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Abstract

This paper addresses a gap in the current state of the art by providing a solution for model-
ing causal relationships that evolve over time and occur at different time scales. Specifically,
we introduce the multiscale non-stationary directed acyclic graph (MN-DAG), a framework
for modeling multivariate time series data. Our contribution is twofold. Firstly, we expose
a probabilistic generative model by leveraging results from spectral and causality theories.
Our model allows sampling an MN-DAG according to user-specified priors on the time-
dependence and multiscale properties of the causal graph. Secondly, we devise a Bayesian
method named Multiscale Non-stationary Causal Structure Learner (MN-CASTLE) that
uses stochastic variational inference to estimate MN-DAGs. The method also exploits infor-
mation from the local partial correlation between time series over different time resolutions.
The data generated from an MN-DAG reproduces well-known features of time series in dif-
ferent domains, such as volatility clustering and serial correlation. Additionally, we show
the superior performance of MN-CASTLE on synthetic data with different multiscale and
non-stationary properties compared to baseline models. Finally, we apply MN-CASTLE to
identify the drivers of the natural gas prices in the US market. Causal relationships have
strengthened during the COVID-19 outbreak and the Russian invasion of Ukraine, a fact
that baseline methods fail to capture. MN-CASTLE identifies the causal impact of critical
economic drivers on natural gas prices, such as seasonal factors, economic uncertainty, oil
prices, and gas storage deviations.

1 Introduction

A causal graph describes causal relationships among the constituents of a given system, and represents
a powerful tool to analyze such a system under interventions and distribution changes. In general, causal
graphs are unknown. Fortunately, it is possible to leverage causal structure learning approaches to unveil and
quantify the causal relationships among variables. While randomized experiments are the gold standard for
testing causal hypotheses (especially in medicine and the social sciences), in many cases such interventional
approaches are unfeasible or unethical. Hence, great effort has been devoted to the development of methods
able to retrieve causal structures from observational data (Glymour et al.l |2019; |Scholkopf et al.l 2021]).
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Regardless of the different causal structure learning methods, the most informative causal graph is a directed
acyclic graph (DAG), where the nodes in V are the variables of the system, all possible edges e;; € £ C VxV
are directed and represent direct causal effects, and feedback loops among nodes are forbidden (acyclicity
requirement). A DAG can be associated with its functional representation, also known as structural equation
model (SEM, [Pearl|2009). Here each node of the causal graph is written as a function of the values of a set
of parents nodes and of an endogenous latent noise (see . In this work, we focus on the case in
which such functions are linear and the latent noise is additive.

Even though widely studied and applied, a linear SEM is not adequate to cope with causal relations that
evolve over time and occur at different time scales, which are both common when dealing with time series.
Indeed, a SEM assumes that (i) causal edges and their weights are stationary and (ii) there is only one time
scale at which causal relations occur, i.e., the one associated with the frequency of observed data. However, in
practice, causal structures might be non-stationary (Zhang et al.,|2021bj Raggad. [2021; D’ Acunto et al.,2021))
and often there is no prior knowledge about the temporal resolutions at which causal relations occur (Besserve
et al.l |2010; |Gong et all 2015; Runge et al., [2019; |D’Acunto et al., 2022)).

To overcome these limits, we introduce multiscale non-stationary causal structures, namely MN-DAGs, that
generalize linear DAGs to the time-frequency domain. In our work, the term multiscale means that we
consider multiple time resolutions, i.e., frequency bands. Hence, we look for causal interactions among time
series within each of those distinct frequency bands, and we simultaneously inspect the behaviour of these
causal relationships along time. Throughout the paper, we use 27 to represent a certain temporal resolution,
where j = {1,...,J} indicates the associated scale level and J € N is the maximum level considered. To
clarify the meaning of time scale, let us consider a data set X € RY*T made by N time series of length
T =27, The column X[t] = [X;[t],..., Xn[t]]’ represents a sample collected at frequency At. For example,
let us say that the time series are observed at daily frequency, hence At is equal to one day. The scale level
j = 1 refers to the variations of the time series associated with the time scale of 2! At, i.e., two consecutive
days. Analogously, the scale level j = 2 refers to the variations of the time series associated with the temporal
resolution of 22At, i.e., four consecutive days. And so on and so forth, until we reach the maximum level
j = J. Additionally, the j-th time scale corresponds to the frequency band [1/2/F1 1/27].

In MN-DAGs each time scale is represented by a different graph page (akin to multi-layer networks). Then,
the vertices within a certain page are associated with the multiscale representation of the N time series at
the frequency band corresponding to that page. There exists a unique global causal ordering ‘<’ shared by
all graph pages, such that the possible parent set P; < for the i-th node X; can include only those nodes X
that precede it in the causal ordering (X; < X;). Causal relationships among nodes, represented as directed
edges, can vary smoothly over time and constitute acyclic structures within each time scale. So, throughout
the paper, the term non-stationarity associated with causal structures refers to a smooth dependence on
time, similarly to how it is defined by Huang et al.| (2020]).

To achieve our goal, the main technical challenges we face are: (i) the definition of a probabilistic generative
model that allows to sample an MN-DAG; (%) the development of a learning method to estimate MN-DAGs
from real-world data. Regarding the first point, we propose a probabilistic generative model over MN-DAGs
having the causal ordering and the causal relationships as latent variables. The observables are N zero-
mean time series of length 7. Our model leverages linear SEM and multivariate locally stationary processes
(MLSW, Park et al.|[2014). In particular, MLSW is a mathematical framework to represent time series as
a sum of contributions coming from different time scales (see . Concerning the second point,
we propose a Bayesian method, called MN-CASTLE, that uses stochastic variational inference (SVI, see
for learning causal structures. MN-CASTLE is able to cope with multiscale data that features
time-dependent variance. Our method relies upon observational data and the estimate of the inverse of the
power spectrum at different temporal resolutions.

Overall, our contributions can be summarized as follows:

e We define a new type of causal structure for modeling causal relationships that evolve over time and
occur at different time scales (MN-DAG).
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e We devise a probabilistic generative model that allows sampling an MN-DAG according to user-specified
priors on the time-dependence and multiscale properties of the domain. Our model can be used to
generate synthetic time series with real-world characteristics.

e We design a Bayesian inference method, MN-CASTLE, for estimating MN-DAGs from real-world data.
Our empirical assessment on synthetic datasets demonstrates that MN-CASTLE outperforms baseline
methods in various experimental settings and is robust to model misspecification.

e When applied to study what drives natural gas prices in the US market, MN-CASTLE succeeds where
baselines fail. In fact, it is the only method able to capture the dynamic nature of the market and the
impact of exogenous events such as COVID-19 and the Russian invasion of Ukraine.

At a high level, this paper bridges the gap between multiscale modeling and machine learning-based causal
structure learning methods.

Roadmap. This article is organized as follows. [Section 2]relates our proposals to existing methods, highlight-
ing differences and similarities. Then, the subsequent three sections deal with our first technical challenge.
Specifically, presents our probabilistic generative model, details how an MN-DAG is
sampled in our model, and how to generate data from the sampled MN-DAG. At this point, we
address our second challenge in where we pose a Bayesian learning method developed according
to the proposed probabilistic generative model. Next, presents the empirical assessment of our
model. In detail, statistically describes data generated by the probabilistic generative model.
regards tests on synthetic datasets, by providing details concerning the experimental settings
and introducing the considered baseline models. Subsequently, analyses a real-world use case on
natural gas prices in the US market. Finally, concludes with an additional discussion concerning
our findings, and outlines open questions and future research directions.

2 Related Work

Causal structure learning methods can be mainly classified into three categories, according to the approach
used to infer the causal graph: (i) constraint-based approaches, which make use of conditional independence
tests to establish the presence of a link between two variables (Spirtes et al., [2000; Huang et al., |2020); (ii)
score-based methods, which use search procedures in order to optimize a certain score function (Heckerman
et all |1995; |Chickering| |2002; [Huang et al., |2018)); (iii) functional causal models, which express a variable at
a certain node as a function of its parents (Shimizu et al., 2006; Hoyer et al.l 2008} |Zhang & Hyvérinen, 2010;
Shimizu et al., 2011; |Peters et al.l |2014; [Bithlmann et al., 2014). Our approach fits into the latter category
and aims to handle the presence of non-stationarity and different temporal resolutions in the underlying
causal structure.

Unlike the multiscale causal structure learning method proposed by |D’Acunto et al.| (2022)), which estimates
multiscale stationary causal relationships hinging on stationary wavelet transform (Nason & Silverman),
1995) and non-convex optimization, our method applies a different learning scheme and is able to handle
non-stationary relationships as well. Furthermore, the method we propose exploits the estimate of the
decomposition of the inverse power spectrum at different time scales, whereas the algorithm proposed in the
previous paper operates on the estimated wavelet detail vectors.

In the past, several approaches have been developed that can infer causal structures in the presence of non-
stationarity under certain assumptions (Song et al., |2009; |Ghassami et al., |2018} [Strobl, [2019; Perry et al.,
2022). The main (implicit) assumption common to these approaches, concerns the time scale at which causal
interactions occur, that is, it is assumed that this scale coincides with the frequency of observation of the
data. The model we propose, relaxes this assumption, and allows time-dependent causal relationships to
be investigated at different temporal resolutions. Another difference concerns the assumption regarding the
existence of multiple domains, where causal dependencies between variables may vary but are assumed to be
stationary within each domain, to exploit non-stationarity and distributional shifts to recover the underlying
causal structure. Although in the context of time series, the dataset can be segmented into different domains
through a sliding window approach, this procedure introduces discretionary choices such as (i) the choice of
the splitting points and (ii) the size of the time window in which causal relationships should be stationary.
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However, in general, for real data there is no prior knowledge regarding the above issues: the causal structure
might vary a lot even when windows are overlapping (D’Acunto et al.l |2021)). In contrast, our method aims
to learn the causal structure and describe its temporal evolution, assuming that it is linear in the frequency
domain and that the causal ordering is shared between the temporal resolutions considered.

Our probabilistic generative model extends the works of (Cundy et al.| (2021); |Charpentier et al.| (2022), since
it is suitable for time-series data and provides a causal structure that lives in the time-frequency domain.
Even though our approach leverage Gumbel distributed variables for sampling the causal ordering as in the
previous two works, the procedure we apply is different and requires a lower computational cost (Gadetsky!
et al) 2020). In addition, our inference model uses a gradient estimator with a data-dependent control
variate strategy for learning the parameters of the causal ordering distribution, whereas existing models
exploit differentiable relaxations of such a distribution. Our procedure uses the masking of distributions as
well to optimize at each step only the causal relations compliant to a certain causal ordering. A similar
approach is also employed in [Ke et al| (2019); Ng et al.| (2022). However the masking used in those works
aims at excluding all non-causal relations, not just those that do not conform to the causal ordering.

Finally, we exploit recent developments in variational inference in order to approximate the posterior dis-
tribution over MN-DAG parameters given data, in accordance with the MN-CASTLE probabilistic model.
This general learning scheme is also exploited in other recent works (Cundy et al. 2021} |(Charpentier et al.,
2022; [Annadani et al., [2021} [Lorch et al., [2022) to model the posterior distribution over the parameters of a
DAG, as defined in the corresponding proposed probabilistic models.

3 Probabilistic Generative Model

The probabilistic generative model over MN-DAGs we put forth incorporates both the causal ordering and the
causal relationships as latent variables. The observables consists of N zero-mean time series, each of length
T. In our model, the underlying causal structure determines the transfer function matriz. Specifically, this
matrix is defined as a time-dependent mixing matrix that depends on the causal structure and the strength
of causal relations at each time step and scale level. Furthermore, the transfer function matrix provides
a measure of the local variance and cross-covariance between the time series, which is equivalent to the
power spectral matrix (see [Section 5)). From a linear conditional dependence perspective, the inverse of the
power spectral density is a concept extensively studied in spectral theory (Dahlhaus, 2000, and references
therein). Indeed, the inverse of the power spectral density is a generalization of the precision matrix to
the time-frequency domain. It provides information about the local linear dependence between two time
series after removing the linear effects of the rest of the time series. Therefore, according to our model
both the power spectral matrix and its inverse are driven by the multiscale time-dependent causal structure.
This dependence on the causal structure implies that the power spectral matrix and its inverse are also
time-dependent.

The proposed probabilistic model takes as input (i) the number of nodes N € N; (ii) the number of samples
T € N; (iii) a parameter u € [0,1] associated with the multiscale feature; (iv) 7 € [0, 1] which describes the
time dependence of causal relationships; (v) d € [0,1] that manages the density of the MN-DAG.

shows a (7, u)-quadrant along with examples of latent causal structures which determine the sampled
data, according to the specified values of y and 7. When p = 0, we obtain the single-scale case depicted
in (a) and b). Here, the MN-DAG has only one page. We assume that the power spectrum that
describes the system is concentrated in the finest scale level 7 = 1. In addition, if also 7 = 0, the causal
links are stationary (Figure Ij(a)). Starting from the origin, as we move to the right (7 — 1) the temporal
dependence of causal connections increases. As we move upwards (g — 1), the likelihood that the causal
graph contains more pages increases C) and d)) Then, the overall power spectrum is spread over
more temporal resolutions.

The following and [5] delve into the sampling of the MN-DAG and the generation of data, respec-
tively.
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Figure 1: Examples of causal structures that can be sampled from the proposed probabilistic model according
to the specified values for non-stationarity and multiscale features. In the depicted quadrant, we have the
non-stationarity feature (associated with the parameter 7 € [0, 1]) on the x-axis in red, and the multiscale
feature (associated with the parameter p € [0,1]) on the y-axis in yellow, respectively. Colors, edges shape
and number of graph layers highlight differences from the single-scale stationary DAG corresponding to the
origin of the quadrant (a). When we move horizontally, the temporal dependence of the causal coefficients
(edges in the causal graph) changes (b). Similarly, vertical shifts in the quadrant are associated to the change
in the number of time scales (pages of the causal graph) contributing to the sampled data (¢). Finally, when
both 7 and p are different from zero, we sample data concerning a system driven by an underlying multiscale
non-stationary causal structure (MN-DAG).

4 Sampling an MN-DAG

shows the three steps needed to sample an MN-DAG.

Sample the time scales. The number of pages (time scales) of the MN-DAG is J = 1+ J’, where .J'
is sampled from a binomial distribution J’ ~ B(logy(T) — 1, ). Here, the first parameter of the binomial
distribution is the number of trials and p represents the probability of success. Without loss of generality,
we assume that temporal resolutions are consecutive, i.e., given the value of .J, all the time scales 27, j =
{1,...,J}, are associated with a page in the causal graph. This assumption does not imply that causal
relations occur within all the considered pages. Since the model is probabilistic and the user specifies a value
for the density ¢, we also might end up with a causal graph without edges.

Sample the causal ordering. Within our probabilistic model, we assume that the causal ordering < is
shared by all time scales. This property implies that, given <, the possible parent sets at each temporal
resolutions P; - for the i-th variable X; are {P; | P; < X;}. The causal ordering < can be thought as a
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a) Sample the time-scales b) Sample the causal ordering
(pages of the graph) . MN-DAG
Causal ordering
J=14J <~ PL(0)
J"~ B(log2(T) — 1, p) =312 =
j= j=2 j=3

c) Sample the causal tensor i=2

c.1) Sample c.2) Sample logical c.3) Causal c.4) Impose the causal

weight tensor tensor 11 coefficients tensor ordering

W=W'+tWrir. W™ Tnm ~ B(6) C=IIoW C - pPeP

N0

Figure 2: The figure shows the steps necessary to sample a MN-DAG. For the sake of readability, let us
consider the case where N=3 and T=4. Here the yellow color refers to time scales; red for non-stationarity.
(a) First, we sample the number of pages (time scales) of the MN-DAG. Given p, the latter is given by
J=1+4J, where J' ~ B(log2(T) — 1, ). In the example, we instantiate three pages (J = 3). (b) Second,
we sample the causal ordering <~ PL(0) that is shared by all time scales and entails the permutation
tensor P € {0, 1}7XTXNXN Here, PL(0) indicates the Plackett-Luce distribution, defined by a score vector
0 € RY, where 6, ~ U (0, N). The indexes are j for time scales, ¢ for time steps, n for the considered nodes
and n’ for the positions within <. In the considered example, we have <= [3,2,1]’. Therefore, for each 3 x 3
slice of the tensor corresponding to a certain time scale j and time ¢, we have p,.,, = 1 (blue square) if the
node n appears at index n’ within <. (¢) Third, we build the tensor of causal coefficients as follows. With
regards indexes, j, t and n are the same as above, whereas m indicates the parents dimension. Here, we
first sample a full tensor of weights W &€ R7*T*NXN made by three components: (i) a constant term WY;
(ii) W* that makes the magnitude of causal relationships different across time scales; (iii) W7 that allows
causal coefficients to vary over time according to batched GP(0,K). Therefore, within each scale j, Wy,
are smooth functions varying over index ¢t. To manage the density of the entailed MN-DAG, we multiply
element-wise W by a logical mask IT € {0, 1}/XT*NxN " The entries of the IT are distributed according to
a Bernoulli distribution, m,,, ~ B(d). Finally, we obtain the causal tensor C that entails the MN-DAG on
the right by imposing the causal ordering sampled at step (b).

permutation of a vector of integers <'=[1,..., N], thus we use the Plackett-Luce distribution (PL,
to sample it. PL represents a distribution over permutations, defined by a vector of scores
0 € RV, which allows sampling permutations b € Sy in O(N log N), where b is a vector of N integers and
Sy is the support of permutations of NV elements. Thus, given 8, the probability of a permutation b is

k Oy,
(b]0) = H e
P = % .
i1 D €7
A sample b from PL distribution can be thought as a sequence of samples from categorical distributions:
first b; comes from the categorical distribution with logits 8; by from the categorical with logits 8 — {6,, };
and so on. The mode of the PL is the descending order permutation of scores b® = Opo = Opy = ... = Opo .

The sampling procedure from a PL relies upon the fact that an order of a vector z € RY ~ Gum(0,1) is
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distributed as PL(0), where Gum(0, 1) is a Gumbel distribution with location parameter 8 and scale equal
to one (Gadetsky et al.| |2020). Therefore, we can sample b as follows:

zi = oi - log(_ lOg(Ui)), Vi ~ U(O7 1)
H(z) = argsort(z) .

We sample the causal ordering <~ PL(0) by using the procedure above, where we choose a uniform prior for
the PL score vector, i.e., §; ~ U(0, N). The causal ordering < entails a permutation matrix Pec {0, 1}V <N
such that pn,, = 1 iff the variable X,, occurs at position n’ within <; 0 otherwise. Finally, we derive a
permutation tensor P € R7*T*N*N 1y gimply tiling P along both multiscale and time dimensions.

Sample the causal tensor. Given J and 7, we build a tensor of weights W € R7*T*NXN made by three
building blocks. First, we sample W° € ]RNXN, whose entries are normally distributed, w?,, ~ N(0,1).
Starting from W?, we derive the first component WO € R7*T*N*N by «imply expanding WO along both
multiscale and time dimensions. Then, this component can be thought as a constant term shared by all
temporal resolutions and time steps.

e R7INXN “\whose entries are distributed according to a Gaussian N (0, i). By ex-

Second, we sample W
panding W* along the time dimension, we obtain the second component W# ¢ RIXTXNXN g component

makes the magnitude of causal relationships different across scales and is stationary along t.

Third, we sample W7 € R7*TXN*N where each tube along the time dimension follows a multivariate
Gaussian distribution M N(0,K). Here, the covariance matrix K = K(¢,t) represents a (combination of)
valid kernel(s) for Gaussian processes (GP, [Bishop & Nasrabadi/2006)), where the lengthscale is A = 1/7.
This component imposes the causal coefficient to evolve smoothly over time, according to 7. Indeed, as
7 — 0, the lengthscale of the kernel increases and consequently W7 varies more slowly in time. Finally, the
tensor of weights is

W=W'+WH4 7. W™, (1)

Now, to manage sparsity and ensure the acyclicity of causal connections, we generate a suitable logical mask
IT € {0, 1}/X1XNXN " Indeed, we use this mask to obtain a tensor of causal relations from W, made of strictly
lower triangular slices. The slices ﬁnm are strictly lower triangular and the entries are distributed according
to a Bernoulli distribution, 7, ~ B(d). Then, we obtain the tensor of causal relations as C = II o W,

whose slices CA)nm are nilpoten Here IT € {0,1}/*TXN*N i obtained by expanding II over time and o
represents the Hadamard product.

At this point, given P and é, we compute the causal tensor that entails the latent MN-DAG by means of
the product C = P’CP, where P’ is obtained by transposing the two rightmost dimensions of P.

5 Generate Data from the MN-DAG

Having sampled an MN-DAG, we wish to use it to generate N zero-mean processes of length T, whose
behaviour is determined by the evolution over time of a latent MN-DAG. Here, we build upon the SEM ((Ap-]

ipendix Al) and the MLSW (Appendix CJ) theoretical frameworks. Mathematically, we model the multivariate

time series as

J “+o0
Xolt] = > Mzt — k. (2)
j=1k=—cc

In (i) {v;[t — k]} is a set of non-decimated wavelets (see |[Appendix Bl); (ii) {z;x} is a set
of random vectors z;, ~ N(0,Iyxn); (iii) M;[v] = (I — C;[v])~! is a time-dependent mixing matrix
that represents the transfer function matrix, where v = k/T is the rescaled time (Dahlhaus| 1997) and

LA matrix A is said nilpotent if it is square and A™ = 0 for all integers 7 > N, where N is known as the index of A.
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C;lv] € RM*N s the matrix of causal coefficients at time v and scale j described in In our
model, the local variance and cross-covariance between the processes at a certain time v and scale j, i.e.,
the local wavelet spectral matriz (LWSM) S;[v] is determined by the MN-DAG structure. The same holds
for the inverse of the LWSM, i.e., O;[v] = S;[v]7!, that provides information concerning the local linear
dependence between two time series after having removed the linear effects of the rest of the time series.
Thus, we can think of it as the equivalent of the precision matrix in the time-frequency domain. Then, the
matrix O;[v] relates to partial correlations between time-series, a concept that has been extensively studied
in spectral theory (Dahlhaus|2000, and references therein). Indeed, rescaling leads to the partial coherence
R;[v] = —D;[v]O,[v|D;[v], with D;[v] being a diagonal matrix with entries [O, [1/]];%/2, Vn € [N]. Given
its definition, the partial coherence between two time series provides a measure of local linear dependence
as well and is bounded in [—1,1]. The results below link the spectral properties of X1 to the underlying
multiscale causal structure.

Lemma 5.1. The transfer function matriz is a permuted lower triangular matriz, M, [v] = P’(H—(ij[l/])flP,
where P € RN s ¢ permutation matriz such that pn.,, = 1 iff the node X,, occurs at position n' within
the causal ordering <, and C;[v] is a strictly lower triangular matriz of causal coefficients.

Proof. Sce [Sppendix )

Equipped with Lemma we obtain the following.

Lemma 5.2. The local wavelet spectral matriz and its inverse are given by S;[v] = P/(I — C;[v])~1(I —
C,[v])"V'P and O;[v] = P'(1 - C,[v])' (I — C,[v])P.

Proof. See [ppendix B}

Lemma provides us with the expressions of S;[v] and O;[v] in terms of the features of the MN-DAG,
that are the causal ordering entailing the permutation matrix P and the matrix of causal coefficients. From
a computational perspective, the expression O;[v] is more appealing than that of S;[] since it does not
involve any matrix inversion. Therefore in we leverage O,[v], given its convenient form and the
information that it provides.

It is interesting to understand how the causal ordering and the order in which we observe the dimensions
of X7 impact the spectral properties of the process, i.e., the information contained in S;[v] and O;[v].
Proposition shows that any permutation of the causal matrix leaves the spectral properties unchanged.
In addition, it proves that any re-ordering of the dimensions of X7 results in a representation of the form in
with the same spectral properties.

Proposition 5.3. The spectral properties of the process X are independent of both the causal ordering and
the order in which the process dimensions are observed.

Proof. Sce [Sppondix B}

6 Two-Step Inference

We expose a Bayesian method for the estimation of MN-DAGs, termed MN-CASTLE. It is implemented
by using Pyro (Bingham et all [2019) a probabilistic programming language built on Python and Py-
Torch (Paszke et al.l2019). A probabilistic model is a stochastic function that generates data x according
to latent random variables z and parameters 8%, having as joint density function

pp*(x,2) = pg-(x | 2)pp~(2) ,

where pg-(z) and pg- (x | z) are the prior and the likelihood, respectively. The goal is to learn the parameters
of the model B* from data. As detailed in[Appendix D} SVI offers a scheme to learn 8* by approximating the
usually intractable posterior distribution pg-(z | x) by means of a tractable family of variational distributions
q¢(2z), called guides, parameterized by the variational parameters ¢.



Published in Transactions on Machine Learning Research (10/2023)

Our task is as follows. We are given a dataset X = {Xr[t]}1,, Xr[t] = [XE[t],..., XN [t]] and an estimate
of the inverse LWSM 6j at different time scales j. As an example, the inverse smoothed bias-corrected
raw wavelet periodogram is a suitable non-parametric estimator (Park et all |2014). Then, according to
the probabilistic generative model in we want to learn the following parameters given previous
inputs by means of SVI: (i) the vector of scores € of the Plackett-Luce distribution used to model the latent
global causal ordering <; (ii) the mean and kernel parameters of the latent batched GPs used to model the
entries of the hidden causal coefficients tensor C, i.e., C’](n’m) ~ GP(C‘]("’m), K(t,t")). Here, we assume that
functional form of the kernel K(¢,¢') is shared by all causal the coefficients. In addition, by learning the
kernel parameters, we obtain an estimate 7 of 7 since we assume 7 = 1/ as in

In light of Lemma [5.2] and Proposition we set the inference of the causal ordering apart from that of the
causal coefficients. Indeed, our inference procedure is as follows:

e Step 1: We estimate the parameter vector 0 of the PL distribution which determines the causal ordering
by conditioning on the dataset X’;

e Step 2: We estimate the parameters of the kernels associated with the causal coefficients by conditioning
on the estimate O;, while imposing the causal ordering from Step 1.

<~ Plackett-Luce <~ Plackett-Luce
C°% ~ Normal 0 C° ~ Normal
X1 ~ Multivariate normal 0 cRrRY
peo € R
e oco € Ry

Hco
[
(TCO
(a) Probababilistic model (b) Guide

Figure 3: Graphical models associated with @ the probabilistic model and |E| the parameterized variational
distribution for learning the causal ordering, along with variational parameters and their constraints.

Model and guide for causal ordering inference. and [3B provide a pictorial representation
of the probabilistic model and the guide used in Step 1. In particular, we resort to graphical models to
illustrate the corresponding joint distributions. Here, random variables are represented as circular nodes,
where a blank node represents a latent variable while a grey one is associated with an observed variable.
Deterministic variables are represented as rhomboid nodes, while variational parameters are printed outside
of the nodes. Edges indicate dependence among variables and rectangles (plates) indicate conditionally
independent dimensions, i.e., independent copies. In addition, provides the distributions (along
with the constraints of parameters) of random variables and variational parameters.

shows that model and guide share the same latent variables. Indeed, since the guide is used to
approximate the true posterior, it needs to provide a valid probability density over all hidden variables.
More in detail, we have two latent variables: (i) the causal ordering, which is global since it does not depend
on any other variable and is modeled within the guide as a PL(0); (ii) a stationary single-scale causal
structure C° € R™V*Y | where each entry CY,. is independent of the others and is modeled in the guide with
a Gaussian. Since we assume the causal ordering (i) shared by all time scales and (ii) stationary; we infer
it from observed data X, without any additional information concerning the variance decomposition and
its evolution over different temporal resolutions (provided by a given estimate of S;). For this reason, to
learn 6, we resort to the SEM formulation given in [Equation (4)L where we set C? = P'CP (see .
As a consequence, the causal tensor C° in [Figure 3| depends on <. According to the probabilistic model
in at each time-step we observe the vector Xr[t] by using a multivariate normal likelihood,
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precisely M N (0, MM’). Indeed, with constant causal coefficients and normally distributed noises, we have:
(i) EXr[t]] = M - E[Z[t]] = M - 0 = 0; (ii) Var[Xr[t]] = Var[MZ] = MIM’' = MM'.

¢ c°

H(I(u)H@———+ 0K

5 index n
index t o <0 \_index m j A
index t . .
index j - ’ u ~ Multivariate normal
index j f ~ Normal
¢eR”
T
fgm) €RT
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f ~ Normal ox €R
O ~ Normal Ak €R
(a) Probababilistic model (b) Guide

Figure 4: Graphical models associated with @ the probabilistic model and |E| the parameterized variational
distribution for learning batched GPs, along with variational parameters and their constraints.

Model and guide for batched GPs inference. and [@b] depict the probabilistic model and the
guide used in Step 2. Here we exploit the result from Step 1. We compute the mode of the PL distribution
<0= argsort(—é), and then build the permutation matrix P as described in Since known, we
represent <" with a rhomboid node.

To model each latent causal coefficient at a certain temporal resolution level j as a smoothly varying function
f~ GP(C’j(-n’m)7 K(t,t')), we exploit a variational formulation of Gaussian processes (Hensman et al., 2015).

Accordingly, we consider a set of inducing points ¢ = {(; ET:1 optimised over the training set, where T < T,
and latent inducing function variables u (a subset of f) over these inducing points. Thus, the method relies
upon the introduction of a joint variational distribution ¢(f, u), such that it factorises as p(f | u)gq(u) (Titsias|
2009). This allows to avoid the computation of Kf_f1 within the inference procedure. Here, to approximate
the true GP prior p(u) over the inducing points, we choose ¢(u) to be a Cholesky variational distribution,
i.e., a multivariate normal with positive definite covariance matrix M N (uq(u),Eq(u)). This variational
approach allows to reduce the computational burden of GP estimation while avoiding overfitting at the same
time (Bauer et al., 2016). In detail, in our work the usage of T inducing points lowers the computational
cost of each GP from O(T?) to O(T3) (Hensman et al., 2015). As a consequence, in both and
we have two latent variables: u associated with inducing functions and f associated with GP prior values.
Here, we use batched GP to model causal coefficients, consequently they are independent both within and
among time scales (rectangles in . Since the joint distributions within the model and the guide
q(f,u) factorise as;
p(f,u) =p(f [w)p(u);  g(f,u) =p(f | u)g(u),

we also draw edges from u to f. The variational parameters, along with their constraints, are shown in

z

Now, let us consider a lower triangular matrix of ones L, having size N x N. Furthermore, define ]f_{j €
such that the entries are [R;]nn = [|[Ry]nn ||, = (o F _, [Rj]nns [K'/T)?)'/2. Hence, we mask the distribution
of the hidden functions with B; = (P'LP) o Rj to take into account and update only the relationships
conforming to <° and associated with nonzero partial correlation, where o represents the Hadamard product.
In practice, since it is difficult to exactly estimate zero partial correlation, before constructing the mask it is
possible to hard-threshold the values of Rj at a certain value p € [0, 1]. In our experiments we set p = 0.05.
At this point, we observe the estimated 6j by using a Gaussian likelihood N((I — C;)'(I — C;), o), where
the scale o € R is fixed (here we use 0.05). In particular, the mean value of the latter Gaussian is set

RNXN
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in accordance with Lemma [5.2] To implement these probabilistic model and guide, we combine Pyro and
GPyTorch (Gardner et al.l [2018]), an efficient Python library for GP inference built on PyTorch.

Inference. We optimize the variational parameters above by using SVI, and adopting as optimizer
Adam (Kingma & Baj, 2014) along with learning rate decay and gradient clipping (Goodfellow et al., |2016)).
These tricks are useful to avoid bouncing around local optima when you are close to them and to prevent the
gradient from becoming too large. In Step 1, we optimize w.r.t. 8 to approximate the likelihood of < given
Xr. Unfortunately, the latent variable < is non-reparameterizable. Therefore, we use the REINFORCE
estimator (Williams| [1992), which is suitable for getting Monte-Carlo estimates of a certain cost function
fo(z). According to REINFORCE, we have

VoEqy ) f6(2)] = Eq(2)[(Vp10gy(2)) f6(2) + Vo fo(z)] . (3)

Although unbiased, this estimator is known to have high variance. A way for reducing this variance is by
means of control variate strategies, i.e., by adding a function within the expectation operator in[Equation (3)]
that depends on the chosen values for z but is constant w.r.t. ¢. So, the additional term does not affect
the mean of the gradient estimator. Here, we resort to a data dependent baseline (Mnih & Gregor, 2014).
The rationale behind the usage of baselines, is to reduce the variance by tracking the mean value of fg(z).
Thus, we add a running average of fy(z), namely fg(z), for predicting the value of fg(z) at each step. On
the contrary, in Step 2 we exploit the reparameterization trick (see , to the benefit of learning.

Finally, we return the learned variational parameters once the maximum number of iterations is reached.

7 Results

In this section we present the empirical assessment of our proposal. We first dive in the statistical analysis of

the time series generated by the proposed model in Then, presents results regarding
the inference of MN-DAGs from synthetic data.

7.1 Probabilistic Model over MN-DAGs

We start by illustrating the output of the proposed probabilistic generative model by means of an example.
We consider N = 3 nodes (time series), T' = 512 time steps, multiscale level p = 0.5, non-stationarity level
7 = 0.5, and density of causal interactions § = 0.5.

First, displays the underlying MN-DAG, sampled as detailed in along with the evolution
over time of causal relationships. We obtain an MN-DAG composed of three pages, corresponding to temporal

resolutions 27, j = {1,2,3}. The sampled causal ordering is <= [1, 3,2], and all causal relations, here locally
periodic functions with increasing variations, are compliant with <. Indeed, we can only observe directed
edges from time series n to m, where n < m.

Now, given the sampled MN-DAG, we generate data according to where we use non-decimated
Haar wavelet (Nason et al., [2000) as oscillatory function ¢;[t — k|. |[Figure 6| depicts the generated time series

along with descriptive statistics.

On the first row, we have the behaviour over time of synthetic data. Here, we resort to the augmented Dickey-
Fuller test (ADF, Dickey & Fuller|[1979)) to assess stationarity. According to the test, the null hypothesis
Hj indicates that the process has a unit root (i.e., is non-stationary). The resulting p-values prove that
the generated processes are (weakly) stationary (we reject Hp). Indeed, they have zero mean, while their
dispersion looks different. On the one hand, the variance of X3 (which occur at first position in <) is
stationary, on the other hand those of X5 and X3 vary over time. Furthermore, X5, that has incoming
causal edges at all temporal resolutions, displays the largest swings.

On the second row we provide the histograms of the data, where we employ a Jarque-Bera test (JB, |Jarque
& Bera) [1987)) to assess normality. In particular, the null hypothesis Hy is that the process is normally
distributed. The resulting p-values suggest that X is normally distributed, while we reject Hy for both X5
and X3. Indeed, the associated distributions are leptokurtic, with X3 having a more pronounced negative
fat tail.
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Figure 5: The figure depicts the latent MN-DAG sampled by using the proposed probabilistic generative
model, where we set the number of nodes N = 3, number of time steps T = 512, multiscale level u = 0.5,
non-stationarity level 7 = 0.5, and density parameter § = 0.5. The resulting MN-DAG has (i) 3 nodes; (ii)
J = 3 pages (yellow rectangles), (iii) non-stationary causal interactions (red directed arrows, values shown
as time series in the insets) that follow a Gaussian process with kernel K = Kperiodic + K Lincar X Kpfatorns/2;
(iv) global causal ordering <= [1, 3,2]. Within each scale, we also plot the evolution of causal relations over
time. Kernel variances are oLinear = OPeriodic = Opaterns/2 = 1; the lengthscales Aperiodic = Ayiaterns/2 = 1/7,
and the period pperioaic = 1/7. Given the kernel shape, the causal coefficients are locally periodic functions
with increasing variation.

Looking at the autocorrelation (with lag I € [1,40]) plotted on the third row, we see that all the generated
time series show serial correlation, statistically significant at 95% level (light blue bands). This result is in
accordance with the multiscale nature of the time series. In addition, the autocorrelation is driven by the
local wavelet spectral matrix S; (see , that in our model is determined by the causal structure.

Finally, the autocorrelation of absolute values of the processes prove that large swings in X5 and X3, either
negative or positive, tend to be followed by other large swings. This effect is also known as volatility
clustering, a key-feature of financial time series (Mandelbrotl |1967; [Ding & Granger} [1996)). Here, large
movements in the series are driven by the increase of causal coefficients modulus, shown in

7.2 Causal Structure Learning from Multiscale Data with Time-dependent Variance

We next report a comparison between our method, MN-CASTLE, the algorithm for multiscale causal struc-
ture learning introduced by [D’Acunto et al.| (2022]), MSCASTLE, and state-of-the-art algorithms for learning
I[Equation (4)l For this comparison we use baselines belonging to different families, and synthetic data gener-
ated by the proposed probabilistic generative model. The goal is to assess the gain, in terms of performance,
as we deviate from the single-scale stationary case, i.e., 7 = p = 0, which is the closest to
Additionally, we report results concerning the inferred causal ordering.

Settings. We run our experiments according to four main different configurations. First, to evaluate the
methods as we move within the (7, u)-quadrant, we generate the data by setting N =5 and T = 100, while
the entries of the PL score vector are drawn from a uniform distribution 6; ~ U (0, N). We test three values
each for the multiscale and non-stationarity parameters, thus giving raise to configurations of none, medium,
and high values for each parameter. For each possible combination (7, 1) € {0.0,0.5,0.9} x {0.0,0.5,0.9}, we
generate 20 datasets that contain IV time series each of length T. With regards the causal structure density,
we use 6 = 0.5.

Second, to measure the sensitivity of the performances w.r.t. network density, we set (N, T, 7, u) equal to
(5,100, 0.5,0.5) and let § varies in {0.25,0.5,0.75}. For each possible combination, we generate 20 datasets.

Third, to measure the sensitivity of the performances w.r.t. network size, we set (T,7,p,0) equal to
(100,0.5,0.5,0.25) and let N varies in {5,10,15,20}. Thus, in this experimental context we go from a
configuration in which the number of observations T is greater than the number of relationships possible

12
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Figure 6: The figure shows the generated time series, along with descriptive statistics, where each process
is associated with a different column. (i) Starting from the top, we have the synthetic data obeying to the
underlying MN-DAG, where we provide the p-values of an ADF test. (ii) On the second row, we have the
histograms of observed values, along with the p-values of a JB test, skewness, and kurtosis. (iii) The third
row shows time series autocorrelations (with lag I = {1,...,40}). The light blue bands show 95% ClIs. (iv)
The last row shows the autocorrelations of absolute values of the processes.
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in a complete single-scale DAG, i.e., N - (N —1)/2, to one in which it is much less. Also in this case, we
generate 20 datasets for each combination.

Fourth, we look at the performances of MN-CASTLE under generative model misspecification, i.e., when the
assumptions underlying are violated. Here, we consider two kinds of violations. First, we set
(N, T, T, 1) equal to (5,100,0.5,0.5) and violate the Gaussianity assumption of the latent noise z; ;. Indeed,
we generate 20 datasets for the case in which z;, ~ L(0,1) and 20 for that where z;; ~ U(0,1), being
L(0,1) the Laplace distribution with zero mean and unit scale and U(0, 1) the uniform distribution over the
unit interval. Second, we run MN-CASTLE on downsampled data, meaning that the frequency associated
with the observational task is lower than that at which causal interactions occur. In detail, we generate 20
datasets by setting (N, T, 7, 1) equal to (5,256,0.5,0.5). Then, we subsample the observations to T = 128
and run MN-CASTLE on these decimated datasets. This way, our model cannot exploit the information
related to the scale level j = 1, and consequently cannot infer the causal structure at that time resolution.
Hence, we test whether the lack of such information affects the performances of MN-CASTLE in retrieving
the causal relationships at coarser time resolutions.

Finally, in case 7 # 0, for the GP we use the radial basis function kernel Kgrpp with variance oggrp = 0.1
and lengthscale Agpr = 1/7.

Baselines. We test MN-CASTLE against the following four baseline models. First we consider MSCAS-
TLE, a multiscale causal structure learning model which exploits multiresolution analysis and non-convex
continuous optimization to retrieve stationary causal relationships. Next, we have Direct LINGAM (Shimizu
et al.}|2011)), a method belonging to the family of non-Gaussian models. Algorithms within this class assume
that the noise Z is non-normally distributed. Indeed, in this case the causal structure has shown to be fully
identifiable (Shimizu et al., |2006). Then, DirectLINGAM returns an estimation of both causal ordering and
causal coefficients. Second, we have CD-NOD (Huang et al., 2020]), which belongs to the family of constraint-
based methods. In particular, it has been developed to deal with heterogeneous (no assumptions on data
distributions and causal relations) and non-stationary data as well. GOLEM (Ng et al., 2020) lives at the
intersection of score-based and gradient-based methods. It solves an unconstrained optimization problem
where the objective function is given by a likelihood function (as in score-based methods), penalized by
regularization terms for sparsity and acyclicity.

As already mentioned, the concept of multiscale, non-stationary causal graphs is an understudied topic.
Since none of the previous baseline models have been developed to infer causal graphs from data obeying to
an underlying MN-DAG, our results provide information regarding the robustness of the previous algorithms
with respect to the presence of multiple time scales and non-stationarity. In the following experiments,
we use the code of MSCASTLE developed by |D’Acunto et al.| (2022)); we exploit the implementations of
DirectLINGAM and GOLEM provided by gCastleE| (Zhang et al., |2021a)), whereas we resort to causallearrﬂ
for the implementation of CD-NOD. The configuration for each baseline is provided in

Differently from MN-CASTLE, baseline models are non-probabilistic. 'While our model provides an ap-
proximate predictive posterior distribution over MN-DAGs, baseline models return a point estimate of an
acyclic causal structure. In order to compare the algorithms, we retain all causal coefficients identified by
MN-CASTLE that are in modulus significantly greater than 0.1 at 99% level.

Performance in the estimation of the adjacency tensor. Retrieving the adjacency tensor means
identifying the presence of causal relations disregarding their intensity. provides an example
of the evolving causal relations inferred by MN-CASTLE, while gives insights concerning the
estimate of the non-stationarity parameter. refers to the first configuration described above, and
shows the F1 score (the higher the better) for the considered models. The definition of the considered metrics
are given in [Appendix Il [Appendix J|also reports the values for additional evaluation scores and the fraction
of undirected edges for MN-CASTLE.

Given a (7, p) setting, for each model we have 20 values of F1. We use the box plot in order to visualize the
inter-quartile range (IQR). In addition, within the box plot we overlay the F1 scores attained for each of

2https://github.com/huawei-noah/trustworthyAl
Shttps://github.com/cmu-phil/causal-learn
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Figure 7: The figure depicts the performances of the considered methods in the retrieval of the adjacency
tensor, according to F1 score. Higher F1 indicates better performance. Each model is associated to a different
color. For every (7, 1) setting and every model, we represent the values attained over the 20 synthetic datasets
through a box plot. Within the latter, we overlay the performances obtained for each dataset (points).

the 20 datasets, plotted as points. For each value of 7, we provide the performances of each algorithm as p
varies. In case u # 0, we return the performance of GOLEM as well. In particular, because < is global, we
replicate the causal structure retrieved by the latter for each time scale. This way, we obtain an additional
baseline method also for multiscale datasets.

Overall, MN-CASTLE outperforms the baseline models in each case. When p = 0, the performances of
MSCASTLE and GOLEM is very similar to that of our method. In contrast, as p increases, we observe that
the gap between MN-CASTLE and the other models widens and that, in general, the two multiscale models
outperform GOLEM. In addition, MN-CASTLE performance remains stable as 7 increases, and when p
increases the IQR tightens.

depicts the performances of the models as we vary the density of the underlying MN-DAG (second
setting). Since here we use u = 0.5, we only retain MN-CASTLE, MSCASTLE and GOLEM. MN-CASTLE
outperforms the baseline models along d. In addition, the larger §, the better the performances of our model.

Figure 8b| provides the performances of the methods as we vary the size of the underlying MN-DAG (third
setting). Since p = 0.5, we only compare MN-CASTLE, MSCASTLE and GOLEM also here. MN-CASTLE
consistently outperforms the baseline models along N. The overall downtrend in the performances of the
considered methods stems from the growth of the dimensionality of the problem while the number of obser-
vations is kept fixed.

Last but not least, depicts the performances of MN-CASTLE under model misspecification. The
results prove that our model behaves as good as the case with no violation in every scenario.

Performance in the estimation of 6. provides results concerning the goodness of the inferred
vector of scores 8 of PL distribution for the first experimental configuration, as measured by normalized
discounted cumulative gain (nDCG) at 3, w.r.t. the ground truth causal ordering <. provides
insights concerning the computation of this metric, whereas shows the results for Kendall-7
statistics, Spearman’s rank correlation and nDCG at 5. To represent the results, we use box plots. For each
of the 20 synthetic datasets, generated according to specific a pair (7, 1), we obtain an estimated 0. Then, we
sample 10® causal orderings < from PL(@). Now, for each drawn causal ordering, we evaluate the monitored
metric w.r.t. <. As vector of scores for a baseline model, we use 6, where 6; ~ UO,N),i=1,...,N.
Afterwards, we obtain 10? random causal orderings < by sampling from the PL distribution parameterized
by 6. As for MN-CASTLE, we evaluate the metric w.r.t. <. Therefore, for each model, every box plot is
built by using 2 x 10* points. Overall, according to the monitored metric, MN-CASTLE outperforms the
baseline model. In addition, the performances do not deteriorate as 7 grows and improve as p increases.

We apply the same approach to evaluate the sensitivity of the estimation accuracy for 8 with respect to
the density and number of nodes of the underlying MN-DAG and under generative model misspecification.
shows the results obtained on the synthetic data generated according to the second, third, and
fourth experimental settings, described above.
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Figure 8: The figure depicts the performances of the considered methods in the retrieval of the adjacency
tensor, according to F1 score, along @ 0 and (@ N, and under generative model misspecification. In the
latter setting, to ease the comparison we also report the performances for the case without violation. Higher
F1 indicates better performance. Each model is associated to a different color. We represent the values
attained over the 20 synthetic datasets through box plots, where we overlay the performances obtained for
each dataset (points).
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Figure 9: The figure depicts box plots along with quartiles reference lines (dashed lines) for normalized
discounted cumulative gain (nDCG) at 3. MN-CASTLE is given in blue while a random baseline model in

orange. For every dataset generated according to a given (7, 1) setting (i) we sample 1 x 10 causal orderings

X~ PL@), where 7@ is the estimated vector of scores; (ii) we draw 1 x 10° random causal orderings
< ~ PL(0), where §; ~ U(0,N), i = 1,...,N. Afterwards, we evaluate nDCG@3 by using the sampled
causal orderings and < for both models. Thus, each box plot is made by 2 x 10* points.
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Figure 10: The figure depicts box plots for the normalized discounted cumulative gain (nDCG) at 0.6N.
MN-CASTLE is given in blue while a random baseline model in orange. Box plots on the left refer to
the second experimental configuration, i.e., when we vary ¢ while keeping fixed the values of the others
parameters, as described above. Box plots on the center concern the third experimental setting, where we
study the sensitivity of the estimation accuracy w.r.t. the network size N. Box plots on the right relate the
fourth experimental setting, where we study MN-CASTLE under generative model misspecification. Notice
that in the left and right plots N = 5.

Overall, the accuracy of MN-CASTLE in retrieving @ grows along with J: the IQR of the monitored metric
reach higher values. In addition, the performance of MN-CASTLE in recovering the causal ordering is
high and shows no dependence on N. Notice that the nDCG score depends on the value of N. Thus, the
comparison is meaningful because it considers the same fraction of nodes for each combination. Finally, the
performance of MN-CASTLE does not degrade under model violations.

8 Analysis of Natural Gas Prices in the US Market

In this section, we examine the key drivers of natural gas prices in the US market during the period spanning
from January 1, 2018, to December 31, 2022. Our analysis considers several variables, including the price of
natural gas (NG), crude oil (CO), deviations in gas storage (SD), rig counts targeting gas (RC), deviations
from seasonal average values of gas consumption for cooling (CDD) and heating (HDD) environments, the
crack spread between heating oil and crude oil (CS), and the economic uncertainty index (UI, [Baker et al.,
2016). We collected the data on a weekly basis, and we analyze time scales ranging from 1 to 5, corresponding
to resolutions ranging from 2-4 (scale 1) to 32-64 (scale 5) weeks. Please refer to for further
details on data sources and the pre-processing of the time series data.

The algorithms used for this dataset are GOLEM, MSCASTLE, and MN-CASTLE. GOLEM identifies
stationary instantaneous interactions between variables, meaning relationships that occur at a frequency
higher than weekly and remain constant over time. It does not establish any causal relationship with NG,
as the only interaction detected is SD—HDD.

MSCASTLE is capable of detecting causal interactions between the time series on the 5 considered time
scales. However, these interactions are assumed to be stationary over time. shows the multiscale
causal networks learned by MSCASTLE. The edges associated with a positive causal coefficient are repre-
sented in green, while those with a negative coefficient are represented in pink. The thickness of the edge is
directly proportional to the absolute value of the causal coefficient. Unlike GOLEM, the multiscale analysis
allows MSCASTLE to detect interactions that occur at longer time resolutions. The method suggests that
NG causes CO on both scale 1 and 2, with positive causal coefficient. While it is known from the literature
that the price of CO drives the price of NG due to the substitution processes of NG with petroleum prod-
ucts, the NG—CO relationship represents a novel element difficult to justify in light of the interchangeable
relationships between CO and NG. Like GOLEM, MSCASTLE detects a negative causal interaction from
SD to HDD, which occurs on the first, third and fourth scales. On the contrary, on the second scale the
relationship is reversed. Overall, the interactions between SD and HDD are the larger in magnitude.
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Figure 11: The figure depicts the multiscale DAG retrieved by MSCASTLE
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Figure 12: The figure depicts the relationships inferred by MN-CASTLE which involve NG at the considered
scales, and the estimated causal ordering <.
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MN-CASTLE can detect causal relationships between variables at different temporal resolutions, allowing
for more nuanced insights into how the variables interact over time. The behavior of the causal coefficients
learned by MN-CASTLE is illustrated in For readability, here we only report the coefficients
involving NG, which is the focus of our analysis. The full MN-DAG is given in Overall, the
information provided by our method is richer and more detailed than the baselines. This is due to the
ability of our method to track the temporal evolution of causal connections and detect relationships that are
activated in a limited period of time and that may change sign. As a result, MN-CASTLE suggests denser
causal structures, thus providing a more comprehensive understanding of how the variables are related.

Interestingly, many of the causal relationships inferred by MN-CASTLE intensify during two specific periods:
the early months of 2020 and 2022. These time windows correspond to significant events that put pressure
on the energy market: the outbreak of COVID-19 and the Russian invasion of Ukraine. The fact that
MN-CASTLE can detect these changes in causal relationships highlights its ability to capture the dynamic
nature of the market and the impact of exogenous events.

Concerning the causal ordering, in[Figure 12| we observe that SD, CO, and UT occupy the first three positions,
whereas NG and CS occupy the last ones. Our method is the only one able to detect that the price of NG
is causally influenced by seasonal factors, economic uncertainty, oil price, and deviations in gas reserves.
These relationships occur at larger temporal resolutions of 4 weeks, indicating that short-term fluctuations
have a limited impact on NG prices. Our findings are consistent with the literature (Brown & Yucel,, |2008;
Nick & Thoenes, 2014; \Ji et al., |2018]), which highlights the relevance of economic and environmental factors
in shaping energy markets. In line with the estimated causal ordering, MN-CASTLE does not propose the
NG—CO interaction returned by MSCASTLE. Furthermore, the absence of interactions at lower scales is in
line with the fact that GOLEM does not detect any connection regarding gas and underlines the superiority
of multiscale methods. Regarding the impact of SD on NG, we see that at scales 2 and 3, an increase/decrease
in SD causes a decrease/increase in NG prices, thus suggesting that supply shocks in the mid term can affect
NG prices. On the contrary, on scale 5, we observe a positive relationship around the years 2018-2019.
This relationship can be explained by the fact that the demand for NG increased in that period (also due
to exports) thus causing an increase in the price of NG, while gas reserves increased due to the record
production of NG in the US.

MN-CASTLE detects the causal interaction of CO—NG at different time scales and highlights changes in
sign over the analyzed period. Specifically, scales 3 and 4 show that in 2021, the increase in CO prices causes
a corresponding increase in NG prices. However, in 2022, scales 2 and 4 indicate a negative relationship,
possibly due to geopolitical tensions and speculative phenomena.

In addition, we observe that the prices of NG tend to be higher during periods with greater deviations in
HDD and CDD, which represent unusual weather events.

9 Conclusions and Future Research Directions

This paper deals with multiscale non-stationary causal analysis, filling a gap in the literature. Indeed, the
bulk of previous work assumes that the only relevant temporal resolution for causal relations is the frequency
of observed data. We drop such assumption. In addition, we also allow the causal relations to vary over
time. Since in general there is no prior knowledge about the relevant time scales of causal interactions nor
about their temporal dependencies, the proposed framework of MN-DAGs represents an important step in
such direction.

Generative model. We propose a probabilistic model to generate time series data obeying to an underlying
MN-DAG, in accordance with the specified values for multiscale and non-stationary features, p and 7,
respectively. Our model leverages the well established mathematical theory of multivariate locally stationary
wavelet processes and linear structural equation model. The causal ordering is modeled by means of Plackett-
Luce distribution while the causal interactions evolve over time according to the specified kernel of a Gaussian
process. Statistical analysis of generated data proves the exposed model to be able to reproduce well-known
features of time series. Therefore, it represents a suitable framework for testing the robustness of causal
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structure learning methodologies on datasets generated from different points of the (7, u)-quadrant shown
in

We stress the importance of providing both researchers and practitioners with synthetic data generators
capable of replicating phenomena characterizing data from different application domains.

Future work should aim to overcome some limitations related to the framework adopted to manage different
time resolutions and the modeling of the causal tensor. In particular, multivariate locally stationary wavelet
processes formulation relies upon wavelets, that are known to suffer from limited joint time-frequency reso-
lution (Heisenberg uncertainty principle). Indeed, wavelets divide the frequency space into non-overlapping
bands, i.e., octave bands. Furthermore, since the auto/cross-correlation structure of generated data depends
on both the power spectrum decomposition across temporal scales and the auto-correlation wavelet, the
usage of diverse wavelet families might lead to different results. Then, the usage of alternative methods to
wavelet transform might improve the proposed generative model. With regards the causal tensor, structural

breaks such as sudden deletion/addition of causal edges might be added within

From a theoretical point of view, an interesting research direction is to study the assumptions that make
the model described in identifiable. Even though some class of linear structural equation models
have been proved identifiable under different types of restrictions (Shimizu et al., [2006} |Peters & Biithlmann)
2014; [Loh & Buhlmann| 2014} [Park & Kiml 2020]), the case of MN-DAG needs to be carefully investigated.
Indeed, the presence of the non-decimated wavelet transform; the unobservability of the contributions to the
process coming from each time resolution; the linearity of the model in the frequency domain are some of
the points that distinguish the MN-DAG case from those currently studied.

Bayesian causal structure learning method. In addition, we expose a Bayesian method for learning
MN-DAGs from time series data, termed MN-CASTLE. The latter relies upon observed time series data
and an estimate for the inverse power spectrum at each scale level. We implement the latter by using a
two-step approach. In the first step we optimize w.r.t. the Plackett-Luce vector of scores 8, by using the
values of time series at time ¢. Then, we keep the causal ordering fixed to the mode of the Plackett-Luce
distribution, i.e., <%, and we estimate the rest of variational parameters related to the causal coefficient
tensor by exploiting the provided estimation for the inverse power spectrum.

Our findings show that MN-CASTLE compares favorably to baseline models in the retrieval of the adjacency
tensor of the causal graph. We test the models on synthetic datasets generated according to different (7, )
configurations, from the single-scale stationary to highly multiscale non-stationary case. We observe that
the performance of MN-CASTLE, depicted in is not sensitive to the value of non-stationarity
parameter. On the contrary, the growth of the multiscale parameter is associated with an improvement in
the quality of the results returned by our method since the IQR tightens. The improvement in performances
along p is also shown in that concerns the goodness of the estimated vector of scores for Plackett-
Luce distribution. On one hand, we think that when non-stationarity and multiscale parameters are different
from zero, MN-CASTLE might benefit of greater differences among time series distributions. On the other
hand, we believe that the large variance shown (especially in the single scale case) is an effect due to the
low cardinality of the edge set. In fact, even though the monitored metric is normalized, on average in
the single scale case we only have five causal links. So, a single error weighs more. We emphasize that
MN-CASTLE, being a fully Bayesian approach, by definition takes into account uncertainty. Consequently,
we might sample MN-DAGs from the approximate posterior distribution in accordance with the confidence
of the model.

Furthermore, we study the behaviour of our model w.r.t. the density § of the underlying MN-DAG. We
observe that the performance of MN-CASTLE improves as ¢ increases and that our method outperforms the
other models in all cases. This improvement is also manifest in the value of the metric used to evaluate the
estimated causal ordering. We also provide supplementary results on additional synthetic data to test the
capabilities of the monitored methods when the MN-DAG size N increases, keeping the other parameters
fixed. Also in this settings, MN-CASTLE outperforms the baselines. In addition, the ability of MN-CASTLE
in estimating causal ordering does not deteriorate as N increases. Last but not least, MN-CASTLE keeps
performing well under model misspecification, thus highlighting the robustness of our method.
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In our case study, we have applied MN-CASTLE to analyze the drivers of natural gas in the US market
and have compared the results of our method with those of GOLEM and MSCASTLE. While we cannot
determine the ground-truth, we have found that MN-CASTLE provides richer information than the baselines,
as it can track the evolution of causal relationships across different scales over time. Our study has revealed
that causal relationships have strengthened during the outbreak of COVID-19 and at the beginning of the
Russian invasion of Ukraine. Additionally, by accounting for non-stationarity, MN-CASTLE has detected
more relationships than the baselines. Furthermore, our method is the only one capable of detecting the
causal impact of seasonal factors, economic uncertainty, oil prices, and deviations in gas storage on natural
gas prices, which are crucial drivers in the Economics literature.
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Appendix A Linear Structural Equation Models and DAGs

Mathematically, a DAG is formulated as a SEM. Given a dataset X := (x1,...,2x) of N random variables,
a SEM is a collection of N structural assignments

xX; = fl('P“ZZ), i:1,...,N,

where P; represents the set of direct causes (parents) of node z;, z; is a noise variable satisfying z; L z; if
j # i, and f;(+) is a generic functional form. In this paper, we focus on linear functional forms, therefore, by
exploiting matrix form, the equation above becomes:

X—-CX+7Z,
where C € RV*" is the matrix of causal coefficients satisfying (i) c;; =0 Vi € {1,...,N}; (ii) ¢;; # 0 <=
x; € Py; (iii) diag(C™) =0, Vn € N (acyclicity property). Since I — C is an invertible matrix (see Lemma

Appendix E.1|), we can rewrite the latter equation as
X =MZ, (4)

with M = (I — C)~! being a mixing matrix. According to [Equation (4)| observed data is a mixing of
independent latent noises. Here, causal relations are stationary, instantaneous and are supposed to occur at
the frequency of observed data.

Appendix B Locally Stationary Wavelet Process

In the univariate case, locally stationary wavelet process (LSW, Nason et al.[|2000) is a suitable modeling
framework to represent a non-stationary process xp of length T = 27, J € N, by means of a triangular

multiscale representation
J

+oo
erlt] =Y > olk/T)zktylt — k] (5)
j=1k=—cc

The building blocks of are: (i) the random amplitude v;[k/T]z; composed by a time-varying
amplitude v;[k/T] and a normal noise variable z; ; such that cov(z; i, zj/ 1) = gngk,k/’ where gj,j/ represents
the Kronecker delta; (ii) discrete, real valued and compactly-supported oscillatory functions v, [t — k], namely
non-decimated wavelets. At each time only some values contribute to z7[t], and the time-dependence is
managed by the index k. Local stationarity means that the statistical properties of the process vary slowly
over time. This feature is essential in order to make learning possible (Nason et al, 2000). Within the LSW
framework, local stationarity is formalized by means of a smoothness assumption concerning the time-varying
amplitudes v;[k/T] (Fryzlewicz et al 2003). Indeed, the latter quantity provides a measure of the time-
dependent contribution to the variance at a certain time scale level j < J, namely the evolutionary wavelet
spectrum (EWS), defined as S;[v] = |v;[v]|?, with v = k/T being the rescaled time (Dahlhaus, 1997). For
a stationary process, EWS is constant Vj < J. As an example, consider the M A(1) = 1/v/2(e[t] — €[t — 1]).
We obtain it by setting in the following values for the previous components: (i) z; , = €[t]; (ii)
S; = 1if j = 1 and zero otherwise; ¥; = [1/v/2,—1/v/2] as the Haar wavelet. Because S; is constant and
different from zero only for j = 1, we obtain a stationary amplitude wi[v] = 1 only for the first scale level.
Then, it follows that

J

+o0
D00 vlk/ TNzt — K]

j=1k=—o00

+oo
Z 1 . 617]#/)1 [t — k]
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1
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Appendix C Multivariate Locally Stationary Wavelet Process

The MLSW framework generalizes locally stationary wavelet process (LSW, Nason et al.[2000} see
to model N zero-mean processes Xr[t] = [X1[t],..., Xn][t]]', each of length T, as follows:

—+o0

Xrlt] =Y > Vlk/T)z xbslt — k] (6)
=1k

s=—00

In|{Equation (6)} (i) {1;[t —k]} is a set of non-decimated wavelets; (ii) {z; ,} is a set of random vectors z; j, ~

N(0,Txyn); (i) V;[k/T] € RY*N is the transfer function matrix, assumed to be lower triangular and with
entries being Lipschitz continuous functions associated with Lipschitz constants Lé.”’m), ne{l,...,N},me

{1,..., N}, such that Zj Lgn’m) < o00. Local stationarity means that the statistical properties of the process
vary slowly over time. This feature is essential in order to make learning possible (Nason et al., |2000)),
and within MLSW coincides with the Lipschitzianity assumption above. Here, the transfer function matrix
V;[v], with v = k/T being the rescaled time (Dahlhaus|1997)), provides a measure of the local variance and
cross-covariance between the processes at a certain time v and scale j, i.e., the local wavelet spectral matriz

(LWSM) S;[v] = V[V [1].

By construction, LWSM is symmetric and positive at each time v and scale j. Within LWSM, diagonal
elements S7  [v] represents the spectra of of the processes, whereas S, [v] provides the cross-spectra between
them. In addition, the local auto and cross-covariance functions, namely ¢, (v, 1) and ¢y, (v, 1) (with [ being
a certain lag), admit a formulation in terms of the LWSM (see [Park et al.[2014] for further details).

Appendix D Overview of SVI

Stochastic variational inference (Hoffman et al.,[2013; Kingma & Welling], [2013)) is an algorithm that combines
variational inference (VI, Blei et al|2017)) and stochastic optimization (Spall, |2005)). SVI approximates the
posterior distribution of complex probabilistic models that involves hidden variables, and can handle large
datasets. Consider a dataset X = {x(V}7_, of T i.i.d. samples of either a continuous or discrete variable x.
Suppose that X is generated according to a latent continuous random variable z, The latter is governed by
a vector of parameters 3* endowed with a prior distribution p(8*) , i.e., 29 ~ pp=(z). Thus, we have data
are generated according to a conditional distribution, i.e., x*) ~ pg+(x | z). Both the prior pg-(z) and the
conditional distribution pg-(x | z) belong to parametric families of distributions pg(z) and pg(x | z) whose
PDFs are differentiable w.r.t. 8 and z. Our goal is to compute the likelihood of the hidden variable given
the observations, i.e., the posterior .2
Pp\X, 2
pale ) = I (7)
Since the denominator of also known as evidence, is usually intractable to compute, a well-
known solution is to approximate the target posterior. Within approximate posterior inference methodolo-
gies, VI casts learning as an optimization problem. More in details, VI involves the introduction of a family
of variational distributions ¢ (z | x), parameterized by a variational parameters ¢. Then, VI optimzes those
parameters to find g4+ (2z | x), i.e., the member of the variational distributions family that is closest to the
posterior distribution. Here closeness is measured according to Kullback-Leibler divergence (KL).

The objective of SVI is the evidence lower bound (ELBO), that is equal to the negative KL divergence up
to a term that does not depend on ¢

ELBO = Eqd,(z\x) [logpg(x,z) - IOg q¢(z | X)}
= —Drr(gg(z | xV)|ps(z | x?)) + logps(xV) (8)
= —Dir(49(z | x9)|pp(2)) + By (ax0) [log pp (x| 2)] .

Since KL is a non-negative measure of closeness between distributions, then logpg(x) > ELBO for all 8
and ¢. Therefore, the maximization of the ELBO is equivalent to the minimization of the distance between
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¢e(2z) and pg(x | z). Observations x(") are conditionally independent given the latent, thus the log likelihood
term in [Equation (8)|can be written as

Zlogp @) z) ~ T Z logp(x'" | z),

1€Lpr

where Z7 is a set of indexes of size T < T. One way to subsample indexes is, for example, to randomly
select T” data points among the observations Thus, in case of large datasets, we can run SVI while exploiting
mini-batch optimization.

In order to compute the gradient of the ELBO w.r.t. ¢, SVI relies upon the reparameterization trick.
The continuous random variable z can be expressed in terms of a deterministic function z = g4 (€,x), where
€ ~ ¢(e) is independent of z. This procedure is useful to move all the dependence on ¢ inside the expectation
operator ‘

Eqd,(z\x(i)) [f¢ (Z)] = ]Eq(e) [f¢(g¢(€7 X(l)))] )

where f4(,) represents a general cost function. Now, the gradient can be computed as

VoEq(o)fo(ge(e.x)] = By [Vo fo(ge(e.x"))]
L

~ % > flag(e)x)),
=1

where L is the number of samples per data point. Then, we obtain an unbiased estimate of the gradient by
means of Monte-Carlo estimates of this expectation.

Appendix E Proofs
Lemma Appendix E.1. The inverse of I — C exists and consists of a finite sum of powers of C.

Proof. To prove invertibility of I — C, C € RV*V | let us rewrite C = P'CP. Here, P € RV*V is a
permutation matrix entailed by the causal ordering <, such that p,, = 1 iff the node X,, occurs at position
n/ within <, and C is a strictly lower triangular matrix, computed by ordering the rows of C according to
<. Now, for permutation matrices it holds P! = P’. In addition, since strictly lower triangular matrices
are nilpotent, there exists an integer N such that C" = 0, Vi > N. Then it follows that C is similar to C
and, consequently, nilpotent too:

cV = @P'cp)V

=P 'cp)V

= (P"'CP)(P"'CP)...(P~'CP)

=P 'C(PP HCPP)...(PP })CP
=p'c'p

=0.

At this point, exploiting the geometric series representation (nilpotent matrices have eigenvalues equal to
zero and then are convergent), we have that

-c)t=» c"
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Therefore, the inverse exists and is given by a finite sum of powers of C. O

Lemma 5.1. The transfer function matriz is a permuted lower triangular matriz, M;[v] = P’(Hféj[y])*lP,
where P e RN s ¢ permutation matriz such that pn.,, = 1 iff the node X,, occurs at position n' within
the causal ordering <, and C;[v] is a strictly lower triangular matriz of causal coefficients.

Proof. Starting from the representation of C;[v] = P’(~3j [v]P, we have:

where (I— (~3j [])~! admits a representation in terms of the geometric series for Lemma [Appendix E.1} which
in this case consists in a sum of lower triangular matrices. O

Lemma 5.2. The local wavelet spectral matriz and its inverse are given by S;[v] = P'(I — C;[v])~ (I —
C;[v))"'P and O;[v] = P'(I - C;[])' (I - C; )P

Proof. For real-valued invertible matrix A the Gramian AA’ is semi-positive definite, hence S;[v] =
M, [v]M;[v]" analogously to Definition 2 in [Park et al.| (2014).
Then, by pluggin in the expression of M, [v] given by Lemma we get:

8,[v] = (P'(I— C;[v]))~'P)(P'(I - C;[v])'PY
=P/(1-C;[)) (I~ C;[p))"P;
where we exploit the fact properties P’ = P_,lg By following the same rationale and remembering that
(BA)™' = A™'B™!, we obtain O;[v] = P'(I — C,[v])'(I — C;[v])P O
Proposition 5.3. The spectral properties of the process X are independent of both the causal ordering and

the order in which the process dimensions are observed.

Proof. Let us consider a causal matrix C;[v] and its causally ordered form (ij [v], such that C;[v] =
P'C;[V]P. Now, let us consider S;[v] = (I — C;[v])~ (I — C;[v])~* and O,[v] = (I — C,[v])'(I — C;[v)).
From Lemma it directly follows that S;[v] = (I — C;[¥])" (I — C;[v])~" = Plgj[V]P and O;[v] =
(I-C;)(I-C,v]) = P’(~)j [v]P. This proves independence from the causal ordering.

Now, let us consider a process X admitting a representation of the form of Consider also
a permuted version of Xrp, i.e. Xr = QX with Q being an arbitrary permutation matrix of size N x N.
By multiplying both sides of by Q, we get that M;[v] = QM,[v]. Hence, we have that
§j V] = QS;[v]Q’ and 6j[u] = QO;[V|Q’, where S;[v] = M,[v]M;[v)’ and O;[v] = S;[v]~!. This proves
independence from the ordering of the dimensions of the process. O

Appendix F Models Configuration

Below we report the models hyper-parameters used during the test phase:
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e MN-CASTLE: fraction of inducing points equal to 64%; K = Kgrpr; in case 7 = 0 (the estimated Oj
is constant) we use as prior for Ax a normal N(1. x 103, 1. x 1073); p = 0.05; number of iterations
iter= 6. x 102 with 10 particles;

e MSCASTLE: ¢; — penalty parameter A = 1.x 10~!; pruning threshold v = 5. x 10~2; Daubechies wavelet
with filter length equal to 2; maximum value for dagness function hy, = 1. x 1078;

e GOLEM: pruning threshold v = 5. x 10~2; number of iterations iter= 1. x 10%;
e DirectLINGAM: pruning threshold v = 5. x 1072;
e CDNOD: independence test = Fisher’s Z; significance level a = 95%.

Appendix G Evolution over Time of the Estimated Causal Relations

We apply MN-CASTLE over a synthetic dataset constituted by N = 5 time series of length 7" = 100 each.
To generate the data, we use the exposed probabilistic model over MN-DAGs, where we set 7= p =6 = 0.5
and we use as K = Kgrpr. In this case, we obtain J = 3 scale levels. The configuration of MN-CASTLE is

the same as

Scale 1 Scale 2 Scale 3
2 H H g g 2 z z : H
0.04——H"""H—" — 0 e e I —H v
—2.5 —2 H H H H —2- A H A
..... 2 H H H 2 H H H
0.0 - 0 - H H - - - 0 —
-2.5 —2- H H H —2- H H H
2 H H 8 2 8
0.0 —+—1 o 04— e o
—2.5 —2- H 3 -2 H H H H
,,,,,,, 2 H H = = 2 z z z H
0.0 4———H ~---H--- H 04——H— H---H--- H—— 01 H— H H---H -
- R R, g H H _ o] u 1 | ]
25 9 H—] " g_ " " v " —— Estimated
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~25 —2- H H H H —2+ - e -
0 10 10 10 10 1 0 10 10 10 10 1 0 10 10 10 10 1

Figure 13: The figure depicts the evolution over time (v = ¢/T') of estimated causal coefficients (blue) vs the
ground truth latent coefficients (dashed orange), for the three temporal resolutions. Shaded bands refer to
99% confidence level.

depicts the estimated causal relations and their evolution over time. MN-CASTLE correctly tracks
the behaviour of latent causal coefficients in all cases. As given in in the second inference step
we use the mode of PL distribution <9 to mask the distribution of hidden functions f. Consequently, only
those relations that conform to the estimated causal ordering show tight 99% Cls.

Appendix H Estimate of 7

In the results below we obtain the estimate 7 by means of the estimated GP kernel lengthscale, i.e., 7 =
1/ S\RBF. In our experimental assessment, data are generated by using a RBF kernel. Then we can evaluate
the goodness of 7. However, this assumption might be too restrictive in real-world scenarios, and we might
want to use a combination of kernels in the inference procedure. Therefore, the capability of computing tau
might be impaired since we might not have a single lengthscale resulting from the kernel combination or
even we use a kernel that does not involve any lengthscale in its formulation. Having said that, below we
provide some insights concerning th estimation of the non-stationarity parameter 7, coming from all the four

experimental settings (see[Section 7.2]).

depicts the inferred values 7 for the non-stationarity parameter in the first experimental setting.
Here red dashed lines refer to the ground truth value of 7. Our model tends to slightly overestimate the
non-stationarity parameter. As the value of p increases, the estimate approaches the ground truth.
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Figure 14: The figure illustrates the box-plots concerning the estimated values 7 for the non-stationarity
parameter. Red dashed lines refer to the ground truth value of 7.
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Figure 15: The figure illustrates the box plots concerning the estimated values 7 for the non-stationarity
parameter. Red dashed lines refer to the ground truth value of 7. On the left, we have the results for the
second experimental setting, on the center are those for the third, and on the right are those for the fourth.

In addition, provides the results for the second, third and fourth settings. Overall, we do not ap-
preciate any trend along 0, IV, and generative model violations. Indeed, MN-CASTLE tends to overestimate
the non-stationarity as in the first setting.

Appendix | Definitions of the Performance Metrics

In this section we describe the metrics used to evaluate the goodness of the estimated adjacency tensor of
the causal graph and the retrieved causal ordering.

Adjacency. For the predicted adjacency tensor, we monitor both accuracy and structural scores.

With regards to accuracy measures, we look at the true positive rate (T'PR, recall), the false discovery rate
(FDR, 1-precision) and the Fl-score. The first is defined as TP/P, where TP is the number of predicted
edges that exist in the ground truth with the same direction and P (condition positive) is the number of
links in the ground truth. The second given by FP/(FP + TP). Here, FP is the number of edges that
do not exist in the skeleton of the ground truth, i.e., in the undirected adjacency. Finally, the Fl-score is
computed as the harmonic mean between TPR and 1 — FDR (precision).

Concerning structural metrics, first we consider the structural Hamming distance (SHD), that represents
the number of modifications (added, removed, reversed edges) needed to retrieve the ground truth starting
from the estimated network. Then, we also monitor the ratio between the number of predicted edges and the
condition positive, given by NNZ/P, where NN Z represents the sum of directed (D) and undirected (U)
estimated edges. Finally, we have the fraction of predicted undirected edges, computed as FU = U/NNZ.

Causal Ordering. To compare the estimated causal ordering with the ground truth, we consider three
metrics able to provide a measure of the association strength between two rankings.
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First, we look at Kendall-7, which is a measure of ordinal correspondence between two rankings, bounded
between —1 (low correspondence) and 1 (strong correspondence). Given two orderings < and <, the statistics
is defined as:

Kendall-r = (P - Q)//(P+Q+T) - (P+Q+7U)),

where here P is the number of concordant pairs, @ the number of discordant pairs, T' the number of ties
only in <, and U the number of ties only in <;

Second, we employ a measure of ranking quality widely applied in information retrieval, the normalized
discounted cumulative gain (nDCG). Consider a ground truth ordering < of length N and suppose to associate
items with descending scores s, from N to 1. Then, consider an other ordering < over the same set of elements
in <. Now, define the discounted cumulative gain (DCG) as:

N
5
DCG =) ———,
“— logy(i +1)

and let the ideal discounted cumulative gain (IDCG) to be the DCG of <. Therefore, the nDCG is defined
as the ratio by the DCG and the IDCG. This score is bounded between the nDCG of the worst ordering of
scores s, i.e., s sorted in ascending order, and 1. In our analysis we use a min-max scaling to map nDCG to
the unit interval. To evaluate the capability of a method in providing high-score items at first positions k,
we compute the nDCG@k by considering only the first k elements of <.

Finally, we consider Spearman’s rank correlation pg, that provides a non-parametric correlation coefficient
between two series. Here, differently from Pearson correlation, data is not assumed to be normally dis-
tributed. Thus, as Kendall-7, this statistics is bounded between —1 and 1. Since in our case we have two
score vectors, namely < and <, made by distinct values, this metrics can be computed as:

6> i(=i— =)
ps=tT TN

Appendix J Additional Monitored Metrics

In this section we provide additional analysis to better understand the behaviour of the considered methods
when (i) we navigate the (7, u)-quadrant keeping the other parameters fixed, (ii) we vary the density of the
MN-DAG at a point in the quadrant, (iii) we change the size of the MN-DAG at a point in the quadrant,
and (iv) we violate the assumptions of the generative model. where SHD has been normalized
by the number of edges present in the ground truth, refers to the first experimental setting and shows
that MN-CASTLE provides the better performances in all settings. Additionally, shows that
MN-CASTLE reduces the number of false discoveries returned by baseline models, especially when p # 0.
On the contrary, in the single-scale stationary case, best FDR values are provided by GOLEM.
tells us that MN-CASTLE is the best in the retrieval of true positives in almost all cases. Furthermore,
the estimated to true edge set ratio given in shows that our model is the more accurate in the
number of causal connections. Finally, we plot the fractions of undirected connections given by our model
to check aciclicity of the retrieved structure.

With regards to causal ordering estimation, [Figure 17| provides results also for Kendall-7 (Figure 17aj),
Spearman’s rank (Figure 17b)) and nDCG@)5 ([Figure 17c]) statistics. Here, the methodology used is the same

as in According to these metrics, MN-CASTLE outperforms the random baseline model in all
cases. In addition, the values of the monitored metrics do not lower as 7 grows and improve as p increases.

Hence, to[20] depict the resulting values for the same metrics above, obtained in the second , third,
and fourth experimental settings, respectively. Overall, when the density of the network grows, the metrics
improve for all methods. Also, MN-CASTLE provides the best performance for all values of . When we
vary the network size, our method outperforms the baselines as well. The overall worsening in method’s
performance is due to the fact that here the dimensionality of the problem grows, while the number of
observations is kept fixed, T' = 100. In addition, the performance of our method remains good even under
generative model misspecification.
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Figure 16: The figure depicts results returned by additional monitored metrics for the considered (7, pu)
settings. Here we use box plots, where we overlay the values of the metric, plotted as points.
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Figure 17: The figure depicts box plots along with quartiles reference lines (dashed lines) for @ for Kendall-7
metric, Spearman’s rank correlation, and normalized discounted cumulative gain (nDCG) at 5. MN-
CASTLE is given in blue while a random baseline model in orange. For every dataset generated according
to a given (7, ) setting (i) we sample 1 x 10? causal orderings < ~ PL(8), where 6 is the estimated vector
of scores; (ii) we draw 1 x 10® random causal orderings < ~ PL(8), where 0; ~ U(0,N), i = 1,...,N.
Afterwards, we evaluate the three monitored metrics by using the sampled causal orderings and < for both
models. Thus, each box plot is made by 2 x 10 points.
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Figure 18: The figure depicts results returned by additional monitored metrics for different MN-DAG den-
sities §. Here we use box plots, where we overlay the values of the metrics, plotted as points.
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Figure 19: The figure depicts results returned by additional monitored metrics for different number of nodes

N. Here we use box plots, where we overlay the values of the metrics, plotted as points.
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Figure 20: The figure depicts results returned by additional monitored metrics for different kind of generative
model misspecification. Here we use box plots, where we overlay the values of the metrics, plotted as points.
To ease the comparison, we also provide the case without any violation.

36



Published in Transactions on Machine Learning Research (10/2023)

0.5

0.0

Kendall-+

—0.5

—-1.04

B
i

77 I
Bt

RE

=

:

I 4
5 &

1.0

0.5

Spearman’s pg

—0.5

—1.04

0.0

T T T
Laplace Uniform  Subsampling
N Violation

=)
~
o
o
-
IS
=
=
N
S

(a) Kendall-7

| Hene BT

1.0

T T T
0.75 5 10 15 20 Laplace Uniform  Subsampling
N Violation

(b) Spearman’s rank correlation pg

%7‘7 3T =T T ¥ . + _¥ o akz E?ﬂ v
o] - B H ‘2 Haig |-
1 L I “J H Ej 1 s &
3 o b
= 0.6 1 1
@
o
a
< 0.4+ - -
0.2 7 7 e MN-CASTLE
Random
0.0 T T T T T T T T T T
0.25 0.5 0.75 5 10 15 20 Laplace Uniform  Subsampling
) N Violation

Figure 21: The figure depicts box plots for @ Kendall-7, (]EI) Spearman’s rank correlation, and () the
normalized discounted cumulative gain (nDCG) at N. MN-CASTLE is given in blue while a random baseline
model in orange. Box plots on the left refer to the second experimental configuration, i.e., when we vary
while keeping fixed the values of the others parameters, as described in Box plots on the center
concern the third experimental setting, where we study the sensitivity of the estimation accuracy w.r.t. the
network size N. Box plots on the right relate the fourth experimental setting, where we study MN-CASTLE

(c) nDCG@5

under generative model misspecification. Notice that in the left and right plots N = 5.
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Finally, depicts the results for Kendall-7 statistics, the Spearman’s rank correlation, and the nDCG
at NV related to causal ordering estimation. Here, we see that MN-CASTLE performance grows along with
d, does not show dependence (in mean terms) on the size of the underlying MN-DAG, and does not decrease
under generative model violation.

Appendix K Data sources, Pre-processing and Inference Details

We obtained data on a weekly basis from January 1, 2018 to December 31, 2022. In detail, we downloaded
Henry Hub natural gas futures prices (NG), WTTI futures prices for crude oil (CO), New York Harbor
No. 2 Heating Oil futures prices (HO), and US natural gas storage (ST) data from the website of the US
Energy Information Administration (EIA). The crack spread was calculated as the difference between HO
and CO, with HO being converted to dollars per barrel. The deviation of storage from the norm (SDD) was
determined by comparing the ST value for a given week to the average value for the same week over the
previous five years. We also downloaded rig counts (RC) data from Baker Hughes, and extracted deviations
from seasonal average values of gas consumption for cooling (CDD) and heating (HDD) environments from
the National Oceanic and Atmospheric Administration website. Finally, the economic uncertainty index
(UI) was downloaded from the Federal Reserve Economic Data repository.

We have checked for non-stationarity in the time series using the ADF test at a 99% level of significance.
We have found evidence of a unit root in all time series except CDD and HDD. Therefore, we have taken
the first differences of the non-stationary time series. Finally, to account for differences in scale among the
time series, we have standardized each time series.

After the preprocessing, we have obtained an estimate of S; by using the R package mvLSW ((Taylor et al.,
2019)). The wavelet transform has been performed using Daubechies wavelet with filter length equal to 8.
In addition, the smoothing of the periodogram has been performed using the rectangular kernel, also known
Daniell window, of width 16. Finally the smoothed periodogram has been corrected for the bias by using the
inverted autocorrelation wavelet ((Eckley & Nason, 2005)) and regularized to ensure positive definiteness
((Schnabel & Eskow, [1999)). At this point, we have obtained an estimate of O; by means of inversion for

the first 5 finer scales. Indeed, the values for the estimate §j were not negligible over these 5 scales.

In order to estimate the mode of the PL distribution <%, we have proceeded as follows. We have run the
first step of the inference procedure n = 1000 times, and we have obtained n estimates 91-, i € [n]. Then, we
have computed the estimate 0 by calculating the median over the previous n estimates. At this point, we
have obtained <%= argsort(—é). Indeed, since our model is probabilistic, we may have obtained different

estimates of 9 at each run.

Finally, to infer the causal coefficients we have used a combination of kernels, specifically K = Kperiodic +
Klinear X Kyfatern3/2 and we have set p = 0.05 for hard-thresholding the partial coherence (see [Section 6)).
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Appendix L Complete MN-DAG of the Real-world Application
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Figure 22: The figure depicts the multiscale DAG retrieved by MN-CASTLE, where nodes are sorted ac-

cording to the estimate <°.
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