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ABSTRACT

We present UncertaintyRAG, a novel approach for long-context Retrieval-
Augmented Generation (RAG) that utilizes Signal-to-Noise Ratio (SNR)-based
span uncertainty to estimate similarity between text chunks. This span uncertainty
enhances model calibration, improving robustness and mitigating semantic incon-
sistencies introduced by random chunking. Leveraging this insight, we propose
an efficient unsupervised learning technique to train the retrieval model, alongside
an effective data sampling and scaling strategy. UncertaintyRAG outperforms
baselines by 2.03% on LLaMA-2-7B, achieving state-of-the-art results while using
only 4% of the training data compared to other advanced open-source retrieval
models under distribution shift settings. Our method demonstrates strong calibra-
tion through span uncertainty, leading to improved generalization and robustness
in long-context RAG tasks. Additionally, UncertaintyRAG provides a lightweight
retrieval model that can be integrated into any large language model with varying
context window lengths, without the need for fine-tuning, showcasing the flexibility
of our approach.

1 INTRODUCTION

Large Language Models (LLMs) have shown impressive capabilities across various natural language
tasks, including long-context question-answering (QA), where the model processes a lengthy text
and a question to generate a response (Caciularu et al., 2022). The QA paradigm encompasses a
wide range of tasks, such as commonsense reasoning (Yang et al., 2018; Geva et al., 2021) and
mathematical reasoning (Cobbe et al., 2021; Amini et al., 2019). However, due to the limitations in
computational resources and the model’s lack of ability to extrapolate context length, handling long-
context settings remains a challenge for large language models, although continuous improvements
are being made in this area.

Recent advances seek to overcome this limitation by designing linear attention mecha-
nisms (Katharopoulos et al., 2020; Wang et al., 2020; Gu & Dao, 2023), which improve the memory
and time efficiency for long sequences. Pruning the KV cache (Ge et al., 2023; Zhang et al., 2024;
Agarwal et al., 2024) and quantizing the KV cache (Hooper et al., 2024; Liu et al., 2024) are other
approaches to enhancing long context generation by compressing the model’s KV-cache, providing a
training-free, lightweight solution to reduce memory and computational overhead. However, these
methods are generally difficult to achieve context length extrapolation. Moreover, the aforementioned
approaches usually truncate the long-context to just fit the context window of LLMs, which not only
prevents LLMs from actually seeing the entire input text but also faces an unacceptable memory
overhead in resource-constrained environments. The efficient positional encoding strategy (Liu et al.,
2023a; Su et al., 2024) is a solution that can achieve length extrapolation, but it often requires training
the entire LLMs.

Another lightweight solution for handling long contexts is to utilize long-context Retrieval-Augmented
Generation (RAG) in conjunction with long-context chunking (Xu et al., 2023b; Jiang et al., 2024b;
Sarthi et al., 2024; Xu et al., 2023a), which avoids the need for LLMs to have length extrapolation
capability. Long-context retrieval-augmented generation refers to a method in natural language
processing where a model retrieves relevant information from large external sources to assist in
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generating responses. It extends the traditional RAG by handling much longer input contexts, enabling
effective processing of broader and more detailed information for tasks like question answering,
summarization, and document understanding. Typically, RAG employs existing LLMs with limited
context windows to retrieve relevant chunks. These chunks are obtained by retrieval models, either
with or without semantic truncation (Sarthi et al., 2024; Li et al., 2024a; Jiang et al., 2024b; Xu et al.,
2023b;a). Retrieval models (Izacard et al., 2021; Xiao et al., 2023b; Chen et al., 2024; Lin et al.,
2023a) are commonly used for this purpose; however, they require a large amount of high-quality
labeled data for training, which limits their scalability and adaptability. Modern RAG systems may
rely on complex chunking methods (Sarthi et al., 2024) and require LLMs to have relatively long
context windows (Jiang et al., 2024b; Xu et al., 2024). Furthermore, the lack of labeled data to
determine if (query, chunk) pairs are related (Lewis et al., 2020a;b) poses significant limitations
for training retrieval models in RAG systems. Recent research combines RAG with long-context
LLMs to handle extended contexts and mitigate semantic incoherence in chunk processing (Xu et al.,
2023b; Jiang et al., 2024b; Xu et al., 2024; Li et al., 2024c; Luo et al., 2024; Sarthi et al., 2024;
Duarte et al., 2024). Some of the latest work also attempts to inject retrieval capabilities into LLMs
through training, enabling them to process and generate long contexts directly (He et al., 2024; Cheng
et al., 2024). However, these approaches often require either sophisticated chunking strategies, which
are time-consuming during inference, or fine-tuning adapters for specific LLMs to manage chunk
representation compression. Additionally, the complexity of these methods makes them vulnerable to
distribution shifts. Some methods also necessitate training an LLM with an extended context window
or new architecture, which is highly resource-intensive. In contrast, improving a lightweight retrieval
model that can be seamlessly integrated into various LLMs without additional training would be a
more efficient solution.

Unlike previous work, our focus is on utilizing calibrated uncertainty quantification to estimate
similarity between chunks, thereby training robust retrieval models within RAG. Specifically, we
introduce a novel uncertainty estimation technique based on the Signal-to-Noise Ratio (SNR), which
stabilizes predictions and reduces biases from random chunk splitting. Our analysis shows that
when two chunks are concatenated and fed into the model to estimate similarity, the uncertainty
measured by SNR can better reflect their alignment in the semantic space, which we have confirmed
in our experiments. Building on this finding, we develop an unsupervised learning technique to
train chunk embeddings. This method is decoupled from the long-context modeling capabilities of
LLMs and can be adapted to any fixed-length context window, enhancing retrieval robustness without
requiring additional fine-tuning or retraining of the LLM itself. By leveraging the LLM’s calibrated
self-information, we effectively measure similarity between text chunks, construct accurate positive
and negative samples, and train a robust retrieval model. This approach enhances generalization under
distribution shifts in long-context retrieval-augmented generation tasks. Moreover, it seamlessly
integrates with existing methods by relying solely on external retrieval models, thus avoiding LLM-
specific performance dependencies. Specifically, our contributions are as follows:

1. We propose a novel SNR uncertainty measurement technique to achieve better calibration
by addressing prediction errors arising from random chunk splitting, thereby improving
performance in similarity estimation between chunks.

2. We propose an unsupervised learning approach and train a retrieval model that outperforms
strong open-source embedding models in long-context RAG tasks under distribution-shift
settings.

3. We design an efficient data sampling strategy to scale data, enhancing our retrieval model
training and significantly boosting performance. Compared to models such as BGE-M3, our
method improves LLaMA-2-7B by 2.03% after SNR calibration while using only 4% of
their data size.

4. We provide an in-depth analysis of the retrieval model, demonstrating continuous improve-
ments across two key metrics. We explain how uncertainty measurement enhances chunk
representation modeling and why data sample scaling contributes to improved performance.

2 RELATED WORK

2.1 ATTENTION MECHANISMS IN LONG CONTEXTS

An effective approach to facilitating long context is to avoid the O(n2) computational complexity
of the standard attention mechanism by designing linear attention mechanisms, sparse attention
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mechanisms, or low-rank attention mechanisms. These works can be categorized into the following
four types: i) Sparse Attention Mechanisms: Reduce the computational burden of attention by
exploiting inherent patterns within the attention mechanism (Jiang et al., 2024a; Ribar et al., 2023;
Chen et al., 2023), or alternatively, by pruning the KV cache (Liu et al., 2023b; Xiao et al., 2023a;
Pang et al., 2024; Zhang et al., 2024). ii) The attention mechanism with linear complexity: This
typically involves transforming models with O(n2) complexity into O(n) or O(n log n) linear
attention (Zheng et al., 2022; Kitaev et al., 2020; Qin et al., 2022; Katharopoulos et al., 2020), or
efficient long-sequence recurrent neural networks (Gu & Dao, 2023; Dao & Gu, 2024; Peng et al.,
2023a; Yang et al., 2023). iii) Memory-augmented attention mechanisms: This typically involves
encoding long-context text using additional memory blocks (He et al., 2024; Bertsch et al., 2024;
Wang et al., 2024). iv) Hardware-friendly attention mechanisms: FlashAttention (Dao et al., 2022;
Dao, 2023; Shah et al., 2024) accelerates precise attention computations by optimizing reads and
writes across different levels of GPU memory. FlashAttention is especially effective for processing
longer sequences. Among previous works, memory-augmented LLMs are most relevant to this study,
as they involve memory retrieval. However, they typically require modifying the original model
architecture and retraining the LLM or fine-tuning some parameters, which can be an impractical
overhead in certain settings.

2.2 POSITION ENCODING

Extending the context window from scratch is challenging (Liu et al., 2023a; Su et al., 2024) because
it requires significant computational resources. As a result, efficient position encoding methods (Peng
et al., 2023b; Li et al., 2023a; Chi et al., 2022; Press et al., 2021; Peng & Quesnelle, 2023) have
gained attention for improving length extrapolation. These works attempt to expand the context
window on pre-trained LLMs using a small amount of data.

However, considering that many LLMs are closed-source, end-to-end training of LLMs with retrievers
is impractical. Additionally, fully fine-tuning LLMs on long-context data remains costly. Fully fine-
tuning models such as LLaMA (Touvron et al., 2023), especially with sequences longer than 16,000
tokens, is prohibitively expensive due to the quadratic time and memory complexities associated
with precise attention mechanisms. Therefore, extending the model’s context window by continual
training through position encoding remains unacceptable.

Recent RAG systems (Xu et al., 2023b; 2024) combining RAG with long context LLMs have utilized
position encoding to fine-tune LLMs for context window extrapolation, either requiring LLMs to
handle retrieved chunks as long-context inputs (Jiang et al., 2024b; Xu et al., 2024) or flexibly
combining the strengths of both through a routing mechanism (Li et al., 2024c). These works consider
combining the strengths of long context LLMs and RAG. They demonstrate that, when resources
are abundant, long context LLMs consistently outperform RAG in terms of average performance.
However, the significantly reduced cost of RAG remains a notable advantage. They also find that long-
context window LLMs can effectively alleviate the context fragmentation issue in RAG. However,
further extending the context window of LLMs still is challenging, as it requires a significant amount
of computational resources. Therefore, how to expand the boundaries of RAG systems given the
limited context window of LLMs remains a question worth exploring. Our work primarily focuses
on optimizing the retrieval model in RAG, given the context window length of LLMs, to extend the
boundaries of the RAG system’s ability to handle long contexts.

2.3 RETRIEVAL-AUGMENTED GENERATION

The existing RAG frameworks heavily rely on the quality of the retrieval model. Due to retrieval
model’s context window limitations, they often tend to use short retrieval units in open-domain QA
tasks (Lewis et al., 2020a; Karpukhin et al., 2020; Ni et al., 2021). These models rely on a bi-encoder
and typically require manual query-passage annotations for training the encoder.

Moreover, some studies (Duarte et al., 2024; Luo et al., 2024; Sarthi et al., 2024; Li et al., 2023b)
highlight the importance of appropriately chunking the input text for RAG systems. Complex
chunking schemes, however, add inference complexity and increase latency. Therefore, a simpler
chunking method is necessary to avoid this issue, ensuring robustness to different chunking. Existing
methods (Jiang et al., 2024b; Xu et al., 2024) attempt to use LLMs capable of handling longer contexts
to increase the length of retrieved chunks, thereby reducing the number of retrieval units and avoiding
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the input of overly fragmented and incomplete information. This, in turn, alleviates the burden on
the retrieval model in processing long contexts. Recently, a study (Luo et al., 2024) also proposes a
three-stage fine-tuning approach to embed longer contexts into a special token, addressing the issue of
semantic discontinuity caused by chunk splitting. However, their method requires complex training
techniques for the retrieval model, making it difficult to easily scale the data size.

Distribution shift in RAG has also garnered attention (Li et al., 2024b; Sagirova & Burtsev, 2023).
They use a calibrated model’s confidence to detect "long-tailness" examples and implement an
improved RAG pipeline. However, to address distribution shifts in the chunks of input, instance-level
uncertainty estimation provides limited assistance to RAG, as it does not help LLMs retrieve long-tail
knowledge. Additionally, their work focuses solely on improving the pipeline without enhancing the
performance of the retrieval model itself.

In summary, the above work has the following issues: i) Complex Chunking Overhead: Complex
chunking methods that may increase additional computational overhead during inference. ii) High
Cost of Labeled Data: Requires labeled data between chunks and queries. This is usually costly
in terms of extensive manual annotation effort for long-context retrieval tasks. iii) Poor Handling
of Semantic Incoherence: Open-source embedding models often struggle to handle semantically
incoherent chunks, making it difficult to generalize in long-context settings.

To address the aforementioned issues, we focus on facilitating representation learning in RAG under
a simple long-context chunking setting. Considering the additional overhead introduced by complex
chunking methods during the inference stage, we adopt a simple strategy of dividing chunks every
300 letters and develop an unsupervised learning technique to train a robust retrieval model capable
of handling semantic discontinuities in this chunking approach under distribution shift scenarios.
Additionally, we propose a method called span uncertainty measurement to construct training labels
for the data and compare it with existing open-source embedding models (Izacard et al., 2021; Xiao
et al., 2023b; Chen et al., 2024; Lin et al., 2023a) within the RAG system. Typically, these embedding
models require extensive data for pre-training; however, we outperform them in distribution shift
scenarios using far less training data than they require.

3 METHODOLOGY
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Figure 1: Each line in the figure represents the trend of
SNR variation for different samples, where two chunks
are concatenated and input into the LLM for uncertainty
estimation. The SNR is calculated as a sliding window
moves across the concatenated input. Notably, the SNR
values exhibit a significant drop early on, even before
reaching the end of the first chunk.

In this section, we introduce a span uncer-
tainty method based on SNR to obtain sim-
ilarity scores between chunks. We then use
these similarity scores to construct positive
and negative samples for training our re-
trieval models. This process typically does
not involve using query data for training,
so we further develop two methods to scale
chunk data to enhance the model’s distribu-
tion shift generalization ability. Addition-
ally, we provide insights into the effective-
ness of these methods in the experimental
section.

3.1 SPAN UNCERTAINTY

Recently, there has been widespread attention (Xiong et al., 2023; Ye et al., 2024) to the measurement
of uncertainty in LLMs. Kuhn et al. (2023) leverage the natural language inference task to infer
semantic entropy to calibrate the model’s uncertainty. Gupta et al. (2024); Duan et al. (2024) adopt
token-level uncertainty to achieve more fine-grained calibration. Lin et al. (2023b) measure the
semantic equivalence of LLM responses based on model output probabilities, converting similarities
into uncertainty measures. Inspired by these works, we input two chunks into LLMs, using the
self-information of the model’s output as a measure of uncertainty. To achieve better calibration,
we draw inspiration from the sample gradient SNR statistic used to estimate generalization errors
in Liu et al. (2020). We leverage this statistic to quantify uncertainty by calculating the SNR of the
model’s sample output probabilities. We first concatenate two chunks and input them into the model
to obtain the probability. We then use this SNR to measure span uncertainty, and finally, convert the
span uncertainty into a measure of similarity. Specifically, the uncertainty can be expressed by the
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Figure 2: Scaling and Trainning. The figure presents the details of scaling and training.

self-information:
I(xi|xi−1, . . . , x0) = − log p(xi|xi−1, . . . , x0), (1)

where xi is the current token, and p(xi|xi−1, . . . , x0) is the conditional probability of token xi given
the preceding tokens xi−1, xi−2, . . . , x0 in the sequence. Previous effort (Duan et al., 2024) has
suggested that not all tokens in auto-regressive LLM text equally represent the underlying meaning,
as “linguistic redundancy” often allows a few keywords to convey the essence of long sentences.
Additionally, we have observed a specific window in the model’s output log probabilities. The
probability distribution within this window is stable, which we believe indicates better calibration, a
finding that is further validated in subsequent experiments. This stable behavior is intuitively charac-
terized by the self-information of tokens stabilizing at a low value without significant fluctuations.
As shown in Figure 1, we use a sliding window with a length of 20 to calculate the SNR within the
window, with a sliding step of 10. We found that at a certain turning point, the SNR tends to stabilize.
We choose this stable interval to measure the uncertainty of the model. We define the span-level
probabilities within this window as a measure of uncertainty and treat this confidence score as
a special type of entailment relationship (Lin et al., 2023b), which represents a form of semantic
equivalence. Based on the above observations and the additive property of I(x), we present the
following definition:

SNRj =

1
nj

∑nj

i=1 I(xij |x(i−1)j , x(i−2)j , . . . , x0j)

Var
(
I(xij |x(i−1)j , x(i−2)j , . . . , x0j)

) , (2)

The span uncertainty, denoted as SU(x), is defined as the average self-information over all concate-
nated tokens across the selected windows, where overlapping tokens are counted only once. The
formula is:

SU(x) =

∑m
j=1 1SNRj<σ

∑nj

i=1 I(xij |x(i−1)j , . . . , x0j)∑m
j=1 1SNRj<σ nj

, (3)

where 1SNRj<σ is an indicator function that equals 1 when the SNR of the j-th window is below
the threshold σ, and 0 otherwise. nj represents the number of tokens in the j-th window, and
I(xij |x(i−1)j , . . . , x0j) denotes the self-information of token xij given its preceding context. This
helps in estimating the similarity between the two chunks of text by considering the uncertainty in
the token sequences across those windows. Typically, the chosen token length varies with changes in
the sliding window of the span.
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3.2 TRAINING STRATEGY

In this section, we focus on how we apply span uncertainty to construct positive and negative samples
for all chunks in the training dataset. We do not consider incorporating the combinations of queries
and chunks into the training strategy, yet the model still performs well. Then, we introduce a strategy
for scaling chunk combinations, which involves scaling chunk anchors and scaling positive and
negative samples after fixing chunk anchors.

3.2.1 CONSTRUCTION OF POSITIVE AND NEGATIVE SAMPLES

Given the limitations in inference computational efficiency, we avoid using overly complex segmenta-
tion strategies when constructing the training dataset. Instead, we uniformly set the chunk size to 300
letters for splitting the data. After shuffling the data, we combine each chunk with other chunks to
construct a matrix S. Each element Sij in this matrix represents the span uncertainty estimated when
chi and chj are combined sequentially and input into the LLM, indicating their degree of similirity.
Due to the significant computational cost of estimating this matrix, we use BM25 (Robertson et al.,
2009) as a score function and denote the BM25 score for the pair as sBM25(chi, chj). We then select
the M samples with the highest BM25 scores for each anchor chi to estimate the SU(x), resulting
in the final sparse matrix Ŝ. In formulaic terms, let sBM25(chi, chj) denote the BM25 score for the
combination of chunks i and j. The final sparse matrix Ŝ is given by:

Ŝij =

{
SU(chi, chj) if sBM25(chi, chj) ≥ TopM (sBM25(chi, chM )),

0 otherwise,
(4)

where TopM (sBM25(chi, chM )) denotes the M -th highest BM25 score chunk chM for anchor chi.
We set up two windows within M , each containing m samples. These samples are ranked by Ŝij

scores, with the top m considered positive samples and the bottom m considered negative samples.
We sample positive and negative samples within these two windows, denoted as chi

+ and chi−,
respectively.

3.2.2 DATA SCALING STRATEGY

All our experiments are conducted under distribution shift setting, meaning our retrieval model
needs to handle semantically disjointed chunks resulting from segmented text, as well as noisy
data arising from long-tail distributions that are never encountered in the trainning dataset. Our
span uncertainty effectively calibrates the model’s uncertainty measurement using the SNR metric,
identifying meaningful output probabilities to construct an anchor-positive-negative sample dataset.

Anchor Sample Scaling Strategy We refer to each chunk as an anchor sample. We initially merge
the five datasets: HotpotQA (Yang et al., 2018), MultiFieldQA (Bai et al., 2023), Qasper (Dasigi
et al., 2021), NarrativeQA (Kočiskỳ et al., 2018), and QMSum (Zhong et al., 2021). Each dataset is
split based on spaces, and every 300 letters are grouped into a chunk. As a result, we obtain 37,799,
14,547, 15,865, 72,146, and 38,398 chunks, respectively. Due to computational limitations, it is
challenging to score all possible combinations of such a large number of chunks. Therefore, we first
use k-nearest neighbors (KNN) to cluster each dataset into k clusters. Then, we randomly select c
chunks from each cluster, resulting in k*c chunks per dataset. By mixing the five datasets, we obtain
a total of 50*c chunks. By increasing the multiple of c, we scale the total number of anchor samples.
Positive and Negative Sample Scaling Strategy When a sample anchor chi is selected, we need
to concatenate it with other chunks and input them into the LLM for scoring. Due to the high
computational cost, we employ a method similar to anchor sample scaling. First, using the KNN
method, we randomly sample n samples chj from each of the k clusters, where the clusters are formed
from the previously mentioned 50∗c chunks. This way, we obtain 10∗n samples in a single sampling
process. Then, we use BM25 to score the anchor and each sample, sBM25(chi, chj), and select the
final M samples. These are scored using LLMs to obtain the final chi

+ and chi
−. Finally, we obtain

a triplet (chi, chi
+, chi−). By repeating this sampling process, we can scale the number of positive

and negative samples for the anchor chi.

3.2.3 CONTRASTIVE LEARNING

We design a contrastive learning strategy to train our retrieval model:
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L2K−1 = − log
ef(chi,chi+)

ef(chi,chi+) +
∑2K−2

j=1 ef(chi,chj) + ef(chi,chi−)
, (5)

where chi represents the anchor chunk, which is the chunk for comparison. The term chi
+ represents

a positive chunk, which is a chunk similar to chi. chi
− denotes a hard negative chunk, which is a

sequence that is dissimilar to chi. The remaining negative chunks are represented by chj , where j
ranges from 1 to 2K − 2, which are the positive and negative chunks of other anchor chunks from
the current batch. The similarity f (chx, chy) between the anchor chunk chx and another chunk chy
is calculated as the inner product of their chunk embeddings of BERT (Devlin, 2018):

f (chx, chy) = ⟨be(chx), be(chy)⟩, (6)

where be(chx) and be(chy) represent the embeddings of the chunks chx and chy , respectively.

3.3 MODEL INFERENCE

Due to our model’s focus on using model uncertainty to promote the unsupervised learning aspect of
retrieval models, after training and obtaining the embedding model, we can input long-contexts to
the embedding model for retrieval after every 300-letters chunk, without re-rank part in our pipeline.
Therefore, our inference stage is efficient, specifically divided into the following steps: i) We directly
chunk the input document based on a fixed length, which is efficient, without using complex chunking
mechanisms. ii) Input the query to the retrieval model to retrieve the most similar m chunks. iii) Input
the retrieved m chunks and the query to the model to produce the final answer.

4 EXPERIMENT

Engine Model Truncate BERT Contriever BGE-Large BGE-M3 GRAGON-PLUS All Chunking Precise Chunking Ours

LLaMA-2-7B-Chat-HF

2WikiMultihopQA 28.50 32.73 33.60 34.14 29.64 34.61 33.77 34.60 37.27
Musique 9.41 18.74 14.25 24.2 24.27 20.50 20.00 16.53 23.03
TREC 64.50 66.00 70.00 70.05 71.00 70.50 67.50 65.50 68.00

TriviaQA 77.80 78.69 76.09 75.10 75.74 77.51 78.47 79.84 80.41
SAMSum 40.45 40.01 38.45 40.34 40.37 41.08 40.72 41.32 42.49
Average 44.13 47.23 46.48 48.85 48.20 48.84 48.09 47.56 50.23

Vicuna-7B

2WikiMultihopQA 22.74 23.19 23.02 23.41 23.81 22.21 20.89 23.50 24.69
Musique 7.55 12.64 10.12 14.84 15.06 13.01 13.34 12.50 13.62
TREC 67.50 67.50 70.50 70.50 69.00 70.00 65.50 69.00 69.00

TriviaQA 75.06 73.21 74.72 74.69 74.39 73.67 79.00 75.04 76.34
SAMSum 37.14 36.54 35.81 36.04 36.83 37.22 38.73 37.03 37.88

Average 42.20 42.61 42.83 43.89 43.82 43.22 43.29 43.41 44.31

Vicuna-7B-16K

2WikiMultihopQA 23.15 27.80 28.33 29.50 27.47 29.51 27.89 27.53 29.88
Musique 8.11 13.12 9.88 14.15 13.02 13.24 13.10 12.78 14.94
TREC 66.50 67.50 69.50 69.00 69.00 70.00 67.00 66.00 68.50

TriviaQA 83.96 82.93 85.74 84.56 84.46 83.05 84.84 84.71 84.98
SAMSum 7.80 20.75 19.88 19.32 19.50 20.67 20.86 19.22 19.77

Average 37.91 42.42 42.51 43.30 42.68 43.29 42.74 42.05 43.62

LLaMA-2-13B-Chat-HF

2WikiMultihopQA 34.73 35.82 40.28 42.05 38.13 38.46 36.15 37.31 38.28
Musique 12.12 22.13 18.69 24.69 24.74 22.71 19.79 21.30 24.74
TREC 69.50 67.00 70.00 70.00 70.50 70.00 67.00 68.50 68.50

TriviaQA 80.58 80.86 78.27 76.52 77.95 79.69 81.50 81.41 82.47
SAMSum 36.95 41.62 41.00 42.49 42.43 41.23 43.09 41.03 42.61

Average 46.77 49.48 49.65 51.14 50.75 50.37 49.50 49.91 51.32

Table 1: Experiment results on long-context retrieval augmented language generation. All Chunking
denotes the use of the average self-information of all tokens from two concatenated chunks as the
similarity score for selecting positive and negative samples in contrastive learning. In contrast, Precise
Chunking denotes the accurate segmentation of the chunks, utilizing only the average self-information
from the second chunk.

We primarily train our retrieval model on the HotpotQA, MultiFieldQA, Qasper, NarrativeQA, and
QMSum datasets. We evaluate the model on 2WikiMultihopQA (Ho et al., 2020), Musique (Trivedi
et al., 2022), TREC (Li & Roth, 2002), TriviaQA (Joshi et al., 2017), and SAMSum (Zhong et al.,
2021). Under this distribution-shift setting, our retrieval model has never been exposed to any data
from these test datasets. We provide a detailed introduction to our dataset in Appendix A. We provide
detailed settings of the hyperparameters in Appendix B. We adopt various open-source embedding
models as our baselines, which typically involve pre-training on large datasets. An introduction to the
baselines is provided in Appendix C. In Appendix E, we demonstrate the advantages of our method
in terms of an efficient training data sampling strategy and parameter efficiency. In our evaluation,
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Model Scaling method 2WikiMultihopQA Musique TREC TriviaQA SAMSum Average

All Chunking

w/o Scaling 23.03 23.91 66.00 79.15 41.77 46.86
Pos/neg Scaling 32.47 22.41 66.00 79.15 41.86 48.38
Anchor Scaling 34.87 21.49 67.50 77.46 40.72 48.41

Anchor and Pos/neg Scaling 33.77 20.00 67.50 78.47 40.72 48.09

Precise Chunking

w/o Scaling 35.65 18.91 66.00 78.10 41.22 47.97
Pos/neg Scaling 33.77 19.09 64.50 79.48 41.89 47.74
Anchor Scaling 34.81 16.76 67.50 78.00 41.64 47.89

Anchor and Pos/neg Scaling 34.60 16.53 65.50 79.83 41.32 47.55

Uncertainty-RAG

w/o Scaling 36.05 19.58 68.00 79.98 42.25 49.17
Pos/neg Scaling 37.86 22.31 65.50 79.83 42.54 49.61
Anchor Scaling 36.94 20.73 69.00 78.73 42.09 49.50

Anchor and Pos/neg scaling 37.27 23.03 68.00 80.41 42.49 50.23

Table 2: Experiment results on scaling of anchor and positive/negative samples. In the table, the
positive/negative samples are denoted as pos/neg.

we use four models: Llama2-7B/13B-chat-hf (Touvron et al., 2023), Vicuna-7B/7B-16K (Chiang
et al., 2023).

4.1 MAIN RESULT

As shown in Table 1, the following observations can be made: i): Robust RAG retrieval model
can significantly improve the performance of the 4K context window LLMs; however, this heavily
depends on the performance of the retrieval model. ii): A powerful retrieval model can enhance
the performance of LLMs. Vicuna-7B and LLaMA-2-7B-Chat-HF perform similarly within their
4K context windows, with an average performance difference of about 1.93% without retrieval
augmentation. When equipped with a robust retrieval model, the average performance gap can
increase to 6.14%. iii): Our method achieves the highest average performance, surpassing some open-
source embedding models trained on large datasets. However, performance is limited on few-shot
learning tasks like TREC due to the need for precise segmentation of in-context exemplars. Still, our
method shows a consistent 2% improvement over the baseline. In addition, we have the following
important findings.
Analysis of The Impact of Span Uncertainty through SNR Calibration In Table 1, our analysis
reveals that the span uncertainty method, following SNR calibration, demonstrates significant im-
provements compared to both All Chunking and Precise Chunking. This enhancement is primarily
due to the incorporation of self-information from certain tokens in the first chunk, which comes from
the flexible sampling of spans across the two chunks by SNR. Thus, we can draw the following
conclusions. i): SNR calibration effectively captures the similarity between the two chunks. ii): The
tokens within the span sampled by SNR play a crucial role in assessing the relationship between the
two chunks, suggesting that future research could benefit from focusing on span-level uncertainty.
Ablation Study on The Effects of Scaling Up the Data In Table 2, we present the results of
scaling the anchor data in our dataset, fixing the anchor while scaling the positive/negative sample
data, and scaling both the anchor and positive/negative samples simultaneously. Due to limitations in
computational resources, we only doubled the size of the data. i): By simultaneously doubling both
the anchor and positive/negative samples after fixing the anchor, we achieved state-of-the-art results,
demonstrating the scalability of our method with respect to data size. ii): Our dataset sampling
method is simple and easy to use, and applicable to any text dataset that can be chunked.
Ablation Study on the Length and Number of Retrieved Chunks In Table 3, we evaluate the
Vicuna-7B-16K model on the 2WikiMultihopQA dataset, varying the number of chunks while keeping
chunk length constant, and adjusting the chunk length while keeping the number of chunks constant.
i): We find that increasing the number of chunks is not effective; instead, increasing the chunk length
itself yields better results. ii): However, simply increasing the chunk size is not a one-size-fits-all
solution, as it can also harm performance, which is contrary to the findings of LongRAG (Jiang et al.,
2024b).

4.2 REPRESENTATION ANALYSIS

Representation Similarity Analysis In this part, we demonstrate the changes in similarity across
different layers of our representation in Figure 3. Representation Similarity Analysis (RSA;Laakso
& Cottrell (2000)) is a technique for measuring the similarity between two different representation
spaces for a given set of stimuli. We demonstrated on 2WikiMultihopQA and the typical in-context
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Model Chunk size Chunk number Length Contriever BGE-Large BGE-M3 DRAGON-PLUS All Chunking Precise Chunking Ours

Vicuna-7B
300 40 4k 22.82 24.13 23.45 21.15 19.87 23.42 24.16
300 30 3k 23.02 23.41 23.81 22.21 20.89 23.50 24.69
300 20 2k 21.56 23.96 26.24 22.00 20.13 23.65 23.83

Vicuna-7B-16K

300 40 4k 27.03 27.98 26.60 28.45 24.73 24.53 25.83
300 30 3k 27.26 28.93 27.98 29.45 25.81 24.88 26.56
300 20 2k 28.33 29.50 27.47 29.51 27.89 27.53 29.88
600 40 8k 26.94 28.83 26.78 27.11 26.70 27.57 25.83
600 30 6k 27.18 28.86 27.84 28.53 26.66 26.78 28.34
600 20 4k 27.72 28.93 29.08 29.26 27.78 27.75 29.64

Table 3: Abalation of different chunk size and different chunk number on 2WikiMultihopQA. Chunk
number refers to the number m of the most similar chunks selected as prompts. Length refers to the
total length of the prompt.

learning task GSM8K (Cobbe et al., 2021) the changes in representations across different layers
compared to the original BERT representations.
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Figure 3: Representation Similarity Analysis

We observe that: i:) Before the eighth layer, vari-
ability in model representations is minimal across
datasets and scoring methods. ii:) After the eighth
layer, the model shows smaller changes on the
GSM8K dataset with significant distribution shift,
larger changes on the 2WikiMultihopQA dataset with
minor shifts, and the most substantial changes on
the training set. This indicates that RSA is an effec-
tive metric for assessing distribution shifts. iii:) Un-
der the enhanced long-context modeling with Span
Uncertainty, the model exhibits greater representa-
tion changes across varying distribution shifts, con-
sistently outperforming precise chunking and leading
to performance improvements. To further analyze these representation variations, we will employ
two metrics in the next part.

1.55 1.50 1.45 1.40 1.35
uniform

0.215

0.220

0.225

0.230

0.235

0.240

0.245

0.250

al
ig

n

bert

w/o Scaling
Anchor and Pos/neg Scaling

Pos/neg Scaling

Anchor Scaling

0.505

0.510

0.515

0.520

0.525

0.530

(a) Uncertainty-RAG

1.44 1.42 1.40 1.38 1.36
uniform

0.215

0.220

0.225

0.230

0.235

0.240

0.245

al
ig

n

bert

w/o Scaling
Pos/neg Scaling

Anchor Scaling

Anchor and Pos/neg Scaling

0.498

0.500

0.502

0.504

0.506

0.508

(b) Precise Chunking

Figure 4: Align and Uniform. This figure shows uniformity and alignment of different chunk
embedding along with their averaged semantic textual similarity (STS (Conneau et al., 2017)) results.

Representation Property Analysis Wang & Isola (2020) introduces the properties of uniformity
and alignment that contrastive learning improves in retrieval models, which are essential for evaluating
the quality of retrieval models in machine learning. Alignment is quantified by the expected distance
between the embeddings of paired positive chunk, assuming that these embeddings are normalized.
The formula for alignment is expressed as:

ℓalign ≜ E(ch,ch+)∼ppos

∥∥f(ch)− f(ch+)
∥∥2 , (7)

On the other hand, uniformity assesses how evenly the embeddings are distributed across the embed-
ding space. It is calculated using the expression:

ℓuniform ≜ logE
chx,chy

i.i.d.∼ pdata
e−2∥f(chx)−f(chy)∥2

, (8)

where ppos represents positive pairs (similar chunks), and pdata refers to the distribution of data
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points from the dataset, with samples drawn independently. These measures align with the goals
of contrastive learning, which aims to bring embeddings of similar chunks closer together while
ensuring that embeddings of unrelated chunks chx and chy remain well-separated in the embedding
space. Figure 4, shows the uniformity and alignment of different sentence embedding models along
with their averaged STS results. We have the following findings: i): When we scale the positive
and negative samples, the uniformity of the retrieval model increases, which aligns with the idea
of InfoNCE (Oord et al., 2018), where increasing the noise samples can improve the uniformity of
representations. ii): When we scale the anchors, the alignment of retrieval improves, which means
we can align the retrieval model by performing data selection on the anchor samples of the model.
iii): Enhancing the alignment level of the model does not improve the performance of the retrieval
model, while improving the model’s uniformity can enhance the performance of the retrieval model.

Method 2WikiMultihopQA Musique TREC TriviaQA SAMSum Average

Minimum 28.04 15.25 66.50 77.21 40.35 45.47
Average 31.55 17.72 66.50 78.21 41.56 47.10
Log-sum 29.77 16.25 69.50 80.21 41.55 47.25
Entropy 31.95 16.17 69.00 79.70 40.99 47.56

Self-information 34.60 16.53 65.50 79.84 41.32 47.56

Ours 37.27 23.03 68.00 80.41 42.49 50.23

Table 4: Comparison results of different uncertainty modeling approaches.

4.3 UNCERTAINTY MODELING
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Figure 5: AUROCs of Uncertainty Measures. The horizontal
axis represents the threshold τ .

Comparison of Uncertainty Mod-
eling Approaches In this part, we
present the results of different uncer-
tainty measurement approaches. We
present different uncertainty measure-
ment approaches in Appendix G, and
the final experimental results in Ta-
ble 4. We find that the performance
of our method far exceeds simple
token-level uncertainty estimation and
sentence-level uncertainty estimation.

Uncertainty Calibration Evaluation
In this part, we use the AUROC (Lin et al., 2023b; Huang et al., 2024) metric as the evaluation
standard for the uncertainty calibration of LLMs. Referring to their method, we introduce an ad
hoc threshold τ ∈ R to map the real-valued output of the deterministic correctness function to
binary labels, i.e., Fτ (x, ŷ) = 1[F1(x, ŷ) ≥ τ ], where x represents the model’s input chunks and ŷ
represents the model’s sampled output. F1 represents the accuracy assessment of the model’s output ŷ.
Specifically, if the correctness function F1 exceeds the threshold τ , it is considered correct; otherwise,
it is considered incorrect. Fτ is regarded as the final binary classification result where the model is
confident. It is used to compare with SU(ch1, ..., chi, query, ŷ) to obtain the final AUROC. The final
results are presented in Fig 5, where we can see that the calibration of our uncertainty measures is
significantly better than other methods. Both results are evaluated on the Llama-2-7b-chat-hf model
using the TriviaQA (Joshi et al., 2017) dataset. The detailed introduction of the pipeline can be found
in Appendix G.

5 CONCLUSION

In conclusion, UncertaintyRAG introduces a novel SNR-based span uncertainty approach to improve
calibration in long-context Retrieval-Augmented Generation (RAG). The method outperforms pow-
erful open-source embedding models like BGE-M3 while using only 4% of the training data. By
leveraging span uncertainty, UncertaintyRAG promotes unsupervised learning, reducing the need
for large labeled datasets, making it scalable and efficient. The results show that even with minimal
data, UncertaintyRAG achieves superior performance and generalization under distribution shift
scenarios. This lightweight solution requires no fine-tuning and integrates seamlessly into any LLM,
making it versatile for various long-context tasks. Looking forward, UncertaintyRAG paves the
way for optimizing retrieval models through advanced uncertainty quantification, particularly in
resource-constrained environments.
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APPENDIX

A TRAINING DATASET

In this work, we construct a new dataset from five existing datasets that include single-document QA,
multi-document QA, and summarization tasks to train our dense retriever. All datasets are sourced
from LongBench(Bai et al., 2023).

HotpotQA(Yang et al., 2018) is a challenging benchmark for multi-hop question answering, requiring
models to retrieve and integrate information from multiple documents to arrive at the correct answer.
It is specifically designed to evaluate a model’s capacity for compositional reasoning, as questions
often necessitate combining evidence from disparate sources. Additionally, HotpotQA includes
supporting fact annotations, which serve to explain the reasoning process, making it suitable for tasks
involving both factual retrieval and logical inference in natural language understanding.

MultiFieldQA-en(Bai et al., 2023) is manually curated to better evaluate the model’s ability to
understand long contexts across various fields. The documents contain evidence from multiple
sources, such as legal documents, government reports, encyclopedias, and academic papers, which
are randomly distributed to prevent biases that might arise from their placement at the beginning or
end of the documents.

Qasper(Dasigi et al., 2021) is a question-answering dataset specifically tailored for academic papers
in the field of natural language processing. It consists of questions generated by annotators who
read full research papers and pose queries that can be answered using the information within the
paper. The dataset is designed to evaluate a model’s ability to perform non-factoid QA on scientific
texts, involving tasks such as understanding methodologies, interpreting results, and synthesizing
information from complex, domain-specific content.

NarrativeQA(Kočiskỳ et al., 2018) is a well-known question-answering dataset that includes full
books from Project Gutenberg and movie scripts sourced from various websites. In this task, the
provided passage is transcribed from books and often contains noise. The model’s job is to generate a
concise phrase by reasoning through the lengthy and noisy text.

QMSum(Zhong et al., 2021) is a query-based summarization dataset that includes transcripts of
meetings and their corresponding summaries across various domains, including academia and in-
dustrial products. In this task, a meeting dialogue transcript is provided along with a question that
prompts summarization of a specific topic within the dialogue. The answers typically consist of a few
sentences.

And then we test on five dataset:

2WikiMultihopQA(Ho et al., 2020) is a benchmark for multi-hop question answering, which requires
models to perform reasoning over multiple pieces of information to answer a single question. It
contains questions that are designed to require information from multiple Wikipedia articles to answer
correctly, promoting a more complex and connected reasoning process.

Musique(Trivedi et al., 2022) is a dataset designed for multi-hop question answering. Unlike
HotpotQA, Musique demands more integrated reasoning by reducing possible shortcuts in reasoning,
minimizing overlap between training and test data, and featuring more challenging distractor contexts.
As a result, Musique is a significantly more difficult task than HotpotQA and is much less susceptible
to shortcuts.

TREC(Li & Roth, 2002) is a widely used dataset for evaluating information retrieval and semantic
search systems, encompassing documents from multiple domains. The answers are assessed for their
relevance and accuracy based on predefined criteria, providing a robust framework for evaluating the
performance of retrieval and question-answering models.

TriviaQA(Joshi et al., 2017) is a widely used question-answering dataset that provides complex,
real-world questions paired with relevant documents from sources like Wikipedia and web pages. It
is designed to test a model’s ability to locate and understand the information needed to answer the
questions, making it suitable for tasks such as machine reading comprehension and open-domain
question answering.
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SAMSum(Zhong et al., 2021) is a specialized dataset designed for the task of abstractive dialogue
summarization. Developed to support research in natural language processing, particularly in
generating concise summaries from conversational text, the SAMSum dataset contains dialogues that
mimic everyday conversations one might find in messaging apps or casual settings.

B HYPERPARAMETER SETTINGS

In our experiments, we employed Llama-2-7b-chat-hf to compute uncertainty scores across different
chunks. To identify the stable region of the Signal-to-Noise Ratio (SNR), we applied a sliding
window technique, setting the window size to 20 and shifting by 10 steps at each interval. We
consider the SNR to have reached a stable region when its value within a window falls below a
predefined threshold, typically set at 2 or 3.

During the data scaling process, we set the number of clusters k to 10, set c to 800 or 1600 samples
from each category and set sample number n to 100.

During retriever training, we utilize the Adam optimizer (Kingma, 2014) with a batch size of 16, a
learning rate of 1e-5, linear scheduling with warm-up, and a dropout rate of 0.1. And we run training
on 8 NVIDIA A800 GPUs.

C BASELINES

There has been extensive research on Retrieval-Augmented Generation (RAG), with one critical aspect
being the development of a robust representation model that effectively clusters sentence information
with query information in high-dimensional space. In our work, we compare our approach with
several influential and open-source methods from prior studies. This section provides a detailed
overview of these methods.

Contriever(Izacard et al., 2021) is a dense retrieval model designed to improve performance and
generalization through unsupervised training on diverse datasets. It uses contrastive learning to
generate embeddings, bringing semantically related query-document pairs closer together while
pushing irrelevant pairs apart. This method allows Contriever to effectively handle tasks like semantic
search and question answering, even in zero-shot scenarios. By relying on unsupervised learning, it
adapts well to various domains without needing annotated data, making it versatile for information
retrieval tasks.

BGE(Xiao et al., 2023b) is a large-scale multilingual text embedding model developed by the Beijing
Academy of Artificial Intelligence (BAAI), designed for tasks such as semantic retrieval and ranking
across multiple languages. Pre-trained on extensive multilingual datasets, BGE encodes text into
dense vector representations optimized for semantic similarity tasks, where the relationship between
query and document pairs is captured by comparing their vector embeddings.

The model is primarily trained using contrastive learning, which teaches it to minimize the distance
between embeddings of relevant query-document pairs while maximizing the distance for irrelevant
pairs. BGE embeddings are applied in dense retrieval, which focuses on understanding the semantic
meaning of text rather than relying solely on keyword matching. This makes BGE especially effective
for tasks that demand high precision in matching semantically similar content, such as cross-lingual
or multilingual retrieval scenarios.

BGE-M3(Chen et al., 2024) is an advanced extension of the BGE model, designed to support
multi-modal retrieval by integrating dense, lexical, and multi-vector retrieval methods. This hybrid
approach allows BGE-M3 to tackle a broader range of retrieval tasks by combining precise keyword
matching with deeper semantic analysis. The training process of BGE-M3 employs self-distillation,
where intermediate layers are optimized to rank query-document pairs, enhancing both efficiency
and flexibility. By leveraging a combination of sparse and dense embeddings, BGE-M3 is highly
effective for large-scale, multilingual retrieval tasks.

Dragon(Lin et al., 2023a) is a dense retrieval model designed to enhance performance and general-
ization in dense retrieval tasks by incorporating diverse data augmentation techniques. This model is
notable for its robust handling of both supervised and zero-shot environments, utilizing innovative
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methods to manage various query types and relevance labels. By introducing multiple forms of data
augmentation—specifically for queries and labels—it effectively generalizes to unseen data.

D PROMPT TEMPLATES

2WikiMultihopQA and Musique
Answer the question based on the given passages. Only give me the answer and do not output any other words.
The following are given passages.
{Prompt}
Answer the question based on the given passages. Only give me the answer and do not output any other words.
Question: {Question}
Answer:

TREC
Please determine the type of the question below. Here are some examples of questions.
{Prompt}
{Question}

SAMSum
Summarize the dialogue into a few short sentences. The following are some examples.
{Prompt}
{Question}

TriviaQA
Answer the question based on the given passage. Only give me the answer and do not output any other words.
The following are some examples.
{Prompt}
{Question}

Table 5: Prompt template.

The prompt templates employed are similar to those proposed by Bai et al. (2023), and are listed in
Table 5.

E ANALYSIS OF TRAINING DATA UTILIZATION AND PARAMETER EFFICIENCY

Model Label Number Parameter Size

Contriever Unlabeled - 768M

BGE-Large Unlabeled 100 millions 326MLabeled 8 millions

BGE-M3 Unlabeled 184 millions 560M

Dragon Unlabeled 28 millions 110M

Ours Unlabeled 7 millions 110M

Table 6: The comparison of the number of paired texts used for training.

As shown in Table 6, our method demonstrates significant advantages over baseline models in both
the required training data and parameter size:

Reduced Training Data: While baseline models such as BGE-Large and BGE-M3 require hundreds
of millions of paired texts (100 million and 184 million, respectively), our method only requires 7
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million paired texts. This efficiency allows for effective training even in scenarios with limited data
availability.

Compact Parameter Size: Our model maintains a parameter size of 110 million, comparable to
Dragon, which also has the same parameter count but requires 28 million paired texts for training. In
contrast, other baseline models like Contriever and BGE-Large have significantly larger parameter
sizes (768 million and 326 million, respectively), which may lead to increased computational resource
requirements and longer training times.

In summary, our method demonstrates superior efficiency in training data utilization and parameter
scaling compared to baseline models, facilitating a broader application in scenarios with limited
labeled data.

F FORMULATIONS FOR DIFFERENT APPROACHES TO MODELING
UNCERTAINTY

Method Formula
Minimum u = − log(min(z1, z2, . . . , zn))

Average u = − log(Avg(z1, z2, . . . , zn))
Log-sum u = −

∑n
i=1 log(zi)

Entropy u = −
∑n

i=1 zi · log(zi)
Self-information u = − log (

∑n
i=1 exp(zi − zk))

Table 7: Six methods of calculating the uncertainty u of a free form output of length n. zi is a
conditional probability with respect to p(xi | xi−1, . . . , x0). In the table, i represents the current
token at the i− th position in the vocabulary.

In this section, we present several different methods for uncertainty modeling, with specific formula-
tions shown in Table 7. Each method provides unique insights into quantifying uncertainty, which is
crucial for improving model robustness and decision-making in complex scenarios.

G PIPELINE OF UNCERTAINTY CALIBRATION EVALUATION

Figure 6: Common pipeline for assessing the quality of an LLM uncertainty measure.
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In this section, we provide a detailed description of the process for calculating the AUROC, as
illustrated in Fig 6. Similarly to previous work(Huang et al., 2024), the experiments are carried out
on the TriviaQA dataset, using the Llama-2-7b-chat-hf model. First, we construct prompts suitable
for TriviaQA in the format shown in Table 5 and input them into the LLM. At this stage, we obtain an
output y from the model, as well as the logits corresponding to both the prompt and the output. For
the output ŷ, we compute its score using a correctness function (in this experiment, we employ the
F1-score). If this score exceeds a predefined threshold Fτ , the input is considered correct; otherwise,
it is deemed incorrect. Simultaneously, we evaluate the output logits using the uncertainty methods U
outlined in Table 7 to obtain an uncertainty score U(x; ŷ). Finally, we calculate the AUROC metric
based on Fτ (x, ŷ) and U(x; ŷ) to derive the final result.

H EXPERIMENTS ON DATASET SENSITIVITY

To validate the robustness of our method to the choice of data sets, we carried out another set of
experiments with newly selected training and testing data sets. In the new experiments, the training
set includes MultiFieldQA, Musique, QMSum, TREC, and TriviaQA, while the test set consists
of NarrativeQA, Qasper, SAMSum, and 2WikiMultihopQA. The detailed experimental results are
presented in Table 8

LLaMA-2-7B-Chat-HF Truncate BERT Contriever BGE-M3 BGE-Large GRAGON-PLUS Ours

2WikiMultihopQA 28.50 32.73 33.60 29.64 34.14 34.61 37.31
NarrativeQA 17.31 17.58 16.91 19.45 19.46 20.01 20.20
Qasper 18.14 19.07 21.01 20.31 19.93 20.50 20.81
SAMSum 40.45 40.01 38.45 40.37 40.34 41.08 41.26
Average 26.10 27.34 27.49 27.44 28.47 29.05 29.90

Table 8: Results with the new datasets.

All experiments were conducted on LLaMA-2-7B-Chat-HF. As observed, our method continues to
achieve the best performance on the new datasets. This demonstrates the robustness of our method as
it does not rely on the specific selection of data sets.

I EXPERIMENTS ON THE SENSITIVITY OF UNCERTAINTY MEASUREMENT
MODELS

To validate the robustness of the model used to measure uncertainty, we conduct RAG experiments
with the model using a retrieval model trained on uncertainty measurements obtained from Vicuna-7B
with Vicuna-7B and LLaMA-2-7B-Chat-HF. The results are shown in Table 9 and Table 10.

Dataset Truncate BERT Contriever BGE-M3 BGE-Large GRAGON-PLUS Ours (Vicuna-7B)

2WikiMultihopQA 22.74 23.19 23.02 23.81 23.41 22.21 24.29
Musique 7.55 12.64 10.12 15.06 14.84 13.01 14.51
TREC 67.50 67.50 70.50 69.00 70.50 70.00 68.50
TriviaQA 73.21 73.21 74.72 74.39 74.69 73.67 78.49
SAMSum 36.54 36.54 35.81 36.83 36.04 37.22 39.64
Average 42.20 42.61 42.83 43.82 43.89 43.22 45.08

Table 9: The results of using Vicuna-7B as the uncertainty measurement model and testing on
Vicuna-7B.

UncertaintyRAG demonstrates strong effectiveness in measuring uncertainty when combined with
various models. Notably, using different models (including Vicuna-7B) to estimate uncertainty
consistently improved RAG performance across experiments conducted on diverse models, such
as Vicuna-7B and LLaMA-2-7B-Chat-HF. These results highlight the robustness and agreement of
uncertainty measurement across different model architectures.
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Dataset Truncate BERT Contriever BGE-M3 BGE-Large GRAGON-PLUS Ours (Vicuna-7B)

2WikiMultihopQA 28.50 32.73 33.60 29.64 34.14 34.61 35.74
Musique 9.41 18.74 14.25 24.27 24.20 20.50 22.68
TREC 64.50 66.00 70.00 71.00 70.50 70.50 67.50
TriviaQA 77.80 78.69 76.09 75.74 75.10 77.51 79.46
SAMSum 40.45 40.01 38.45 40.37 40.34 41.08 42.70
Average 44.13 47.23 46.48 48.20 48.20 48.84 49.62

Table 10: The results of using Vicuna-7B as the uncertainty measurement model and testing on
LLaMA-2-7B-Chat-HF.

J EXPLORATION OF USING SPAN UNCERTAINTY AS A RERANKING METHOD

To further explore the potential of our method in reranking, we first use BERT for coarse ranking
to select candidate chunks. These chunks are then concatenated with the question and processed by
an LLM. Our method is applied to measure similarity scores, which are used to rerank the chunks.
Detailed results are shown in the Table 11.

Dataset BERT After Re-ranking

2WikiMultihopQA 32.73 33.73
Musique 18.74 20.34
TREC 66.00 66.50
TriviaQA 78.69 79.78
SAMSum 40.01 41.24

Average 47.23 48.32

Table 11: Comparison of performance before and after reranking on LLaMA-2-7B-Chat-HF.

We can find that after re-ranking, the final results show a significant improvement. This could
potentially be an area for further exploration in the future.

K A SIMPLE CASE STUDY

Now, assume that we have two chunks:

• Chunk A: How do you do?

• Chunk B: Thank you for taking the time to review our manuscript.

Here, for the sake of convenience, we treat each word or punctuation mark as a token.

In this case, Chunk A consists of 5 tokens, and we can obtain the probabilities for these 5 tokens.
Similarly, Chunk B consists of 11 tokens, for which we also have their probabilities. By concatenating
these probabilities, we get:

PA1, PA2, . . . , PA5, PB1, PB2, . . . , PB11.

Assume the sliding window size is set to 3, with a stride of 1 (used here for clearer demonstration).
We first calculate the SNR within the window:

(PB9, PB10, PB11)

and find that it is less than the set threshold.

We then slide the window one step to the left and calculate:

(PB8, PB9, PB10),
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and continue this process iteratively.

For this example, let us assume we eventually find that the SNR for:

(PA4, PA5, PB1)

exceeds the threshold. At this point, the sliding window stops.

We then take the probabilities of all tokens from the previous sliding windows (i.e., PA5 to PB11)
and compute their average. This average value is used as a similarity score between the two chunks,
forming positive and negative samples for subsequent contrastive learning training.
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