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Abstract

Recently, there has been a growing trend of uti-001
lizing Large Language Model (LLM) to eval-002
uate the quality of other LLMs. Many studies003
have employed proprietary close-source mod-004
els, especially GPT4, as the evaluator. Alterna-005
tively, other works have fine-tuned judge mod-006
els based on open-source LLMs as the evalua-007
tor. In this study, we conduct an empirical study008
of different judge models on their evaluation009
capability. Our findings indicate that although010
the fine-tuned judge models achieve high ac-011
curacy on in-domain test sets, even surpassing012
GPT4, they are inherently task-specific clas-013
sifiers, and their generalizability and fairness014
severely underperform GPT4.015

1 Introduction016

Recently, the evaluation for Large-scale Language017

Models (LLMs) has drawn considerate attention018

of research community (Liang et al., 2022; Chang019

et al., 2023). As the capabilities of LLMs continue020

to develop across various tasks, it is essential to021

evaluate them from a comprehensive perspective022

(Qin et al., 2023). However, traditional evaluation023

metrics for generative models, such as BLEU (Pa-024

pineni et al., 2002) and ROUGE (Lin, 2004), only025

capture limited aspects of a model’s performance.026

Some research has proposed LLM-as-a-Judge027

(Li et al., 2023b; Zheng et al., 2023), namley utiliz-028

ing proprietary LLMs, especially GPT4 (Achiam029

et al., 2023), to evaluate the LLM’s response. By030

defining evaluation schemes in the prompt template,031

LLMs can leverage their instruction-following abil-032

ity to provide reliable evaluation. For example,033

Li et al. (2023b) constructed a test set containing034

805 questions and used the win rate compared with035

text-davinci-003 as the evaluation result, which is036

determined by GPT4. Zheng et al. (2023) devel-037

oped 80 multi-round test questions covering eight038

common areas, and then automatically scored the039

model’s answers using GPT4. Their results reveal040

Figure 1: The general training and inference procedure
of fine-tuned judge models.

that strong LLM-based evaluators can achieve a 041

high agreement rate among human experts, estab- 042

lishing a foundation for LLM-as-a-Judge. 043

However, relying on external API for evaluation 044

may introduce consideration about privacy leakage, 045

and the opacity of API models also challenges the 046

evaluation reproducibility. To address these issues, 047

several fine-tuned judge models are proposed, re- 048

lying on open-source foundation models and data 049

constructed from either GPT4 or human annota- 050

tion, as shown in Figure 1. For instance, PandaLM 051

(Wang et al., 2024) constructs data based on Al- 052

paca instructions and GPT3.5 annotation, and then 053

fine-tunes LLaMA-7B (Touvron et al., 2023) as a 054

judge model. JudgeLM (Zhu et al., 2023b) con- 055

structs data from GPT4 annotations and fine-tunes 056

a scalable judge model. Auto-J (Li et al., 2023a) 057

constructs judgement data upon multiple scenarios 058

to train a generative judge model, which can pro- 059

vide both judgement and critic. Prometheus (Kim 060

et al., 2023) defines thousands of evaluation criteria 061

and finetunes a fine-grained judge model. 062

In this study, we make an empirical study of 063

the evaluation capabilities of judge models. We 064

conduct extrapolated evaluations among available 065
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Model Foundation Instruction Response Annotation Evaluation Scheme Testset

JudgeLM
(Zhu et al., 2023b)

Vicuna Instruct Datasets
(Alpaca-GPT4,
Dolly-15K...)

11 models
(Alpaca,Vicuna...)

GPT4 Pairwise Grading GPT4

PandaLM
(Wang et al., 2024)

LLaMA Alpaca 52K 5 models
(LLaMA, Bloom...)

GPT3.5 Pairwise Selection Human

Auto-J
(Li et al., 2023a)

LLaMA2-chat Preference Datasets
(Chatbot Arena,
OpenAI WebGPT...)

Preference Datasets Human Pairwise Selection
Pointwise Grading

Human

Prometheus
(Kim et al., 2023)

LLaMA2-chat GPT4 Generated GPT4 Generated GPT4 Pointwise Grading GPT4

Table 1: Detailed statistics of the four fine-tuned judge models, which is the foundation of our cross-validation. All
the four models are open-source, with their training and test data also publicly released.

judge models and meta-evaluation testsets. Experi-066

ment results indicate that while the fine-tuned judge067

models achieve superior accuracy on their respec-068

tive in-domain test sets, they still exhibit limitations069

in the following aspects:070

• The fine-tuned judge model is inherently a071

classification model;072

• The fine-tuned judge model is overfitted to073

specific evaluation schemes;074

• The fine-tuned judge model is biased towards075

superficial quality;076

To draw a conclusion, the fine-tuned judge mod-077

els should be used only in similar evaluation sce-078

narios, and can not serve as a general substitution079

for GPT4 in terms of LLM evaluation.080

2 How Far can Fine-tuned Judges Go?081

The typical process for finetuning a judge model082

consists of the following three steps:083

Step 1: Data Collection. The training data gen-084

erally comprises three components: instructions,085

responses and evaluations. The instructions are086

typically obtained from instruction datasets, with087

the responses generated by various representative088

models, and the evaluations can be derived from089

either GPT4 or human annotation;090

Step 2: Prompt Designing. The prompt template091

can be structured in various ways depending on092

the evaluation scheme, such as pairwise selection093

(which aims to select the better one from a pair of094

responses), pointwise grading (which aims to score095

a single reference), etc.096

Step 3: Model Fine-tuning. Using the designed097

prompt and collected data, the training process of098

the judge model typically follows the instruction 099

fine-tuning paradigm (Ouyang et al., 2022). The 100

model is fed with a instruction alongside answer(s) 101

for yielding output comprising evaluation results. 102

While current judge models mostly self-claim 103

exceeding the evaluation capability of GPT4, in this 104

work, we make an extrapolated validation based on 105

four representative works as listed in Table 1. Our 106

findings are presented in the following sections. 107

2.1 Inherently a Classification Model 108

If we do not consider critic generation (which is 109

seldom used in system-level evaluation), then LLM 110

evaluation is inherently a classification (or regres- 111

sion) task. While current judge models are all 112

trained in a generation-style, in this study, we train 113

four classification (regression) models based the 114

four groups of data in Table 11. We also train four 115

classification models based on DeBERTaV3-large 116

(He et al., 2023) on the same data, which is 20 117

times smaller than the 7B version of LLaMA. 118

As shown in Table 2, the classification model 119

performs equally well as the generation model for 120

both pairwise selection and pointwise grading. The 121

powerful generation ability of LLMs brings no gain 122

to the evaluation accuracy, as they are trained on 123

the same data for the same objective. Moreover, 124

the DeBERTa-based evaluator achieves compara- 125

ble performance with the LLM-based evaluators2, 126

which might be due to the encoder-only architec- 127

ture is more suitable for classification. 128

We also analyze the correlation between differ- 129

ent predictions made by different evaluators. As 130

1The training settings and prompt templates are presented
in Appendix A.1 due to space limitation.

2The only exception is on Auto-J-test, which is possibly
due to a large proportion of the test data exceeds 512, which
is the maximum context length of DeBERTa.
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Model Train JudgeLM-test PandaLM-test Auto-J-test Prometheus-test
accuracy F1 accuracy F1 agreement pearson-ind pearson-ood

GPT 3.5 73.83 52.85 62.96 58.20 42.7 0.636 0.563
GPT 4-0613 85.28 76.87 78.68 73.24 56.3 0.742 0.743

Released Models† 79.02 71.87 67.57 57.49 54.6 0.864 0.869
Vicuna-7B generation‡ 82.44 71.77 72.37 60.78 47.6 0.826 0.815
Vicuna-7B classification‡ 82.16 70.07 70.87 60.34 46.8 0.846 0.831
DeBERTa classification‡ 81.30 68.34 72.27 51.75 31.7 0.835 0.813

Table 2: Comparison of evaluators trained with different architectures. Results with † are from evaluating the four
publicly released models on their respective testsets, and results with ‡ are from evaluating models trained by us.
Notice all our LLM-based evaluators are trained from Vicuna-7B (Chiang et al., 2023).

Figure 2: The F1 score between the predictions of dif-
ferent evaluators on JudgeLM testset.

Figure 3: The pearson coefficient between the predic-
tions of different evaluators on Prometheus testset.

shown in Figure 2 and 3, the correlation among131

different classification models is much closer than132

their correlation with GPT4. Although with differ-133

ent architectures, all three models are inherently134

classifiers fitting to the same set of supervision,135

leading to similar evaluation outcomes.136

2.2 Overfitting to Evaluation Scheme137

One of the most appealing attribute of LLMs is138

their generalization ability, enabling them to exe-139

cute various task defined by various instructions140

(Zhu et al., 2023a). Under the case of LLM evalua-141

tion, the instruction can also be formed in various142

schemes: pairwise selection, pointwise grading,143

etc. While different judge models are fine-tuned144

on different schemes, we would like to verify their145

evaluation capability under the scheme defined by 146

others. Therefore, we cross-validate the judge mod- 147

els on each other’s testset3. 148

As shown in Table 3 and 4, all four models per- 149

forms the best on their respective testsets, with 150

results comparable with GPT4. However, if we 151

employ a model on evaluation schemes where it is 152

not trained on4, the evaluation performance would 153

drop by a large margin. On the contrary, GPT4 154

consistently exhibits superior performance across 155

various evaluation schemes. 156

We also validate the judge models on MT-bench 157

(Zheng et al., 2023), which is a multi-turn meta- 158

evaluation dataset. As can be seen in Table 5, while 159

the four models are all trained for single-turn evalu- 160

ation, they underperforms GPT4 on MT-bench by a 161

large margin. This demonstrates that the finetuned 162

judge models are overfitted to their respective eval- 163

uation schemes and lack generalibility. 164

2.3 Biased Towards Superficial Quality 165

Recently, there has been a lot of research about the 166

bias of LLM-based evaluators, namely the evalua- 167

tor would favor more verbose answers, or answers 168

with similar format (Wang et al., 2023; Saito et al., 169

2023). Targeted at this problem, Zeng et al. (2023) 170

proposed LLMBar as a testbed for the fairness of 171

evaluators. It comprises one natural testset (Natu- 172

ral) and four adversarial testsets (Neighbor, Man- 173

ual, GPTOut, GPTInst), and the adversarial testsets 174

consist of paired outputs with a correct answer and 175

a smooth, coherent but inconsistent answer. We 176

evaluate the judge models on LLMBar3, and the 177

results are shown in Table 6. 178

3We applying their publicly released checkpoints with
predefined prompts. For details please refer to Appendix A.2.

4For example, using a pairwise model (such as PandaLM or
JudgeLM) for pointwise grading (such as Promethues testset),
or using a pointwise model (such as Promethues) for pairwise
selection (such as PandaLM or JudgeLM testsets).
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Model JudgeLM-test PandaLM-test Auto-J-test Averageaccuracy F1 accuracy F1 agreement
GPT 3.5 73.83 52.85 62.96 58.20 42.7 59.83

GPT 4-0613 85.28 76.87 78.68 73.24 56.3 73.42
JudgeLM-7B 79.02 71.87 70.97 67.59 46.6 65.53
PandaLM-7B 65.24 47.42 67.57 57.49 40.0 57.61
Auto-J-13B 72.86 57.60 71.47 61.01 54.6 66.31

Prometheus-13B 54.24 50.04 45.25 43.58 47.8 49.10
w/o trans 24.58 23.39 29.03 27.92 16.2 23.26

Table 3: Results of evaluators on pairwise selection. Notice Prometheus can be transformed for pairwise selection by
grading two answers twice and compare the scores, therefore we release both results with and without transformation.

Model Prometheus-test-ind Prometheus-test-ood Averagepearson kendalltau spearman pearson kendalltau spearman
GPT 3.5 0.636 0.536 0.617 0.563 0.453 0.521 0.600

GPT 4-0613 0.742 0.659 0.747 0.743 0.660 0.747 0.743
Prometheus-13B 0.864 0.788 0.863 0.869 0.789 0.869 0.867

JudgeLM-7B 0.649 0.647 0.739 0.610 0.602 0.690 0.630
w/o trans 0.398 0.371 0.416 0.384 0.371 0.419 0.391

PandaLM-7B 0.417 0.368 0.423 0.386 0.333 0.383 0.402
Auto-J-13B 0.614 0.526 0.608 0.591 0.504 0.580 0.603

Table 4: Results of evaluators on pointwise grading. Notice JudgeLM can be transformed for pointwise grading by
adding the reference as the first answer, therefore we release both results with and without transformation.

Model MTBench
accuracy precision recall F1

GPT 4-0613 66.9 63.8 62.2 61.9
JudgeLM-7B 48.7 52.0 49.7 48.7
PandaLM-7B 55.2 52.6 49.4 46.8
Auto-J-13B 51.7 50.2 46.8 43.7

Prometheus-13B 53.2 49.6 48.4 47.1

Table 5: Results of evaluators on multi-turn evaluation.

As can be seen, the fine-tuned judge models are179

severely biased to superficial quality such as for-180

mality or verbosity, while neglecting crucial prop-181

erties such as instruction following, leading to ac-182

curacy even worse than random guess on the adver-183

sarial testsets. On the other hand, GPT4 does not184

over-rely on the superficial features and achieves185

decent accuracy on the testsets. This also veri-186

fies that the fine-tuned judge models are inherently187

classifiers overfitted to the training data, relying on188

spurious statistical features for prediction.189

It deserves noticing that the DeBERTa-based190

evaluator also outperforms the LLM-based evalu-191

ator by a large margin in terms of fairness. This192

inspires us that the bias of LLM-based evaluator193

may come from the casual language modeling pro-194

cess. While the model is trained to generate fluent195

and verbose responses, it also tends to prefer fluent196

and verbose response when employed for evalua-197

Model LLMBar
Natu. Neig. GPTI. GPTO. Manu.

GPT 4-0613 93.5 64.2 76.6 76.6 75.0
JudgeLM-7B 62.0 23.1 26.1 46.8 28.3
PandaLM-7B 59.0 16.5 21.7 42.6 26.1
Auto-J-13B 70.0 20.9 21.7 46.8 23.9

Prometheus-7B 53.0 22.4 17.4 27.7 32.6
DeBERTa 62.0 26.9 42.4 55.3 34.8

Table 6: Accuracy of evaluators on bias evaluation.

tion, even if it is not aligned with the instruction. 198

3 Conclusion 199

In this work, we make an empirical study of judge 200

models for LLM evaluation. As revealed in our 201

experiments, despite achieving superior evaluation 202

performance on their in-domain testset, the fine- 203

tuned judge models underperforms GPT4 in terms 204

of generalibility and fairness by a large margin, 205

which we believe cannot be amended by simply 206

finetuning on more evaluation data. 207

Therefore, it is advisable to exercise caution 208

when leveraging fine-tuned judge models for evalu- 209

ation in real applications, depending on the overlap 210

between the evaluation scenario and the training 211

process. Nevertheless, the fine-tuned judge mod- 212

els are still not a general substitution for GPT4 in 213

terms of LLM evaluation. 214
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Limitations215

Our work still has some limitations: 1) Due to the216

lack of related work, we primarily relied on cross-217

validation to assess the generalizability of the four218

fine-tuned judge models. To conduct a more thor-219

ough evaluation of the generalizability, it would220

be beneficial to incorporate additional independent221

testsets encompassing a broader range of evalua-222

tion schemes, such as reference augmentation and223

domain-specific evaluation. 2) The work of Zeng224

et al. (2023) is only a general assessment of evalua-225

tor bias, and we did not include fine-grained assess-226

ment for different biases, such as formality bias,227

verbosity bias, etc. 3) Due to time and resource228

constraints, we did not incorporate manual inspec-229

tion into the meta-evaluation process. Including230

human evaluators would enhance the credibility of231

our claims.232
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A Appendix348

A.1 Training Settings349

As mentioned in Section 2.1, we fine-tune our own350

judge models based on the four groups of data351

(JudgeLM (Zhu et al., 2023b), PandaLM (Wang352

et al., 2024), Auto-J (Li et al., 2023a), Prometheus353

(Kim et al., 2023)), both in generation-style and in354

classification-style, for the purpose of comparison.355

We train all the models on NVIDIA A100-80GB356

GPUs with Huggingface-transformers (Wolf et al.,357

2020) and DeepSpeed (Rasley et al., 2020). De-358

tailed hyper-parameters are presented in Table 7.359

Notice when comparing generation and classifica-360

tion models, we adopt the same prompt template361

and same hyper-parameters, with the only differ-362

ence lies in the prediction method. For generation363

model, the prediction head reused the pretrained364

language model head, and is trained akin to the365

process of language modeling. For classification366

(regression) model, the prediction head is newly367

initialized as a linear projection layer, and is de-368

coupled from the language modeling process5, as369

5Please refer to the class AutoModelForSequence
Classification in Huggingface library for more details.

shown in Figure 4. 370

A.2 Prompt Templates 371

As mentioned in Section 2.1, 2.2 and 2.3, we take 372

the publicly released checkpoints of the four mod- 373

els and validate their performance. We use the 374

same prompt templates as defined by the four open- 375

source models, as presented from Figure 5 to Fig- 376

ure 12. For JudgeLM and PandaLM, their prede- 377

fined prompts are in the form of pairwise selection, 378

and we make slight modifications to apply them on 379

pointwise grading. For Prometheus, the predefined 380

prompt is in the form of pointwise grading, and we 381

make slight modifications to apply it on pairwise se- 382

lection. For Auto-J, they predefined prompts both 383

for pairwise selection and pointwise grading. 384
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Configuration Vicuna-based DeBERTa-based
base model Vicuna-7B DeBERTaV3-large
max length 2048 512
learning rate 2e-5 2e-5
learning rate schedule cosine decay cosine decay
optimizer AdamW AdamW
AdamW beta1 0.9 0.9
AdamW beta2 0.999 0.98
weight decay 0.0 0.0
GPU nums 8 2
training epochs 3 3
batch size 128 128
warmup ratio 0.003 0.003
numerical precision bf16, tf32 fp16
ZeRO optimizer stage 2 None

Table 7: Configurations of the judge models fine-tuned by us in Section 2.1. Both classification and generation
judge models leverage the same group of configs based on their foundation model.

Figure 4: The architecture of classification-based judge model. The major difference lies in the prediction head,
where a new classification (regression) head is initialized for predicting the result.

Figure 5: Prompt template for JudgeLM applied for pairwise selection.
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Figure 6: Prompt template for JudgeLM applied for pointwise grading.

Figure 7: Prompt template for PandaLM applied for pairwise selection.

Figure 8: Prompt template for PandaLM applied for pointwise grading.
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Figure 9: Prompt template for Auto-J applied for pairwise selection.

Figure 10: Prompt template for Auto-J applied for pointwise grading.

Figure 11: Prompt template for Prometheus applied for pairwise selection.
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Figure 12: Prompt template for Prometheus applied for pointwise grading.
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