
Quantifying and Improving Transferability in
Domain Generalization

Guojun Zhang
School of Computer Science

University of Waterloo
Vector Institute

guojun.zhang@uwaterloo.ca

Han Zhao
Department of Computer Science

University of Illinois at Urbana-Champaign
hanzhao@illinois.edu

Yaoliang Yu
School of Computer Science

University of Waterloo
Vector Institute

yaoliang.yu@uwaterloo.ca

Pascal Poupart
School of Computer Science

University of Waterloo
Vector Institute

ppoupart@uwaterloo.ca

Abstract

Out-of-distribution generalization is one of the key challenges when transferring
a model from the lab to the real world. Existing efforts mostly focus on building
invariant features among source and target domains. Based on invariant features,
a high-performing classifier on source domains could hopefully behave equally
well on a target domain. In other words, we hope the invariant features to be
transferable. However, in practice, there are no perfectly transferable features,
and some algorithms seem to learn “more transferable” features than others. How
can we understand and quantify such transferability? In this paper, we formally
define transferability that one can quantify and compute in domain generalization.
We point out the difference and connection with common discrepancy measures
between domains, such as total variation and Wasserstein distance. We then prove
that our transferability can be estimated with enough samples and give a new upper
bound for the target error based on our transferability. Empirically, we evaluate
the transferability of the feature embeddings learned by existing algorithms for
domain generalization. Surprisingly, we find that many algorithms are not quite
learning transferable features, although few could still survive. In light of this,
we propose a new algorithm for learning transferable features and test it over
various benchmark datasets, including RotatedMNIST, PACS, Office-Home and
WILDS-FMoW. Experimental results show that the proposed algorithm achieves
consistent improvement over many state-of-the-art algorithms, corroborating our
theoretical findings.1

1 Introduction

One of the cornerstone assumptions underlying the recent success of deep learning models is that
the test data should share the same distribution as the training data. However, faced with ubiquitous
distribution shifts in various real-world applications, such assumption hardly holds in practice. For
example, a self-driving recognition system trained using data collected in the daytime may continually
degrade its performance during nightfall. The system may also encounter weather or traffic conditions
in a new city that never appear in the training set. In light of these potentially unseen scenarios, it is

1Code available at https://github.com/Gordon-Guojun-Zhang/Transferability-NeurIPS2021.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

https://github.com/Gordon-Guojun-Zhang/Transferability-NeurIPS2021

of paramount importance that the trained model can generalize Out-Of-Distribution (OOD): even if
the target domain is not exactly the same as the source domain(s), the learned model should hopefully
behave robustly under slight distribution shift.

To this end, one line of works focuses on learning the so-called invariant representations [2, 16, 57,
58]. At a colloquial level, the goal here is to learn feature embeddings that lead to indistinguishable
feature distributions from different domains. In practice, both the feature embeddings and the domain
discriminators are often parametrized by neural networks, leading to an adversarial game between
these two. Furthermore, in order to avoid degenerate solutions, the learned features are required to
be informative about the output variable as well. This is enforced by placing a predictor over the
features and minimize the corresponding supervised loss simultaneously [17, 32, 48, 49].

Another line of recent works aims to learn features that can induce invariant predictors, first termed
as the invariant risk minimization (IRM) [3, 39] paradigm. Roughly speaking, the goal of IRM is
to discover a feature embedding, upon which the optimal predictors, i.e., the Bayes predictor, are
invariant across the training domains. Again, at the same time, the features should be informative
about the output variable as well. However, the optimization problem of IRM is rather difficult, and
several follow-up works have proposed different relaxations to the original formulation [1, 26].

Despite being extensively studied, both theoretical [41, 59] and empirical [20, 23] works have shown
the insufficiency of existing algorithms for domain generalization (DG). Methods based on invariant
features ignore the potential shift in the marginal label distributions across domains [59] and the
methods based on invariant predictors are not robust to covariate shift [26]. Perhaps surprisingly,
empirical works have shown that with proper data augmentation and careful model tuning, the very
basic algorithm of empirical risk minimization (ERM) demonstrates superior performance on domain
generalization over existing methods on benchmark image datasets [20, 23]. This sharp gap between
theory and practice calls for a fundamental understanding of the following question:

What kind of invariance should we look for, in order to ensure that a good model
on source domains also achieves decent accuracy on a related target domain?

In this work we attempt to answer the above question by proposing a criterion for models to look
at, dubbed as transferability, which asks for an invariance of the excess risks of a predictor across
domains. Different from existing proposals of invariant features and invariant predictors, which seek
to find feature embeddings that respectively induce invariant marginal and conditional distributions,
our notion of transferability depends on the excess risk, hence it directly takes into account the
joint distribution over both the features and the labels. We show how it can be used to naturally
derive a new upper bound for the target error, and then we discuss how to estimate the transferability
empirically with enough samples. Our definition also inspires a method that aims to find more
transferable features via representation learning using adversarial training.

Figure 1: The target and
source (test) accuracies of
ERM on MNIST.

Empirically, we perform experiments to measure the transferability of
several existing algorithms, on both small and large scale datasets. We
show that many algorithms, including ERM, are not quite transferable
under the definition (Fig. 1, see more details in §5): when we go away
from the optimal classifier (with distance δ in the parameter space), it
could happen that the source accuracy remains high but the target ac-
curacy drops significantly. This implies that during the training process,
an existing algorithm may find a good source classifier with low target
accuracy, hence violating the requirement for invariance of excess risks.
In contrast, our algorithm is more transferable, and achieves consistent
improvement over existing state-of-the-art algorithms, corroborating
our findings.

2 What is Transferability?

In this section we present our definition of transferability in the classification setting. The setup of
domain generalization is the following:

Settings and Notation Given n labeled source domains S1, . . . ,Sn, the problem of domain gen-
eralization is to learn a model from these source domains, in the hope that it performs well on an

2

unseen target domain T that is “similar” to the source domains. Throughout the paper, we assume
that both the source domains and the unseen target domain share the same input and output spaces,
denoted as X and Y , respectively. For multi-class classification, the output space Y = [K] is a set of
labels for multi-class classification. For binary classification, we consider Y = {−1,+1}. DenoteH
as the hypothesis class. We define the classification error of a classifier h ∈ H on a domain D (or S
for source domains, or T for target domains) as:2

εD(h) = E(x,y)∼D[`(h(x), y)]. (1)

For `(h(x), y) = 1(h(x) 6= y), where 1(·) is the usual indicator function, we use ε0−1
D (h) to denote

it is the 0-1 loss.

In domain generalization, we often have several source domains. For the ease of presentation, we
only consider a single source domain in this section, and later extend to the general case in Section 5.
Given two domains, the source domain S and the target domain T , the task of domain generalization
is to transfer a classifier h that performs well on S to T . We ask: how much of the success of h on S
can be transferred to T ?

Note that in order to evaluate the transferability from S to T , we need information from the target
domain, similar to the test phase in traditional supervised learning. We believe a good criterion of
transferability should satisfy the following properties:

1. Quantifiable: the notion should be quantifiable and can be computed in practice;
2. Any near-optimal source classifier should be near-optimal on the target domain.
3. If the two domains are similar, as measured by e.g., total variation, then they are transferable

to each other, but the converse may not be true.

At first glance the second criterion above might seem too strong and restrictive. However, we argue
that in the task of domain generalization, we only have labeled source data and there is no clue to
distinguish a classifier from another if both of them perform equally well on the source domain.
Based on the second property, we first propose the following definition of transferability:
Definition 1 (transferability). S is (δS , δT)H-transferable to T if for δS > 0, there exists δT > 0
such that argmin(εS , δS)H ⊆ argmin(εT , δT)H, where:

argmin(εD, δD)H := {h ∈ H : εD(h) ≤ inf
h∈H

εD(h) + δD}.

In the literature the set argmin(εD, δD)H is also known as a δD-minimal set [24] of εD, which
represents the near-optimal set of classifiers. Note that the δ-minimal set depends on the hypothesis
classH. Throughout the paper, we omit the subscriptH in the definition when there is no confusion.
Def. 1 says that near-optimal source classifiers are also near-optimal target classifiers. Furthermore,
it is easy to verify that our transferability is transitive: if S is (δS , δP)-transferable to P , and P is
(δP , δT)-transferable to T , then S is (δS , δT)-transferable to T .

Next we define transfer measures, which we will show to be equivalent with Def. 1 in Prop. 5.
Definition 2 (quantifiable transfer measures). Given some Γ ⊆ H, ε∗S := infh∈Γ εS(h) and
ε∗T := infh∈Γ εT (h) we define the one-sided transfer measure, symmetric transfer measure and the
realizable transfer measure respectively as:

TΓ(S‖T) := sup
h∈Γ

εT (h)− ε∗T − (εS(h)− ε∗S), (2)

TΓ(S, T) := max{TΓ(S‖T), TΓ(T ‖S)} = sup
h∈Γ
|εS(h)− ε∗S − (εT (h)− ε∗T)|, (3)

TrΓ(S, T) := sup
h∈Γ
|εS(h)− εT (h)|. (4)

The distinction between Γ andH will become apparent in Prop. 5. Note that the one-sided transfer
measure is not symmetric. If we want the two domains S and T to be mutually transferable to each
other, we can use the symmetric transfer measure. We call both quantities as transfer measures.
Furthermore, the symmetric transfer measure reduces to (4) in the realizable case when ε∗S = ε∗T = 0.
In statistical learning theory, εD(h)− ε∗D is often known as an excess risk [24], which is the relative
error compared to the optimal classifier. The transfer measures can thus be represented with the
difference of excess risks. With Def. 2, we can immediately obtain the following result that upper
bounds the target error:

2Throughout the paper, we will use the terms domain and distribution interchangeably.

3

Proposition 3 (target error bound). Given Γ ⊆ H, for any h ∈ Γ, the target error is bounded by:

εT (h) ≤ εS(h) + ε∗T − ε∗S + TΓ(S‖T) ≤ εS(h) + ε∗T − ε∗S + TΓ(S, T). (5)

The first error bound of such type for a target domain uses H-divergence [8, 9, 12] for binary
classification (or more rigorously, the H∆H-divergence). The main difference between ours and
H-divergence is that H-divergence only concerns about the marginal input distributions, whereas
the transfer measures depend on the joint distributions over both the inputs and the labels. We
note that Proposition 3 is general and works in the multi-class case as well. Moreover, even in
the binary classification case we can prove that our Proposition 3 is tighter thanH-divergence (see
Proposition 27 in the appendix).

In practice we may not know the optimal errors. In this case, we can use the realizable transfer
measure to upper bound the symmetric transfer measure (note that ε∗S or ε∗T may not be zero):
Proposition 4. For Γ ⊆ H and domains S, T we have: TΓ(S, T) ≤ 2TrΓ(S, T).

Since Def. 1 essentially asks that the excess risks of approximately optimal classifiers on the source
domain are comparable between the source and target domains, we can show that Def. 1 and Def. 2
are equivalent if Γ is a δ-minimal set:
Proposition 5 (equivalence between transferability and transfer measures). Let δS > 0 and
Γ = argmin(εS , δS) and suppose infh∈Γ εT (h) = infh∈H εT (h). If TΓ(S‖T) ≤ δ or TΓ(S, T) ≤ δ,
then S is (δS , δ + δS)-transferable to T . Furthermore, if S is (δS , δT)-transferable to T , then
TΓ(S‖T) ≤ δT and TΓ(S, T) ≤ max{δS , δT }.

In Prop. 5, we do not require Γ = H since it is unnecessary to impose that all classifiers inH have
similar excess risks on source and target domains. Instead, we only constrain Γ to be a δ-minimal set,
i.e., Γ includes approximately optimal classifiers of S . See also Example 8. An additional assumption
is that Γ also includes the optimal classifier of T which can be ensured by controlling δS .

2.1 Comparison with other discrepancy measures between domains

In this subsection, we compare the realizable transfer measure (4) with other discrepancy measures
between domains and focus on the 0-1 loss ε0−1

D . We first note that TrΓ(S, T) can be written as an
integral probability metric (IPM) [36, 46]. The l.h.s. of (4) can be written as:

TrΓ(S, T) := dFΓ
(S, T), where dF (S, T) = sup

f∈F

∣∣∣∣∣∑
y

∫
f(x, y)(pS(x, y)− pT (x, y))dx

∣∣∣∣∣ , (6)

and FΓ := {(x, y) 7→ 1(h(x) 6= y), h ∈ Γ}. Typical IPMs [46] include MMD, Wasserstein distance,
Dudley metric and the Kolmogorov–Smirnov distance (see Appendix B.2 for more details). However,
FΓ is fundamentally different from these IPMs since it relies on an underlying function class Γ. Our
realizable transfer measure shares some similarity with Arora et al. [4], where a changeable function
class is used, but the exact choices of the function class are different.

Even though the transferability can be written in terms of IPM, it is in fact a pseudo-metric:
Proposition 6 (pseudo-metric). For a general loss εD as in (1), TrΓ(S, T) is a pseudo-metric, i.e.,
for any distributions S, T ,P on the same underlying space, we have TrΓ(S,S) = 0, TrΓ(S, T) =
T r

Γ (T ,S) (symmetry), and TrΓ(S, T) ≤ TrΓ(S,P) + TrΓ(P, T) (triangle inequality).

However in general TrΓ(S, T) is not a metric since TrΓ(S, T) = 0 even if S 6= T . For instance, taking
Γ = {h∗} to be the optimal classifier on both S and T . we have TrΓ(S, T) = 0, but S and T could
differ a lot (see Figure 2). In the next result we discuss the connection between realizable transfer
measures and total variation (c.f. Appendix B.2).
Proposition 7 (equivalence with total variation). For binary classification with labels {−1, 1},
given the 0-1 loss εD = ε0−1

D , we have TrΓ(S, T) ≤ dTV(S, T) for domains S, T and any Γ ⊆ H.
DenoteHt to be the set of all binary classifiers. Then we have dTV(S, T) ≤ 4TrHt

(S, T).

Prop. 7 tells us that transfer measures (see also Prop. 4) are no stronger than total variation, and in the
realizable case, (3) is equivalent to the similarity of domains (as measured by total variation) if Γ is
unconstrained. We can moreover show that transfer measures are strictly weaker, if we choose Γ to
be some δ-minimal set:

4

Example 8 (very dissimilar joint distributions but transferable). We study the distributions de-
scribed in Figure 2. The joint distributions are very dissimilar, i.e., for any X,Y in the domain,
|pS(X,Y)− pT (X,Y)| = 0.8. Define

hρ(X) =

{
1 if − 1 ≤ X < ρ

−1 if ρ ≤ X < 1
. (7)

We choose the hypothesis classH = {hρ, ρ ∈ [−1, 1]} and Γ = {hρ, |ρ| ≤ δ/0.8} (for small δ, say
δ < 0.01) to be some neighborhood of the optimal source classifier h∗ = h0. Then TΓ(S, T) =
suph∈Γ |εS(h)− εT (h)| = δ, and S is (δS , δ+ δS)-transferable to T on Γ for any δS > 0 according
to Prop. 5. Note that ε∗S = ε∗T = 0.

3 Computing Transferability

Figure 2: Visualization of Example 8. Source
domain: PS(Y = 1,−1 ≤ X < 0) = 0.1,
PS(Y = −1, 0 ≤ X < 1) = 0.9. Target
domain: PT (Y = 1,−1 ≤ X < 0) = 0.9,
PT (Y = −1, 0 ≤ X < 1) = 0.1. The dark
and light colors show the intensity of the probabil-
ity mass. The vertical axis denotes whether it is the
target or source domain (above or below x-axis).

In the last section we proposed a new con-
cept called transferability. However, although
Def. 1 provides a theoretically sound result for
transferability, it is hard to verify it in practice,
since we cannot exhaust all approximately good
classifiers, especially for rich models such as
deep neural networks. Nevertheless, Prop. 3
and Prop. 5 provide a framework to compute
transferability through transfer measures, de-
spite their simplicity. In this section we dis-
cuss how to compute these quantities by mak-
ing necessary approximations based on transfer
measures. There are two difficulties we need
to overcome: (1) In practice we only have fi-
nite samples drawn from true distributions; (2)
We need a surrogate loss such as cross entropy
for training and the 0-1 loss for evaluation. In
§3.1 we show that our transfer measures can
be estimated with enough samples, and in §3.2
we discuss transferability with a surrogate loss.
These results will be used in our algorithms in the next section.

3.1 Estimation of transferability

We show how to estimate the transfer measure TΓ(S‖T) from finite samples. Other versions of
transfer measures in Def. 1 follow analogously (see Appendix A for more details).

Lemma 9 (reduction of estimation error). Given general loss εD as in (1), suppose Ŝ and T̂ are
i.i.d. sample distributions drawn from distributions of S and T , then for any Γ ⊆ H we have:

TΓ(S‖T) ≤ TΓ(Ŝ‖T̂) + 2estΓ(S) + 2estΓ(T),

with the estimation errors estΓ(S) = suph∈Γ |εS(h)− εŜ(h)|, estΓ(T) = suph∈Γ |εT (h)− εT̂ (h)|.

This lemma tells us that estimating transferability is no harder than computing the estimation errors of
both domains. If the function class Γ has uniform convergence property [44], then we can guarantee
efficient estimation of transferability. We first bound the sample complexity through Rademacher
complexity, which is a standard tool in bounding estimation errors [5]:

Theorem 10 (estimation error with Rademacher complexity). Given the 0-1 loss εD = ε0−1
D ,

suppose Ŝ and T̂ are sample sets with m and k samples drawn i.i.d. from distributions S and T ,
respectively. For any Γ ⊆ H the following holds with probability 1− δ:

TΓ(S‖T) ≤ TΓ(Ŝ‖T̂) + 4Rm(FΓ) + 4Rk(FΓ) + 2

√
log(4/δ)

2m
+ 2

√
log(4/δ)

2k
,

where FΓ := {(x, y) 7→ 1(h(x) 6= y), h ∈ Γ}. If furthermore, Γ is a set of binary classifiers with
labels {−1, 1}, then 2Rm(FΓ) = Rm(Γ), 2Rk(FΓ) = Rk(Γ).

5

We also provide estimation error results using Vapnik–Chervonenkis (VC) dimension and Natarajan
dimension in Appendix B.3. It is worth mentioning that the VC dimension of piecewise-polynomial
neural networks has been upper bounded in Bartlett et al. [7]. Since transfer measures can be estimated,
in later sections we do not distinguish the sample sets Ŝ, T̂ and the underlying distributions S, T .

3.2 Transferability with a surrogate loss

Due to the intractability of minimizing the 0-1 loss, we need to use a surrogate loss [6] for training
in practice. In this section, we discuss this nuance w.r.t. transferability. We will focus on the most
commonly used surrogate loss, cross entropy (CE), although some of the results can be easily adapted
to other loss functions. To distinguish a surrogate loss from the 0-1 loss, we use εD from now on
for a surrogate loss and ε0−1

D for the 0-1 loss. One of the difficulties is the non-equivalence between
δ-minimal sets w.r.t. the 0-1 loss and a surrogate loss, i.e. argmin(εD, δD) might be quite different
from argmin(ε0−1

D , δD). Moreover, it is not practical to find all elements in argmin(ε0−1
D , δD) since

the loss is nonconvex and nonsmooth. In light of these difficulties, we propose a more practical notion
of transferability based on surrogate loss εD:

Proposition 11 (transfer measure with a surrogate loss). Given surrogate loss εD ≥ ε0−1
D on a gen-

eral domain D. Suppose Γ = argmin(εS , δS) and denote ε∗T = infh∈Γ εT (h), ε∗S = infh∈Γ εS(h),
(ε0−1
T)∗ = infh∈H ε

0−1
T (h). If the following holds:

TΓ(S‖T) = sup
h∈Γ

εT (h)− ε∗T − (εS(h)− ε∗S) ≤ δ, (8)

then we have argmin(εS , δS) ⊆ argmin(ε0−1
T , δ + δS + ε∗T − (ε0−1

T)∗).

This proposition implies that if the transfer measure is small, then a near-optimal classifier of the
surrogate loss in the source domain would be near-optimal in the target domain for the 0-1 loss. It
also gives us a practical framework to guarantee transferability, which we will discuss in more depth
in Section 4. Assume εD : H → R to be Lipschitz continuous and strongly convex, which is satisfied
for the cross entropy loss (see Appendix B.4). We are able to translate the δ-minimal set to Lp balls
in the function space:

C1‖h− h∗‖2,D ≤ εD(h)− εD(h∗) ≤ C2‖h− h∗‖1,D, (9)

where C1 and C2 are absolute constants and h∗ is an optimal classifier. The function norms ‖ · ‖1,D
and ‖ · ‖2,D are the usual Lp norms over distribution D. Since the classifier h = q(θ, ·) is usually
parameterized with, say a neural network, we further upper bound the function norms by the distance
of parameters, that is, for 1 ≤ p < ∞, h = q(θ, ·) and h′ = q(θ′, ·), we have ‖h − h′‖p,D ≤
L‖θ − θ′‖2, with L some Lipschitz constant of q (Appendix B.4). Combined with (9), we obtain:

εD(h)− εD(h′) ≤ LC2‖θ − θ′‖2. (10)

In other words, if the parameters are close enough, then the losses should not differ too much. We
denote ‖ · ‖2 as the Euclidean norm, and for later convenience we will omit the subscript in ‖ · ‖2.

4 Algorithms for Evaluating and Improving Transferability

The notion of transferability is defined w.r.t. domains, hence by learning feature embeddings that
induce certain feature distributions, one can aim to improve transferability of two given domains. In
this section we design algorithms to evaluate and improve transferability by learning such transforma-
tions. To start with, let g : X → Z be a feature embedding (a.k.a. featurizer), where Z is understood
to be a feature space. By a joint distribution Dg (or Sg, T g) we mean a distribution on g(X)× Y .
Formally, we are dealing with push-forwards of distributions:

Sg := (g, id)#S, T g := (g, id)#T , (11)

where (g, id) : (x, y) 7→ (g(x), y) is a function on X × Y . S and T here are joint distributions on
X × Y , and here we specify X to be the space of the original signal such as an image. Since S and
T cannot be changed, what we are evaluating here is the feature embedding g. The key quantity is
transfer measures as in (8):

TΓ(Sg‖T g) = sup
h∈Γ

εT g (h)− ε∗T g − (εSg (h)− ε∗Sg), Γ = argmin(εSg , δSg). (12)

6

Although Γ is hard to compute, we can use (10) to obtain a lower bound of (12). That is, given a
parametrization of the classifier h = q(θ, ·) and the optimal classifier h∗ = q(θ∗, ·), we have:

TΓ(Sg‖T g) ≥ sup
‖θ−θ∗‖≤δ

εT g (h)− εSg (h)− ε∗T g + ε∗Sg

≥ sup
‖θ−θ∗‖≤δ

εT g (h)− εSg (h)− εT g (ĥ∗)

≈ sup
‖θ−θ̂∗‖≤δ

εT g (h)− εSg (h)− εT g (ĥ∗) (13)

where δ > 0 depends on Γ and the constant in (10). In the second and the third lines, we approximated
the optimal errors ε∗T g and ε∗Sg with 0 ≤ ε∗Sg ≤ εSg (ĥ∗), 0 ≤ ε∗T g ≤ εT g (ĥ∗), and we use the learned
classifier ĥ∗ = q(θ̂∗, ·) as a surrogate for the optimal classifier. As a result, if the r.h.s. of (13) is
large, then Sg is not quite transferable to T g .

Algorithm 1: Algorithm for evaluating transferability among multiple domains

Input: learned feature embedding g, learned classifier ĥ∗ = q(θ̂∗, ·), target sample training set
T = S0, sample training sets S1, . . . , Sn, ascent optimizer, minimal errors ε∗Si ≈ εSi(ĥ∗),
adversarial radius δ

Initialize: a classifier h = q(θ, ·) and θ = θ̂∗, gap = −∞
for t in 1 . . . T do

Find maxi εSi(h ◦ g) and mini εSi(h ◦ g) and corresponding indices j and k
Run an ascent optimizer on h to maximize gap0 = εSj (h ◦ g)− εSk(h ◦ g)

Project θ onto the Euclidean ball ‖θ − θ̂∗‖ ≤ δ
if gap0 > gap then

gap = gap0, save accuracies and losses of each domain

Output: j, k, h, εSj (h ◦ g)− εSk(h ◦ g), εSj (ĥ∗), εSk(ĥ∗)

We can thus design an algorithm to evaluate the transferability in Section 4.1. By computing the
lower bound in (13), we can disprove the transferability as in Prop. 5 and Prop. 11. Computing the
lower bound in (13) can be regarded as an attack method: there is an adversary trying to show that Sg
is not transferable to T g . For this attack, we could also design a defence method aiming to minimize
the lower bound and learn more transferable features.

4.1 Algorithm for evaluating transferability

In domain generalization we have one target domain and more than one source domains. To ease the
presentation, we denote S0 = T (and thus Sg0 = T g) and extend the index set to be {0, 1, · · · , n}.
We need to evaluate the transferability (13) between all pairs of Sgi and Sgj . Algorithm 1 gives an
efficient method to compute the worst-case gap sup‖θ−θ̂∗‖≤δ εSg

i
(h) − εSg

j
(h) among all pairs of

(i, j). Essentially, it finds the worst pair of (i, j) at each step such that the gap εSg
i
(h)− εSg

j
(h) takes

the largest value, and then maximize this gap over parameter θ through gradient ascent.

Note that the computation of (13) also depends on the information from the target domain. This is
valid since we are only evaluating but not training over these domains.

4.2 Algorithm for improving transferability

The evaluation sub-procedure provides us a way to pick a pair of non-transferable domains (Sgi ,S
g
j),

which in turn could be used to improve the transferability among all source domains by updating
the feature embedding g such that the gap sup‖θ−θ∗‖≤δ εSg

i
(h) − εSg

j
(h) for (i, j) ∈ [n] × [n].

Simultaneously, we also require that the feature embedding g preserves information for the target
task of interest. With the parametrization h = q(θ, ·), h′ = q(θ′, ·), the overall optimization problem
can be formulated as:

min
g,h

max
‖θ′−θ‖≤δ

1

n

n∑
i=1

εSi(h ◦ g) +
(
maxiεSi(h

′ ◦ g)−miniεSi(h
′ ◦ g)

)
. (14)

7

Intuitively, we want to learn a common feature embedding and a classifier such that all source errors
are small and the pairwise transferability between source domains is also small. If the optimization
problem is properly solved, then we have the following guarantee:

Theorem 12 (optimization guarantee). Assume that the function q(·, x) is Lθ Lipschitz continuous
for any x. Suppose we have learned a feature embedding g and a classifier h such that the loss
functional εSg

i
: H → R is L` Lipschitz continuous w.r.t. distribution Sgi for i ∈ [n] and

max
‖θ′−θ‖≤δ

1

n

n∑
i=1

εSi(h ◦ g) +
(
maxiεSi(h

′ ◦ g)−miniεSi(h
′ ◦ g)

)
≤ η, (15)

where θ, θ′ are parameters of h and h′. Then for any h′ ∈ Γ = {q(θ′, ·) : ‖θ − θ′‖ ≤ δ}, we have:

TrΓ(T g1 , T
g

2) ≤ η, εSi(h
′ ◦ g) ≤ η + L`Lθδ, εT (h′ ◦ g) ≤ 2η + L`Lθδ, (16)

for any T g1 , T
g

2 , T g ∈ conv(Sg1 , . . . ,Sgn) and any i ∈ [n].

The Lipschitzness assumption for εSg
i

is mild and can be satisfied for cross entropy loss (c.f. Ap-
pendix B.4.1). Here conv(·) denotes the convex hull in the same sense as Albuquerque et al. [2], i.e.,
each element is a mixture of source distributions. Thm 12 tells us that if we can solve the optimization
problem (14) properly, we can guarantee transferability on a neighborhood of the classifier, as an
approximation of the δ-minimal set. We thus propose Algorithm 2, which shares similarity with exist-
ing frameworks, such as DANN [16] and Distributional Robust Optimization [43, 45], in the sense
that they all involve adversarial training and minimax optimization. However, the objective in our
case is different and we provide a more detailed comparison with existing methods in Appendix B.5.

Algorithm 2: Transfer algorithm for domain generalization
Input: samples sets of source domains S1, . . . ,Sn, feature embedding g, classifier h = q(θ, ·),
adversarial classifier h′ = q(θ′, ·), surrogate loss εD, adversarial radius δ, ascent optimizer,
descent optimizer, weight parameter λ, number of epochs T

for t in 1 . . . T do
Compute maxi εSi(h ◦ g) and mini εSi(h ◦ g)
Initialization h′ = h (or θ′ = θ)
for k in 1 . . . N do

Run the ascent optimizer on h′ to maximize maxi εSi(h
′ ◦ g)−mini εSi(h

′ ◦ g) fixing g
Project θ′ onto the Euclidean ball ‖θ′ − θ‖ ≤ δ

Fixing h′, run the descent optimizer on g, h to minimize
error = 1

n

∑
i εSi(h ◦ g) + (maxi εSi(h

′ ◦ g)−mini εSi(h
′ ◦ g))

Output: feature embedding g, classifier h

5 Experiments

Gulrajani and Lopez-Paz [20] did extensive experiments on comparing DG algorithms, using the same
neural architecture and data split. Specifically, they show that with data augmentation, ERM perform
relatively well among a large array of algorithms. Our experiments are based on their settings. We
run Algorithm 1 on standard benchmarks, including RotatedMNIST [18], PACS [28], Office-Home
[51] and WILDS-FMoW [23] (c.f. Appendix C.1). Specifically, WILDS-FMoW is a large dataset
with nearly half a million images. Detailed experimental settings can be seen at Appendix C.

Evaluating transferability From Figure 3 it can be seen that at a neighborhood of the learned
classifier, there exists a classifier such that the target accuracy is degraded significantly, whereas some
source domain still has high accuracy. This poses questions to whether current popular algorithms
such as ERM [50], DANN [17] and Mixup [53, 54] are really learning invariant and transferable
features. If so, the target accuracy should be high given a high source accuracy. However, for the
PACS dataset and Mixup model (the second column of Figure 3), the target accuracy decreases by
more than 30% while the source accuracy remains roughly at the same level. We can also, e.g., read
from the first column that with a small decrease of the source (test) accuracy by ∼ 2% (at δ = 2), the
target accuracy of DANN drops by ∼ 10%.

8

Figure 3: Top row: test accuracy of the target domain; bottom row: test accuracy of one of the
source domains. Each column is for a given dataset with the name in the middle, and the legends on
the bottom row are the same as those on the top row. δ is the parameter in Algorithm 1.

From Figure 3 we can also see that Correlation Alignment [CORAL, 47] and Spectral Decomposition
[SD, 40] have better transferability that other algorithms. In some sense, they are in fact learning
robust classifiers, i.e., all the classifiers on the neighborhood of the learned classifier can achieve
good accuracies. With this robust classifier, the target accuracy does not decrease much even if the
classifier is perturbed.

Improving transferability Algorithm 2 has good performance among all four datasets that we
tried, comparable to CORAL and SD. Note that CORAL and SD do not always perform well, such
as in the Office-Home and WILDS-FMoW datasets, but our Transfer algorithm does. However, in
our experiments we find there are two limitations of Algorithm 2: (1) we need a large number of
inner maximization steps to compute the gap, which needs more training time. This is similar to
adversarial robustness [33] which is slower than usual training. In order to overcome this difficulty
we used pretraining from other algorithms in the experiments on Office-Home and WILDS-FMoW;
(2) Moderate hyper-parameter tuning is needed. For example, we need to tune N is Algorithm 2, the
learning rate (lr) of SGA and the choice of δ. We find that taking N = 20 or 30 is usually a good
choice, and δ can be quite large such that the projection step is not taken. We take lr = 0.01 for
RotatedMNIST and lr = 0.001 for other datasets.

Label shift In order to show the difference with the well-knownH-divergence [8], we compute the
label shifts in the PACS dataset. As shown in Zhao et al. [59], the optimal joint error εS(h∗) + εS(h∗)
(h∗ is the optimal classifier that minimizes εS(h) + εT (h)) can be large under the shift of label
distributions. We follow [59] and compute the label shift between pairs of domains in the PACS
dataset, measured by total variation. From Table 1 we can see that the label shift is large in this case,
and thus theH-divergence bound [8] can be quite loose. Comparably, our transfer measure bound
Prop. 3 is tighter (c.f. Prop. 27) and therefore still useful in practice.

Table 1: Label shift between pairs of domains in the PACS dataset. TV: total variation; A: art
painting; C: cartoon; P: photo; S: sketch. The total variation is always between zero and one.

TV A C P S
A 0.0 0.12 0.11 0.3
C 0.12 0.0 0.18 0.24
P 0.11 0.18 0.0 0.37
S 0.3 0.24 0.37 0.0

9

6 Related Work

Multi-task learning Multi-task learning (MTL) [56] is related to but different from DG. In MTL,
there are several tasks, and one hopes to improve the performance of each task by jointly training all
the tasks simultaneously, utilizing the relationships between them. This is different from DG in the
sense that in DG the target domain is unknown a priori, whereas in MTL the focus is more on better
generalization on existing tasks that appear in training. Hence, there is no distribution shift in MTL
per se. Furthermore, for MTL, the output spaces of different tasks are not necessarily the same.

Zero-shot learning / Few-shot learning / Meta-learning DG is different from zero-shot learning
[27]. In zero-shot learning, one has labeled training data and the goal is to make predictions on a
new unseen label set. However, in DG the label set remains the same for the source and the target
domains. On the other hand, the focus of few-shot learning is on fast adaptation, in the sense that the
test distribution remains the same as the training distribution, but the learner can only have access to
a few labeled samples. Domain generalization also shares similarity with meta-learning. However,
in meta-learning, the learner is allowed to fine-tune over the target domain. In other words, the
protocol of meta-learning allows access to a small amount of labeled data from future unseen domains.
Meta-learning is more or less one specific method that is used to tackle few-shot learning. Because of
the similarity, some meta-learning algorithms can be applied to DG [29].

Self-supervised learning Self-supervised learning (SSL) is a popular unsupervised feature learning
approach [13, 19, 21]. The goal of SSL is to learn invariant representations w.r.t. different views of
the same image. Although it is a promising feature learning method, it differs from our DG settings
in the sense that no labels are used in SSL.

Domain generalization There have been a lot of old and new algorithms proposed for domain
generalization. The simplest one is Empirical Risk Minimization (ERM), where we simply minimize
the empirical risk of (the sum of) all source domains. In Blanchard et al. [10], Muandet et al. [35],
kernel methods for DG were proposed. Arjovsky et al. [3] proposed Invariant Risk Minimization
(IRM) which aims to learn invariant predictors across source domains, and follow-up discussions can
be found in [25, 41]. Another approach is called distributional robustness [43, 52], where the model
is optimized over a worst-case distribution under the constraint that this distribution is generated
from a small perturbation around the source distributions. In Albuquerque et al. [2], a DG scheme
based on distribution matching was proposed. Moreover, many domain adaptation algorithms can be
directly adapted to the task of domain generalization, such as CORAL [47] and DANN [16]. Last but
not least, we mention a concurrent work [55] on the theory of domain generalization, which focuses
more on proposing a model selection rule based on accuracy and variation.

Adversarial robustness Our evaluation and training methods in §4 are reminiscent of the adversarial
training method [33] in the literature of adversarial robustness. Perturbing the classifier in our case
corresponds to perturbing the input data in adversarial robustness. From this perspective, our Transfer
algorithm is parallel to the adversarial training method. It would be interesting to design certified
robust feature embeddings, by analogy with certified robust classifiers [15].

7 Conclusions

In this paper we formally define the notion of transferability that we can quantify, estimate and
compute. Our transfer measures can be understood as a special class of IPMs. They are weaker
than total variation and even very dissimilar distributions could be transferable to each other. Our
definition of transferability can also be naturally used to derive a generalization bound for prediction
error on the target domain. Based on our theory, we propose algorithms to evaluate and improve the
transferability by learning feature representations. Experiments show that, somewhat surprisingly,
many existing algorithms are not quite learning transferable features. From this perspective, our
transfer measures offer a novel way to evaluate the features learned from different DG algorithms. We
hope that our proposal of transferability could draw the community’s attention to further investigate
and better understand the fundamental quantity that allows robust models under distribution shifts.

Broader Impact Reliable domain generalization models are important for practice use. Our work
points out the reliability issue of DG algorithms. It is worth mentioning that our evaluation method
can only disprove the transferability and survival of our attack method should not be treated as a
warranty. Misunderstanding of it could lead to potential harm in practical applications.

10

Acknowledgements and Funding Transparency Statement

We thank the anonymous reviewers for their constructive comments as well as the area chair and
the senior area chair for overseeing the review process. Resources used in preparing this research
were provided, in part, by the Province of Ontario, the Government of Canada through CIFAR, and
companies sponsoring the Vector Institute. We thank NSERC and the Canada CIFAR AI Chairs
program for funding support. GZ is also supported by David R. Cheriton scholarship and research
grant from Vector Institute. HZ is supported by a startup funding from the Department of Computer
Science at UIUC. Finally, we thank Vector Institute for providing the GPU cluster.

References
[1] Kartik Ahuja, Karthikeyan Shanmugam, Kush Varshney, and Amit Dhurandhar. Invariant risk

minimization games. In International Conference on Machine Learning, pages 145–155. PMLR,
2020.

[2] Isabela Albuquerque, João Monteiro, Mohammad Darvishi, Tiago H Falk, and Ioannis
Mitliagkas. Generalizing to unseen domains via distribution matching. arXiv preprint
arXiv:1911.00804, 2019.

[3] Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk mini-
mization. arXiv preprint arXiv:1907.02893, 2019.

[4] Sanjeev Arora, Rong Ge, Yingyu Liang, Tengyu Ma, and Yi Zhang. Generalization and
equilibrium in generative adversarial nets (GANs). In International Conference on Machine
Learning, pages 224–232. PMLR, 2017.

[5] Peter L Bartlett and Shahar Mendelson. Rademacher and gaussian complexities: Risk bounds
and structural results. Journal of Machine Learning Research, 3(Nov):463–482, 2002.

[6] Peter L Bartlett, Michael I Jordan, and Jon D McAuliffe. Convexity, classification, and risk
bounds. Journal of the American Statistical Association, 101(473):138–156, 2006.

[7] Peter L Bartlett, Nick Harvey, Christopher Liaw, and Abbas Mehrabian. Nearly-tight VC-
dimension and pseudodimension bounds for piecewise linear neural networks. J. Mach. Learn.
Res., 20(63):1–17, 2019.

[8] Shai Ben-David, John Blitzer, Koby Crammer, and Fernando Pereira. Analysis of representations
for domain adaptation. In Advances in neural information processing systems, pages 137–144,
2007.

[9] Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, and Jen-
nifer Wortman Vaughan. A theory of learning from different domains. Machine learning, 79
(1-2):151–175, 2010.

[10] Gilles Blanchard, Gyemin Lee, and Clayton Scott. Generalizing from several related classifica-
tion tasks to a new unlabeled sample. Advances in neural information processing systems, 24:
2178–2186, 2011.

[11] Gilles Blanchard, Aniket Anand Deshmukh, Urun Dogan, Gyemin Lee, and Clayton Scott.
Domain generalization by marginal transfer learning. Journal of Machine Learning Research,
22(2):1–55, 2021.

[12] John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, and Jennifer Wortman. Learning
bounds for domain adaptation. In Advances in neural information processing systems, 2007.

[13] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework
for contrastive learning of visual representations. In Proceedings of the 37th International
Conference on Machine Learning, pages 1597–1607, 2020. URL http://proceedings.mlr.
press/v119/chen20j.html.

11

http://proceedings.mlr.press/v119/chen20j.html
http://proceedings.mlr.press/v119/chen20j.html

[14] Gordon Christie, Neil Fendley, James Wilson, and Ryan Mukherjee. Functional map of the
world. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 6172–6180, 2018.

[15] Jeremy Cohen, Elan Rosenfeld, and Zico Kolter. Certified adversarial robustness via randomized
smoothing. In International Conference on Machine Learning, pages 1310–1320. PMLR, 2019.

[16] Yaroslav Ganin and Victor Lempitsky. Unsupervised domain adaptation by backpropagation.
In International conference on machine learning, pages 1180–1189. PMLR, 2015.

[17] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François
Laviolette, Mario Marchand, and Victor Lempitsky. Domain-adversarial training of neural
networks. The Journal of Machine Learning Research, 17(1):2096–2030, 2016.

[18] Muhammad Ghifary, W Bastiaan Kleijn, Mengjie Zhang, and David Balduzzi. Domain gen-
eralization for object recognition with multi-task autoencoders. In Proceedings of the IEEE
international conference on computer vision, pages 2551–2559, 2015.

[19] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H. Richemond,
Elena Buchatskaya, Carl Doersch, Bernardo Ávila Pires, Zhaohan Guo, Moham-
mad Gheshlaghi Azar, Bilal Piot, Koray Kavukcuoglu, Rémi Munos, and Michal
Valko. Bootstrap your own latent - a new approach to self-supervised learning.
In NeurIPS, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
f3ada80d5c4ee70142b17b8192b2958e-Abstract.html.

[20] Ishaan Gulrajani and David Lopez-Paz. In search of lost domain generalization. arXiv preprint
arXiv:2007.01434, 2020.

[21] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 9729–9738, 2020.

[22] Zeyi Huang, Haohan Wang, Eric P. Xing, and Dong Huang. Self-challenging improves cross-
domain generalization. In ECCV, 2020.

[23] Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin Zhang, Akshay
Balsubramani, Weihua Hu, Michihiro Yasunaga, Richard Lanas Phillips, Irena Gao, et al.
WILDS: A benchmark of in-the-wild distribution shifts. arXiv preprint arXiv:2012.07421,
2020.

[24] Vladimir Koltchinskii. Rademacher complexities and bounding the excess risk in active learning.
The Journal of Machine Learning Research, 11:2457–2485, 2010.

[25] Masanori Koyama and Shoichiro Yamaguchi. When is invariance useful in an out-of-distribution
generalization problem?, 2021.

[26] David Krueger, Ethan Caballero, Joern-Henrik Jacobsen, Amy Zhang, Jonathan Binas, Dinghuai
Zhang, Remi Le Priol, and Aaron Courville. Out-of-distribution generalization via risk extrapo-
lation (Rex). arXiv preprint arXiv:2003.00688, 2020.

[27] Christoph H Lampert, Hannes Nickisch, and Stefan Harmeling. Learning to detect unseen
object classes by between-class attribute transfer. In 2009 IEEE Conference on Computer Vision
and Pattern Recognition, pages 951–958. IEEE, 2009.

[28] Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M Hospedales. Deeper, broader and artier
domain generalization. In Proceedings of the IEEE international conference on computer vision,
pages 5542–5550, 2017.

[29] Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy Hospedales. Learning to generalize: Meta-
learning for domain generalization. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 32, 2018.

[30] Haoliang Li, Sinno Jialin Pan, Shiqi Wang, and Alex C Kot. Domain generalization with
adversarial feature learning. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 5400–5409, 2018.

12

https://proceedings.neurips.cc/paper/2020/hash/f3ada80d5c4ee70142b17b8192b2958e-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/f3ada80d5c4ee70142b17b8192b2958e-Abstract.html

[31] Ya Li, Xinmei Tian, Mingming Gong, Yajing Liu, Tongliang Liu, Kun Zhang, and Dacheng Tao.
Deep domain generalization via conditional invariant adversarial networks. In Proceedings of
the European Conference on Computer Vision (ECCV), pages 624–639, 2018.

[32] Mingsheng Long, Han Zhu, Jianmin Wang, and Michael I Jordan. Deep transfer learning with
joint adaptation networks. In International conference on machine learning, pages 2208–2217.
PMLR, 2017.

[33] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. In International Conference on
Learning Representations, 2018.

[34] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of machine learning.
MIT press, 2018.

[35] Krikamol Muandet, David Balduzzi, and Bernhard Schölkopf. Domain generalization via
invariant feature representation. In International Conference on Machine Learning, pages
10–18. PMLR, 2013.

[36] Alfred Müller. Integral probability metrics and their generating classes of functions. Advances
in Applied Probability, pages 429–443, 1997.

[37] Hyeonseob Nam, HyunJae Lee, Jongchan Park, Wonjun Yoon, and Donggeun Yoo. Reducing
domain gap via style-agnostic networks. arXiv preprint arXiv:1910.11645, 2019.

[38] Balas K Natarajan. On learning sets and functions. Machine Learning, 4(1):67–97, 1989.

[39] Jonas Peters, Peter Bühlmann, and Nicolai Meinshausen. Causal inference by using invariant
prediction: identification and confidence intervals. Journal of the Royal Statistical Society.
Series B (Statistical Methodology), pages 947–1012, 2016.

[40] Mohammad Pezeshki, Sékou-Oumar Kaba, Yoshua Bengio, Aaron Courville, Doina Precup,
and Guillaume Lajoie. Gradient starvation: A learning proclivity in neural networks. arXiv
preprint arXiv:2011.09468, 2020.

[41] Elan Rosenfeld, Pradeep Kumar Ravikumar, and Andrej Risteski. The risks of invariant
risk minimization. In International Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=BbNIbVPJ-42.

[42] Walter Rudin. Real and complex analysis. McGraw-Hill Education, 1987.

[43] Shiori Sagawa*, Pang Wei Koh*, Tatsunori B. Hashimoto, and Percy Liang. Distributionally
robust neural networks. In International Conference on Learning Representations, 2020. URL
https://openreview.net/forum?id=ryxGuJrFvS.

[44] Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From theory to
algorithms. Cambridge university press, 2014.

[45] Aman Sinha, Hongseok Namkoong, Riccardo Volpi, and John Duchi. Certifying some dis-
tributional robustness with principled adversarial training. arXiv preprint arXiv:1710.10571,
2017.

[46] Bharath K Sriperumbudur, Kenji Fukumizu, Arthur Gretton, Bernhard Schölkopf, Gert RG
Lanckriet, et al. On the empirical estimation of integral probability metrics. Electronic Journal
of Statistics, 6:1550–1599, 2012.

[47] Baochen Sun and Kate Saenko. Deep CORAL: Correlation alignment for deep domain adapta-
tion. In European conference on computer vision, pages 443–450. Springer, 2016.

[48] Remi Tachet des Combes, Han Zhao, Yu-Xiang Wang, and Geoffrey J Gordon. Domain
adaptation with conditional distribution matching and generalized label shift. Advances in
Neural Information Processing Systems, 33, 2020.

13

https://openreview.net/forum?id=BbNIbVPJ-42
https://openreview.net/forum?id=ryxGuJrFvS

[49] Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Darrell. Adversarial discriminative domain
adaptation. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 7167–7176, 2017.

[50] Vladimir Vapnik. Principles of risk minimization for learning theory. In Advances in neural
information processing systems, pages 831–838, 1992.

[51] Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty, and Sethuraman Panchanathan.
Deep hashing network for unsupervised domain adaptation. In (IEEE) Conference on Computer
Vision and Pattern Recognition (CVPR), 2017.

[52] Riccardo Volpi, Hongseok Namkoong, Ozan Sener, John C Duchi, Vittorio Murino, and Silvio
Savarese. Generalizing to unseen domains via adversarial data augmentation. In NeurIPS, 2018.

[53] Minghao Xu, Jian Zhang, Bingbing Ni, Teng Li, Chengjie Wang, Qi Tian, and Wenjun Zhang.
Adversarial domain adaptation with domain mixup. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 34, pages 6502–6509, 2020.

[54] Shen Yan, Huan Song, Nanxiang Li, Lincan Zou, and Liu Ren. Improve unsupervised domain
adaptation with mixup training. arXiv preprint arXiv:2001.00677, 2020.

[55] Haotian Ye, Chuanlong Xie, Tianle Cai, Ruichen Li, Zhenguo Li, and Liwei Wang. Towards a
theoretical framework of out-of-distribution generalization, 2021.

[56] Yu Zhang and Qiang Yang. A survey on multi-task learning. IEEE Transactions on Knowledge
and Data Engineering, pages 1–1, 2021. doi: 10.1109/TKDE.2021.3070203.

[57] Yuchen Zhang, Tianle Liu, Mingsheng Long, and Michael Jordan. Bridging theory and algorithm
for domain adaptation. In International Conference on Machine Learning, pages 7404–7413.
PMLR, 2019.

[58] Han Zhao, Shanghang Zhang, Guanhang Wu, José MF Moura, Joao P Costeira, and Geoffrey J
Gordon. Adversarial multiple source domain adaptation. Advances in neural information
processing systems, 31:8559–8570, 2018.

[59] Han Zhao, Remi Tachet Des Combes, Kun Zhang, and Geoffrey Gordon. On learning invariant
representations for domain adaptation. In International Conference on Machine Learning, pages
7523–7532. PMLR, 2019.

14

	Introduction
	What is Transferability?
	Comparison with other discrepancy measures between domains

	Computing Transferability
	Estimation of transferability
	Transferability with a surrogate loss

	Algorithms for Evaluating and Improving Transferability
	Algorithm for evaluating transferability
	Algorithm for improving transferability

	Experiments
	Related Work
	Conclusions

