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ABSTRACT

Reinforcement learning from human feedback (RLHF) has demonstrated great
promise in aligning large language models (LLMs) with human preference. De-
pending on the availability of preference data, both online and offline RLHF are
active areas of investigation. A key bottleneck is understanding how to incorporate
uncertainty estimation in the reward function learned from the preference data for
RLHF, regardless of how the preference data is collected. While the principles
of optimism or pessimism under uncertainty are well-established in standard rein-
forcement learning (RL), a practically-implementable and theoretically-grounded
form amenable to large language models is not yet available, as standard techniques
for constructing confidence intervals become intractable under arbitrary policy pa-
rameterizations. In this paper, we introduce a unified approach to online and offline
RLHF — value-incentivized preference optimization (VPO) — which regularizes
the maximum-likelihood estimate of the reward function with the corresponding
value function, modulated by a sign to indicate whether the optimism or pessimism
is chosen. VPO also directly optimizes the policy with implicit reward model-
ing, and therefore shares a simpler RLHF pipeline similar to direct preference
optimization. Theoretical guarantees of VPO are provided for both online and
offline settings, matching the rates of their standard RL counterparts. Moreover,
experiments on text summarization, dialogue, and standard benchmarks verify the
practicality and effectiveness of VPO.

1 INTRODUCTION

Fine-tuning large language models (LLMs) by reinforcement learning from human feedback (RLHF)
(Ziegler et al., 2019) has been shown to significantly improve the helpfulness, truthfulness and
controllability of LLMs, as illustrated by InstructGPT (Ouyang et al., 2022) and many follow-ups.
Roughly speaking, there are two critical components of RLHF: (1) reward modeling, which maps
human preference rankings into a quantitative reward function that can guide policy improvement; and
(2) RL fine-tuning, which seeks to adjust LLM output to align with human preferences by leveraging
the learned reward function, i.e., increasing the probability of preferred answers and decreasing the
probability of unfavored answers.

Evidently, the curation of preference data is instrumental in the performance of RLHF, which is
commonly modeled as pairwise comparisons from a Bradley-Terry ranking model (Bradley and
Terry, 1952). In particular, given a query x, human annotators choose a preferred answer from two
candidate answers y1 and y2 generated by an LLM. Despite the simple form, collecting large-scale
and high-quality preference data can be expensive and time-consuming. Depending on the availability
of preference data, two paradigms of RLHF are considered: (1) offline RLHF, where only a pre-
collected preference dataset is available, possibly generated from a pre-trained LLM after supervised
fine-tuning (SFT); and (2) online RLHF, where additional preference data can be collected adaptively
to improve alignment. While initial work on RLHF focused on the offline setting, the online setting
has also begun to receive considerable attention, as even a small amount of additional preference data
has been shown to greatly boost performance.

There has been significant work on the theoretical underpinnings of RLHF that seeks to uncover
algorithmic improvements. Notably, while the original RLHF pipeline decouples reward modeling
from RL fine-tuning, direct preference optimization (DPO) (Rafailov et al., 2023) integrates these as
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a single step in the offline setting, leveraging a closed-form solution for the optimal policy in the RL
fine-tuning phase. This has led to a welcome simplification of the RLHF pipeline, allowing direct
optimization of the policy (i.e., the LLM) from preference data.

Nevertheless, significant challenges remain in RLHF, particularly concerning how to incorporate
estimates of reward uncertainty in direct preference optimization when parameterizing policies
with large-scale neural networks — such as LLMs — in a theoretically and practically effective
manner. In standard reinforcement learning (RL), managing uncertainty when an agent interacts
with an environment is a critical aspect in achieving near-optimal performance (Sutton and Barto,
2018), when using methods that range from policy-based (Schulman et al., 2017; Xiao et al., 2021),
value-based (Mnih et al., 2015; Kumar et al., 2020), and actor-critic methods (Mnih et al., 2016).
One dominant approach in the bandit setting, for example, is to construct confidence intervals of the
reward estimates, then acting according to the upper and lower confidence bounds — following the
principles of optimism and pessimism in the online and offline settings respectively (Lattimore and
Szepesvári, 2020; Lai et al., 1985; Rashidinejad et al., 2022).

Despite the fact that uncertainty estimation is even more critical in RLHF, due to the coarse nature
of preference data, effective implementations of theoretically justified optimistic and pessimistic
principles have yet to be developed in the RLHF literature. For example, existing online preference
alignment methods, such as Nash-MD (Munos et al., 2023) and OAIF (Guo et al., 2024), do not
incorporate exploration; similarly, pessimism is also not implemented in offline preference alignment
methods, such as DPO (Rafailov et al., 2023) and IPO (Azar et al., 2024). A key reason for these
omissions is that it is extremely difficult to construct confidence intervals for arbitrary neural networks
(Gawlikowski et al., 2021), let alone LLMs. Since optimism for online exploration and pessimism
for offline RL both require uncertainty estimation, and given the difficulty of conducting uncertainty
estimation for large-scale neural networks, a natural and important question arises:

Can we implement the optimistic/pessimistic principles under uncertainty in a practically efficient
manner for online/offline preference alignment in LLMs while retaining theoretical guarantees?

1.1 OUR CONTRIBUTIONS

In this paper, we provide affirmative answer to the question. Our major contributions are as follows.

(i) We propose value-incentivized preference optimization (VPO) for both online and offline RLHF, a
unified algorithmic framework that directly optimizes the LLM policy with the optimistic/pessimistic
principles under uncertainty. Avoiding explicit uncertainty estimation, VPO regularizes maximum
likelihood estimation of the reward function toward (resp. against) responses that lead to the
highest value in the online (resp. offline) setting, hence implementing optimism (resp. pessimism).
Theoretical regret guarantees of VPO are developed for both online and offline RLHF, matching
their corresponding rates in the standard RL literature with explicit uncertainty estimation.

(ii) In addition, VPO reveals the critical role of reward calibration, where the shift ambiguity of the
reward model inherent in the Bradley-Terry model (Bradley and Terry, 1952) can be exploited to
implement additional behavior regularization (Pal et al., 2024; Ethayarajh et al., 2024) via centering
the reward model with respect to a calibration policy. This allows VPO to provide a theoretical
foundation for popular conservative offline RL methods (e.g., (Kumar et al., 2020)), as well as
regularized RLHF methods (e.g., DPOP (Pal et al., 2024)).

(iii) VPO admits a practically-implementable form suitable for RLHF on LLMs, and
more generally, deep-learning architectures. We conduct extensive experimental stud-
ies using TL;DR and ARC-Challenge tasks as well as standard benchmarks Al-
pacaEval 2.0 and MT-Bench in online and offline settings with optimistic and pes-
simistic bias, respectively. The results demonstrate improved empirical performance.
In addition, the proposed value-incentivized regularization can be integrated with other improvements

to DPO, e.g., SimPO (Meng et al., 2024) and WPO (Zhou et al., 2024), in a straightforward manner.

1.2 RELATED WORK

RLHF. Since the introduction of the original RLHF framework, there have been many proposed
simplifications of the preference alignment procedure and attempts to improve performance, in-
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cluding but not limited to SLiC (Zhao et al., 2023), GSHF (Xiong et al., 2023), DPO (Rafailov
et al., 2023), and its variants, such as Nash-MD (Munos et al., 2023), IPO (Azar et al., 2024),
OAIF (Guo et al., 2024), SPO (Swamy et al., 2024), SPIN (Chen et al., 2024), GPO (Tang et al.,
2024) , SimPO (Meng et al., 2024), WPO (Zhou et al., 2024) , and DPOP (Pal et al., 2024). These
methods can roughly be grouped into online and offline variants, depending on whether preference
data is collected before training (offline) or by using the current policy during training (online).

In offline preference alignment, identity preference optimization (IPO, (Azar et al., 2024)) argues
that it is problematic to use the Bradley-Terry model in DPO to convert pairwise preferences into
pointwise reward values, and proposes an alternative objective function to bypass the use of the
Bradley-Terry model. DPO-Positive (DPOP, (Pal et al., 2024)) observes a failure mode of DPO that
the standard DPO loss can reduce the model’s likelihood on preferred answers, and proposes to add a
regularization term to the DPO objective to avoid such a failure mode. On the other hand, online AI
feedback (OAIF, (Guo et al., 2024)) proposes an online version of DPO, where online preference data
from LLM annotators is used to evaluate and update the current LLM policy in an iterative manner.
Iterative reasoning preference optimization (Iterative RPO, Pang et al. (2024)) proposes to add an
additional negative log-likelihood term in the DPO loss to improve performances on reasoning tasks.
Finally, Chang et al. (2024) proposes to reuse the offline preference data via reset.

Uncertainty estimation in RL. The principles of optimism and pessimism are typically implemented
via constructing confidence intervals or posterior sampling, which have been demonstrated to be
provably efficient in tabular settings (Jin et al., 2018; Shi et al., 2022). Yet, these approaches have
had limited success in conjunction with deep learning architectures (Gawlikowski et al., 2021), and
many empirical heuristics in turn lack theoretical validation (Kumar et al., 2020). Notwithstanding,
alternative regularization schemes are developed for general function approximation settings with
theoretical guarantees, such as Bellman-consistent pessimism for offline RL (Xie et al., 2021), and
reward-biased exploration for online RL (Mete et al., 2021; Liu et al., 2024a). VPO draws inspiration
from reward-biased exploration (Kumar and Becker, 1982; Liu et al., 2020; 2024a; Hung et al., 2021;
Mete et al., 2021) in the standard online RL literature, but significantly broadens its scope to the
offline setting and RLHF for the first time.

Concurrent work. While preparing this submission, we discovered several concurrent work that
also appeared online around the same time proposing similar regularization techniques as ours to
encourage optimism (resp. pessimism) for online (resp. offline) RLHF (Zhang et al., 2024a; Xie
et al., 2024; Liu et al., 2024b). Despite slightly different forms, the algorithms studied in Zhang et al.
(2024a); Xie et al. (2024); Liu et al. (2024b) can be interpreted as adopting different choices of the
calibration policy in VPO. In the context of online RLHF, Zhang et al. (2024a) empirically studied
a similar algorithm as the proposed online VPO under the contextual bandit formulation of RLHF;
Xie et al. (2024) provided finite-time regret analysis of a similar algorithm for the token-level MDP
formulation with general function approximation, which extends to general deterministic contextual
MDPs as well. In the context of offline RLHF, Liu et al. (2024b) studied a similar algorithm as
the proposed offline VPO and provided a sample complexity analysis under the contextual bandit
formulation, yet focusing on general function approximation and different assumptions.

2 PRELIMINARIES

In RLHF, a language model is described by a policy π, which generates an answer y ∈ Y given
prompt x ∈ X according to the conditional probability distribution π(·|x). The standard RLHF
process consists of four stages: supervised fine-tuning (SFT), preference data generation, reward
modeling, and RL fine-tuning. In the SFT stage, a language model πsft is obtained by fine-tuning a
pre-trained LLM with supervised learning. The remaining stages continue training by leveraging the
preference data, which we elaborate below.

Reward modeling from preference data. An oracle (e.g., a human labeler or a scoring model)
evaluates the quality of two answers y1 and y2 given prompt x and reveals its preference. A widely
used approach for modelling the probability of pairwise preferences is the Bradley–Terry model
(Bradley and Terry, 1952):

P(y1 ≻ y2|x) =
exp(r⋆(x, y1))

exp(r⋆(x, y1)) + exp(r⋆(x, y2))
= σ(r⋆(x, y1)− r⋆(x, y2)), (1)

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

where y1 ≻ y2 indicates that y1 is preferred over y2, r⋆ : X × Y → R is the ground truth reward
function, and σ : R → (0, 1) is the logistic function. A preference data sample is denoted by a tuple
(x, y+, y−), where y+ (resp. y−) is the preferred (resp. unpreferred) answer in the comparison.

Given a preference dataset D = {(xi, yi+, y
i
−)} composed of independent samples, the reward

function r can be estimated by maximum likelihood estimation (MLE):
rMLE = argmin

r
ℓ(r,D), (2)

where ℓ(r,D) is the negative log-likelihood of D, given as ℓ(r,D) :=
−

∑
(xi,yi

+,yi
−)∈D

log σ(r(xi, yi+)− r(xi, yi−)).

RL fine-tuning. Given a reward model r, we seek to fine-tune the policy π to achieve an ideal
balance between the expected reward and its distance from an initial policy πref, which is typically the
same as πsft. This is achieved by maximizing the KL-regularized value function J(r, π), defined as

J(r, π) = E
x∼ρ,y∼π(·|x)

[r(x, y)]− β E
x∼ρ

[
KL
(
π(·|x) ∥πref(·|x)

)]
, (3)

where KL
(
π1 ∥π2

)
is the KL divergence from π1 to π2, and β > 0 is a regularization parameter. Con-

sequently, the RL fine-tuned policy πr with respect to the reward r satisfies πr := argmaxπ J(r, π),
which admits a closed-form solution (Rafailov et al., 2023), i.e.,

∀(x× y) ∈ X × Y : πr(y|x) =
πref(y|x) exp(r(x, y)/β)

Z(r, x)
. (4)

Here, Z(r, x) is a normalization factor given by Z(r, x) =
∑

y′∈Y πref(y
′|x) exp(r(x, y′)/β).

Direct preference optimization. The closed-form solution (4) allows us to write the reward function
r in turn as

r(x, y) = β(log πr(y|x)− log πref(y|x) + logZ(r, x)). (5)
Plugging the above equation into the reward MLE (2), we obtain the seminal formulation of direct
preference optimization (DPO) over the policy space (Rafailov et al., 2023),

πDPO = argmin
π

−
∑

(xi,yi
+,yi

−)∈D

log σ

(
β

(
log

π(yi+|x)
πref(yi+|x)

− log
π(yi−|x)
πref(yi−|x)

))
, (6)

which avoids explicitly learning the reward model.

3 VALUE-INCENTIVIZED PREFERENCE OPTIMIZATION

A major caveat of the standard RLHF framework concerns the lack of accounting for reward uncer-
tainty, which is known to be indispensable in the success of standard RL paradigms in both online
and offline settings (Cesa-Bianchi et al., 2017; Rashidinejad et al., 2022). This motivates us to
investigate a principled mechanism that be easily integrated into the RLHF pipeline, while bypassing
the difficulties of explicit uncertainty estimation in LLMs.

3.1 GENERAL FRAMEWORK

In view of the sub-optimality of naive MLE for reward estimation (Cesa-Bianchi et al., 2017;
Rashidinejad et al., 2022), and motivated by the effectiveness of reward-biased MLE in online RL
(Kumar and Becker, 1982; Liu et al., 2020; 2024a), we propose to regularize the reward estimate via

J⋆(r) = max
π

J(r, π), (7)

which measures the resulting value function for the given reward if one acts according to its optimal
policy. However, in RLHF, by the definition (1), the reward function r⋆ is only identifiable up to a
prompt-dependent global shift. Specifically, letting r1(x, y) = r2(x, y) + c(x) be two reward
functions that only differ by a prompt-dependent shift c(x), we have r1(x, y1) − r1(x, y2) =
r2(x, y1)− r2(x, y2), which leads to J⋆(r1) = J⋆(r2) + Ex∼ρ[c(x)]. To resolve this challenge, we
introduce the following equivalent class of reward functions for the Bradley-Terry model to eliminate
the shift ambiguity, which also has the calibration effect of centering the reward function while
offering a regularization mechanism to incorporate additional policy preferences.
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Assumption 1 We assume that r⋆ ∈ R, where

R =

{
r : E

x∼ρ,y∼πcal(·|x)
[r(x, y)] = 0.

}
. (8)

Here, ρ is the prompt distribution and πcal is a fixed calibration distribution independent of the
algorithm.

We remark that the number 0 in the condition can be replaced with arbitrary choice of constant,
without affecting derivation of our proposed algorithm. This is due to the Bradley-Terry model being
invariant to the global shift in the reward function. Therefore, the condition in Assumption 1 only
serves the purpose of notational simplicity and does not put a restrict on the reward model in practice.

The proposed regularized MLE of the Bradley-Terry model (2) appends a bias term to the negative
likelihood

rVPO = argmin
r∈R

{ℓ(r,D)− sign · α · J⋆(r)}, (9)

incentivizing the algorithm to favor (resp. avoid) reward models with higher value J⋆(r) in the online
(resp. offline) setting. Here, α > 0 is a constant controlling the strength of regularization, and sign is
set to 1 in the online setting and −1 in the offline setting.

At first glance, the objective function for VPO (9) does not immediately imply a computationally-
efficient algorithm due to the presence of J⋆(r). However, by exploiting the same closed-form
solution for the optimal policy given the reward in (4), and the reward representation inferred from
the policy via (5), we can explicitly express J⋆(r) as

J⋆(r) = E
x∼ρ,y∼πr(·|x)

[r(x, y)− β(log πr(y|x)− log πref(y|x))]

= E
x∼ρ,y∼πr(·|x)

[logZ(r, x)]

= E
x∼ρ,y∼πcal(·|x)

[logZ(r, x)]

= E
x∼ρ,y∼πcal(·|x)

[r(x, y)− β(log πr(y|x)− log πref(y|x))]

= −β E
x∼ρ,y∼πcal(·|x)

[log πr(y|x)− log πref(y|x)] , (10)

where the second step follows because the bracketed term is independent of y (c.f. (4)) and the last
step follows from (8) whenever r ∈ R. Given this key ingredient, we can then rewrite (9) to directly
optimize the LLM policy, in a flavor similar to DPO, as

πVPO = argmin
πr: r∈R

{ℓ(r,D)− sign · α · J⋆(r)}

= argmin
πr: r∈R

{
−

∑
(xi,yi

+,yi
−)∈D

log σ
(
β log

πr(y
i
+|xi)

πref(yi+|xi)
− β log

πr(y
i
−|xi)

πref(yi−|xi)

)
+ sign · αβ E

x∼ρ,y∼πcal(·|x)
[log πr(y|x)− log πref(y|x)]

}
= argmin

π

{
−

∑
(xi,yi

+,yi
−)∈D

log σ
(
β log

π(yi+|xi)

πref(yi+|xi)
− β log

π(yi−|xi)

πref(yi−|xi)

)
+ sign · αβ E

x∼ρ,y∼πcal(·|x)
[log π(y|x)− log πref(y|x)]

}
, (11)

where we drop the constraint on r ∈ R, since for any policy π there exists r ∈ R such that π = πr.

Observing that the reference policy πref(y|x) in the last term of (11)
E

x∼ρ,y∼πcal(·|x)
[log π(y|x)− log πref(y|x)] does not impact the optimization solution, we can

change it to E
x∼ρ,y∼πcal(·|x)

[log π(y|x)− log πcal(y|x)]
}

= − E
x∼ρ

[
KL
(
πcal(·|x) ∥π(·|x)

)]
, which

amounts to adding a KL regularization to the original DPO, and offers an interesting interpretation as
pushing π against/towards πcal in the online/offline settings respectively, unveiling the role of reward
calibration in RLHF.
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Algorithm 1 VPO for online RLHF

initialization: π(0).
for t = 0, 1, 2, · · · do

Sample x(t) ∼ ρ, y(t)1 , y
(t)
2 ∼ π(t)(·|x(t)).

Obtain the preference between (x(t), y
(t)
1 ) and (x(t), y

(t)
2 ) from some oracle. Denote the compari-

son outcome by (x(t), y
(t)
+ , y

(t)
− ).

Update policy π as
π(t+1) = argmin

π

{
−

t∑
s=1

log σ
(
β log

π(y
(s)
+ |x(s))

πref(y
(s)
+ |x(s))

− β log
π(y

(s)
− |x(s))

πref(y
(s)
− |x(s))

)
+ αβ E

x∼ρ,y∼πcal(·|x)
[log π(y|x)− log πref(y|x)]

}
. (14)

end

In what follows, we elaborate the development of VPO in both the online and offline settings with
corresponding theoretical guarantees under linear function approximation.

3.2 ONLINE RLHF: ALGORITHM AND THEORY

The online RLHF procedure extends training by performing reward learning and policy learning
iteratively, with a growing preference dataset collected by using the current policy. We use π(t) to
denote the policy used in the t-th iteration, where the superscript (t) indicates iteration t in the online
setting. The t-th iteration of VPO for online RLHF consists of the following steps:

1. New preference data generation. We sample a new prompt x(t) ∼ ρ and two answers
y
(t)
1 , y

(t)
2 ∼ π(t)(·|x(t)), query the preference oracle and append (x(t), y

(t)
+ , y

(t)
− ) to the

preference dataset.

2. Reward learning. We train a reward model with preference data D(t) :=

{(x(s), y
(s)
+ , y

(s)
− )}ts=1 by minimizing the regularized negative log-likelihood, i.e.,

r(t+1) = argmin
r∈R

{ℓ(r,D(t))− α · J⋆(r)}. (12)

3. Policy learning. This step trains the policy by solving the RL fine-tuning problem:

π(t+1) = argmax
π

J(r(t+1), π). (13)

We summarize the detailed procedure in Algorithm 1.

Theoretical analysis. Encouragingly, VPO admits appealing theoretical guarantees under function
approximation. For simplicity, we restrict attention to linear approximation of the reward model.

Assumption 2 (Linear Reward) We parameterize the reward model by
rθ(x, y) =

〈
ϕ(x, y), θ

〉
, ∀(x, y) ∈ X × Y, (15)

where ϕ : X × Y → Rd is a fixed feature mapping and θ ∈ Rd is the parameters. We assume that
∥ϕ(x, y)∥2 ≤ 1 for all (x, y) ∈ X × Y , and that r⋆(x, y) =

〈
ϕ(x, y), θ⋆

〉
for some θ⋆.

Under Assumption 1 and 2, it is sufficient to focus on θ ∈ Θ where

Θ =
{
θ ∈ Rd : E

x∼ρ,y∼πcal(·|x)

[〈
ϕ(x, y), θ

〉]
= 0
}
. (16)

The next theorem demonstrates that Algorithm 1 achieves Õ(
√
T ) cumulative regret under mild

assumptions. The proof is provided in Appendix B. The proof logic follows from that of (Liu et al.,
2024a).

Theorem 1 Under Assumptions 1 and 2, let rθ(t) ∈ Θ denote the corresponding reward model for
π(t). Assume that ∥θ⋆∥2 ≤ C and ∥θ(t)∥2 ≤ C,∀t ≥ 0 for some C > 0. Then with probability 1− δ
we have

Regret :=
T∑

t=1

[
J⋆(r⋆)− J(r⋆, π(t))

]
≤ Õ(exp(2C + C/β)

√
κdT ),

with α =
1

exp(2C + C/β)

√
T

κmin{d log T, T}
and κ = supx,y

πcal(y|x)
πref(y|x)

.
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Algorithm 2 VPO for offline RLHF
input: offline preference data D of size N .
Get policy π̂ by optimizing

π̂ = argmin
π

{
−

N∑
i=1

log σ
(
β log

π(yi+|xi)

πref(yi+|xi)
− β log

π(yi−|xi)

πref(yi−|xi)

)
− αβ E

x∼ρ,y∼πcal(·|x)
[log π(y|x)− log πref(y|x)]

}
.

Theorem 1 shows that VPO achieves the same Õ(
√
T ) regret for online RLHF as its counterparts

in standard contextual bandits with scalar rewards and using UCB for exploration (Lattimore and
Szepesvári, 2020).

Remark 1 The analysis naturally extends to allowing mini-batch samples of size M in every iteration,
yielding an improved regret bound scaled by 1/

√
M and α scaled by

√
M .

3.3 OFFLINE RLHF: ALGORITHM AND THEORY

In offline RLHF, a fixed offline preference dataset is collected D := {xi, yi+, y
i
−}Ni=1, where xi ∼ ρ,

yi ∼ πb(·|x) are sampled from a behavior policy πb, such as πsft from SFT. The proposed VPO for
offline RLHF consists of one pass through the reward and policy learning phases, i.e.,

r̂ = argmin
r∈R

{ℓ(r,D) + α · J⋆(r)} and π̂ = argmax
π

J(r̂, π), (17)

which discourages over-optimization of the reward function given the limited offline preference data.
In the same vein as deriving (14), and by leveraging (10), we obtain the direct policy update rule:

π̂ = argmin
π

{
−

N∑
i=1

log σ
(
β log

π(yi+|xi)

πref(yi+|xi)
− β log

π(yi−|xi)

πref(yi−|xi)

)
− αβ E

x∼ρ,y∼πcal(·|x)
[log π(y|x)− log πref(y|x)]

}
. (18)

We summarize the detailed procedure in Algorithm 2. When πcal is set to πref, the regularization term
becomes the KL divergence between π and πref, which is reminiscent of a popular choice in offline
RL practice (Kumar et al., 2020). Another heuristic choice is to set πcal to the marginalized positive
answer distribution from the dataset, i.e., (x, y+) ∼ D, which leads to a similar objective in (Pal
et al., 2024).

Saddle-point characterization and pessimism. We first illustrate that VPO indeed executes the
principle of pessimism in a complementary manner to the standard approach of pessimism, which
finds a policy that maximizes the worst-case value function over a confidence set. In particular, this
strategy (Uehara and Sun, 2021) obtains a policy by solving

π̂LCB = argmax
π

min
r∈Rδ

J(r, π) (19)

where the confidence set Rδ is typically set to {r : ℓ(r,D) ≤ ℓ(rMLE,D)+δ} or {r : dist(r, rMLE) ≤
δ} for some δ > 0 and s distance measure dist. Turning to VPO, note that by (17) we have

r̂ = argmin
r

{
ℓ(r,D) + αJ⋆(r)

}
= argmin

r
max
π

{
ℓ(r,D) + αJ(r, π)

}
. (20)

Since ℓ(r,D) + αJ(r, π) is strongly concave over π, and convex over r, it allows us to formulate
(r̂, π̂) as a saddle point in the following lemma. The proof is given in Appendix C.1.

Lemma 1 (r̂, π̂) is a saddle point of the objective ℓ(r,D) + αJ(r, π), i.e., for any (r′, π′), we have{
ℓ(r̂,D) + αJ(r̂, π̂) ≤ ℓ(r′,D) + αJ(r′, π̂)

ℓ(r̂,D) + αJ(r̂, π̂) ≥ ℓ(r̂,D) + αJ(r̂, π′)
.

As such, the policy obtained by VPO can be equivalently written as

π̂ ∈ argmax
π

min
r

{
J(r, π) +

1

α
ℓ(r,D)

}
= argmax

π
min

r∈Rδ(π,α)

J(r, π), (21)

where Rδ(π,α) is the constraint set {r : ℓ(r,D) ≤ ℓ(rMLE,D) + δ(π, α)} such that the constrained
optimization problem minr∈Rδ(π,α)

J(r, π) is equivalent to the regularized problem minr
{
J(r, π) +

1
αℓ(r,D)

}
. In view of the similarity between the formulations (19) and (21), we conclude that VPO
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implements the pessimism principle (19) in an oblivious manner without explicitly estimating the
uncertainty level, justifying popular practice as a valid approach to pessimism (Kumar et al., 2020).

Theoretical analysis. The next theorem establishes the sub-optimality gap of VPO with linear
function approximation under mild assumptions. The proof is given in Appendix C.

Theorem 2 Under Assumptions 1 and 2, let θ̂ ∈ Θ denote the corresponding reward model for
π̂. Assume that ∥θ⋆∥2 ≤ C and ∥θ̂∥2 ≤ C for some C > 0. Let α =

√
N and δ ∈ (0, 1). With

probability 1− δ, we have

J⋆(r⋆)− J(r⋆, π̂) ≤ O

(
C1√
N

·
∥∥∥ E

x∼ρ,
y∼π⋆(·|x)

[ϕ(x, y)]
∥∥∥
(ΣD+λI)−1

+
C2√
N

)
,

where ΣD = 1
N

∑N
i=1(ϕ(x

i, yi+)−ϕ(xi, yi−))(ϕ(x
i, yi+)−ϕ(xi, yi−))

⊤ is the feature sample covari-

ance matrix, λ = 1/N , C1 = exp(C)
(√

d+ log(1/δ)+κD

)
+C and C2 = exp(C)κ2

D+CκD+1.
Here,

κD =
∥∥∥ E

x∼ρ,
y∼π̂(·|x)

[ϕ(x, y)]− E
x∼ρ,

y∼πcal(·|x)

[ϕ(x, y)]
∥∥∥
(ΣD+λI)−1

≤ 4(λmin(ΣD) + λ)−1.

Theorem 2 establishes that VPO achieves the same rate of Õ(1/
√
N) as standard offline RL, as long

as the offline dataset D has sufficient coverage. We remark that
∥∥∥ E

x∼ρ,
y∼π⋆(·|x)

[ϕ(x, y)]
∥∥∥
(ΣD+λI)−1

is

reminiscent of the standard single-policy concentratability coefficient in offline RL, which measures
the distribution shift between the offline dataset and the optimal policy (Zhu et al., 2023).

Remark 2 Recently, Rafailov et al. (2024); Zhong et al. (2024) offered an interpretation of DPO
using the token-level Markov Decision Process (MDP), aiming at reconciling the gap between the
practical fine-tuning of LLMs at the token level and the theoretical formulation of DPO at the
sentence level. Fortunately, VPO can be interpreted using the same setup without introducing further
algorithmic modifications. We provide the detailed discussion in Appendix A.

4 EXPERIMENTS

In this section, We evaluate the pessimistic/optimistic VPO for LLMs in offline and online setting,
respectively. In both settings, the proposed VPO demonstrates strong performances over the baselines.
We provide additional experiments on synthetic bandits in Appendix D.3.

4.1 OFFLINE SETTING

In this setting, we focus on ARC-Challenge task (Clark et al., 2018), which consists of multiple-
choices questions across various science subjects, each with a ground truth answer. To construct
the preference pairs for training, we start with 1, 119 examples in the training set and generate three
comparison pairs with each incorrect answer, resulting in a total of 3, 357 preference training data.
We use ARC-Challenge test set which contains 1, 172 questions to test algorithms performances.

We evaluate pessimistic VPO and compare its performance to several offline RLHF baselines
(DPO (Rafailov et al., 2023) and IPO (Azar et al., 2024)) on several LLMs, including LLAMA2-
7B-CHAT, LLAMA2-13B-CHAT (Touvron et al., 2023) and FLAN-T5-XL (Chung et al., 2022). We
emphasize that our goal is to evaluate the RLHF algorithm designs for LLMs, rather than pushing
LLM towards state-of-the-art performance. For fair comparison, we keep all the experiment settings
and prompts the same for every RLHF algorithm. We did not apply any additional chain-of-thought
reasoning to avoid compounding factors affecting the RLHF performances. We tuned the hyperpa-
rameters for VPO and the baselines on the validation set to achieve their best performances. For
detailed hyperparameters setup and prompting strategy, please refer to Appendix D.

The performances are illustrated in Figure 1. As we can see, the proposed VPO method demonstrates
significantly better performance compared to IPO. Another important observation is that the pro-
posed VPO method is more robust to over-optimization (Gao et al., 2023) compared to DPO. As
DPO training continues, its performance declines. In contrast, VPO consistently maintains the perfor-
mances, avoiding the over-optimization issue and justifying the implicit robustness of pessimism as
we revealed in (20).
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Figure 1: The accuracy of the LLAMA2-7B-CHAT, LLAMA2-13B-CHAT and FLAN-T5-XL policies
trained by VPO and other baselines (DPO and IPO) on ARC-challenge, respectively. The
proposed pessimistic VPO performs consistently strong, and avoids over-optimization.

4.2 ONLINE SETTING

For online setting, we conduct two distinct experimental setups. The first, referred to as Buffer,
adopts the experimental setup in Online AI Feedback (OAIF) (Guo et al., 2024), with an additional
buffer used to sample the data for the exploration part of the VPO loss. The second setup, referred to
as Iterative, adopts the experimental setup in (Zhang et al., 2024a), relying on an online iterative
training framework.

Buffer. In these set of experiments, we adopt OAIF experimental setup (Guo et al., 2024) where
the preference data is gathered by online sampling from the policy and labeled through online
feedback. We also introduce a buffer that stores the labeled preferences and is used to sample the
data for the exploration term in the VPO loss. We adopt PALM2-XXS language model (Anil et al.,
2023) as policy, initialized by supervised finetuning, denoted as SFT model. We exploit another
PALM2-XS model as the LLM annotator to provide online feedback. We evaluate the performance
of optimistic VPO and compare its performance to Online DPO (Guo et al., 2024). We choose
TL;DR task (Stiennon et al., 2020) and extract its prompts for the input of preference data. Similar to
(Guo et al., 2024), we use Detailed 0-shot prompt from Lee et al. (2023). The prompts we used and
how we get preference scores are detailed in Appendix D. We emphasize our algorithm is agnostic to
human or AI feedback.

As a sanity check, we track the win rate of VPO and Online DPO against the SFT baseline on TL;DR
during training in Figure 2a. For ablation purpose, we vary the exploration weight α = {0.01, 0.1}
in the optimistic VPO. One significant observation is that although all the online RLHF algorithms
follow the increase trend, the win-rate against SFT of the optimistic VPO has larger oscillation,
comparing to Online DPO. And the oscillation reduces, with α diminishing. Our conjecture is
that this behavior is encouraged by the optimistic term in VPO, for collecting more unexplored
data, which may delay the learning due to the diversity in data. However, as the learning proceeds,
the proposed VPO outperforms the competitors, because of the coverage of the collected data. To
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Figure 2(a): Win rate of VPO and Online
DPO against the SFT baseline on TL;DR
task.
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Figure 2(b): Win/tie/loss rate of VPO with
different exploration rate α = {0.01, 0.1},
directly against Online DPO.

demonstrate the advantages of optimistic VPO in online setting more directly, we evaluate the
win/tie/loss rate against Online DPO head-to-head, as shown in Figure 2b. This clearly shows
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that the optimistic VPO achieves better performances with larger exploration preference, and thus,
consolidates our conclusion that i), the simple value-incentivized term makes the exploration practical
without uncerntainty estimation; and ii), exploration is potentially beneficial for better model.

Iterative. We further evaluate the performance of VPO on standard benchmarks AlpacaEval 2.0
(Dubois et al., 2024b;a) and MT-Bench (Zheng et al., 2024), using similar experimental setup in
recent literature (Zhang et al., 2024b; Wu et al., 2024). We use UltraFeedback1 (Cui et al., 2023)
as our training dataset which contains around 61k preference pairs of single-turn conversations.
We split the 61k prompts into four chunks and follow an iterative training approach. We choose
Zephyr-7B-SFT2 as our LLM model. We follow the best hyperparameters setup found in Zhang et al.
(2024b) and compare the results of VPO to DPO reported therein. We first conduct a single iteration
of standard DPO training on the first portion of the training data, referred to as Zephyr-7B-DPO in 1.
We then perform 3 iterations of VPO, each iteration on a different data portion, while using online AI
feedback provided by PairRM (Jiang et al., 2023) in between. Further details of our experiments are
explained in Appendix D.

The evaluation results are summarized in Table 1, filling out the baselines based on Zhang et al.
(2024b). As could been seen, VPO significantly improves the performance of the base model
Zephyr-7B-SFT by 14.52, achieving the highest length-controlled (LC) Win Rate on the AlpacaEval
2.0 benchmark, beating DPO. This result, 22.53, is competitive to much larger models such as
much Yi-34B-Chat, 27.19, and Llama-3-70B-Instruct, 33.17. Additionally, VPO shows significant
improvement on MT-Bench compared to the base model Zephyr-7B-SFT with the increase of 2.32
while beating DPO. We further report the results of other iterative post-training algorithms, such
as SPIN (Chen et al., 2024), DNO (Rosset et al., 2024), and SPPO (Wu et al., 2024) and show that
even though VPO is trained on a weak base model, it achieves comparable results to these baselines.
Granular views on a radar chart can be found in Appendix D.

Model AlpacaEval 2.0 MT-Bench
LC Win Rate Win Rate Avg. Len Avg 1st Turn 2nd Turn

Zephyr-7B-SFT 8.01 4.63 916 5.30 5.63 4.97
Zephyr-7B-DPO 15.41 14.44 1752 7.31 7.55 7.07

DPO Iter 1 (Zephyr) 20.53 16.69 1598 7.53 7.81 7.25
DPO Iter 2 (Zephyr) 22.12 19.82 1717 7.55 7.85 7.24
DPO Iter 3 (Zephyr) 22.19 19.88 1717 7.46 7.85 7.06
VPO Iter 1 (Zephyr) 22.53 19.09 1638 7.50 7.76 7.24
VPO Iter 2 (Zephyr) 21.84 18.78 1663 7.62 7.93 7.32
VPO Iter 3 (Zephyr) 22.15 19.58 1713 7.61 8.01 7.21

SPIN 7.23 6.54 1426 6.54 6.94 6.14
Orca-2.5-SFT 10.76 6.99 1174 6.88 7.72 6.02

DNO (Orca-2.5-SFT) 22.59 24.97 2228 7.48 7.62 7.35
Mistral-7B-Instruct-v0.2 19.39 15.75 1565 7.51 7.78 7.25

SPPO (Mistral-it) 28.53 31.02 2163 7.59 7.84 7.34

Yi-34B-Chat 27.19 21.23 2123 7.90 - -
Llama-3-70B-Instruct 33.17 33.18 1919 9.01 9.21 8.80
GPT-4 Turbo (04/09) 55.02 46.12 1802 9.19 9.38 9.00

Table 1: Results on AlpacaEval 2.0 and MT-Bench.
5 CONCLUSION AND DISCUSSION

In this work, we develop a unified approach to achieving principled optimism and pessimism in
online and offline RLHF, which enables a practical computation scheme by incorporating uncertainty
estimation implicitly within reward-biased maximum likelihood estimation. Theoretical analysis
indicates that the proposed methods mirror the guarantees of their standard RL counterparts, which
is furthermore corroborated by numerical results. Important future directions include investigating
adaptive rules for selecting α without prior information and more refined analysis on the choice of
πcal. This work also hints at a general methodology of designing practical algorithms with principled
optimism/pessimism under more general RL setups.

1https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized
2https://huggingface.co/HuggingFaceH4/mistral-7b-sft-beta
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A TOKEN-LEVEL VPO

Token-level MDP and preference modeling. Recall that in LLMs, the prompt x can be broken
into a sequence of tokens, e.g., x = (x0, . . . , xm), from a fixed discrete vocabulary A. We define
the token-level MDP as a tuple M = (S,A, P, r⋆, H), where H is the horizon length, i.e., the
longest possible number of tokens in a sentence. The state space S consists of all the possible token
combinations of length H , and the transition kernel is deterministically defined as follows.

1. The initial state is defined by the prompt x as s0 = {x0, · · · , xm};
2. Given the response y = {y0, · · · , yi−1} up to the i-th token, the state at step i is defined as

si = {x0, · · · , xm, y0, · · · , yi−1};
3. Upon an action of the LLM for the next token ai = yi, the next state at the token-level MDP

deterministically becomes si+1 = (si, ai) = (x0, · · · , xm, y0, · · · , yi).

We assume that the last token of a sentence, the EOS token, is absorbing, such that the token-level
MDP stays in the corresponding state as soon as the last action is the EOS token. With slight abuse of
notation from earlier sections, the reward function r⋆(s, a) defines the ground truth reward at state s
upon action a.

Given a pair of trajectories τ1 = {s0, a10, . . . , s1H−1, a
1
H−1, s

1
H} and τ2 =

{s0, a20, . . . , s2H−1, a
2
H−1, s

2
H}, the corresponding Bradley-Terry preference model (Bradley

and Terry, 1952) is

P(τ1 ≻ τ2) =
exp

(∑H−1
i=0 r⋆(s1i , a

1
i )
)

exp
(∑H−1

i=0 r⋆(s1i , a
1
i )
)
+ exp

(∑H−1
i=0 r⋆(s2i , a

2
i )
)

= σ

(
H−1∑
i=0

r⋆(s1i , a
1
i )−

H−1∑
i=0

r⋆(s2i , a
2
i )

)
,
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A preference data sample is denoted by a tuple (x, τ+, τ−), where τ+ (resp. τ−) is the preferred (resp.
unpreferred) answer in the comparison. Given a preference dataset D composed of independent
samples, The negative log-likelihood can be defined as

ℓ(r,D) := −
∑

(τ+,τ−)∈D

log σ

(
H−1∑
i=0

r(s+i , a
+
i )−

H−1∑
i=0

r(s−i , a
−
i )

)
, (22)

where (s+i , a
+
i ) (resp. (s−i , a

−
i )) are the state-action pairs in the trajectory τ+ (resp. τ−).

Token-level RL fine-tuning. Let the entropy of policy π under initial state distribution s0 ∼ ρ be
defined as

H(ρ, π) := − E
s0∼ρ,

ai∼π(·|si)

[
H−1∑
i=0

log π(ai|si)

]
,

and H(s, π) be the entropy when the initial state s0 = s. Given a reward function r, we define the
KL-constrained RL objective against the reference policy πref as (Rafailov et al., 2024):

πr := argmax
π

J(r, π) := E
s0∼ρ,

ai∼π(·|si)

[H−1∑
i=0

(r(si, ai) + β log πref(ai|si)︸ ︷︷ ︸
rβ(si,ai)

)
]
+ βH(ρ, π), (23)

where we denote rβ : S ×A → R as follows:
∀(s, a) ∈ S ×A : rβ(s, a) := r(s, a) + β log πref(a|s), (24)

which can be seen as the actual token-wise reward function optimized by the LLM.

Token-level DPO. The KL-constrained RL objective (23) has a closed-form solution (Nachum et al.,
2017; Cen et al., 2022) given by

∀(s, a) ∈ S ×A : πr(a|s) = exp((Q⋆
β(s, a)− V ⋆

β (s))/β), (25)
where V ⋆

β : S → R and Q⋆
β : S ×A → R are the optimal soft value and Q functions, respectively,

∀s ∈ S : V ⋆
β (s) := E

ai∼πr(·|si)

[
H−1∑
i=0

rβ(si, ai)|s0 = s

]
+ βH(s, πr) (26)

denote the optimal soft value function w.r.t. the reward function rβ , and
∀(s, a) ∈ S ×A : Q⋆

β(s, a) := rβ(s, a) + V ⋆
β (s

′), (27)

where s′ = (s, a) is the deterministic next state. Plugging (27) and (24) into (25) implies that, for
any trajectory τ = {s0, a0, · · · , aH−1, sH}, Rafailov et al. (2024) shows
H−1∑
i=0

r(si, ai) =

H−1∑
i=0

(
Q⋆

β(si, ai)− β log πref(ai|si)− V ⋆
β (si+1)

)
= Q⋆

β(s0, a0)− β log πref(a0|s0) +
H−1∑
i=1

(
Q⋆

β(si, ai)− V ⋆
β (si)− β log πref(ai|si)

)
= V ⋆

β (s0) + β

H−1∑
i=0

log
πr(ai|si)
πref(ai|si)

, (28)

where the second line uses V ⋆
β (sH) = 0 at the terminal state. Thus the DPO loss (which is the

negative log-likelihood loss) could be written as

L(π,D) = −
∑

(τ+,τ−)∈D

log σ

(
β

H−1∑
i=0

log
π(a+i |s

+
i )

πref(a
+
i |s

+
i )

− β

H−1∑
i=0

log
π(a−i |s

−
i )

πref(a
−
i |s

−
i )

)
. (29)

Token-level VPO. With slight abuse of notation, define
J⋆(r) := max

π
J(r, π), (30)

which is used as the bias term in regularizing the reward estimation in VPO. Again, we impose the
following assumption to deal with the shift ambiguity issue caused by the Bradley-Terry model:
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Assumption 3 We assume that r⋆ ∈ R, where

R =

{
r : E

s0∼ρ,

ai∼πcal(·|si)

H−1∑
i=0

r(si, ai) = 0

}
. (31)

Here, ρ is the prompt distribution and πcal is a fixed calibration distribution independent of the
algorithm.

Combining (23) with (26), similar to previous derivations, we have
J⋆(r) = E

s0∼ρ

[
V ⋆
β (s0)

]
= E

s0∼ρ,

ai∼πcal(·|si)

[
V ⋆
β (s0)

]
= E

s0∼ρ,

ai∼πcal(·|si)

[
H−1∑
i=0

r(si, ai)− β

H−1∑
i=0

log
πr(ai|si)
πref(ai|si)

]

= −β E
s0∼ρ,

ai∼πcal(·|si)

[
H−1∑
i=0

log
πr(ai|si)
πref(ai|si)

]
, (32)

where the penultimate line uses (28), and the last line uses Assumption 3.

Consequently, the token-level VPO can be rewritten as

πVPO = argmin
π

{
−

∑
(τ+,τ−)∈D

log σ

(
β

H−1∑
i=0

log
π(a+i |s

+
i )

πref(a
−
i |s

−
i )

− β

H−1∑
i=0

log
π(a−i |s

−
i )

πref(a
−
i |s

−
i )

)

+ sign · αβ E
s0∼ρ,

ai∼πcal(·|si)

[
H−1∑
i=0

log
π(ai|si)
πref(ai|si)

]}
. (33)

B ANALYSIS FOR THE ONLINE SETTING

B.1 PROOF OF THEOREM 1

For ease of presentation, we assume that R is finite, i.e., |R| < ∞. The general case can be directly
obtained using a covering number argument, which we refer to (Liu et al., 2024a; Jin et al., 2022) for
interested readers.

We start by decomposing the regret into two parts:

Regret :=
T∑

t=1

[
J⋆(r⋆)− J(r⋆, π(t))

]
=

T∑
t=1

[
J⋆(r⋆)− J⋆(r(t))

]
︸ ︷︷ ︸

Term (i)

+

T∑
t=1

[
J(r(t), π(t))− J(r⋆, π(t))

]
︸ ︷︷ ︸

Term (ii)

. (34)

Step 1: bounding term (i). By the choice of r(t), we have

ℓ(r(t),D(t−1))− αJ⋆(r(t)) ≤ ℓ(r⋆,D(t−1))− αJ⋆(r⋆). (35)
Rearranging terms,

J⋆(r⋆)− J⋆(r(t)) ≤ 1

α

[
ℓ(r⋆,D(t−1))− ℓ(r(t),D(t−1))

]
. (36)

The following lemma is adapted from (Liu et al., 2024a, Proposition 5.3), whose proof is deferred to
Appendix B.2.

Lemma 2 Let δ ∈ (0, 1). With probability 1− δ, we have

ℓ(r⋆,D(t−1))− ℓ(r(t),D(t−1))
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≤ −2

t−1∑
s=1

E
x∼ρ,

(y1,y2)∼π(s)(·|x)

[
D2

H(Pr(t)(·|x, y1, y2) ∥Pr⋆(·|x, y1, y2))
]
+ 2 log(|R|/δ). (37)

Here, DH(·∥·) is the Hellinger distance, Pr(·|x, y1, y2) denotes the Bernoulli distribution of the
comparison result of (x, y1) and (x, y2) under reward model r.

Putting the above inequalities together, it holds with probability 1− δ that

Term (i) ≤ − 2

α

T∑
t=1

t−1∑
s=1

E
x(s)∼ρ,

(y
(s)
1 ,y

(s)
2 )∼π(s)(·|x(s))

[
D2

H(Pr(t)(·|x(s), y
(s)
1 , y

(s)
2 ) ∥Pr⋆(·|x(s), y

(s)
1 , y

(s)
2 ))

]
+ 2α−1T log(|R|/δ). (38)

Step 2: breaking down term (ii) with the elliptical potential lemma. The linear function approxi-
mation form (15) allows us to write

E
x∼ρ,y∼πr2

(·|x)
[r1(x, y)− r⋆(x, y)] =

〈
W (r1), X(r2)

〉
, (39)

where X,W : R → Rd is given by

X(rθ) = 2C E
x∼ρ,y∼πrθ

(·|x)
[ϕ(x, y)] , W (rθ) =

θ − θ⋆

2C
. (40)

Let

Σt = ϵI +

t−1∑
s=1

X(r(t))X(r(t))⊤ (41)

for some ϵ > 0. We begin by decomposing term (ii) as

Term (ii) =
T∑

t=1

E
x∼ρ,y∼π(t)(·|x)

[
r(t)(x, y)− r⋆(x, y)

]
=

T∑
t=1

〈
W (r(t)), X(r(t))

〉
=

T∑
t=1

〈
W (r(t)), X(r(t))

〉
1{∥X(r(t))∥Σ−1

t
≤ 1}

+

T∑
t=1

〈
W (r(t)), X(r(t))

〉
1{∥X(r(t))∥Σ−1

t
> 1}, (42)

where 1{A} is an indicator function of event A. To proceed, we recall the elliptical potential lemma
for controlling the cumulative sum of min{∥X(r(t))∥2

Σ−1
t

, 1}.

Lemma 3 ((Abbasi-Yadkori et al., 2011, Lemma 11)) Let {Xt} be a sequence in Rd and Λ0 ∈
Rd×d a positive definite matrix. Define Λt = Λ0 +

∑t
s=1 XsX

⊤
s . Assume ∥Xt∥ ≤ L for all t. It

holds that
T∑

t=1

min{∥Xt∥2Λ−1
t
, 1} ≤ 2 log

(det(ΛT )

det(Λ0)

)
≤ 2(d log((trace(Λ0) + TL2)/d)− log det(Λ0)).

Applying the above lemma yields
T∑

t=1

min{∥X(r(t))∥2
Σ−1

t
, 1} ≤ min

{
2d log

(4C4T/d+ ϵ

ϵ

)
, T

}
:= d(ϵ). (43)

We now control the two terms in (42).
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• The first term of (42) can be bounded by
T∑

t=1

〈
W (r(t)), X(r(t))

〉
1{∥X(r(t))∥Σ−1

t
≤ 1}

≤
T∑

t=1

∥W (r(t))∥Σt
∥X(r(t))∥Σ−1

t
1{∥X(r(t))∥Σ−1

t
≤ 1}

≤
T∑

t=1

∥W (r(t))∥Σt min
{
∥X(r(t))∥Σ−1

t
, 1
}

=

T∑
t=1

[
ϵ∥W (r(t))∥22 +

t−1∑
s=1

〈
W (r(t)), X(r(s))

〉2]1/2
min

{
∥X(r(t))∥2

Σ−1
t
, 1
}1/2

(i)

≤
{ T∑

t=1

[
ϵ∥W (r(t))∥22 +

t−1∑
s=1

〈
W (r(t)), X(r(s))

〉2]}1/2{ T∑
t=1

min
{
∥X(r(t))∥2

Σ−1
t
, 1
}}1/2

(ii)

≤
√
d(ϵ)

{ T∑
t=1

t−1∑
s=1

〈
W (r(t)), X(r(s))

〉2}1/2

+
√

d(ϵ)ϵT

(iii)

≤ d(ϵ)

2µ
+

µ

2

T∑
t=1

t−1∑
s=1

〈
W (r(t)), X(r(s))

〉2
+
√
d(ϵ)ϵT . (44)

Here, (i) is due to Cauchy–Schwarz inequality, (ii) is due to
√
a+ b ≤

√
a+

√
b for ∀a, b ≥ 0,

and (iii) results from Young’s inequality. We leave the constant µ > 0 to be determined later.

• The second term of (42) can be bounded by
T∑

t=1

〈
W (r(t)), X(r(t))

〉
1{∥X(r(t))∥Σ−1

t
> 1} ≤ C

T∑
t=1

1{∥X(r(t))∥Σ−1
t

> 1}

≤ C

T∑
t=1

min{∥X(r(t))∥2
Σ−1

t
, 1} ≤ Cd(ϵ),

(45)

where the first inequality follows from ∥X(r(t))∥2 ≤ 2C and ∥W (r(t))∥2 ≤ 1/2 since
∥ϕ(x, y)∥2 ≤ 1.

Putting (42), (44) and (45) together, we arrive at

Term (ii) ≤ d(ϵ)

2µ
+

µ

2

T∑
t=1

t−1∑
s=1

〈
W (r(t)), X(r(s))

〉2
+
√
d(ϵ)ϵT + Cd(ϵ). (46)

Step 3: continuing bounding term (ii). It boils down to control
〈
W (r(t)), X(r(s))

〉2
. We have〈

W (r(t)), X(r(s))
〉
= E

x∼ρ,

y∼π(s)(·|x)

[
r(t)(x, y)− r⋆(x, y)

]
= E

x∼ρ,

y1∼π(s)(·|x)

[
r(t)(x, y1)− r⋆(x, y1)

]
− E

x∼ρ,
y2∼πcal(·|x)

[
r(t)(x, y2)− r⋆(x, y2)

]
= E

x∼ρ,

y1∼π(s)(·|x),
y2∼πcal(·|x)

[
δx(r

(t), r⋆, y1, y2)
]
, (47)

where δx(r1, r2, y1, y2) := r1(x, y1)− r1(x, y2)− (r2(x, y1)− r2(x, y2)). Therefore,〈
W (r(t)), X(r(s))

〉2
= E

x∼ρ,

y1∼π(s)(·|x),
y2∼πcal(·|x)

[
δx(r

(t), r⋆, y1, y2)
]2
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= E
x∼ρ,

y1∼π(s)(·|x),
y2∼πcal(·|x)

[
δx(r

(t), r⋆, y1, y2)
2
]
− Var

x∼ρ,

y1∼π(s)(·|x),
y2∼πcal(·|x)

[δx(r
(t), r⋆, y1, y2)

2]

≤ E
x∼ρ,

y1∼π(s)(·|x),
y2∼πcal(·|x)

[
δx(r

(t), r⋆, y1, y2)
2
]

≤ sup
x,y

πcal(y|x)
π(s)(y|x)

· E
x∼ρ,

y1,y2∼π(s)(·|x)

[
δx(r

(t), r⋆, y1, y2)
2
]

≤ sup
x,y

πref(y|x)
π(s)(y|x)

· sup
x,y

πcal(y|x)
πref(y|x)

· E
x∼ρ,

y1,y2∼π(s)(·|x)

[
δx(r

(t), r⋆, y1, y2)
2
]
. (48)

Recall from (4) that π(s)(y|x) ∝ πref(y|x) exp(r(s)(x, y)/β). It follows that | log π(s)(y|x) −
log πref(y|x)| ≤ 2∥r(s)(x, ·)∥∞ ≤ 2C/β (see e.g., (Cen et al., 2022, Appendix A.2)), and hence
supx,y

πref(y|x)
π(s)(y|x) ≤ exp(2C/β). To proceed, we demonstrate in the following lemma that δ2 can be

upper bounded by the corresponding Hellinger distance, whose proof is deferred to Appendix B.3.

Lemma 4 Assume bounded reward ∥r1∥∞ ≤ C, ∥r2∥∞ ≤ C. We have

δx(r1, r2, y1, y2)
2 ≤ 2(3 + exp(2C))2D2

H(Pr1(·|x, y1, y2) ∥Pr2(·|x, y1, y2)).

With the above lemma we arrive at〈
W (r(t)), X(r(s))

〉2
≤ 2(3 + exp(2C))2 exp(2C/β)κ · E

x∼ρ,

y1,y2∼π(s)(·|x)

[
D2

H(Pr(t)(·|x, y1, y2) ∥Pr⋆(·|x, y1, y2))
]
.

where we denote κ = supx,y
πcal(y|x)
πref(y|x)

. Plugging the above bound into (46), we get

Term (ii)

≤ d(ϵ)

2µ
+ µ(3 + exp(2C))2 exp(2C/β)κ ·

T∑
t=1

t−1∑
s=1

E
x∼ρ,

y1,y2∼π(s)(·|x)

[
D2

H(Pr(t)(·|x, y1, y2) ∥Pr⋆(·|x, y1, y2))
]

+ 2B
√
d(ϵ)ϵT + Cd(ϵ). (49)

Step 4: finishing up. Combining (34), (38) and (49), with probability 1− δ we have

Regret ≤ 2T log(|R|/δ)
α

+
d(ϵ)

2µ
+
√

d(ϵ)ϵT + Cd(ϵ) (50)

as long as αµ(3 + exp(2C))2 exp(2C/β)κ ≤ 2. Setting α ≍ 1
exp(2C+C/β)

√
T

κd(ϵ) , µ ≍
1

exp(2C+C/β)

√
d(ϵ)
κT , and ϵ = 1, we arrive at

Regret ≤ Õ((exp(2C + C/β))
√
κdT )

as claimed.

B.2 PROOF OF LEMMA 2

To begin, we have

ℓ(r⋆,D(t−1))− ℓ(r(t),D(t−1)) = − log
P(D(t−1)|r⋆)
P(D(t−1)|r(t))

= −
t−1∑
s=1

Xs
r(t) , (51)

where we denote

Xs
r = log

Pr⋆(y
(s)
+ ≻ y

(s)
− |x(s))

Pr(y
(s)
+ ≻ y

(s)
− |x(s))

. (52)
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To proceed, we recall a useful martingale exponential inequality.

Lemma 5 ((Zhang, 2023, Theorem 13.2),(Liu et al., 2024a, Lemma D.1)) Let {Xt}∞t=1 be a se-
quence of real-valued random variables adapted to filtration {Ft}∞t=1. It holds with probability 1− δ
such that for any t ≥ 1,

−
t∑

s=1

Xs ≤
t∑

s=1

logE [exp(−Xs)|Fs−1] + log(1/δ).

Applying the above lemma to { 1
2X

t
r}∞t=1 along with the filtration {Ft}∞t=1 with Ft given by the

σ-algebra of {(x(s), y
(s)
+ , y

(s)
− ) : s ≤ t}, we conclude that it holds with probability 1− δ that

−1

2

t−1∑
s=1

Xs
r ≤

t−1∑
s=1

logE
[
exp

{
− 1

2
Xs

r

}∣∣∣Fs−1

]
+ log(|R|/δ)

≤
t−1∑
s=1

(
E
[
exp

{
− 1

2
Xs

r

}∣∣∣Fs−1

]
− 1

)
+ log(|R|/δ), (53)

where the last step results from the inequality log(1 + x) ≤ x for all x ≥ −1. To proceed, note that

E
[
exp

{
− 1

2
Xs

r

}∣∣∣Fs−1

]

= E


√√√√ Pr(y

(s)
+ ≻ y

(s)
− |x(s))

Pr⋆(y
(s)
+ ≻ y

(s)
− |x(s))

∣∣∣Fs−1


= E

x(s)∼ρ,

(y
(s)
1 ,y

(s)
2 )∼π(s)(·|x(s)),
(+,−)∼Pr⋆


√√√√ Pr(y

(s)
+ ≻ y

(s)
− |x(s))

Pr⋆(y
(s)
+ ≻ y

(s)
− |x(s))



= E
x(s)∼ρ,

(y
(s)
1 ,y

(s)
2 )∼π(s)(·|x(s))

 ∑
(+,−)

√
Pr(y

(s)
+ ≻ y

(s)
− |x(s)) · Pr⋆(y

(s)
+ ≻ y

(s)
− |x(s))



= 1− 1

2
E

x(s)∼ρ,

(y
(s)
1 ,y

(s)
2 )∼π(s)(·|x(s))

 ∑
(+,−)

(√
Pr(y

(s)
+ ≻ y

(s)
− |x(s))−

√
Pr⋆(y

(s)
+ ≻ y

(s)
− |x(s))

)2
= 1− E

x∼ρ,

(y1,y2)∼π(s)(·|x)

[
D2

H(Pr(·|x, y1, y2 ∥Pr⋆(·|x, y1, y2)
]
,

where we denote by
∑

(+,−) the summation over different comparison results. Plugging the above
equality into (53) completes the proof.

B.3 PROOF OF LEMMA 4

By the mean value theorem, we have∣∣Pr1(y1 ≻ y2|x)− Pr2(y1 ≻ y2|x)
∣∣ = ∣∣σ(r1(x, y1)− r1(x, y2))− σ(r2(x, y1)− r2(x, y2))

∣∣
=
∣∣δx(r1, r2, y1, y2) · σ′(ξ)

∣∣
=
∣∣δx(r1, r2, y1, y2)∣∣ · σ(ξ)(1− σ(ξ))

for some ξ between r1(x, y1)− r1(x, y2) and r2(x, y1)− r2(x, y2). Since |ξ| ≤ 2C, we have

σ(ξ)(1− σ(ξ)) ≥ σ(2C)(1− σ(2C)) ≥ 1

3 + exp(2C)
. (54)

Putting together,∣∣δx(r1, r2, y1, y2)∣∣ ≤ (3 + exp(2C))
∣∣Pr1(y1 ≻ y2|x)− Pr2(y1 ≻ y2|x)

∣∣
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= (3 + exp(2C))TV(Pr1(·|x, y1, y2),Pr2(·|x, y1, y2))
≤ (3 + exp(2C))

√
2DH(Pr1(·|x, y1, y2) ∥Pr2(·|x, y1, y2)).

C ANALYSIS FOR THE OFFLINE SETTING

C.1 PROOF OF LEMMA 1

By definition, the objective function ℓ(r,D) + αJ(r, π) is strongly concave over π, and convex over
r. By Danskin’s theorem, we have

∇r

(
max
π

[ℓ(r̂,D) + αJ(r̂, π)]
)
= ∇r

(
ℓ(r̂,D) + αJ(r̂, π̂)

)
.

Therefore, for any r′, by convexity of the objective function we have
ℓ(r′,D) + αJ(r′, π̂) ≥ ℓ(r̂,D) + αJ(r̂, π̂) +

〈
r′ − r̂,∇r

(
ℓ(r̂,D) + αJ(r̂, π̂)

)〉
= ℓ(r̂,D) + αJ(r̂, π̂) +

〈
r′ − r̂,∇r

(
max
π

[ℓ(r̂,D) + αJ(r̂, π)]
)〉

≥ ℓ(r̂,D) + αJ(r̂, π̂).

The last line is due to the definition of r̂ (c.f. (20)). The other relation, ℓ(r̂,D) + αJ(r̂, π̂) ≥
ℓ(r̂,D) + αJ(r̂, π′), follows directly from the definition of π̂ (c.f. (17)).

C.2 PROOF OF THEOREM 2

We decompose the sub-optimality gap of π̂ by
J⋆(r⋆)− J(r⋆, π̂)

=
[
J(r⋆, π⋆)− J(r̂, π⋆)

]
+
[
J(r̂, π⋆)− J(r̂, π̂)

]
+
[
J(r̂, π̂)− J(r⋆, π̂)

]
≤
[
J(r⋆, π⋆)− J(r̂, π⋆)

]︸ ︷︷ ︸
Term (i)

+
[
J(r̂, π̂)− J(r⋆, π̂)

]︸ ︷︷ ︸
Term (ii)

, (55)

where the last line is due to J(r̂, π⋆) ≤ J(r̂, π̂) according to the definition of π̂ (c.f. (17)). We
proceed to bound the two terms separately. Here we have written r̂ = rθ̂ for notational simplicity. In
addition, we denote the MLE estimate by rMLE = rθMLE

.

By the definition of J(r, π) (cf. (3)), it follows that term (i) in (55) can be further decomposed as
Term (i) = E

x∼ρ,
y∼π⋆(·|x)

[r⋆(x, y)− r̂(x, y)]

= E
x∼ρ,

y∼π⋆(·|x)

[〈
ϕ(x, y), θ⋆ − θ̂

〉]
= E

x∼ρ,
y∼π⋆(·|x)

[〈
ϕ(x, y), θ⋆ − θMLE

〉]
︸ ︷︷ ︸

Term (ia)

+ E
x∼ρ,

y∼π⋆(·|x)

[〈
ϕ(x, y), θMLE − θ̂

〉]
︸ ︷︷ ︸

Term (ib)

, (56)

where rMLE(x, y) = ⟨ϕ(x, y), θMLE⟩.
Step 1: bounding term (ia). To continue, we recall a useful lemma from (Zhu et al., 2023).

Lemma 6 ((Zhu et al., 2023, Lemma 3.1)) For any λ > 0 and δ ∈ (0, 1), with probability at least
1− δ,

∥θMLE − θ⋆∥ΣD+λI ≤ O

(
(3 + exp(C))

√
d+ log(1/δ)

N
+

√
λC2

)
.

In addition, we have
1

3 + exp(C)
ΣD ⪯ 1

N
∇2

θℓ(rθ,D) ⪯ 1

4
ΣD (57)

for all θ such that ∥rθ∥∞ ≤ C.
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The first term of (56) can be bounded with Lemma 6 as

Term (ia) ≤ ∥θ⋆ − θMLE∥ΣD+λI ·
∥∥∥ E

x∼ρ,
y∼π⋆(·|x)

[ϕ(x, y)]
∥∥∥
(ΣD+λI)−1

≤ O

((
(3 + exp(C))

√
d+ log(1/δ)

N
+

√
λC2

)
·
∥∥∥ E

x∼ρ,
y∼π⋆(·|x)

[ϕ(x, y)]
∥∥∥
(ΣD+λI)−1

)
.

(58)

Step 2: bounding term (ib). For the second term of (56), recall that
r̂ = argmin

r∈R

{
ℓ(r,D) + αJ(r, π̂)

}
,

or equivalently

θ̂ = argmin
θ∈Θ

{
ℓ(rθ,D) + αJ(rθ, π̂)

}
,

and that
θMLE = argmin

θ∈Θ
ℓ(rθ,D).

With linear constraint (16), by KKT condition we have
∇θℓ(r̂,D) + α E

x∼ρ,
y∼π̂(·|x)

[ϕ(x, y)] + λ1 E
x∼ρ,

y∼πcal(·|x)

[ϕ(x, y)] = 0

for some λ1 ∈ R, and
∇θℓ(rMLE,D) + λ2 E

x∼ρ,
y∼πcal(·|x)

[ϕ(x, y)] = 0

for some λ2 ∈ R. By strong monotonicity of ∇θℓ (cf. (57)), we have
N

3 + exp(C)

∥∥θ̂ − θMLE

∥∥2
ΣD

≤
〈
∇θℓ(r̂,D)−∇θℓ(rMLE,D), θ̂ − θMLE

〉
=
〈
−α E

x∼ρ,
y∼π̂(·|x)

[ϕ(x, y)]− (λ1 − λ2) E
x∼ρ,

y∼πcal(·|x)

[ϕ(x, y)] , θ̂ − θMLE

〉
= −α

〈
E

x∼ρ,
y∼π̂(·|x)

[ϕ(x, y)]− E
x∼ρ,

y∼πcal(·|x)

[ϕ(x, y)] , θ̂ − θMLE

〉
≤ α

∥∥∥ E
x∼ρ,

y∼π̂(·|x)

[ϕ(x, y)]− E
x∼ρ,

y∼πcal(·|x)

[ϕ(x, y)]
∥∥∥
(ΣD+λI)−1

∥∥θ̂ − θMLE

∥∥
ΣD+λI

≤ ακD
∥∥θ̂ − θMLE

∥∥
ΣD+λI

,

where we denote

κD =
∥∥∥ E

x∼ρ,
y∼π̂(·|x)

[ϕ(x, y)]− E
x∼ρ,

y∼πcal(·|x)

[ϕ(x, y)]
∥∥∥
(ΣD+λI)−1

. (59)

The penultimate step results from θ̂, θMLE ∈ Θ, which ensures〈
E

x∼ρ,
y∼πcal(·|x)

[ϕ(x, y)] , θ̂
〉
=
〈

E
x∼ρ,

y∼πcal(·|x)

[ϕ(x, y)] , θMLE

〉
= 0

It follows that
N

3 + exp(C)

∥∥θ̂ − θMLE

∥∥2
ΣD+λI

≤ N

3 + exp(C)

∥∥θ̂ − θMLE

∥∥2
ΣD

+
N

3 + exp(C)

∥∥θ̂ − θMLE

∥∥2
λI

≤ ακD
∥∥θ̂ − θMLE

∥∥
ΣD+λI

+
NλC2

3 + exp(C)
.

The above inequality allows us to bound∥∥θ̂ − θMLE

∥∥
ΣD+λI

≤ α(3 + exp(C))

N
κD + 2

√
λC2. (60)
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Therefore, the second term of (56) can be bounded as

Term (ib) ≤
∥∥θ̂ − θMLE

∥∥
ΣD+λI

∥∥∥ E
x∼ρ,

y∼π⋆(·|x)

[ϕ(x, y)]
∥∥∥
(ΣD+λI)−1

≤
(
α(3 + exp(C))

N
κD + 2

√
λC2

)∥∥∥ E
x∼ρ,

y∼π⋆(·|x)

[ϕ(x, y)]
∥∥∥
(ΣD+λI)−1

. (61)

Putting (58) and (61) together, we have

Term (i) ≤ O

([
3 + exp(C)√

N

(√
d+ log(1/δ) +

α√
N

κD

)
+
√
λC2

]
·
∥∥∥ E

x∼ρ,
y∼π⋆(·|x)

[ϕ(x, y)]
∥∥∥
(ΣD+λI)−1

)
.

(62)

Step 3: bounding term (ii). We can decompose and bound term (ii) by

J(r̂, π̂)− J(r⋆, π̂) = J(r̂, π̂) +
1

α
ℓ(r̂,D)−

(
J(r⋆, π̂) +

1

α
ℓ(r⋆,D)

)
+

1

α
(ℓ(r̂,D)− ℓ(r⋆,D))

(i)

≤ 1

α
(ℓ(r̂,D)− ℓ(r⋆,D))

≤ 1

α
(ℓ(r̂,D)− ℓ(rMLE,D) + ℓ(rMLE,D)− ℓ(r⋆,D)),

where (i) follows from the fact that (r̂, π̂) is a saddle point. Due to convexity of ℓ, we have

ℓ(r̂,D)− ℓ(rMLE,D) ≤
〈
∇θℓ(r̂,D), θ̂ − θMLE

〉
=
〈
−α E

x∼ρ,
y∼π̂(·|x)

[ϕ(x, y)]− λ1 E
x∼ρ,

y∼πcal(·|x)

[ϕ(x, y)] , θ̂ − θMLE

〉
= −α

〈
E

x∼ρ,
y∼π̂(·|x)

[ϕ(x, y)]− E
x∼ρ,

y∼πcal(·|x)

[ϕ(x, y)] , θ̂ − θMLE

〉
≤ ακD∥θ̂ − θMLE∥ΣD+λI

≤ α2(3 + exp(C))

N
κ2
D + 2

√
λC2ακD,

where the last step is due to (60). On the other hand, with probability 1 − δ we have (Zhan et al.,
2023, Lemma 1):

ℓ(rMLE,D)− ℓ(r⋆,D) ≤ Õ(1).

Putting pieces together,

Term (ii) ≤ α(3 + exp(C))

N
κ2
D + 2

√
λC2κD +

1

α
. (63)

Step 4: putting things together. Combining (55) (62), (63), with probability 1− δ we have
J⋆(r⋆)− J(r⋆, π̂)

≤ O

(
1√
N

[
(3 + exp(C))

(√
d+ log(1/δ) + κD

)
+ C

]
·
∥∥∥ E

x∼ρ,
y∼π⋆(·|x)

[ϕ(x, y)]
∥∥∥
(ΣD+λI)−1

+
1√
N

(
(3 + exp(C))κ2

D + 2CκD + 1
))

.

Here we have set α =
√
N and λ = 1/N . We conclude by bounding κD as

κ2
D =

∥∥∥ E
x∼ρ,

y∼π̂(·|x)

[ϕ(x, y)]− E
x∼ρ,

y∼πcal(·|x)

[ϕ(x, y)]
∥∥∥2
(ΣD+λI)−1

≤
∥∥∥ E

x∼ρ,
y∼π̂(·|x)

[ϕ(x, y)]− E
x∼ρ,

y∼πcal(·|x)

[ϕ(x, y)]
∥∥∥2
2
·
∥∥∥(ΣD + λI)−1

∥∥∥
2

≤ 4(λmin(ΣD) + λ)−1.
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D EXPERIMENTAL DETAILS

D.1 RLHF FOR LLMS — OFFLINE SETTING

For the offline setting experiments, we adopt instruction tuned models, LLAMA2-7B-CHAT, LLAMA2-
13B-CHAT and FLAN-T5-XL as the base models. To prompt these models, we prepend the questions
in ARC-Challenge task (Clark et al., 2018) with

What is the choice to the following Question? Only provide the choice by providing a single letter.

and further append the question with

The answer is:.

The question is structured in a way that the multiple choices are appended with alphabets (letters)
within parenthesis to the question. As an example:

Question: George wants to warm his hands quickly by rubbing them. Which skin surface will produce
the most heat? Choices: (A)dry palms (B)wet palms (C)palms covered with oil (D)palms covered
with lotion

We set πcal to the empirical distribution of the ground truth answer which is known to us. Based
on preliminary experiments, we set β as 0.1 in DPO and τ as 1.0 in IPO. For VPO, we experiment
with moving α from 0.01 to 10, choosing 1 for the reported results. For all models, we train the
base models with different algorithms DPO, VPO and IPO for 3000 steps and report the accuracy
of the performance on the ARC-challenge test data set after every 500 steps. The training for
LLAMA2-13B-CHAT model on 128 TPU-v4 takes around 2hrs and for FLAN-T5-XL on 64 TPU-v3
takes 1 hour.

D.2 RLHF FOR LLMS — ONLINE SETTING

D.2.1 BUFFER

The prompt used for generating AI feedback (and rating) for TL;DR summarization is identical
to (Guo et al., 2024). We set πcal to the empirical distribution of the negative answer pairs (x, y−)
collected by the policy. We set β as 0.1 for the DPO term similar to (Guo et al., 2024). Additionally
for VPO, we decrease the coefficient exponentially following α√

1+training steps
. We try different values

of α and report the results for 0.1 and 0.01.

The training of the policy, PALM2-XXS on 64 TPU-v3 for 5000 steps takes around 12 hours for
both online DPO and VPO. We report the win rate percentage against the base SFT model for every
1000 steps using PALM2-XS judge. We also further conduct side by side comparison of Online DPO
and VPO at 5000 step.

D.2.2 ITERATIVE

The UltraFeedback data (Cui et al., 2023) contains around 61k preference pairs of single-turn
conversations. We divide this data set into 4 chunks. We use the first chunk to train a DPO model
which we refer to as Zephyr-7B-DPO in 1. We use the remaining 3 chunks to train consecutive
iterations of DPO and VPO, using the checkpoint from the previous iteration to initialize the policy
for the current iteration. For each iteration, the prompts from the data are extracted and a new answer
is sampled from the policy. We label the data using online AI feedback provided by PairRM (Jiang
et al., 2023), using the similar ranking procedure as (Zhang et al., 2024b) where the new sample
is ranked against yw and yl from the data. For VPO, we also adopt another ranking process where
we sample two answer from the policy which are ranked against each other. We also set πcal to the
empirical distribution of the negative answer pairs (x, y−) collected by the policy. We report the
results of the best checkpoint of these two ranking procedures in 1. All experiments are conducted
on 16xA100 GPUs.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Figure 3: Radar chart of MT-Bench results for Zephyr-7B.

D.3 SYNTHETIC BANDIT PROBLEMS

We evaluate the proposed methods on two synthetic problems: i) a multi-armed bandit problem, and
ii) a linear contextual bandit problem.

Multi-armed bandit (MAB) problem. In this scenario, we set |X | = 1 and |Y| = 10. For each
y ∈ Y , the ground truth reward r⋆(x, y) is randomly generated i.i.d. from a uniform distribution
U([0, 1]). The policy is parameterized by πθ(·|x) = softmax(θ(x, ·)), where θ ∈ R10. The reference
policy πref is set to πθref with θref(x, y) sampled i.i.d. from U([0, 1]).

Linear contextual bandit problem. Here, we set X = R2 and |Y| = 50. For each (x, y) pair,
the ground truth reward is given by r⋆(x, y) = ⟨ϕ(x, y), θ⋆⟩, where θ⋆ ∈ R10 is randomly sampled
from U([0, 1]), and the feature vector ϕ(x, y) is the output of the hidden layer of a fixed two-layer
MLP, with the input given by the concatenation of x and the one-hot encoding of y. The activation
function is set to tanh. The context vector x is drawn from standard normal distribution. We focus on
log-linear policy class πθ(·|x) = softmax(⟨θ, ϕ(x, ·)⟩), and set πref = πθref with θref(x, y) sampled
i.i.d. from U([0, 1]).

For both problem we set πref = πb = πcal and use mini-batch sample of size 5 in every iteration. We
approximately solve the optimization problems by performing 20 AdamW optimization steps with
learning rate 0.01 and weight decay rate 0.01 in every iteration for the online setting and 1000 steps
for the offline setting.

We plot the average results over 20 independent runs for both experiments in Figure 4 and Fig-
ure 5 , as well as ±1 standard error bars . As demonstrated in the left panel of Figure 4, an appropri-
ate choice of α allows our method to outperform the model-based MAB with MLE baseline in the
long-term performance of cumulative regret, at the cost of slightly increased cumulative regret in
the first 100 iterations. This highlights the effectiveness of the VPO in achieving more principled
exploration-exploitation trade-off. In the right panel, it is evident that the MLE baseline struggles
with principled exploration in the more complex linear contextual bandit problem, while our method
is able to achieve sub-linear regret growth. For the offline setting, Figure 5 demonstrates that the
performance of both MLE-MAB and VPO improves as the number of offline data increases. However,
VPO achieves a consistently lower sub-optimality gap compared with that of MLE-MAB.
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Figure 4: The cumulative regret v.s. number of iterations plot of VPO and MLE-MAB methods
in the online MAB problem (left panel) and online linear contextual bandit problem (right panel),
respectively.
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Figure 5: The sub-optimality gap v.s. number of data plot of VPO and MLE-MAB methods in
the offline MAB problem (left panel) and offline linear contextual bandit problem (right panel),
respectively.

26


