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ABSTRACT

Table understanding capability of Large Language Models (LLMs) has been ex-
tensively studied through the task of question-answering (QA) over tables. Typ-
ically, only a small part of the whole table is relevant to derive the answer for a
given question. The irrelevant parts act as noise and are distracting information,
resulting in sub-optimal performance due to the vulnerability of LLMs to noise.
To mitigate this, we propose CABINET (Content RelevAnce-Based NoIse Re-
ductioN for TablE QuesTion-Answering) – a framework to enable LLMs to focus
on relevant tabular data by suppressing extraneous information. CABINET com-
prises an Unsupervised Relevance Scorer (URS), trained differentially with the
QA LLM, that weighs the table content based on its relevance to the input ques-
tion before feeding it to the question-answering LLM (QA LLM). To further aid
the relevance scorer, CABINET employs a weakly supervised module that gen-
erates a parsing statement describing the criteria of rows and columns relevant to
the question and highlights the content of corresponding table cells. CABINET
significantly outperforms various tabular LLM baselines, as well as GPT3-based
in-context learning methods, is more robust to noise, maintains outperformance
on tables of varying sizes, and establishes new SoTA performance on WikiTQ,
FeTaQA, and WikiSQL datasets. We release our code and datasets here.

1 INTRODUCTION

Understanding tabular data through ML models has been extensively explored through various tasks
such as question-answering (QA) (Chen et al., 2022; Cheng et al., 2022; Nan et al., 2022), fact-
verification (Chen et al., 2020b; Wang et al., 2021; Aly et al., 2021), table-to-description genera-
tion (Chen et al., 2020a; Parikh et al., 2020; Chen et al., 2020c; Suadaa et al., 2021; Nan et al., 2021)
and table grounded dialogue (Nakamura et al., 2022). Table QA has been studied with a specific
focus as it allows to conveniently query the table in natural language to extract desired information.
Large Language Models (LLMs), which have shown remarkable generalization on various Natural
Language Processing (NLP) tasks, have also been used to reason over tables achieving impressive
performance (Yu et al., 2021; Neeraja et al., 2021; Gu et al., 2022; Chen, 2023).

Tables contain information organized in rows and columns, and typical transformer-based LLMs
such as BERT (Devlin et al., 2019), T5 (Raffel et al., 2020), and GPT (Brown et al., 2020) trained
over unstructured natural language text using standard language modeling objectives do not account
for the table structure and underlying compositionality of data (Yu et al., 2021). Many works on
table understanding therefore, adapt LLMs for tables through joint learning over tabular and text
content (Yin et al., 2020), pre-training on table semantic parsing (Liu et al., 2022; Jiang et al., 2022)
and synthesizing template-based questions to improve reasoning skills over tables (Gu et al., 2022).
Typically, only a small number of cells contain the information required to derive the answer for
a question. The irrelevant tabular data acts as distracting information or noise, resulting in sub-
optimal performance since LLMs are susceptible to noise in the input (Kumar et al., 2023; Chen
et al., 2023a). Performance degradation is further amplified in large tables due to presence of even
more data as illustrated in Figure 4 in Section 4.3.
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week date opponent score result record

1 aug 28 at toronto argonauts 13–6 loss 0–1

… … … … … …

5 sept 25 vs. hamilton tiger-cats 38–12 loss 1–5

6 oct 2 at hamilton tiger-cats 45–0 loss 1–6

7 oct 9 vs. montreal alouettes 25–11 loss 1–7

… … … … … …

13 nov 13 vs. montreal alouettes 14–12 win 2–12
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Question:
What is the highest amount of points scored in a

lost game by an opponent? Question

Figure 1: Comparison between CABINETand DATER (a GPT-3 based in-context learning method).
For the given example, DATER extracts a wrong sub-table through hard decomposition (resulting in
loss of useful information) that causes QA reasoner to answer incorrectly. CABINET weighs rele-
vant table parts higher without removing content explicitly allowing QA LLM to answer correctly.

Significant efforts have been made to mitigate the issue of noise by pruning tabular data, albeit at cost
of accuracy (Krichene et al., 2021), and by retrieving content from table for QA (Wang et al., 2022;
Lei et al., 2023; Kumar et al., 2023). DATER (Ye et al., 2023), one of the state-of-the-art methods
for table QA, proposed decomposing a table into simpler sub-tables containing information needed
to answer the question by providing in-context examples to GPT-3 based Codex (Chen et al., 2021).

Such a question-conditioned hard decomposition of table is sub-optimal as the subsequent QA model
cannot correct the error made during decomposition if relevant information is not selected (as shown
in Figure 1). To mitigate this, we propose CABINET (Content RelevAnce-Based NoIse ReductioN
for TablE QuesTion-Answering) – a framework for table QA that weighs different table parts based
on their relevance to the question without explicitly removing any content. CABINET comprises
a relevance scorer (§ 3.1), which takes question and table as input to provide a relevance score to
table content. The score is used to weigh corresponding content passed to the QA LLM, allowing
it to focus more on the relevant content. The relevance scorer is unsupervised and trained with QA
LLM differentiably due to lack of annotations denoting relevant table information. Although answer
generation loss enables learning of relevance scorer, it acts as an indirect training signal.

Hence, to aid relevance scorer, inspired by how humans process tables, CABINET employs a parsing
statement generator (§ 3.2) that describes which rows and columns are relevant to the question.
For instance, consider the example in Figure 1, CABINET generates “consider rows with result
as ’loss’, and note the higher value in the ’score’ column”. The parsing statement is then used
to identify corresponding cells, and their content is given more weight during relevance scoring.
CABINET establishes new SoTA on three challenging table QA datasets (WikiTQ, FeTaQA and
WikiSQL) significantly outperforming various strong baselines (§ 4.1). We show that CABINET is
more robust to noise in tables and structural biases i.e. row and column ordering (§ 4.2). Further,
the performance gains achieved by CABINET are even more pronounced for larger tables (§ 4.3),
indicating that it successfully mitigates noisy table information irrelevant to a given question.

2 RELATED WORK

Table Specific Architecture: Tables contain information in a structured format, organized in rows
and columns. Hence, many works have focused on developing table-specific models to utilize the se-
mantics of table structure through its description. TabBERT (Yin et al., 2020) pre-trains BERT (De-
vlin et al., 2019) on paired table-text samples through masked language modeling (MLM). Deng
et al. (2020) modified the bidirectional attention in BERT to incorporate table structure while per-
forming MLM. TAPAS (Herzig et al., 2020) utilizes positional embeddings for rows and columns
to explicitly capture cell location. Yang et al. (2022) noted that methods using positional embed-
dings are vulnerable to column and row permutations. To address this, they introduce TableFormer,
a table-text encoding architecture that incorporates tabular structure through learnable attention bi-
ases. We show that LLMs become less susceptible to such permutations by learning to focus on
relevant table parts through CABINET (§ 4.2).
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Table QA Specific Pre-training: Eisenschlos et al. (2020) argued that the MLM objective to just
fill in the blanks of table cells and descriptions is insufficient to capture relations between cells
and associated text needed to perform table QA. They introduced additional pre-training tasks that
require explicit question-table reasoning and complex table operations (such as aggregation). Other
improvements include handling of numeric tokens (Han et al., 2022), temporal relations (Zhao et al.,
2022), and selectively masking tokens that require table based reasoning (Gu et al., 2022). Methods
like TAPEX (Liu et al., 2022), OmniTab (Jiang et al., 2022) etc. typically involve joint training over
natural language-SQL pairs so that the underlying model learns to map the information implied in
the question to the required table operations. However, as discussed in experiments (§ 4.2 and 4.3),
these methods suffer significant performance drop when dealing with large and noisy tables owing
to their limited capability at identifying information relevant to question.

Few/Zero-Shot Learning with Large Language Models: Given the remarkable performance of
LLMs on various tasks without any task-specific training, their use for table understanding has also
been explored extensively. Chen (2023) have shown that LLMs perform strongly on various table
QA tasks using Chain of Thought (CoT) (Wei et al., 2022; Wang et al., 2023) prompting. Since typ-
ical LLMs are trained over unstructured text data, models specifically designed to handle structured
data, such as StructGPT (Jiang et al., 2023) have also been used for table QA. LEVER (Ni et al.,
2023) and BINDER (Cheng et al., 2023) utilized code-optimized GPT-Codex (Chen et al., 2021) to
generate SQL statements that can be executed to answer questions over tabular data. DATER (Ye
et al., 2023) uses Codex to break table into sub-tables conditioned on a given question through in-
context learning. Such methods have no way to recover relevant table part to generate the correct
answer in case it is omitted while generating sub-tables (as discussed in Figure 1).

3 METHODOLOGY

We summarize the architecture of CABINET in Figure 2. It comprises two components: 1) Unsu-
pervised Relevance Scorer, an unsupervised module comprising a transformer encoder that takes
question and table as input and tokenizes them (steps 1 and 2 in Fig. 2) followed by assigning a
relevance score to each table token (step 3 in Fig. 2). The relevance score is then multiplied with
the corresponding token embedding at the time of giving it as input to QA LLM encoder (step 7
in Fig. 2). This ensures that noisy content with lower relevance score get suppressed and the QA
LLM can focus on relevant tokens. The unsupervised relevance scorer is connected to QA LLM in
a differentiable manner enabling it to be trained through answer generation loss (step 8 in Fig. 2).

Even though answer generation loss enables learning of unsupervised relevance scorer, it acts as
an indirect training signal. To aid relevance scoring, we propose a weakly supervised module:
2) Relevant Cell Predictor through Table Parsing that parses table conditioned on question to
highlight cells containing relevant information (steps 4 and 5 in Fig. 2). It comprises two sub-
steps where we first train a Parsing Statement Generator that describes criteria in natural language
about which rows and columns should be used to derive the answer (step 4 in Fig. 2). Table cells
corresponding to the criteria described in the parsing statement (step 5 in Fig. 2) are highlighted
such that score for content tokens in highlighted cells is boosted by combining it with unsupervised
relevance score through a linear combination (step 6 in Fig. 2). We conduct extensive ablations to
establish efficacy for different modules (§ 4.4). We now discuss the details of each component.

3.1 UNSUPERVISED RELEVANCE SCORER

The unsupervised relevance scorer is used to assign a score to table content tokens. Since annotating
cells of a table relevant to a given question is tedious, the relevance scorer is unsupervised and
gets trained along with QA LLM through answer generation loss. Formally, consider a pair of
table T and a question Q about T . Qtokens = {q1, q2, ..., q|Q|} represents the question tokens,
T = {cij |1 ≤ i ≤ Nrow, 1 ≤ j ≤ Ncol}, where Nrow and Ncol indicate number of rows and
columns in T respectively, and cij represents string in cell in the ith row and jth column. To make
T suitable to be fed as input to a transformer-based LLM, we follow the commonly used linearising
scheme (Liu et al., 2022) where table is flattened as (step 1 in Fig. 2):

Tflattened = [HEAD] : c11 | c12 | · · · | c1Ncol | [ROW ]1 : c21 | · · · | c2Ncol | [ROW ]2 : · · · (1)

[HEAD] and [ROW ]k indicate start of column header row and kth data row respectively. We
separate special tokens and cell content using pipe symbol ‘|’. The string in Equation 1 is tokenized
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week date opponent score result record

1 aug 28 at toronto argonauts 13–6 loss 0–1

… … … … … …

5 sept 25 vs. hamilton tiger-cats 38–12 loss 1–5

6 oct 2 at hamilton tiger-cats 45–0 loss 1–6

7 oct 9 vs. montreal alouettes 25–11 loss 1–7

… … … … … …

13 nov 13 vs. montreal alouettes 14–12 win 2–12

Table

Question:
What is the highest amount of points
scored in a game by an opponent?

What is the highest .... opponent? [HEAD] | week | date | ... record | [ROW]1 | 1 | aug 28 | ... 0-1 | ... [ROW]13 | nov 13 | ... | 2-12

Question + Flattened Table

Embedding
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 as 'loss', and note the 
higher value in the 
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Highlighter "38-12 || loss || ... 45-0 || loss || ..." 
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Relevant Cell Predictor through Table Parsing

Figure 2: Overview of architecture of CABINET. The table is linearized (step 1) and embedded
along with question through embedding layer of the underlying QA LLM (step 2). The embedded
sequence is passed to the unsupervised relevance scorer that assigns a relevance score to each table
token (step3). In parallel, the parsing statement generator describes the criteria for rows and columns
relevant to deriving the answer (step 4) that is used to identify corresponding cells and assign a cell-
based relevance score (step 5). The unsupervised and cell-based relevance is combined (step 6) and
used to weigh the table content (step 7) to the QA LLM which generates the answer (step 8).

using the tokenizer of underlying QA LLM to obtain table tokens Ttokens = {t1, t2, ..., t|Ttokens|}.
Ttokens is concatenated to Qtokens to obtain Itokens = (Qtokens; Ttokens) which is given as input
(steps 2 and 3 in Fig. 2) to Unsupervised Relevance Scorer (URS) comprising a transformer encoder
TEURS . The contextualized representation hp ∈ Rd of the pth token is estimated as:

eURS
1 , eURS

2 , · · · ,eURS
|Itokens| = EmbeddingURS(Itokens) (2)

h1, · · · , hp, · · · , h|Itokens| = TEURS(e
URS
1 , eURS

2 , · · · , eURS
|Itokens|) (3)

We aim to predict relevance score for each table token, however, since annotations for relevant table
parts are unavailable, token relevance is not explicitly observable and we consider it as a latent
variable. Further, we hypothesize that the representation space of table tokens can be structured
better for modeling relevance by clustering their encodings into two categories - relevant and non-
relevant. Variational Inference (VI) has been commonly used to estimate latent variable probability
and group data points on the basis of latent topics (Srivastava & Sutton, 2017). Hence, we estimate
relevance ηunsp of table token tp (|Qtokens|+ 1 ≤ p ≤ |Qtokens|+ |Ttokens|) as (step 3 in Fig. 2):

µp = ϕµ(hp); σp = ϕσ(hp) (4)
ηunsp = sigmoid(zp); zp = µp + s ∗ σp (5)

s is sampled from standard normal distribution, ϕµ and ϕσ are FC layers with weights Wµ ∈ Rd×1

and Wσ ∈ Rd×1, sigmoid is applied to normalize the relevance score in the range 0 to 1. To
enable the relevance scorer to assign appropriate scores, we structure the latent space of TEURS

by clustering table tokens into relevant and non-relevant. We use the method of van der Maaten
& Hinton (2008) (details in appendix A.1) which performs clustering in a trainable manner using
clustering loss Lclu . We apply Lclu over latent representation hp of tokens which enables us to
tune TEURS for clustering. During experiments, we observed that unit vectors for cluster centroids
µclu
relevant and µclu

irrelevant are not well separated. To mitigate this, we enforce a separation loss Lsep

that increases the distance between unit vectors representing cluster centroids:

Lsep = 2−
∣∣∣∣∣∣µclu

relevant − µclu
irrelevant

∣∣∣∣∣∣2 (6)

Further, it is desirable that relevance scores for tokens in one cluster (corresponding to irrelevant
tokens) are low. To achieve this, we apply a sparsification loss Lsparse where the score logit zp is
exponentiated with a negative coefficient to push logit values for relevant and irrelevant clusters to
∞ and −∞ respectively that enables final score (after applying sigmoid) to be close to 1 and 0:

Lsparse =
1

|Ttokens|
∑
p

e−z2
p ; |Qtokens|+ 1 ≤ p ≤ |Qtokens|+ |Ttokens| (7)

At the time of providing question and table as input to transformer encoder TEQA of the QA LLM,
embedding (e

′

p) corresponding to question tokens is used as is while embedding of each table token
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is multiplied by its corresponding relevance score (steps 7 and 8 in Fig. 2):
e1, e2, · · · , e|Itokens| = EmbeddingQA(Itokens) (8)

e
′

p = ηp ⊙ ep; |Qtokens|+1 ≤ p ≤ |Qtokens|+ |Ttokens| (9)

h
′

1, · · · , h
′

|Itokens| = TEQA(e
′

1, e
′

2, · · · , e
′

|Itokens|) (10)

a1, a2, · · · , aN = TDQA(h
′

1, · · · , h
′

|Itokens|) (11)
‘⊙’ indicates scalar multiplication with vector operation, TDQA represents the transformer decoder
of the QA LLM that generates the answer tokens an sequentially. TEURS , TEQA and TDQA

are trained in an end-to-end manner through cross-entropy loss LCE between the generated and
ground-truth answer tokens. Thus, the total loss L becomes:

L = LCE + λclu ∗ Lclu + λsep ∗ Lsep + λsparse ∗ Lsparse (12)
The answer generation loss acts as an indirect training signal for relevance scorer. To aid unsuper-
vised scorer, we propose a weakly-supervised module (trained separately from URS and QA LLM)
that highlights relevant cells (discussed in next subsection). Table tokens for highlighted cells are
assigned cell-based score ηcellp that is combined with unsupervised relevance score ηunsp through
linear combination (step 6 in Fig. 2). Thus, final relevance score ηp used in Eq. 9 is:

ηp = λuns ∗ ηunsp + λcell ∗ ηcellp (13)

3.2 RELEVANT CELL PREDICTOR THROUGH TABLE PARSING

As discussed above, we train a separate module to highlight table cells relevant to a given question
in a weakly-supervised manner. Since there is no Table QA dataset that contains annotations for
table cells useful to answer a given question, we adopt a two-stage approach where we first train a
Parsing Statement Generator (step 4 in Fig. 2) to generate a natural language text describing criteria
for rows and columns relevant to the given question. Subsequently, we train another model that takes
the parsing statement and table as input to identify the cells matching the criteria (step 5 in Fig. 2).

Parsing Statement Generator (PSG) comprises a pre-trained LLM - Flan T5-xl (Chung et al.,
2022a) that is fine-tuned to take the question and table as input (Itokens) to generate a parsing
statement textparse (step 4 in Fig. 2). The statement describes criteria stating which rows and
columns are useful to derive the answer. To bootstrap training of PSG, we manually annotate very
few (∼300) question-table pairs with parsing statement. For instance, for table and question shown
in Figure 2, we annotate parsing statement as ‘To derive answer, note the values of higher score in
rows with result as loss’. To circumvent annotating samples for each table QA dataset, we choose
WikiTableQuestions (WikiTQ) dataset (Pasupat & Liang, 2015) to select the samples for annotation
since it is the most complex QA dataset containing a variety of samples. We sample diverse set of
questions for annotation (please refer appendix A.2 for details and examples). The sampled question
along with its table are manually annotated with parsing statement which is used to fine-tune PSG.
The trained PSG model is then used to generate parsing statement for any question-table pair from
datasets studied for experiments. We release the dataset of manually annotated parsing statements.

Cell Highlighting based on Parsing Statement: To identify table cells for the criteria described in
the parsing statement textparse, we need a way to map the statement to corresponding cells. To this
end, we use ToTTo dataset (Parikh et al., 2020) that contains samples of (table, list of highlighted
cell coordinates) pairs. Each pair is accompanied by a text description summarising the content
of the corresponding list of cells. We fine-tune a cell highlighting model Cell HighlighterLLM

comprising of Flan T5-xl on ToTTo dataset where the table and summarising text are given as input
to generate the content of corresponding highlighted cells. Once Cell HighlighterLLM is trained,
we provide the table and textparse as input to identify and generate content of corresponding cells.
For instance, consider example in Figure 2, given the parsing statement shown in figure as input, the
cell predictor generates ′38− 12 ∥ loss ∥ 45− 0 ∥ loss ∥...′ (step 5). More formally,

chighlighted1 || · · · || chighlightedM = Cell HighlighterLLM (T , textparse) (14)

chighlightedr represents the string of rth highlighted cell predicted based on parsing statement. M is
a variable number, ‘||’ is a delimiter to separate cell content. For 1 ≤ r ≤ M , if chighlightedr exactly
matches with the content of some cell in T , then the tokens tp of matching cell is assigned a cell
relevance score (ηcellp ) of 1. ηcellp is set to 0 for table tokens belonging to cells in T whose content
does not match with any chighlightedr . ηcellp is then combined with unsupervised relevance score ηunsp
as in Eq. 13. We now discuss experiments performed to validate the efficacy of our approach.
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4 EXPERIMENTS AND EVALUATION

Implementation Details: For the encoder (TEQA) and decoder (TDQA) of the QA LLM, we
employ the OmniTab (Jiang et al., 2022) backbone (pre-trained for table understanding) comprising
of BART-Large (Lewis et al., 2020). The embeddings of unsupervised relevance scorer (URS),
EmbeddingURS , and QA model, EmbeddingQA, are shared. URS encoder (TEURS) is initialized
with the architecture and weights of QA LLM encoder (TEQA), though they do not share weights
during QA training. Consequently, the hidden dimension d of TEURS is 1024. We train CABINET
and baselines (wherever needed) for 30 epochs on an effective batch size (BS) of 128 using 8 80GB
A100 GPUs (BS of 8/GPU with gradient accumulation 2) using a learning rate of 1e−5 with cosine
annealing (Loshchilov & Hutter, 2017) through AdamW optimizer (Loshchilov & Hutter, 2019).

Datasets and Evaluation Metrics: We evaluate CABINET on three commonly used datasets –
(i) WikiTableQuestion (WikiTQ) (Pasupat & Liang, 2015) which is one of the most commonly
used and highly complex datasets consisting of about 2100 HTML tables from Wikipedia and about
22, 033 questions that require complex operations such as comparison, aggregation, and arithmetic
operations to arrive at the answer; (ii) FeTaQA (Nan et al., 2022), a challenging dataset consist-
ing of about 10, 000 questions that have a long-form natural language answer (18 words on aver-
age) such that it requires fetching multiple entities from the table, aggregating and reasoning over
these entities, and structuring the inferred information to produce a coherent answer; and (iii) Wik-
iSQL (Zhong et al., 2017) that comprises roughly 80, 654 questions over 24, 241 Wikipedia tables.
It also provides the equivalent SQL query for each question to obtain the correct answer. While we
do not generate SQL (or other implicit logical forms) and only use the natural language questions
and answers from this dataset, it serves as a useful benchmark to compare CABINET with table
understanding methods that generate explicit logical forms to extract relevant answers from table.
The ground-truth answers in both WikiTQ and WikiSQL datasets are short (1-2 words). Hence, we
use exact-match accuracy (Acc.) to compare various methods. For FetaQA dataset, ground-truth an-
swers being long-form (≈ 18 words on average), we employ commonly used overlap-based metric
Sacre-BLEU (S-BLEU) (Post, 2018). We report performance on test split for all datasets.

4.1 PERFORMANCE OF CABINET ON TABLE QA

Table 1: Comparison of CABINET with
different baselines on WikiTQ. CABINET
achieves significantly better accuracy.

Method Acc. # params

Fine-tuning Table-specific LLMs
TAPAS (Herzig et al., 2020) 48.8 345 M
TaBERT (Yin et al., 2020) 52.3 345 M
MATE (Eisenschlos et al., 2021) 51.5 340 M
GraPPa (Yu et al., 2021) 52.7 355 M
DoT (Krichene et al., 2021) 54.0 299 M
TableFormer (Yang et al., 2022) 52.6 345 M
TAPEX (Liu et al., 2022) 55.5 405 M
ReasTAP (Zhao et al., 2022) 58.6 406 M
TaCube (Zhou et al., 2022) 60.8 406 M
OmniTab (Jiang et al., 2022) 62.7 406 M

Fine-tuning text-based LLMs
T5-3b (Xie et al., 2022)) 49.3 2.9 B
FlanT5-xl (Chung et al., 2022a) 64.4 2.9 B

Few/zero shot Prompting of LLMs
Codex (Ye et al., 2023) 47.6 175 B
Codex-COT (Chen, 2023) 48.8 175 B
Binder (Cheng et al., 2023) 64.6 175 B
LEVER (Ni et al., 2023) 65.8 175 B
DATER (Ye et al., 2023) 65.9 175 B
ChatGPT (Jiang et al., 2023) 43.3 175 B
StructGPT (Jiang et al., 2023) 48.4 175 B

CABINET (Ours) 69.1 560 M

We present a detailed comparative analysis of results
achieved by CABINET with a variety of baselines.
We consider three different categories of methods
– (i) LLMs specifically pre-trained for table under-
standing and fine-tuned for QA, such as TAPEX (Liu
et al., 2022), ReasTAP (Zhao et al., 2022) and Om-
niTab (Jiang et al., 2022); (ii) fine-tuning LLMs (pre-
trained on text only) such as T5-3b (Raffel et al.,
2020) and Flan T5-xl (Chung et al., 2022b); and
(iii) few or zero shot prompting of LLMs like Struct-
GPT (Jiang et al., 2023) and approaches that employ
such LLMs for in-context learning like LEVER (Ni
et al., 2023), BINDER (Cheng et al., 2023) and
DATER (Ye et al., 2023).

Table 1 presents the performance of various methods
on the WikiTQ dataset, and we can observe CAB-
INET with an accuracy of 69.1% outperforms the
best-performing baselines in each of the three cate-
gories and establishes new state-of-the-art. Specif-
ically, CABINET outperforms OmniTab, DATER,
and fine-tuned Flan T5-xl by 6.4%, 3.2% and 4.7%,
in absolute terms, respectively. Also, note that sim-
ple prompting of ChatGPT does not work well for
Table QA. We want to highlight that CABINET
performs much better than GPT-3 and Codex-based
SoTA in-context learning methods despite contain-
ing orders of magnitude fewer parameters.
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Table 2: Comparison with different categories
of baselines on FeTaQA. CABINET achieves
significantly better Sacre-BLEU (S-BLEU).

Method S-BLEU # params

Fine-tuning Table-specific LLMs
PeaQA (Pal et al., 2022) 33.5 406 M
TAPEX (Liu et al., 2022) 34.7 406 M
OmniTab (Jiang et al., 2022) 34.9 406 M

Fine-tuning text-based LLMs
T5-small (Nan et al., 2022) 21.6 60 M
T5-base (Nan et al., 2022) 28.1 222 M
T5-large (Nan et al., 2022) 30.5 738 M
T5-3b (Xie et al., 2022) 33.4 2.9 B
FlanT5-xl 36.2 2.9 B

Few/zero shot Prompting of LLMs
Codex-COT (Chen, 2023) 27.0 175 B
Codex (Ye et al., 2023) 27.9 175 B
DATER (Ye et al., 2023) 30.9 175 B

CABINET (Ours) 40.5 560 M

Table 3: Comparison with different categories of
baselines on WikiSQL. CABINET achieves bet-
ter Accuracy (Acc.).

Method Acc. # params

Fine-tuning Table-specific LLMs
TAPAS (Herzig et al., 2020) 86.4 345 M
GraPPa (Yu et al., 2021) 84.7 355 M
DoT (Krichene et al., 2021) 85.5 299 M
TAPEX (Liu et al., 2022) 86.4 406 M
OmniTab (Jiang et al., 2022) 87.9 406 M
UTP (Chen et al., 2023b) 88.1 345 M
ReasTAP (Zhao et al., 2022) 88.8 406 M

Fine-tuning text-based LLMs
T5-3b (Xie et al., 2022) 85.9 2.9 B
FlanT5-xl 87.8 2.9 B

Few/zero shot Prompting of LLMs
ChatGPT (Jiang et al., 2023) 51.6 175 B
StructGPT (Jiang et al., 2023) 54.4 175 B

CABINET (Ours) 89.5 560 M

Similar observations hold for FeTaQA (Table 2) and WikiSQL (Table 3) datasets where CABINET
achieves new SoTA performance. For generating long descriptive answers for questions in FeTaQA,
CABINET achieves SoTA S-BLEU of 40.5 outperforming OmniTab, fine-tuned Flan T5-xl and
DATER by a margin of 5.6, 4.3 and 9.6 absolute percentage points, respectively. We report per-
formance only for baselines that have explored the dataset in their work (except for T5 and Flan
T5). We use their code/API for evaluation if available or else specify performance as reported in
their paper. Similarly, for WikiSQL dataset, CABINET pushes the SoTA by 0.7% on already high
performance of ReasTAP (current SoTA). Since best performance on WikiSQL is already high, the
absolute performance gains of 0.7% should be interpreted as a proportion of scope of further im-
provement possible, i.e., 0.7/(100− 88.8), which is ≈ 6%.

4.2 HOW ROBUST IS CABINET TO NOISE AND IRRELEVANT INFORMATION?

Despite the remarkable success of transformer-based models on table understanding, they are sen-
sitive to noise and perturbations to the tabular data (Pi et al., 2022; Yang et al., 2022; Zhao et al.,
2023). We examine the robustness and sensitivity of CABINET towards noise while performing Ta-
ble QA. We introduce noise by perturbing tables in test split and report the relative percentage drop
in performance. We perform four types of perturbations: 1) Row Addition (RA): insert noise into
a table by adding rows from another table that contains same number of columns; 2) Row Permu-
tation (RP): randomly permute ordering of rows (Pi et al., 2022); 3) Column Permutation (CP):
randomly permute column ordering; and (4) Cell Replacement (CR): replace content of certain
cells with content from some other table. We perform each perturbation separately to obtain four
perturbed test splits for each dataset. Please see appendix A.5 for further details about the procedure.

Figure 3 summarizes the relative drop in performance of CABINET and the dataset-specific best
baseline for the three datasets. Note that for all the perturbation categories, CABINET leads to sig-
nificantly less drop in performance when compared with the corresponding baseline, highlighting
the robustness and ability of CABINET to identify the relevant portions of the underlying table.
Specifically, CABINET is significantly less sensitive to row and column permutations (RP and CP),
indicating that relevance scoring of tokens helps the QA LLM to focus more on relevant informa-
tion and reduces the potential ordering biases commonly observed in models pre-trained on tabular
data (Yang et al., 2022). For the cell replacement (CR) and row addition (RA) perturbations, where
extraneous information is explicitly added to the table, the drop in performance suffered by CAB-
INET is significantly less compared to the baselines owing to the superior ability of CABINET to
identify relevant information. For instance, in the case of WikiTQ, the relative drop in performance
for RA is ≈ 19% for OmniTab, almost 40% higher than CABINET (≈ 11.5%). This consistent
trend holds for FeTaQA and WikiSQL datasets as well.
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Figure 3: Relative performance drop (%) with perturbations (RA - Row Addition, RP - Row Per-
mutation, CP - Column Permutation, CR - Cell Replacement). We compare CABINET (green) with
OmniTab (red) on WikiTQ and FeTaQA ; and against ReasTAP (red) on WikiSQL. CABINET is
more robust to addition of noise to table and shuffling of row and column ordering.

Ac
cu

ra
cy

20
30
40
50
60
70
80

	0-1
00	

100
-20

0	

	20
0-3

00	

300
-40

0	

400
-50

0	
500

+	

OmniTab
CABINET

-18.89-11.46-7.85-4.42-4.20-1.99-10.32-4.83-6.57-2.15-1.14 -1.07ReasTAP
CABINET

7275 67
73

63
70

53
57

40
47

28
38

OmniTAB
CABINET

enter	your	text	here
enter	your	text	here

enter	your	text	here
enter	your	text	here

(a) WikiTQ

S-
BL

EU

10

20

30

40

50

0-4
0		

40-
80	

	

80-
120

		

120
-16

0		

160
-20

0		
200

+		

OmniTab
CABINET

-18.89
-11.46-7.85-4.42-4.20-1.99

-10.32-4.83-6.57-2.15-1.14 -1.07ReasTAP
CABINET

72
75

67
73

63
70

57

OmniTAB
CABINET

enter	your	text	here
enter	your	text	here

enter	your	text	here
enter	your	text	here

37
41

37
41

38
42

23

34

15

36 36

18

OmniTab
CABINET

enter	your	text	here
enter	your	text	here

enter	your	text	here
enter	your	text	here

(b) FeTaQA

Ac
cu
ra
cy

60

70

80

90

0-1
00	

	

100
-20

0		

200
-30

0		

300
-40

0		

400
-50

0		
500

+		

OmniTab
CABINET

-18.89-11.46-7.85-4.42-4.20-1.99-10.32-4.83-6.57-2.15-1.14-1.07ReasTAP
CABINET

89
91

8988

63

90

57

ReasTAP
CABINETenter	your	text	here

enter	your	text	here

374137413842233415
3636
18

OmniTab
CABINET

enter	your	text	here
enter	your	text	hereenter	your	text	here
enter	your	text	here

88
85

86

76
82

70

79

enter	your	text	here
enter	your	text	here

(c) WikiSQL

Figure 4: Variation in performance with table size (# cells). We compare CABINET (green) with
OmniTab (red) on WikiTQ (left) and FeTaQA (middle), and against ReasTAP (red) for WikiSQL
(right). It can be seen that CABINET performs much better than the baselines on larger tables.

4.3 IMPACT OF TABLE SIZE ON PERFORMANCE

We now study how CABINET performs with tables of different sizes. Tables typically comprise a
large amount of data, so the entire information is usually not required to answer a given question
and acts as distracting information (Neeraja et al., 2021). This noise or irrelevant data poses a severe
challenge for table understanding models and leads to poor generalization for larger tables (Kumar
et al., 2023; Chen, 2023). We consider the number of cells in the table as a proxy for its size and bin
all the questions in the three datasets into six categories based on the number of cells (Figure 4) and
compare the performance of CABINET with dataset-specific best-performing baseline. We note that
for all the datasets, while model performance drops with increasing table size, CABINET consis-
tently and significantly outperforms the baseline methods across all table size categories. Moreover,
the differences become starker for larger tables. For instance, for the largest tables in FeTaQA, CAB-
INET achieves double the S-BLEU scores compared to OmniTab (36 vs. 18). Similarly, for the other
two datasets, CABINET achieves significantly high performance for the largest tables (> 500 cells)
compared to the baselines – accuracy of 38 vs. OmniTab’s 28 for WikiTQ and 79 vs. ReasTAP’s
70 for WikiSQL. These empirical observations provide further evidence for CABINET’s ability to
identify relevant content, making the QA LLM relatively robust to table size.

4.4 DISCUSSION ON THE IMPACT OF DIFFERENT DESIGN CHOICES FOR CABINET

Effect of Clustering Table Tokens: We study the impact of clustering the table tokens using their
latent representations (discussed in Section 3.1). To do so, we toggle the clustering loss (Lclu),
cluster centroids separation loss (Lsep), and score sparsification loss (Lsparse) by setting their weight
(λclu, λsep, λsparse) to 0 or 1. For this study, we only use unsupervised relevance scorer by turning
off weakly supervised cell predictor to eliminate other influencing factors. Results are summarized
in Table 4 where we can observe that applying all three losses yields the best performance (row
6). Specifically, for WikiSQL, clustering improves performance when score sparsification loss is
applied (row 4 vs. row 3) which is due to the fact that sparsification enables categorizing scores
into low and high. For WikiTQ and FeTaQA, adding the cluster centroids separation loss further
increases the efficacy of clustering and sparsification yielding the best results.

Combining Unsupervised Relevance Scorer with Cell Predictor: We vary the relative importance
given to relevance score predicted by unsupervised relevance scorer and weakly-supervised cell pre-
dictor by varying λuns and λcell in Eq. 13. Table 5 shows that combining the two modules yields
much better accuracy for WikiTQ and FeTaQA compared to just using unsupervised relevance scorer
(row 1 vs. row 2). This highlights that the weakly-supervised cell predictor complements unsuper-
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Table 4: Effect of applying clustering (Lclu),
centroid separation (Lsep) and relevance score
sparsification loss (Lsparse). Clustering ta-
ble tokens by enforcing sparsity in relevance
scores and distance between cluster centroids
improves performance.

Lclu Lsep Lsparse WikiTQ FeTaQA WikiSQL

✗ ✗ ✗ 60.8 35.1 86.2
✗ ✗ ✓ 60.9 35.1 86.3
✓ ✗ ✗ 62.7 35.0 88.9
✓ ✗ ✓ 61.0 35.0 89.5
✓ ✓ ✗ 61.0 35.1 89.1
✓ ✓ ✓ 65.6 35.8 89.3

Table 5: Impact of combining unsupervised
relevance score (weight λuns) and weakly-
supervised cell-based relevance score (weight
λcell). Fusing the relevance from both compo-
nents gives optimal performance.

λuns λcell WikiTQ FeTaQA, WikiSQL

1 0 65.6 35.8 89.2
0.7 0.3 69.1 40.5 89.2
0.5 0.5 68.6 40.5 88.9
0.3 0.7 67.0 38.9 88.8
0 1 37.6 24.2 34.1

Question:
What is the total number of awards (nominations

and wins) for two and a half men?

Unsupervised
 Relevance

Scorer

Relevant Cell
Predictor

won || golden icon award best actor -
comedy series || two and a half men

We project the latent representation of
each table token ( ) into 2D space

through t-SNE. Tokens with relevance
score greater than the average score

are shown in red while others are
shown in blue.

Upon verification, it is found that red
points correspond to table highlighted
content above. Also, it can be seen that
the table tokens get grouped into two

regions indicating the benefit of
clustering tokens in latent space. 

 
year result award film

… … … …

1989 won bronze wrangler theatrical motion picture young guns

1999 nominated sag award outstanding performance by a cast in... being john malkovich

1999 nominated online film critics society award for best cast being john malkovich

2001 nominated alma award outstanding actor in a television s... spin city

2002 won golden globe award best performance by an acto... spin city

2002 nominated kids' choice awards favorite television actor two and a half men

2006 won golden icon award best actor - comedy series two and a half men

2006 nominated emmy award for outstanding lead actor - comedy... two and a half men

2006 nominated golden globe award for best actor – television... two and a half men

… … … …

Figure 5: Visualisation depicting that Unsupervised Relevance Scorer (URS) assigns higher score to
table parts relevant to the question (rows where “two and a half men” either won or got nominated for
an award). Further, the weakly-supervised parsing statement based relevant cell predictor identifies
the cells for the row missed by URS (year 2006, golden icon award best actor - comedy series)

vised scorer by identifying further relevant table content (Figure 5 depicts qualitative visualisation
for the same). For WikiSQL, same performance is observed with and without the cell predictor. Fur-
ther it is observed that using only the cell predictor (last row) achieves significantly low performance
due to the fact that the number of cells highlighted by the cell predictor is much lesser resulting in
assigning a score of zero to most table content in cases where it misses to identify important cells.

We show CABINET can be used with TAPEX backbone (instead of OmniTab) to improve it’s perfor-
mance showing generality of our framework (Appendix A.7). We show that giving parsing statement
as input to QA LLM, replacing URS with BERT based similarity metric for relevance scoring, and
using question directly instead of parsing statement to generate highlighted cells gives sub-optimal
performance compared to CABINET, justifying our design choice (Appendix A.8). Appendix A.10
shows case study depicting how clustering losses interact to yield improvements. Appendix A.11
shows that CABINET can be used to improve other NLP tasks like reading comprehension.

5 CONCLUSIONS

We studied the problem of question-answering over tables and focused on identifying the relevant
portions of the table to derive the answer. Generally, only a small subset of the tabular data is
required to answer the question, and owing to the vulnerability of LLMs to noise, the extraneous
information leads to sub-optimal performance. This problem is further exacerbated in the case
of large tables. Our proposed framework, CABINET addresses this issue by weighing the table
content based on its relevance to the question, identifying the relevant rows and columns, and high-
lighting the content of the relevant cells. CABINET establishes new SoTA on three commonly used
challenging benchmarks, outperforming table-specific models, as well as methods that employ in-
context learning with much larger GPT-3 scale models. We show empirically that CABINET is more
robust to noise and generalizes well for larger tables, indicating its efficacy in mitigating noise and
overcoming table structural biases typically learned during training.
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6 ETHICS AND REPRODUCIBILITY STATEMENT

We use publicly available datasets and LLMs (which are commonly used) to conduct the study in
our work. The only data that we annotate is ∼ 300 samples of table-question pairs with parsing
statement describing rows and columns relevant to question. The parsing statement were written
keeping in mind the safety and ethics guidelines without any potential concerns. To encourage
reproducibility, we release our code and datasets (including manually written parsing statements) at
this link. We describe the details of the datasets in § 4 (under ‘Datasets and Evaluation Metrics’)
and the LLMs used in § 4 (under ‘Implementation Details’) and § 3.2. Further, we provide the
implementation details of our method in § 4 (under ‘Implementation Details’) and discuss baselines
used for comparison in § 4.1. Finally, we elaborate further details of our method in Appendix -
Trainable clustering over latent representation of table tokens (A.1), Details of parsing statement
annotation procedure (A.2) and Further details on table perturbation procedure (A.5).
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A APPENDIX

A.1 CLUSTERING LATENT VECTORS

As discussed in Section 3.1, the table tokens are clustered in a trainable manner (van der Maaten
& Hinton, 2008) using their latent representations encoded through Unsupervised Relevance Scorer
(URS). We discuss the details of the trainable clustering algorithm.

Formally, the probability of latent vector hp corresponding to the pth token belonging to jth cluster
is given by Equation 15

qpj =
(1 + ||hp − µclu

j ||2/α)−α+1
2∑

j′ (1 + ||hp − µclu
j′

||2/α)−α+1
2

(15)

Here, hp is the contextualised latent vector of the pth token obtained using TEURS , α is the degrees
of freedom of the Student’s t distribution, µclu

j is the centroid of the jth cluster and j ∈ {0, 1}. Here,
µclu
0 = µclu

relevant and µclu
1 = µclu

irrelevant. Moreover, the cluster centroids are learnable.

The clustering process is iteratively refined by enforcing KL divergence minimization between the
probability distribution for each token and a pseudo distribution generated using qpj . Mathemati-
cally, the clustering loss is

Lclu =
1

B

∑
b

KL(Z||Q) =
1

B

∑
b

∑
p

∑
j

zpj log
zpj
qpj

(16)

where b ∈ {1, 2, · · · , B}, B is the batch size, and Z is the target distribution. A naive approach to
model Z would be setting each zp to a delta distribution (to the nearest centroid) for representations
above a confidence threshold and ignoring the rest. However, because qp are soft assignments, it is
more natural and flexible to use softer probabilistic targets. So, we model zpj with Equation 17

zpj =
q2pj/fpj∑
j′ q

2
pj′/fpj′

, where fpj =
∑
p

qpj is the soft cluster frequency (17)

A.2 DETAILS OF ANNOTATING TABLE PARSING STATEMENT

As discussed in Section 3.2, we train a parsing statement generator that generates a criteria de-
scribing which rows and columns contain information relevant to the table. The generated parsing
statement is used to identify corresponding cells which are then combined with the relevant ta-
ble part detected by the unsupervised relevance scorer through relevance scoring. To bootstrap the
training of the parsing statement generator, we manually annotate ∼300 question-table pairs from
the WikiTQ dataset with parsing statement. To select samples to be annotated, we sample questions
from WikiTQ as it consists of a diverse and complex set of reasoning questions over tables, thereby
sampling questions from this dataset allows us to select a set that is representative of questions in
other datasets for Table QA.

To select a diverse set of questions from WikiTQ for annotation, we group questions into 5 clus-
ters by clustering their representations such that we randomly sample an equal number of questions
from each cluster. Specifically, we use an encoder-only model DeBERTa-V2 to encode the ques-
tions. Since the questions pertain to tables, we embed questions in train split of WikiTQ through an
LLM possessing table understanding - DeBERTaV2 (He et al., 2023) initialized with weights tuned
through table understanding task proposed by PASTA (Gu et al., 2022).

Once the questions are clustered, we sample a small subset (2.5%) from each cluster to manually
annotate with the parsing statement. Some examples of questions, the parsing statement and the
corresponding answer from each cluster can be seen in Table 6.
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Table 6: Examples of parsing statement annotated manually for questions sampled from each cluster.

Cluster Question Answer Parsing Statement

1 how many episodes had a
nightly rank of 11?

3 to find number of episodes with nightly rank
of 11, we need to look at the column named
”nightly rank” and count number of times the
value 11 occurs.

how many games during
this season were aired on
cbs?

3 to find number of games aired on cbs, we need
to look at the column tv and retrieve the rows
having value cbs. from table, there are 3 oc-
curences of cbs in tv column.

2 which season was more
successful, 1995/96 or
1996/97?

1996/97 to compare between success of the seasons
1995/96 or 1996/97, we need to look at the final
place in both the seasons. from table, place cor-
responding to season 1995/96 is 19th, which is
bad compared to the place 1st corresponding to
season 1996/1997.

did john howard serve as
prime minister for more or
less time than julia gillard?

more for answering this question, we need to look at
total time in office for both john howard and
julia gillard. for prime minister john howard
total time in office is 4,284 days which more
than 1,099 days i.e., total time in office for julia
gillard.

3 which party won the top
place in the election?

Australian
Labor Party

to find party with top place in the election, we
need to compare the seats of each party. from
table, australian labor party has the maximum
number of seats.

which role is the most com-
mon from all the titles?

Salesman most common title refers to title which occurs
the most number of times. from table, in the
column role, the value salesman occurs the most
number of times.

4 what publication is listed
before play magazine?

Nintendo
Power

from table, in the column publication, the row
before play magazine has the value nintendo
power

what college has the top en-
rollment?

Cornell Uni-
versity

to find the top enrollment, we need to find
college with maximum number of enrollment.
from table, the maximum value of enrollment
column is 20,400 corresponding to the institu-
tion cornell university.

5 what is the difference be-
tween the caps of henry
carlsson and borge leander?

1 to find difference of caps between henry carl-
son and borge leander, we need to first obtain
the caps values. from table, caps of name henry
carlson i.e., henry ”garvis” carlson is 5 and caps
of borje leander is 4. so difference is 1.

what was the difference in
time between the 8th place
finisher and the first place
finisher?

+17.32 to find difference between 8th place finisher and
first place finisher, we need to look at the dif-
ference column corresponding to rank 8 in the
table. from table, the value is +17.32.
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A.3 ADDITIONAL RELATED WORK

Graphs have been used to capture table structure and similarity between table-question samples
across the dataset (Iyer et al., 2023). TANDA (Garg et al., 2020) performs the task of answer
sentence selection (AS2) for a given question by fine-tuning the transformer-based model to select
the right candidate from answer candidates. They first fine-tune an LLM on the AS2 task followed
by adapting it to a specific domain. Zhang et al. (2021) built over TANDA by considering remaining
answer candidates as evidence while deciding the appropriateness of a particular answer candidate.
This was further extended by Iyer et al. (2023) who modeled the relation between other similar
question samples and corresponding answers in the dataset with the given question and answer
candidates using a graph. In our current work, we mainly focussed on identifying relevant parts
of the table useful to derive the answer to the question, however, a similar method can also be
explored as future work that utilizes a graph to capture the table structure (positioning of different
cells in the table) for a given sample and also model the similarity between multiple question-table
pairs across the dataset. Another direction focuses on applying semantic parsing over the input text
(question) and table to generate a logical form (such as SQL) which when executed fetches relevant
information (Yu et al., 2021).

A.4 PERFORMANCE ON NUMERIC VS NON-NUMERIC & RETRIEVAL VS
AGGREGATION-BASED ANSWERS

We analyse the performance of CABINET on generating answers of distinct types by categorizing
them into four categories: numeric, non-numeric, retrieval, and non-retrieval (aggregation). This
meticulous categorization allows us to gain a nuanced understanding of how CABINET performs
against baselines for table-question pair that require different types of answers to be generated.
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Figure 6: Performance comparison between CABINET with OmniTab on WikiTQ and with
ReasTAP on WikiSQL when test samples are categorised based on the answer type - retrieval, non-
retrieval (aggregation), numeric and non-numeric. We see CABINET provides significantly better
performance on all answer type categories. It’s noteworthy to mention that this analysis excludes
FeTaQA, as it comprises of free-form long answers, hence categorization is not possible.

Figure 6 summarises the results. For both WikiTQ and WikiSQL, our method consistently demon-
strates better performance for all four categories. We see an improvement of around 8 − 10% for
WikiTQ and around 3− 5% for WikiSQL for numeric and non-retrieval type answers, thereby high-
lighting the improved aggregation capabilities using CABINET.

A.5 DETAILS OF TABLE PERTURBATION

In Section 4.2, we discussed the impact of perturbing the tables on performance. We discuss the
detailed steps that we followed to inject the 4 types of perturbation separately in the tables. For
Row Addition, we create sets of table with same number of columns. Further, based on the number
of cells m in a table, we insert n rows from another table with the same number of columns at
a random position. The exact scheme followed is, 1) n = 1 if m ≤ 150, 2) n = 2 if m >
150 & m ≤ 300, 3) n = 5 if m > 300 & m ≤ 450 and 4) n = 8 if m > 450. For row
permutation and column permnutation, we randomly permute the rows and columns respectively
without any specific conditioning over the number of rows and columns present in the table. For
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cell replacement, we divide the dataset again into the 4 buckets same as that of row addition and
randomly replace 0.02%, 0.05%,0.1% and 0.12% of the total number of cells in the table.

A.6 ADDITIONAL IMPLEMENTATION DETAILS

As stated in section 4 (under implementation details) of the main paper, we employ the OmniTab
backbone built over BART-Large architecture for the encoder (TEQA) and decoder (TDQA) of the
QA LLM. Further, URS encoder (TEURS) is initialized with the architecture and weights of QA
LLM encoder (TEQA), though, they do not share weights during training. However, the embedding
layers EmbeddingURS and EmbeddingQA share weights. The hidden dimension d of TEURS

is 1024, similar to that of both TEQA and TDQA. We train CABINET and other baselines for 30
epochs on an effective batch size (BS) of 128 using 8 80 GB A100 GPUs (BS of 8/GPU with gradient
accumulation 2) using learning rate of 1e−5 with Cosine Annealing through AdamW optimizer. We
carry out hyper-parameter tuning based on the validation set to come up with the optimal values of
learning rate (1e−5), scheduler (Cosine Annealing), batch size (8), gradient accumulation steps (2)
and the optimizer (AdamW). We leverage text pre-trained Flan T5-xl as the backbone for Parsing
Statement Generator (PSG) and the Cell Highlighter LLM. The Parsing Statement Generator is
trained for 50 epochs on the 300 manually annotated question-table-parsing statement triplets with
hyper-parameters setting same as that of CABINET, however the only difference being the effective
batch size of 16 (BS of 2/GPU with 8 GPUs without gradient accumulation). On a similar note,
the Cell Highlighter LLM is trained for 3 epochs on the ToTTo dataset to generate highlighted
cells given the table and a natural language statement describing a subpart of the table as the input.
During the inference phase of generating answer, parsing statements and highlighted cells, we use
beam search decoding with a beam size of 3.

A.7 CAN CABINET BE USED WITH OTHER QA LLM BACKBONES TO IMPROVE
PERFORMANCE?

To verify the generality of CABINET as a framework that can be used with any encoder-decoder
style Table QA method, we use TAPEX (Liu et al., 2022) as the backbone to initialise the unsuper-
vised contextual relevance scorer (instead of OmniTab). TAPEX is also used as the underlying QA
LLM. Table 7 summarises the results where it can be seen that the performance improves on all the
three datasets. This highlights the generality of CABINET in improving performance.

Table 7: Performance improvement achieved through CABINET over TAPEX by using TAPEX as
the underlying QA LLM (instead of OmniTab). Further, the encoder of TAPEX is used to initialise
the unsupervised relevance scorer (instead of OmniTab). This highlights the generality of CABINET
as a framework for improving performance.

Method WikiTQ FeTaQA WikiSQL
TAPEX 55.5 34.6 86.4

CABINET w TAPEX Backbone 62.7 37.8 87.3

A.8 ABLATIONS ON ALTERNATE DESIGN CHOICES FOR CABINET

We discuss several explorations on alternate ways of utlising the different components of CABINET
framework. The results pertaining to those can be seen in table 8.

1. Instead of using the generated parsing statement to highlight cells for our cell-based scoring
mechanism, we feed the parsing statement in the input to the QA LLM along with the ques-
tion and table in order to verify if parsing statement alone can improve the QA performance
when directly used as an instruction to the model. We use the unsupervised relevance scorer
along with the QA LLM. Table 8 summarises the results. It can be seen that using the pars-
ing statement as input to the QA model gives significantly sub-optimal performance (row 2
vs row 7 in Table 8) compared to highlighting cells to obtain the corresponding scores that
can be combined with the relevance scores predicted by the unsupervised relevance scorer.
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2. As an alternate to URS, we explore similarity between semantic embeddings of question
and table row for estimating relevance of tokens. Precisely, to perform this ablation, we
encode the question and each row in the table with BERT. Subsequently, we compute the
similarity score between the encoding of each table row and question encoding through
cosine similarity. Each token in a given table row is then assigned a relevance score equal
to the cosine similarity between the row and question encodings. This relevance score is
then used (instead of URS) with CABINET. Clearly from 8, replacing URS with BERT-
based similarity results in sub-optimal performance when compared against CABINET
with URS and without cell highlighter (row 3 vs row 6), hence validating the importance
URS.

3. Further, we experiment with another configuration where the weakly supervised cell high-
lighter is used with off the shelf BERT based encoding similarity for relevance scoring and
compare the performance with CABINET (with URS and cell highlighter). Here, a similar
trend is observed where it is seen that CABINET with URS and cell highlighter performs
much better than CABINET with BERT based relevance scoring and cell highlighter (row
4 vs row 7).

4. Utilising the question directly to generate the highlighted cells, it can be observed that
there is a significant decline in performance for the task of TableQA compared to using
the parsing statement as input to the cell highlighter to generate the relevant cells which is
then used to determine relevance score for table tokens for performing QA (row 5 vs row
7). This indicates that the parsing statement describing the criteria of rows and columns
relevant to the question is essential to achieve the performance gains.

Table 8: Performance analysis for different design choices explored over CABINET. OmniTab as
a baseline (row 1), ablation on using parsing statement as input to QA LLM instead of higlighting
corresponding cells (row 2), leveraging BERT based relevance scoring (row 3 and 4), directly using
question as input to cell higlighter LLM (row 5), produce sub-optimal performance when compared
with CABINET.

Method WikiTQ FeTaQA WikiSQL
OmniTab 63.1 35.9 85.8

CABINET w parsing statement as input to QA model
instead of highlighting corresponding cells 66.2 34.9 85.9

CABINET with BERT based relevance scoring
(as discussed above) without cell highlighter 61.8 34.9 83.7

CABINET with BERT based relevance scoring
(as discussed above) with cell highlighter 64.5 36.7 85.1

CABINET with question as input to cell highlighter 63.7 34.4 85.7

CABINET with URS only and without cell highlighter 65.6 35.8 89.3

CABINET 69.1 40.5 89.5

A.9 DATASET STATISTICS

In this section, we tabulate the number of samples in the training, validation and test set of all the
three datasets in table 9.

A.10 CASE STUDY ON HOW CLUSTERING LOSSES INTERACT TO YIELD IMPROVEMENTS

We now discuss a case study depicting how the loss functions interact to yield improvements:
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Table 9: Dataset Statistics

Dataset # Train samples # Validation samples # Test samples
WikiTQ 11321 2831 4344

WikiSQL 56355 8421 15878
FeTaQA 7326 1001 2003

Consider the example in figure 2 in the paper pdf - we plot the histogram of relevance score assigned
to table tokens during inference for this example for 4 differently trained variants of CABINET
- a) URS trained w/o any clustering losses, b) URS trained with clustering loss, c) URS trained
with clustering and cluster mean separation loss, and d) URS trained with clustering, cluster mean
separation and relevance score sparsification loss. The histogram plots depicting count of table
tokens against relevance score assigned during inference for the 4 variants are shown in figure 7, we
summarise our observations below:

1. From the sub-plot figure 7(a), it can be seen that when URS is trained without any of the
three losses, the relevance score for most of the tokens is in the range 0.7 - 0.9 which
is undesirable since many tokens which are irrelevant are also assigned a decently high
relevance score which is roughly equivalent to passing the table to the QA LLM as it is.

2. When URS is trained with clustering loss (sub-plot figure 7(b)), the frequency distribution
of relevance scores becomes bi-modal with the majority of tokens corresponding to the
first mode assigned a relevance score in the range 0.6-0.7 and for the second mode around
0.8-0.9. This shows that clustering loss trains the URS in structuring the latent space rep-
resentation into two categories, however, still there are many tokens with a relevance score
around 0.7 between the two modes which means that many irrelevant tokens are still as-
signed decently high relevance.

3. When URS is trained with clustering and cluster mean separation loss (figure 7(c)), the
first mode corresponding to a relatively lower relevance score is observed around 0.55-0.65
while the second mode corresponding to a higher relevance score is observed around 0.8-
0.9. This shows that URS trained with cluster mean separation loss amplifies the effect
of clustering loss by pushing more tokens into lower relevance category resulting in more
tokens assigned lower relevance around the first mode. Also note that the number of tokens
in the range 0.7-0.8 also reduces owing to the increased gap between token representations
belonging to two categories.

4. Finally when URS is additionally trained with relevance score sparsification loss (fig-
ure 7(d)), we observe that magnitude of relevance score assigned to tokens in low relevance
score cluster decreases further which is useful since irrelevant tokens gets suppressed fur-
ther and the downstream QA LLM can focus better on relevant parts. Further, more irrele-
vant tokens are assigned a low relevance score. This can be seen in figure 7(d) where more
tokens are assigned relevance score in the range 0.45-0.6.

Further, since the URS is trained end-to-end with QA LLM differentiably, tokens in higher score
category are likely to be relevant in order to enable the QA LLM to be able to generate the correct
answer. Additionally, in figure 8, we visualise the t-SNE plots (corresponding to the same example
in figure 2 as discussed above) of the latent representation of table tokens encoded during inference
by URS corresponding to the 4 variants trained differently - a) URS trained w/o any clustering losses
(figure 8(a)), b) URS trained with clustering loss (figure 8(b)), c) URS trained with clustering and
cluster mean separation loss (figure 8(c)), and d) URS trained with clustering, cluster mean separa-
tion and relevance score sparsification losses (figure 8(d)). The table tokens having relevance score
greater than the average relevance score (assigned to table tokens in this example) are depicted as
relevant tokens (in red) while those tokens having score less than the average relevance are depicted
as non-relevant (in blue). It can be seen that URS model trained with clustering loss, cluster means
separation loss and relevance score sparsification loss is better able to segregate the table tokens into
two categories and assign lower relevance to tokens in one category while assigning higher rele-
vance to tokens in the second category. Further, since the URS is trained end-to-end with QA LLM
differentiably, tokens in higher score category are likely to be relevant in order to enable the QA
LLM to be able to generate the correct answer.
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(a) Histogram plot of count of table tokens against
relevance score assigned during inference by URS
trained without any clustering losses.

(b) Histogram plot of count of table tokens against
relevance score assigned during inference by URS
trained with clustering loss.

(c) Histogram plot of count of table tokens against
relevance score assigned during inference by URS
trained with clustering loss and clusters mean sepa-
ration loss.

(d) Histogram plot of count of table tokens against
relevance score assigned during inference by URS
trained with clustering loss, clusters mean separation
loss and relevance score sparsification loss.

Figure 7: Histogram plots of relevance score assigned during inference to table tokens corresponding to the
example in the figure 2 in the main paper. The 4 plots correspond to variants of CABINET trained with
different combination of loss functions for URS - a) URS trained w/o any clustering losses; b) URS trained
with clustering loss; c) URS trained with clustering and cluster mean separation loss; and d) URS trained with
clustering, cluster mean separation and relevance score sparsification loss. It can be seen that the three losses
acts in a complementary manner to enable URS to segregate table tokens better into two categories and assign
low relevance to tokens in one category and a high relevance to tokens in the second category. Further, since
the URS is trained end-to-end with QA LLM differentiably, tokens in higher score category are likely to be
relevant in order to enable the QA LLM to be able to generate the correct answer.
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(a) t-SNE plot of latent representation of table to-
kens encoded during inference by URS trained with-
out any clustering losses.

(b) t-SNE plot of latent representation of table tokens
encoded during inference by URS trained with clus-
tering loss only.

(c) t-SNE plot of latent representation of table tokens
encoded during inference by URS trained with clus-
tering loss and cluster means separation loss.

(d) t-SNE plot of latent representation of table tokens
encoded during inference by URS trained with clus-
tering loss, cluster means separation and relevance
score sparsification loss.

Figure 8: t-SNE plots (corresponding to the same example as in figure 2) of the latent representation of table
tokens encoded during inference by URS corresponding to the 4 variants trained differently - a) URS trained
w/o any clustering losses (sub-plot figure 8(a)), b) URS trained with clustering loss only (sub-plot figure 8(b)),
c) URS trained with clustering and cluster mean separation loss (sub-plot figure 8(c)), and d) URS trained
with clustering, cluster mean separation and relevance score sparsification loss (sub-plot figure 8(d)). The
table tokens having relevance score greater than the average relevance score (assigned to table tokens in this
example) are depicted as relevant tokens (in red) while those tokens having score less than the average relevance
are depicted as non-relevant (in blue). It can be seen that URS model trained with clustering loss, cluster means
separation loss and relevance score sparsification loss is better able to segregate the table tokens into two
categories and assign lower relevance to tokens in one category while assigning higher relevance to tokens in
the second category. Further, since the URS is trained end-to-end with QA LLM differentiably, tokens in higher
score category are likely to be relevant in order to enable the QA LLM to be able to generate the correct answer.
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A.11 CAN CABINET BE USED FOR IMPROVING OTHER NLP TASKS LIKE READING
COMPREHENSION?

We employ CABINET on the reading comprehension task, where given a paragraph and a corre-
sponding question, LLMs need to answer the question based on the paragraph. Drawing an analogy
from the Table QA task, certain tokens in the paragraph are more relevant for answering the given
question. To achieve this, we employ the URS component of CABINET on top of pre-trained
BART-Large. We experiment with a commonly used benchmark SQuAD-v2 and report accuracy on
the test set (Table 10), hence validating the task-level generality of CABINET. It can be seen that
using CABINET helps in improving the performance of vanilla BART-large LLM for the reading
comprehension task.

Table 10: Performance improvement achieved upon employing URS of CABINET over BART for
the Reading Comprehension task on SQuAD-v2

Method SQuAD-v2 Test Accuracy
BART-large 42.9

URS of CABINET + BART-large 48.0
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