptron (MLP),
Convolutional Neural Network(CNN) and Transformer (FORMER) structure are evaluated in the
ablation experiments. The budget column shows the optimal result for model parameters (PARAM),
floating point operations (FLOPs), and training time (TIME) in each dimension. The underline
indicates the most accurate result in each implementation. The bold font indicates the intrinsic
dimension of each scenario.

DIMENSION
KUROSHIO BUDGET NAVIER STOKES BUDGET

MLP CNN FORMER PARAM FLOPS TIME MLP CNN FORMER PARAM FLOPS TIME

2 0.0430 0.0466 0.0443 1.5414 4.9180 49.3971 0.2557 0.2631 0.2631 5.2712 2.4427 8.0935
4 0.0429 0.0469 0.0461 1.6922 5.0717 55.4782 0.2547 0.2487 0.2498 5.5496 2.5147 8.4504
6 0.0421 0.0404 0.0427 1.8568 5.2375 64.8712 0.2605 0.2593 0.2528 5.8418 2.5898 9.6932
8 0.0436 0.0471 0.0482 2.0353 5.4154 68.3761 0.2607 0.2637 0.2566 6.1478 2.6678 9.8732

16 0.0431 0.0484 0.0495 2.8870 6.2474 78.6860 0.2638 0.2677 0.2607 7.5098 3.0102 9.9510
32 0.0442 0.0511 0.0524 3.9423 7.4721 98.3267 0.3021 0.2655 0.2799 8.3212 3.6217 10.2132
64 0.0477 0.0490 0.0497 5.7864 8.4464 111.8921 0.2972 0.2802 0.3021 9.1213 4.2173 13.3530

physical property of zero absolute divergence, the performance of NMO is even better than TF-Net
with explicitly hard constraints.

4.4 ABLATION STUDY

To demonstrate the intrinsic dimension calculated by our paradigm is the optimal dimension of the
latent space, we set several experiments on various dimensions for three types of time evolution
operator implementations. As Figure 5 and Table 2 show, when the latent space is projected onto
the calculated intrinsic dimension to learn the underlying operators, all three NMO implementations
consistently achieve the best performance across all scenarios.

5 CONCLUSION

In this paper, we design a new operator learning paradigm with three implementations for learning
the evolution of physical dynamics in intrinsic dimension. Incorporating the manifold learning
algorithm, our paper mathematically and experimentally answers how to parameterize infinite-
dimensional operators by a finite-dimensional parameter space. In the future, we will further explore
the generalization and physics-preserving capability of our paradigm and its multi-disciplinary
applications.
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A DETAILS FOR NEURAL MANIFOLD OPERATOR

A.1 MODEL DETAILS
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Figure 6: The architectural details of NMO.

Figure 6 shows the detailed structure of NMO. Figure 6(a) shows the overall network structure of
NMO in the pretraining and training process. In the pretraining process, the model structure consists
of an encoder and a decoder. In the training process, the model structure consists of an encoder, a
decoder, and a time evolution operator. Figure 6(c) depicts the design of the E Block, which primarily
consists of 3x3 Conv2d convolution kernels, complemented by GroupNorm for normalization and
LeakyReLU as the activation function. The core function of the E Block is to downsample while
elevating the feature dimension of the observed data. In contrast, the details of the D Block, also
showcased in Figure 6(c), focus on upsampling and restoring latent features to the target dimension.
The D Block is mainly composed of 3x3 ConvTranspose2d, GroupNorm, and LeakyReLU.

There are two linear projecting layers in the training process of the model, which aim to project the
latent space into the intrinsic dimension or from the intrinsic dimension into the original latent space.
The aim of the design for linear projecting layers is to learn the underlying operators by the Time
Evolution Operator (TEO) module in the intrinsic dimension.

Figure 6(b) illustrates the design of the TEO, which is similar to U-Net. Initially, downsampling is
performed using multiscale convolutions with kernel sizes of {3, 5, 7, 11}. Subsequently, the data
passes through the T Block and is then upsampled using multiscale transpose convolution layers. The
details of the three implementations based on MLP, CNN, and Transformer for T Block are shown in
Figure 6(c).
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A.2 ALGORITHM DETAILS

Algorithm 1 Neural Manifold Operator

1: Problem Formulation:
Require: Physics variable X such that X ∈ D where D ⊂ Rd

Ensure: The physical dynamics represent the temporal evolution of X
2: Let the dynamical system be represented as dX

dt = f(X)
3: The discrete forms is Xt+ε = F(Xt, t)
4: Aim: Create a parameterized structure Gθ, to approximate the flow mapping of X based on finite

data.
5: Architecture Formulation:
6: Components:

- Encoder P: Maps from Rd to RdL

- Decoder Q: Maps from RdL to Rd

- Time Evolution Operator K: Acts on vt in RdL producing an evolved state
7: In the pretraining process: Encoder and Decoder are self-supervised trained by reconstruction

constraint Lpred

8: When the reconstruction training reaches convergence, projecting X to a latent variable V in a
higher-dimensional latent space RdL

9: Computing the minimum dimensional submanifold representation of the latent variable V and its
dimension m is considered as the intrinsic dimension did

10: Linear projecting L from the latent space to the compact space
11: Compose the architecture as: Gθ = Q ◦ L−1 ◦ Kid ◦ L ◦ P
12: Projection Network in Latent Space:
13: Objective: Facilitate mappings between the physical and latent spaces
14: Components: Encoder P and Decoder Q
15: Optimize by minimizing the reconstruction loss: Lrec = ||Q ◦ P(Xt)−Xt||22
16: Aim: Determine the minimal dimension representation of the manifold M
17: Calculate the intrinsic dimension did by maximum likelihood estimation.
18: Formulation of the Time Evolution Operator:
19: Given the intrinsic dimension did, linearly project Vt to Wt

20: Decompose Kid into: Ku ◦ Ke ◦ Kd

21: Implement the evolution capture operator Ke using MLP, CNN, or Transformer
22: Objective: Minimize prediction loss Lpred = ||Gθ(Xt)−Xt+ε||22

Algorithm 2 Intrinsic Dimension Calculation

1: Aims: Calculating the minimal manifold representation of the latent variable Vt to approximately
calculate the intrinsic dimension did.

2: Nearest Neighbor Computation:
3: function KNN(Vt, n neighbors, n jobs)
4: Convert Vt to a Numpy array and move to CPU
5: Initialize a nearest neighbor object with given neighbors and jobs
6: return distances and indices of nearest neighbors
7: end function
8: Calculate Intrinsic Dimension by Maximum Likelihood Estimate:
9: function MLE(Vt, dists, k)

10: Compute matrix A using distances
11: Compute intrinsic dimension from A
12: return the expected value of dimension m
13: end function
14: Algorithm Flow:
15: function ESTIMATE DIMENSION(latent embedding, k)
16: Extract shape of latent embedding
17: Reshape and rearrange latent embedding for KNN
18: Get distances using KNN
19: Maximum Likelihood Estimate for calculating intrinsic dimension
20: return estimated dimension m
21: end function

15



Under review as a conference paper at ICLR 2024

B DETAILS FOR BENCHMARKS AND EXPERIMENT

We have summarized benchmark configurations in Table 3. All experiments are conducted on a
single NVIDIA A100 40GB GPU.

Table 3: Detailed information for benchmarks. Ntr, Nev and Nte represent the number of instances
in the training, evaluation, and test sets, while Il and Ol denote the lengths of the input and prediction
sequences, respectively. Nv denotes the number of variables.

Dataset Ntr Nev Nte Nv Resolution Il Ol Interval
SEVIR 35,718 4465 4465 1 (192, 192) 13 12 5 mins
Kuroshio 1660 208 208 2 (128, 128) 5 15 1 day
Typhoon 4158 445 500 3 (512, 512) 6 36 1 hour
Navier-Stokes equation 1000 100 100 1 (64, 64) 10 10 1 step
Shallow-Water equations 1000 100 100 1 (128, 128) 10 90 1 step
Rayleigh-Bénard convection 1544 193 193 2 (64, 448) 10 60 1 step
Diffusion-Reaction equation 1000 100 100 2 (128, 128) 50 50 1 step

B.1 REAL-WORLD SCENARIOS

B.1.1 SEVIR

Data Description. SEVIR dataset is a standard benchmark that includes various types of temporally
and spatially aligned image sequences for weather radar and satellite. The publicly available dataset
has attracted widespread attention from the weather and climate research community. We choose
Infrared Satellite imagery by the sensor named GOES-16 C09 with 6.9 µm infrared channels. The
physical variable inverted by satellites in the particular wavelength range is mid-level water vapor,
which is highly correlated with precipitation.

Experiment Settings. In the SEVIR scenario, the configuration of NMO consists of a 4-layer
encoder, a 4-layer decoder, and a 6-layer time evolution operator. In the pretraining process, we set
256 as the dimension of latent space and employ an early stopping strategy. The pretraining process
stops when the reconstruction error converges to 0.002786. The intrinsic dimension is 6. In the
training process, the training epoch is 100. The parameters of the encoder and decoder are frozen.
We set MSE Loss and Adam optimizer with a learning rate of 0.001 in the pretraining process and
training process. The time steps for the input and output tensors are 13 and 12, respectively. Each
time step interval is 5 minutes. The maximum prediction length through a single forward process of
the model is 1 hour.

Figure 7: Training details for the SEVIR scenario. The left picture shows the variation of RMSE, L2
error and relative L2 error with iterations. The right picture shows the change in MSE loss for both
the training and validation dataset with respect to iterations.

Experiment Result. In the SEVIR scenario, the training details of the NMO are shown in Figure. 7.
In the training process, NMO typically converges after approximately 40 epochs, reaching an L2
error of 0.02885460 and a Relative L2 error of 0.03457794. Following the settings mentioned above,
we utilize the officially recommended visualization library for visual presentation. As depicted in
Figure 8, the first row displays the initial conditions, comprising the 65-minute duration of historical
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Figure 8: Visualization of the SEVIR scenario.

observation data. The second row showcases the 60-minute duration of ground truth data, while
the third row illustrates the prediction results of NMO for the future 60 minutes. The fourth row
visualizes the prediction error between the predictions and the ground truth.

B.1.2 KUROSHIO

Figure 9: Training details for the Kuroshio scenario. The left picture shows the variation of RMSE,
L2 error, and relative L2 error with iterations. The right picture shows the change in MSE loss for
both the training and validation dataset with respect to iterations.

Data Description. We utilize the sea surface stream velocity data from the Copernicus Marine
Environment Monitoring Service (CMEMS), which is a daily global satellite sea level product with a
resolution of 0.25×0.25 degrees. Specifically, we select data from the Kuroshio region (10-42°N,
123-155°E) and the Gulf Stream region (20-52°N, 33-65°W).

Experiment Settings. In the Kuroshio scenario, the configuration of NMO consists of a 4-layer
encoder, a 4-layer decoder, and an 8-layer time evolution operator. During the pretraining process,
we set the dimension of the latent space to 256 and adopt an early stopping strategy. The pretraining
process halts when the reconstruction error converges to 0.0000032. The intrinsic dimension is 6.
During the training process, we set the batch size to 15 and the total epochs to 500. The parameters
of the encoder and decoder are frozen. In both the pretraining and training processes, we employ
a mean squared error (MSE) loss and an Adam optimizer with a learning rate of 0.001. The time
steps for the input and output tensors are 5 and 15, respectively. Each time step interval is 1 day. The
model’s maximum prediction length through a single forward process is 15 days.

Experiment Result. In the Kuroshio scenario, the training details of the NMO are shown in
Figure. 9. In the training process, NMO typically converges after approximately 200 epochs, reaching
an L2 error of 0.00177859 and a Relative L2 error of 0.02066821.

In Figure 10, we use the historical 5-day ocean current velocity field as input and forecast the future
state for the next 15 days. Surprisingly, even on the 15th day, the prediction aligns closely with the
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Figure 10: Visualization of the Kuroshio scenario.

ground truth in spatial patterns. Furthermore, the forecast error exhibits a subtle increase in the lead
time.

B.1.3 TYPHOON

Data Description. Typhoon data is obtained by the Japanese Himawari-8 Geostationary Satellite
Data including three water vapor channels at high, mid, and low altitudes in the East Asia to Southeast
Asia Pacific coastal region. The dataset captures the development and growth stages of typhoons
through water vapor information. The time series of past meteorological satellite data contained in
the dataset can be used to train the model to predict the details of typhoon development in the next 36
hours, including its position, intensity, and water vapor distribution.

Experiment Settings. In the Typhoon scenario, the configuration of NMO consists of a 6-layer
encoder, a 6-layer decoder, and a 16-layer time evolution operator. During the pretraining process,
we set the dimension of the latent space to 768 and adopt an early stopping strategy. The pretraining
process halts when the reconstruction error converges to 0.0001232. The intrinsic dimension is 8.
During the training process, there are 300 epochs, and we set the batch size to 1. The parameters of

Figure 11: Training details for the Typhoon scenario. The left picture shows the variation of RMSE,
L2 error, and relative L2 error with iterations. The right picture shows the change in MSE loss for
both the training and validation dataset with respect to iterations.
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the encoder and decoder are frozen. In both the pretraining and training processes, we employ a mean
squared error (MSE) loss and an Adam optimizer with a learning rate of 0.01. The time steps for the
input and output tensors are 6 and 36, respectively. Each time step interval is 1 hour. The model’s
maximum prediction length through a single forward process is 36 hours.

Experiment Result. In the context of the Typhoon scenario, the training details of NMO are
depicted in Figure 11. Throughout the training, NMO typically converges after approximately 150
epochs, achieving an L2 error of 0.00032553 and a relative L2 error of 0.00032245. The visualization
results are shown in Figure 12. The first section of the visualization presents the initial condition.
The three rows therein represent the data from the high, medium, and low water vapor channels
respectively. The subsequent 6 images depict input data over a continuous 6-hour period. In the
second section, we showcase the ground reality data for the upcoming 36-hour. However, for the
sake of brevity, we chose to display one image every six hours. The third section reveals NMO’s
predictions for the next 36 hours. The fourth row contrasts the predicted data with the actual results,
providing an intuitive assessment of the prediction error.

B.2 EQUATION-GOVERNED SCENARIOS

B.2.1 NAVIER-STOKES EQUATION

Data Description. The dataset is calculated through a pseudospectral method to solve a viscous,
incompressible 2-d Navier-Stokes equation with vorticity form expressed as

∂tw(x, t) + u(x, t) · ∇w(x, t) = ν∆w(x, t) + f(x), x ∈ (0, 1)2, t ∈ (0, T ]

∇ · u(x, t) = 0, x ∈ (0, 1)2, t ∈ [0, T ]

w(x, 0) = w0(x), x ∈ (0, 1)2.

The forcing term is fixed as f(x) = 0.1 (sin (2π (x1 + x2)) + cos (2π (x1 + x2))). In order to
obtain a set of different solutions for training the mapping between Banach space, the initial condition
is generated by the w0 ∼ µ with µ = N

(
0, 73/2(−∆+ 49I)−2.5

)
and the boundary condition is

periodic boundary conditions. We set the viscosity coefficient as ν = 10−5 to make the solutions
become chaotic enough with time evolution.

Experiment Settings. In the Navier-Stokes equation scenario, the configuration of NMO consists
of a 4-layer encoder, a 4-layer decoder, and an 8-layer time evolution operator. During the pretraining
process, we set the dimension of the latent space to 256 and adopt an early stopping strategy.
The pretraining process halts when the reconstruction error converges to 0.0015347. The intrinsic
dimension is 4. During the training process, there are 100 epochs, and we set the batch size to 20.
The parameters of the encoder and decoder are frozen. In both the pretraining and training processes,
we employ a mean squared error (MSE) loss and an Adam optimizer with a learning rate of 0.01.
The time steps for the input and output tensors are 10 and 10, respectively. The model’s maximum
prediction length through a single forward process is 10 time steps.

Experiment Result. In the context of the Navier-Stokes equation scenario, the training details of
NMO are outlined in Figure 13. Throughout its training, NMO typically converges after roughly 70
epochs, achieving an L2 error of 0.05058351 and a relative L2 error of 0.03410483. The visualization
results are presented in Figure 14. The first row depicts the initial conditions with 10 time steps. The
second row showcases the ground truth data with 10-time steps, while the third row illustrates NMO’s
predictions for the subsequent 10 time steps. The fourth row offers a visual comparison between the
predicted results and the actual data, highlighting the prediction error.

B.2.2 SHALLOW-WATER EQUATIONS

Data Description. The dataset is calculated by a comprehensive finite volume solver to solve 2-d
Shallow-Water equations for free-surface flow, expressed as
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∂th+ ∂xhux + ∂yhuy = 0

∂thux + ∂x

(
u2
xh+

1

2
grh

2

)
= −grh∂xb

∂thuy + ∂y

(
u2
yh+

1

2
grh

2

)
= −grh∂yb

where h is the depth of the water column, ux and uy is the component of velocity with respect to the
x-axis and y-axis, b is the bathymetry variation and gr is the gravitational acceleration.

Experiment Settings. In the Shallow-Water equations scenario, the configuration of NMO consists
of a 3-layer encoder, a 3-layer decoder, and a 6-layer time evolution operator. During the pretraining
process, we set the dimension of the latent space to 256 and adopt an early stopping strategy.
The pretraining process halts when the reconstruction error converges to 0.0000312. The intrinsic
dimension is 6. During the training process, there are 100 epochs, and we set the batch size to 10.
The parameters of the encoder and decoder are frozen. In both the pretraining and training processes,
we employ a mean squared error (MSE) loss and an Adam optimizer with a learning rate of 0.01.
The time steps for the input and output tensors are 10 and 90, respectively. The model’s maximum
prediction length through a single forward process is 90 time steps.

Experiment Result. In the context of the Shallow-Water equations scenario, the training details of
NMO are outlined in Figure 15. Throughout its training, NMO typically converges after roughly 25
epochs, achieving an L2 error of 0.0000079 and a relative L2 error of 0.00270999. The visualization
results are presented in Figure 16. The first row depicts the initial conditions with an input of 10-time
steps. The second row showcases the ground truth data for those 90-time steps, while the third
row illustrates NMO’s predictions for the subsequent 90-time steps. The fourth row offers a visual
comparison between the predicted results and the actual data, highlighting the prediction error.

B.2.3 RAYLEIGH-BÉNARD CONVECTION

Data Description. The dataset is calculated by the Lattice Boltzmann Method to solve the 2-d fluid
thermodynamics equations for two-dimensional turbulent flow, and its general form is expressed as

∇ · u = 0

∂u

∂t
+ (u · ∇)u = − 1

ρ0
∇p+ v△u+ [1− α (T− T0)]X

∂T

∂t
+ (u · ∇)T = κ△T

where g is the gravitational acceleration, X is the acceleration due to the body-force of the fluid
parcel, ρ0 is the relative density, T denotes temperature, T0 is the average temperature, α denotes the
coefficient of thermal expansion and κ denotes the coefficient of thermal conductivity. The simulation
parameters of the data respectively are Prandtl number = 0.71, Rayleigh number = 2.5 × 108, and the
maximum Mach number = 0.1.

Experiment Settings. In the Rayleigh-Bénard convection scenario, the configuration of NMO
consists of a 2-layer encoder, a 2-layer decoder, and a 4-layer time evolution operator. During the
pretraining process, we set the dimension of the latent space to 512 and adopt an early stopping
strategy. The pretraining process halts when the reconstruction error converges to 0.0129318. The
intrinsic dimension is 4. During the training process, there are 300 epochs, and we set the batch size
to 1. The parameters of the encoder and decoder are frozen. In both the pretraining and training
processes, we employ a mean squared error (MSE) loss and an Adam optimizer with a learning rate
of 0.01. The time steps for the input and output tensors are 10 and 60, respectively. The model’s
maximum prediction length through a single forward process is 60 time steps.

Experiment Result. In the Rayleigh-Bénard convection scenario, Figure 17 depicts the training
details of the NMO. Throughout the training process, the NMO typically converges after about
150 cycles and reaches an L2 error of 0.0201180, while the relative L2 error is 0.0053570. As Fig.
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18 shown, the first column displays the 10 time-steps for the initial condition; the second column
illustrates the ground truth, which only shows time-step indexes of 6, 12, 18, ..., 54, 60; the third
column shows the NMO prediction results; and the fourth column presents the error visualization.

B.2.4 DIFFUSION-REACTION EQUATION

Data Description. The dataset is calculated by the finite volume method for spatial discretization
and the fourth-order Runge-Kutta method for time integration to solve a 2-d diffusion-reaction
equation expressed as

∂tu = Du∂xxu+Du∂yyu+Ru,

∂tv = Dv∂xxv +Dv∂yyv +Rv,

where Du, Dv, Ru, and Rv are the diffusion coefficient and reaction function for the activator and
inhibitor, respectively. The reaction functions are defined as

Ru(u, v) = u− u3 − k − v

Rv(u, v) = u− v

where constant number k = 5×10−3, the diffusion coefficients Du = 1×10−3 and Dv = 5×10−3.

Experiment Settings. In the Diffusion-Reaction equation scenario, the configuration of NMO
consists of a 4-layer encoder, a 4-layer decoder, and an 8-layer time evolution operator. During the
pretraining process, we set the dimension of the latent space to 256 and adopt an early stopping
strategy. The pretraining process halts when the reconstruction error converges to 0.00000292. The
intrinsic dimension is 6. During the training process, there are 100 epochs, and we set the batch size
to 2. The parameters of the encoder and decoder are frozen. In both the pretraining and training
processes, we employ a mean squared error (MSE) loss and an Adam optimizer with a learning rate
of 0.01. The time steps for the input and output tensors are 50 and 50, respectively. The model’s
maximum prediction length through a single forward process is 50 time steps.

Experiment Result. In the context of the Diffusion-Reaction equation, the training process of
NMO is depicted in Figure 19. Throughout the training, NMO typically converges around 400
epochs, achieving an L2 error of 0.00000063 and a relative L2 error of 0.00005421. The associated
visualization results are shown in Figure 20. Given that the equation involves two variables, the
visualization is split into two sections, left and right. On the left, the initial conditions are presented,
followed by the ground truth values. Subsequently, the NMO’s predictions are displayed, and the last
section presents the prediction error.
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Figure 12: Visualization of the Typhoon scenario.
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Figure 13: Training details for the Navier-Stokes equation scenario. The left picture shows the
variation of RMSE, L2 error and relative L2 error with iterations. The right picture shows the change
in MSE loss for both the training and validation dataset with respect to iterations.
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Figure 14: Visualization of the Navier-Stokes equation scenario.

Figure 15: Training details for the Shallow-Water equations scenario. The left picture shows the
variation of RMSE, L2 error and relative L2 error with iterations. The right picture shows the change
in MSE loss for both the training and validation dataset with respect to iterations.
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Figure 16: Visualization of the Shallow-Water equations scenario.

Figure 17: Training details for the Rayleigh-Bénard convection scenario. The left picture shows the
variation of RMSE, L2 error and relative L2 error with iterations. The right picture shows the change
in MSE loss for both the training and validation dataset with respect to iterations.
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Figure 18: Visualization of the Rayleigh-Bénard convection scenario.

Figure 19: Training details for the Diffusion-Reaction equation scenario. The left picture shows the
variation of RMSE, L2 error and relative L2 error with iterations. The right picture shows the change
in MSE loss for both the training and validation dataset with respect to iterations.
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Figure 20: Visualization of the Diffusion-Reaction equation scenario
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