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Abstract

In-Context Learning (ICL) typically utilizes001
classification criteria from probabilities of man-002
ually selected label tokens. However, we ar-003
gue that such token-based classification crite-004
ria lead to suboptimal decision boundaries, de-005
spite delicate calibrations through translation006
and constrained rotation. To address this prob-007
lem, we propose Hidden Calibration, which008
renounces token probabilities and uses the near-009
est centroid classifier on the LM’s last hidden010
states. In detail, we use the nearest centroid011
classification on the hidden states, assigning the012
category of the nearest centroid previously ob-013
served from a few-shot calibration set to the test014
sample as the predicted label. Our experiments015
on 3 models and 10 classification datasets indi-016
cate that Hidden Calibration consistently out-017
performs current token-based calibrations by018
about 20%. Our further analysis demonstrates019
that Hidden Calibration finds better classifi-020
cation criteria with less inter-categories over-021
lap, and LMs provide linearly separable intra-022
category clusters with the help of demonstra-023
tions, which supports Hidden Calibration and024
gives new insights into the conventional ICL.025

1 Introduction026

In-context Learning (ICL) (Dong et al., 2022) is027

a few-shot learning paradigm without any model028

parameter updates, using Language Models (LMs).029

In detail, as shown in Fig. 1-A, B, given a prompt030

consisting of demonstrations and a query, LMs031

assign probabilities to the candidate label tokens032

as the next token of the prompt and choose the033

label with the highest probability as the prediction.034

Typically, label tokens are manually selected.035

One well-known issue with ICL is that the pre-036

dicted probabilities are biased (under-calibrated),037

leading to a decrease in prediction perfor-038

mance (Fei et al., 2023; Han et al., 2022; Zhao039

et al., 2021; Zhou et al., 2023). To solve this is-040

sue, previous work calibrates the predicted next041
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Figure 1: In an ICL diagram, A. The prompt of ICL
consists of a combination of demonstrations and a query.
After encoding the prompt into the last hidden state h,
B. Previous works use the un-embedding vectors of the
label tokens (EU

+ and EU
− ) to decode the h for prediction,

then calibrations are used to adjust the predicted logits.
C. Our work uses the calibration dataset to calculate
centroids (h̄+ and h̄−) to decode the h.

token probabilities of the label tokens, perform- 042

ing estimated affine transformations to adjust these 043

probabilities for more faithful predictions. 044

These works are based on a potential assumption: 045

the affine manifolds spanned by the un-embedding 046

vectors1 of manually selected label tokens are good 047

subspaces of the hidden space to distinguish them 048

appropriately, and the output label token probabil- 049

ities decoded from these subspaces are good clas- 050

sification criteria. However, some practices have 051

pointed out that randomly changing label spaces 052

doesn’t critically influence ICL performance (Min 053

et al., 2022c; Wei et al., 2023), which means the se- 054

lected label subspaces are trivial and unfaithful. Al- 055

though using the natural label un-embedding seems 056

intuitive, it should be noted that we have no reason 057

to believe that these subspaces have any guarantee 058

1The row vectors in the parameters matrix of LM head.
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for good decision boundaries, to allow the coordi-059

nate (i.e., label token probabilities) as classification060

criteria, even if various delicate calibrations are061

used to move these boundaries in the subspaces.062

This makes us suspect that: Utilizing manually063

selected label probabilities as classification cri-064

teria may not be good ICL practices.065

Previous work has shown that using the output066

probabilities of the full vocabulary increases ICL067

performance (Xu et al., 2022; Abbas et al., 2024).068

This is a good start to avoid the manually selected069

mapping subspace, but we still think that output070

probability distributions are inefficient as classifi-071

cation criteria. Therefore, in this paper, we utilize072

the last hidden states, which are high-ranking and073

informative precursors of the token probabilities.074

In detail, we propose Hidden Calibration, utiliz-075

ing the spatial pattern of the last hidden states for076

ICL. During the training, we build standard ICL077

prompts similarly to Fig. 1-A from a calibration078

set. Inputting them into an LM, we can get the last079

hidden states of the last tokens. Then, we calculate080

the centroids of the last hidden states with the same081

query label, so that we can get a centroid for each082

label. During the inference, we export the last083

hidden state of the test prompt and find the nearest084

centroids. The category of the nearest centroid is085

assigned to the query as the prediction.086

Statistically, our method improves the perfor-087

mance of ICL by approximately 20% on 10 text088

classification datasets and 3 modern LMs. To the089

best of the author’s knowledge, Hidden Calibra-090

tion consistently outperforms the calibration base-091

lines, achieving a strong state-of-the-art in ICL,092

with an equal computational cost with previous093

label probability calibrations.094

Our subsequent analysis indicates that Hidden095

Calibration does find better mapping subspaces096

that effectively separate data points. In detail, we097

find that the kernel densities of criteria calculated098

from Hidden Calibration have less inter-category099

overlapping than from label probabilities, while100

such overlapping is proportional to the lower bound101

of the classification error. This suggests Hidden102

Calibration finds subspaces with essentially better103

classification performance.104

Moreover, we investigate the principle of Hid-105

den Calibration, that is, the reason why a simple106

centroid-based linear decision boundary can divide107

the ICL hidden state properly. We find that LMs108

provide linearly separable clusters in the hidden109

states w.r.t. query labels, while demonstration can110

promote such a process. 111

Our contributions can be summarized as: 112

• We analyze the previous calibration practices 113

on ICL, and find their consistent limitations: 114

Using manually selected labels as the project- 115

ing subspaces for classification criteria, which 116

are often under-guaranteed. 117

• We propose Hidden Calibration to address 118

such a problem, eliminating the unreliable hu- 119

man intuition from ICL prediction decoding 120

by the nearest centroid classifier on hidden 121

states instead of human-selected token-based 122

probabilities. Our experiments suggest that 123

Hidden Calibration is a new state-of-the-art. 124

• Our further analysis indicates that Hidden Cal- 125

ibration does find better classification criteria 126

with less inter-categories overlap, and LMs 127

provide linearly separable intra-category clus- 128

ters with the help of demonstrations, which 129

supports the Hidden Calibration. 130

2 Background 131

This section reviews previous work on ICL and 132

denotes their mathematical descriptions. 133

2.1 In-context Learning 134

Prompting. Given a few-shot natural language 135

classification dataset (demonstration set) D = 136{
(x(i), y(i)) ∈ X × Y

}n

i=1
, where x(i) and y(i) are 137

the input tokens and label token of i-th data point, 138

and X ,Y is the input and label space, respec- 139

tively, we sample a set of k samples Dde = 140{
x(ci), y(ci)

}k

i=1
from D for a given query xq. 141

Then, we use a template T to concatenate them 142

in a natural language form into a prompt token 143

sequence: s = T
(
Dde, xq

)
, as shown in Fig. 1-A. 144

Encoding. A decoder-structured LM receives the 145

prompt token sequence s and encodes it into the 146

last (means on the last Transformer layer) hidden 147

state matrix as H ∈ R|s|×d with a length of token 148

|s| and embedding dimension of d. We denote the 149

hidden state of the last token as h = H|s| ∈ Rd. 150

Decoding. In a typical ICL setup, one chooses 151

the un-embedding vectors of the label candidates 152

in the output head2 as the decoding subspace. For 153

2We omit the bias term in the output head (if any) for the
sake of simplicity. It can be overridden by a fixed-to-one
dimension, or covered by the calibration described below.
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Figure 2: Token probability-based decision boundaries
(original & batch calibrated) are suboptimal comparing
to hidden state-based boundary. Points and contour lines
are ICL’s last hidden states and kernel densities mapped
by Principal Component Analysis. Oblique coordinate
axis is the direction of the un-embedding difference of
label tokens

(
EU

+ − EU
−
)
, where the kernel densities of

mapped data points are plotted. The rotating calibration
by A ̸= I (e.g. Contextual Calibration, Domain Cali-
bration) has a limited feasible mapping direction3 .

each label l, the similarity αl = sim(h,EU
l ) (usu-154

ally the dot-product similarity) between h and each155

un-embedding vector EU
l is calculated as the out-156

put classification criteria αl (logits), as shown in157

Fig. 1-B for a binary classification example. Then,158

the category with the highest logits is chosen as the159

prediction ŷ, that is: ŷ = argmax
l∈Y

sim(h,EU
l ).160

2.2 Calibration for ICL161

However, Zhao et al. (2021) find that simply using162

the original logits as classification criteria is not a163

good ICL practice. These logits have considerable164

prior bias and often tend towards specific labels165

even if the query is blank or meaningless (Zhao166

et al., 2021; Fei et al., 2023). Some calibrations167

have been proposed to mitigate such bias in a linear168

form: first, the logits are transformed into proba-169

bilities as p = softmax([α1, α2, . . . , α|Y|]), then170

affine-transformed as calibrated classification cri-171

teria p′ = A ⊙ p + B, where A,B ∈ R|Y| is the172

calibration terms estimated from m examples (cali-173

bration set), and ⊙ is the Hadamard multiplication.174

Many practices calculate the background biases by175

examples with pseudo queries and serving them as176

the scale terms (Fei et al., 2023; Zhao et al., 2021), 177

while other practices calculate the biases by Gaus- 178

sian estimation (Han et al., 2022) or the mean value 179

of p during the inference (Zhou et al., 2023). 180

However, such calibrations are affine transforma- 181

tions on the label token probability, without modi- 182

fying the EU
l , allowing only translation of 0-point 183

(by term B) and rotation inside the closure3 of EU
l 184

(by term A) to the decoding subspace. 185

3 Methodology 186

Based on the above background, in this section, 187

we demonstrate the limitations of the above cali- 188

brations, and then propose Hidden Calibration to 189

address such limitations fundamentally. 190

3.1 Token Probabilities Are Not Good 191

Classification Criteria 192

To better understand the limitations of the token 193

probability-based paradigm, we show a prototype 194

visualization of the hidden states of ICL prompts. 195

Specifically, we encode ICL prompts (with k = 196

8) for 2,048 instances of SemEval 2014-Task 4 197

Restaurant (Pontiki et al., 2014) dataset using OPT- 198

2.7B (Zhang et al., 2022) and plot the last hidden 199

states of the last token on a 2D-Principal Compo- 200

nent plane in Fig. 2 (See Appendix B.4 for details). 201

Focusing on the data points labeled “positive” 202

and “negative”, we plot the difference direction 203(
EU

+ − EU
−
)

between the un-embedding vectors 204

of these two label tokens4. Then, the coordinates 205

of the mapped hidden states in such a direction 206

are the classification criteria between these two 207

labels5, serving as the token-based classification 208

criteria. In this visualized scenario, the original 209

decision boundary is the orthogonal line at the zero 210

point, the batch calibrated boundary (Zhou et al., 211

2023) is always parallel to it, and the other calibra- 212

tions (Contextual Calibration (Zhao et al., 2021), 213

Domain Calibration (Fei et al., 2023)) produces 214

rotated mapping direction
(
A+E

U
+ −A−E

U
−
)
, by 215

3In current practices, the A are calculated from reciprocals
of probabilities, which are positive-definite (Note that the
calibration is trivial when A is not positively definite: the
category with negative A components will never be assigned),
and usually do not have significant relative values.

4Notice that Principal Component Analysis is an orthogo-
nal transformation, keeping the dot-product and normal line
fixed (In fact, beyond orthogonal transformations, they are
also centralized. Therefore, the projection axis does not neces-
sarily pass through the coordinate origin). See Appendix B.4.

5In most scenarios, we use the dot-product similarity. So,
when the classification criteria α+ − α− = h(EU

+ − EU
−)T

is greater than 0, a “positive” label is assigned, and vice versa.
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Figure 3: The diagram of Hidden Calibration. Step 1:
Calculating the hidden state centroid of each category.
Step 2: Find the category of the nearest centroid of the
text sample to be the prediction.

term A, where A+, A− > 0 limit3 the direction216

inside the closure of EU
+ and −EU

− .217

Intuitively, the token-based mapping directions218

and decision boundaries cannot effectively classify219

these data points. It is due to the inherent direction220

of the token un-embedding vectors, regardless of221

calibration with affine transformation, where the222

boundary is moved almost parallelly. A straightfor-223

ward better linear boundary is plotted as the green224

line, which can be calculated as the equidistant225

points between both categories’ centroids.226

3.2 Hidden Calibration227

Motivated by the aforementioned limitation, we228

propose Hidden Calibration, using the centroid sim-229

ilarity as the classification criteria. The process is230

the same with the nearest centroid classifier, as231

shown in Fig. 3. First, as training, we calculate232

the centroid of the last hidden states of data points233

within each category on a calibration dataset. Then,234

in the inference, we select the closest centroid of235

the hidden state of the test sample as the prediction.236

In detail, first, we conduct (1). Training: Given237

a calibration set with m supervised prompt-label238

pair
{(

s(i), y(i)
)}m

i=1
, where the s(i)s are standard239

ICL prompts with k demonstrations, and y(i)s240

are the ground-truth labels of corresponding s(i)s’241

query. We use LMs to encode the prompts into242

last hidden states h(i) with the process mentioned243

in 2.1 and get a supervised hidden state set H =244 {(
h(i), y(i)

)}m

i=1
. Then, we calculate the centroids245

of category l as: h̄l = E(h(i),y(i))∈H,y(i)=l

[
h(i)

]
.246

Then, (2). Inference: Given a test query, we247

build an ICL prompt similar to the training step.248

Encoding it into the last hidden state h, we calcu-249

late the similarity6 between h and every centroid h̄l250

6Since it is found that the dot-production similarities in hid-
den space are unfaithful (Ethayarajh, 2019; Steck et al., 2024),
in this practice, the additive inverse of Euclidean distance is

as the classification criteria αl. The category with 251

the highest similarity is assigned as the prediction. 252

Notice that another intuitive solution to the prob- 253

lem in §3.1 is utilizing the logits or probabilities of 254

the whole vocabulary as a classification feature, as 255

shown in previous works (Xu et al., 2022; Abbas 256

et al., 2024). However, the dimensionality of the 257

whole-vocabulary logits is much larger than hidden 258

states, while the difference between them is only 259

an input-irrelevant linear transformation, where no 260

input-relevant information gain is obtained by such 261

transformation. Therefore, we choose the hidden 262

states, a high-rank and informative precursor of 263

token probabilities, as the classification feature. 264

4 Experiments & Main Results 265

In this section, we prove the validity of Hidden Cal- 266

ibration by testing its classification performance on 267

3 models and 10 datasets. Hidden Calibration out- 268

performs all the baselines, and reaches a strong 269

state-of-the-art of ICL. 270

4.1 Experimental Settings 271

Models. We use 3 models: OPT-2.7B (Zhang 272

et al., 2022), LLaMa 2 (Touvron et al., 2023), and 273

GPT2-XL (Radford et al., 2019). 274

Baselines. We use 6 baselines from the previous 275

works, with 4 label token-based methods (None, 276

Con.C, Bat.C, and Dom.C) and 2 whole vocabulary 277

probabilities-based methods (KNN and Cent.C). 278

Details can be found in Appendix B.2. 279

Datasets. We use 10 commonly used classifi- 280

cation datasets with some of the overlength data 281

points excluded. See Appendix B.1 for details. 282

Other details. All the model checkpoints and 283

datasets are loaded from HuggingFace. Macro F1 284

is used as the classification metric. We use a simple 285

template to generate the prompt, see Appendix B.3. 286

We set m = 16|Y| (16 examples per category) for 287

calibration, and for the sake of fairness, every base- 288

line method is given equal examples for calibration. 289

All the experiments are repeated 5 times. 290

4.2 Main Results: Hidden Calibration is A 291

New State-of-the-art of ICL 292

The classification performance of Hidden Calibra- 293

tion (Hidd.C) and baselines is shown in Fig. 4, 294

used (that is, αl = −
∥∥h− h̄l

∥∥ 1
2

2
). However, Appendix D.1

shows that Hidden Calibration acts equally on both similarity
measures.
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Figure 4: The classification performance (Macro F1(%)) of 3 models averaged on 10 datasets. Hidden Calibra-
tion (Hidd.C) is a new state-of-the-art of ICL, where demonstrations consistently improve the performance.

where Hidden Calibration consistently outperforms295

all the label token-based or vocabulary-based ICL296

methods. Comparing to the vanilla ICL (None),297

Hidden Calibration produces a improvement up to298

around 100%. In general, compared to the highest299

baseline, Hidden Calibration improves the perfor-300

mance by approximately 20%. Detailed numeric301

and Accuracy results are in Appendix. C.1.302

Especially, compared to the Cent.C baseline pro-303

posed by us for a controlled trial, which conducts304

the same calculation but uses the whole output to-305

ken probabilities instead of the hidden states, Hid-306

den Calibration outperforms. This confirms our307

hypothesis that token probability distribution is a308

less informative classification feature, even if the309

human-selected label tokens are excluded.310

Moreover, our method has little additional com-311

putational cost compared to the calibration base-312

lines, making it highly efficient in time and space,313

as shown in Appendix D.2. Regarding data effi-314

ciency of calibration examples, §5.3 proves that315

even only 1 example per category can help.316

Furthermore, in Fig. 4, we find that compared317

to baselines, Hidden Calibration seems to benefit318

from demonstrations consistently. In detail, the319

performances of Hidden Calibration have increas-320

ing patterns against the number of demonstrations,321

while most baselines do not perform similarly. We322

analyze such a phenomenon in §5.2.323

5 Analysis324

This section attempts to enhance our understand-325

ing of Hidden Calibration through comprehensive326

analysis. (1). We measure the overlapped area327

of data points mapped into classification criteria328

and prove that Hidden Calibration finds criteria329

with smaller overlap, responding to our hypothe-330

sis in §3.1. (2). We further investigate why using 331

simple linear boundaries can effectively classify 332

ICL data points, as happens in typical ICL and Hid- 333

den Calibration. We find that not only do the LMs 334

provide a linearly separable hidden representation 335

for ICL, but the demonstrations also facilitate this 336

process. (3). As a guarantee of efficiency, we in- 337

vestigate how are the calibration examples needed 338

in Hidden Calibration, and find that even with one 339

example per category, Hidden Calibration can im- 340

prove the performance of ICL. 341

5.1 Effectiveness: Hidden Calibration Finds 342

Criteria with Lower Overlap 343

In Fig. 2, we mapped all the “positive” and “nega- 344

tive” labeled data points into vanilla classification 345

criteria at the oblique extra coordinate axis, then 346

we find a significant overlap in the between the 347

data points in two categories, making it difficult 348

to find suitable classification boundaries in the ver- 349

tical direction. In this section, we generalize this 350

intuitive observation using the area of such overlap 351

as a metric of classification criteria. 352

In detail, we first decompose the multi- 353

classification problem into all possible binary clas- 354

sification combinations. Then, for each combi- 355

nation, we sample data points labeled with both 356

ground-truth labels in such a combination. Then, 357

we map them into classification criteria by the 358

method to be evaluted (here, we use the difference 359

of probabilities, instead of the difference of logits 360

in Fig. 2). To get the continuous representation for 361

area calculation, we run kernel density estimations 362

for both criteria in each ground-truth category, to 363

get two kernel density functions corresponding to 364

queries’ label, as shown in Fig. 5. Then, we cal- 365

culate the overlap area of these two kernel density 366
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tiki et al., 2014). The intra-category data points gradually converge to the centroid w.r.t. the demonstrations number.

curves. The final Averaged Overlap is the macro367

average of overlap area among all possible binary368

combinations (see Appendix B.5 for details).369

The overlap area of these two curves is double to370

the lower bound of the classifier’s error rate among371

these two labels (see Appendix B.5.3), so Averaged372

Overlap is an intuitive metric of the classification373

criteria. The larger the overlap, the more difficult374

it is for the classifier, even (further) calibrated or375

ideal, to classify data points correctly, resulting in376

a potential decrease in classification performance.377

We measure the Averaged Overlap of 3 models378

on 5 datasets (see Appendix B.5.2 for experimen-379

tal details). The result on GPT2-XL is shown in380

Fig. 6 (see Appendix C.2 for other models), where381

the Averaged Overlaps from token-based methods382

are consistently higher, causing that better classi-383

fication performance cannot be achieved on such384

criteria, which confirms our hypothesis in 3.1.385

The overlaps from Hidden Calibration is much386

less than from token-based methods, which means387

that the Hidden Calibration finds better classifi-388

cation criteria with better possible classification389

performance than the token-based methods, even390

delicate calibrations try to transfer or rotate these391

classification criteria.392

5.2 Principle: The Inner Linear-separability393

In the practice of Hidden Calibration, we use sim-394

ple linear boundaries to classify ICL examples, rais-395
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ing doubt on the linear separability of hidden states. 396

In this section, We find that LMs inherently pro- 397

duce linearly separable hidden states corresponding 398

to the ground-truth label, incredibly. Moreover, the 399

demonstrations facilitate this process. 400

As an intuitive visualization, we plot similar 401

curves as the Fig. 5 against the number of demon- 402

strations k to visualize the in-context learning dy- 403

namics in Fig. 7, where we find that: (1). the 404

data points have a little linear separability when 405

k = 0, and (2). such linear separability is being 406

enhanced following the increment of k, performing 407

intra-category converging dynamics. 408

We further characterize this process. First, we 409

calculate the Averaged Overlap similar to §5.1 on 410

various k in Fig. 8. We find that the token-based 411
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overlaps remain high and stable w.r.t. k, which indi-412

cates that the token-based methods can not benefit413

much from the demonstrations. However, the over-414

laps from Hidden Calibration significantly decrease415

with the increase of k, indicating that Hidden Cali-416

bration benefits from the demonstrations, which is417

consistent with our observations in §4.2.418

More generally, we repeat the visualization of419

Fig. 7 on the second principal components of hid-420

den states, instead of classification probability, to421

get an essential observation in Fig. 9, where as422

k increases, the hidden state shows clear intra-423

category cohesive dynamics, enabling linear classi-424

fying through the clustering of hidden states.425

More directly, we measure the intra-category426

standard error of data points and the inter-category427

averaged centroid distance against k (see Ap-428

pendix B.6 for details), as a joint indicator of intra-429

category aggregation and inter-category aggrega-430

tion. The results are shown in Fig. 10, where the431

two curves are both diminishing, showing an ob-432

vious intra- and inter-categories aggregation trend433

w.r.t. k. However, the inter-category aggregation434

has weaker and less persistent decreasing trends435

than the intra-category aggregation only in early436

demonstrations, or even ascending, which indi-437

cates that demonstration enhances intra-category438

clustering stronger than the inter-category aggre-439

gation, which is beneficial to linear classification.440

Moreover, a model with more parameters shows a441

stronger difference between these aggregations.442

5.3 Efficiency: Even One-shot Centroid Can443

Help Hidden Calibration444

Another concern is how much calibration data is445

required in Hidden Calibration. We repeat the ex-446

periments in §4 with various sizes of the calibration447

set on OPT-2.7B (see Appendix B.7 for details),448

from 1 to 128 calibration examples per category.449

The results are shown in Fig. 11.450

Table 1: Transferability of centroid among various
datasets with the same label space. Big numbers are the
averaged improvement (MF1) compared to vanilla ICL,
small numbers are standard error. Statistically signifi-
cant results (p < 0.1) are in bold.

Test
Cali. SemE.R SemE.L Fina.P TES

SemE.R (+38.75)
±2.28

+29.24
±3.19

+6.32
±10.55

+7.54
±8.96

SemE.L +20.78
±7.37

(+37.33)
±3.47

-0.40
±7.37

+8.94
±8.93

Fina.P +7.42
±4.98

+9.05
±11.14

(+37.29)
±2.30

-4.35
±6.34

TES +6.95
±7.00

+9.73
±5.68

-0.51
±3.83

(+11.83)
±3.59

The results indicate that although Hidden Cal- 451

ibration stably benefits from the size of the cali- 452

bration set, even one sample per category can still 453

make it outperform. This makes our method con- 454

sistent with the original motivation of in-context 455

learning, that is: making the most efficient use of 456

training samples and calculation resources in low- 457

resource scenarios. While token-based methods 458

can not benefit from scaling the calibration dataset, 459

the KNN method (Xu et al., 2022) underperforms 460

the vanilla ICL with a very small calibration set. 461

6 Discussion 462

6.1 Transferability of the Centorid 463

We have proven that it is not advisable to use the 464

common token probability criteria, while, since the 465

centroid criteria are proven to be better than token 466

probability, we are curious: can the centroid calcu- 467

lated in one task be transferred to other tasks with 468

the same label space? Among the datasets shar- 469

ing the same label space “positive”, “neutral”, and 470

“negative”, we calculate centroids by one dataset 471

and evaluate Hidden Calibration with it on another 472

dataset, on OPT-2.7B, with k = 4, m = 16. The 473

results are shown in Table 1, where only limited 474
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transferability is demonstrated in different domains475

of the same task (SemE.R and SemE.L), whose476

behavior is similar to task vector (Ilharco et al.,477

2022; Hendel et al., 2023), while other combina-478

tion of datasets can not demonstrate considerable479

transferability. This further exacerbates our doubts480

about the token-based method: We find that the481

hidden state distributions have significant differ-482

ences among various datasets, even if they share a483

common label space, then utilizing fixed token un-484

embedding vectors to decode these classification485

criteria is highly unreliable.486

Moreover, we repeat this experiment on various487

k, instead of various datasets, as shown in Table 2.488

The transferabilities among k are better than on489

datasets, but still worse than the un-transferred sce-490

nario. Notice that 4 → 1 results are much better491

than 0 → 1, which support our results in §5.2:492

hidden states with higher k are further converged.493

6.2 A Demonstration towards ICL Principles494

Our findings may lead to an explanation of the495

principle of ICL and traditional calibrations. LMs496

generate distributed representations into separate497

clusters in the last hidden state. At this point, by498

dot-product, any non-collinear arbitrary or plausi-499

ble mapping directions should be able to capture500

and classify these clusters to some extent. Note:501

The absolute distance in such a direction is not502

faithful (since the centroids of these hidden states503

and the coordinate origins in these mapping di-504

rections are not necessarily aligned), which leads505

to the generation of so-called bias, and calibrat-506

ing these biases can improve the performance to507

a certain extent. However, in such a paradigm,508

high-dimensional features are discarded, resulting509

in overlapping originally linearly separable features510

in high-dimensional space, leading to a loss of clas-511

sification accuracy, even if the calibration aligns512

the coordinate origin.513

6.3 Comparison to Previous Works514

Comparison to Probe Methods. One concern515

is that our work can be regarded as a degraded516

probe (Abbas et al., 2024; Amini and Ciaramita,517

2023) of the hidden states. However, we believe our518

work has more advantages: In terms of applica-519

tion, we use fewer samples and require no gradient-520

based training, which makes our method more user-521

friendly, efficient, elegant, and interpretable. In522

terms of theory, compared to fitting a universal ap-523

proximation (Hornik et al., 1989), our method and524

Table 2: Transferability of centroid among various k on
the same dataset. k1 → k2 is to use centroids estimated
by k1 demonstrations for inference on test examples
with k2 demonstrations. Other annotations are the same
as Table. 1

0→1 4→1 (1→1) 1→4 (4→4)

SemE.R +9.46
±1.95

+22.50
±14.55

(+26.14)
±5.16

+17.95
±7.51

(+38.75)
±2.28

SemE.L +26.80
±3.20

+17.18
±5.61

(+26.65)
±2.72

+10.79
±14.86

(+37.33)
±3.47

AGNews +42.38
±2.42

+40.20
±1.24

(+41.02)
±2.49

+43.12
±2.02

(+46.66)
±3.77

PoemS +0.16
±1.87

+2.12
±6.18

(+21.49)
±2.54

+8.79
±1.84

(+12.96)
±1.52

Fina.P -0.13
±1.88

+21.40
±2.90

(+16.70)
±3.80

+10.00
±13.68

(+37.30)
±2.30

settings fully utilize the hidden state convergence 525

on decoder LMs, making it a true ICL practice. 526

Comparison to Supervised Fine-tuning. Some 527

practices (Gu et al., 2023; Min et al., 2022b) build 528

training objectives to fine-tune models for better 529

ICL performance. These efforts are efficient but 530

bulky, while our work avoids such an enormous 531

overhead, making it more usable and elegant. 532

Comparison to Other Calibrations. Our 533

method is a disruptive innovation for methods 534

based on token probability (even the ones based on 535

the whole vocabulary). Experimental comparisons 536

of these methods have been given in §4. 537

For more related works, refer to Appendix A. 538

7 Conclusion 539

In this paper, we analyze the current token-based 540

ICL methods, and point out a common drawback: 541

using token probability as the classification criteria. 542

We propose Hidden Calibration to address such a 543

drawback by discarding the token-based classifica- 544

tion criteria. Our experiments show that Hidden 545

Calibration is a new state-of-the-art of ICL. Then, 546

we confirm that Hidden Calibration indeed creates 547

better criteria by reducing the inter-category over- 548

lap. Moreover, we find the hidden state conver- 549

gence promoted by demonstrations, as an explana- 550

tion of the principle of the performance improve- 551

ment by a single linear classification boundary in 552

Hidden Calibration. 553

We hope this work can inspire exploration of 554

the ICL by investigating the hidden state instead 555

of token probabilities, and update the community’s 556

understanding of ICL calibration. 557
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8 Limitations558

Due to computability limitations, we cannot com-559

pare the performance of Hidden Calibration with560

the baseline based on supervised fine-tuning. How-561

ever, we believe that Hidden Calibration is not562

within the same methodology as the fine-tuning563

method, due to the significant difference in compu-564

tational cost. So such a lack of comparison will not565

seriously hurt the soundness of this paper.566

We prove that human intuition in the label token567

choice is not reliable. However, we have not elim-568

inated such human intuition completely from the569

ICL loop: when we build prompts, we still choose570

the label token. How to automatically select the op-571

timal label token in the prompt will be an important572

issue and future research direction for improving573

the performance of ICL further.574

Other probability calibrations can be combined575

with Hidden Calibration for further performance576

improvements, since the 0-point is not necessar-577

ily an exact classification boundary, as shown in578

Fig. 7. Also, more complex prompts can be used.579

However, due to space constraints, we have not580

attempted this incremental approach, remaining it581

for future works.582

Analysis in §5.2 needs more theoretical and ex-583

perimental analysis. As we can see, some models584

(GPT2-XL) do not benefit from demonstrations585

even through the lens of hidden state aggregation.586

The differences in such a model behavior need to587

be explained. An explanation of “how to enhance588

the intra-category aggregation”, and “why such589

aggregation occurs or not” will be considerably590

beneficial for understanding the principle of ICL.591
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A Related Works787

Given the topic of enhancing in-context learning,788

there are 2 categories of methods focused on such789

a target.790

Model parameter update-based method: Al-791

though it is pointed out that the ICL objective is792

implicitly included in pre-training data (Han et al.,793

2023), explicitly fixing the gap between the ICL794

objective and causal language modeling objective795

can still be beneficial. Such methods are usu-796

ally based on supervised fine-tuning (Min et al.,797

2022b; Gu et al., 2023; Wei et al., 2021, 2023;798

Iyer et al., 2022; Wang et al., 2022), and also self-799

supervised training (Chen et al., 2022) and non-800

gradient method (Zhao et al., 2024). Such methods801

usually require huge amounts of computation and802

data overhead to update billions of LM parameters.803

In contrast, lightweight solutions focus on (2).804

Classification criteria-based method (calibra-805

tion): Such methods focus on calculating output806

category logits, keeping the main feed-forward807

calculation processes and their parameters un-808

modified. The original motivation for these works809

is to eliminate prior bias and unfaithful confidence810

in ICL, by calibrating the output label probabili-811

ties (Fei et al., 2023; Zhao et al., 2021; Han et al.,812

2022; Zhou et al., 2023; Jiang et al., 2023). While,813

as described in the main text, some practices with-814

out the usage of label probabilities have also been815

proposed (Xu et al., 2022; Abbas et al., 2024; Min816

et al., 2022a).817

B Experimental Details818

B.1 Datasets819

In this paper, 10 datasets are used as shown in Ta-820

ble 3. Some datasets do not provide valid splitting,821

Table 3: Datasets and Abbreviations used in this paper.

Dataset Abbr.

AGNews (Zhang et al., 2015) AGNews
SemEval 2014-Task 4 Restaurant (Pontiki et al., 2014) SemE.R
SemEval 2014-Task 4 Laptops (Pontiki et al., 2014) SemE.L
Poem Sentiment (Sheng and Uthus, 2020) PoemS
GLUE-RTE (Wang et al., 2019) RTE
tweet_eval_emotion (Mohammad et al., 2018) TEE
tweet_eval_hate (Basile et al., 2019) TEH
tweet_eval_sentiment (Rosenthal et al., 2017) TES
financial_phrasebank (all agree) (Malo et al., 2014) FP
rotten_tomatoes (Pang and Lee, 2005) Rott.T

Table 4: The additional (compare to vanilla ICL) time
and space on calibration and inference cost of various
methods. Hidden Calibration has a similar cost upper
bound to other calibrations. |V| is the vocabulary size.

Method Calibration Cost Inference Cost

Add. Space Add. Time Add. Time

None 0 0 0
Con.C O(|Y|) O(m) O(|Y|)
Bat.C 0 0 O(m|Y|)

Dom.C O(|Y|) O(m) O(|Y|)

KNN O(m|V|) O(m) O(m|V|)
Cent.C O(|Y||V|) O(m) O(|Y||V|)
Hidd.C O(|Y|d) O(m) O(|Y|d)

so we randomly split all of them into calibration 822

sets and test sets: For each dataset, we first shuffle 823

it with random seed 42. Then, we choose the 512 824

data at the tail as the testing data, and the 512 data 825

at the head (all the datasets have more than 1024 826

examples.) as the calibration data. Each data point 827

in a test set is used once for each experiment trial to 828

build a prompt example and test for performance. 829

AGNews has some over-length examples. So, 830

in the main experiments, we filter out those exam- 831

ples: for LLaMa 2, when k = 8, we filter out all 832

the examples with a string length greater than 512. 833

And in the experiments in §5.2, for all the models, 834

we filter out all the examples with a string length 835

greater than 256 for all the k. 836

B.2 Baselines 837

6 baselines (1 vanilla and 5 calibrations) are used 838

in this paper. Here we introduce the 5 calibration 839

baseline. 840

Contextual Calibration (Con.C). Proposed 841

by Zhao et al. (2021), Con.C uses empty queries 842

with normal demonstrations as calibration samples. 843

We input m|Y| samples with empty queries into 844

the model and get the averaged normalized label 845
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Table 5: Prompt templates used in this paper.

Dataset Prompt Template Label Space

AGNews Input: <x>, Label: <y> world, sport, business, science
SemE.R Input: <x>, Aspect: <a>, Label: <y> positive, neutral, negative
SemE.L Input: <x>, Aspect: <a>, Label: <y> positive, neutral, negative
PoemS Input: <x>, Label: <y> positive, neutral, negative, mix
RTE Input: <x>, Text 2: <a>, Label: <y> include, neutral
TEE Input: <x>, Label: <y> anger, joy, positive, sad
TEH Input: <x>, Label: <y> normal, hate
TES Input: <x>, Label: <y> positive, neutral, negative
FP Input: <x>, Label: <y> positive, neutral, negative
Rott.T Input: <x>, Label: <y> positive, negative
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Figure 12: The classification performance (Macro
F1(%)) of Hidden Calibration with difference similarity
measure.

probabilities p̄′ among m samples. We take the846

reciprocal of the probabilities as calibration term847

A = p̄′
−1, while the B = 0.848

Batch Calibration (Bat.C). Proposed by Zhou849

et al. (2023), Bat.C is an inference-time calibration,850

using the negative averaged normalized label prob-851

abilities −p̄ of m|Y| samples in inference time as852

the calibration term B = −p̄, while the A = 1,853

where 1 is the all-one vector.854

Domain Calibration (Dom.C). Proposed by Fei855

et al. (2023), Dom.C acts similarly to the Con.C.856

The difference is that it uses a random sequence857

sampled on the random tokens from the calibration858

dataset as queries instead of empty ones. We fix859

the sampled length to 32.860

KNN Prompt (KNN). Proposed by Xu et al.861

(2022), KNN uses the whole output vocabulary862

probability distribution as the classification feature,863

instead of the label tokens. First, features of cali-864

bration examples are calculated as k-NN anchors.865

Then, during the inference, a k-NN classifier is866

used to classify the feature from the test samples.867

We use m examples per category to calculate the868

anchors for k-NN, and the nearest neighbor number869

is set to 3.870

Central Calibration (Cent.C). This is the con- 871

trol method proposed by us. The calculation pro- 872

cess is completely consistent with the Hidden Cal- 873

ibration, except that the hidden state is not used, 874

and the whole output vocabulary probability distri- 875

bution consistent with KNN is used. This method 876

compares with Hidden Calibration to prove that 877

the output probability distribution is not a good 878

classification feature for ICL. 879

Notice that: these label-probability-based meth- 880

ods (Con.C, Bat.C, Dom.C) use A or B along, 881

which may be another major drawback of these 882

calibration methods: According to Fig. 2, if a cali- 883

bration rotates the mapping direction suitably, and 884

transfer the 0-point properly, a decision boundary 885

close to the Hidden Calibration can be found. This 886

also leads to a new research direction for calibra- 887

tion: the simultaneous usage of translation and 888

rotation methods. 889

B.3 Prompts 890

In this paper, we use a minimum prompt template 891

shown in Table 5. 892

To facilitate the replication of label probability- 893

based methods, we limit the label space to one to- 894

ken by synonymous conversion. Note that Hidden 895

Calibration does not need to meet such a one-token 896

requirement. That is, Hidden Calibration can be 897

applied to classification datasets of any length on 898

the label. 899

B.4 Details of Visualization in §3.1 900

Principle Component Analysis (PCA). Given 901

a hidden state set H =
{
h(i)

}n

i=1
, we span 902

all the hidden state vector into a matrix H ∈ 903

Rn×d. The covariance matrix is cov (H) = 904(
H − H̄

)T (
H − H̄

)
, where the H̄ is the matrix 905

spanned by the element-wise average vectors h̄ of 906

hidden state set H. We conduct Eigenvalue Decom- 907

position on cov (H) and adjust the dimensions to 908

arrange the eigenvalues Λ in a descending order 909

along the row: 910

cov (H) = PΛP T , (1) 911

where the P ∈ Rd×d is an orthogonal matrix. 912

Taking the top-d̃ lines of P and span them into 913

P̃ ∈ Rd×d̃, we get the principle component map- 914

ping: 915

PCAH(h) =
(
h− h̄

)
P̃ = hP̃ − h̄P̃ . (2) 916

12



Notice that P̃ P̃ T = I , where I is the identity ma-917

trix.918

Dot-product after PCA. Suppose we have dot-919

product with vector7 h and E in the original space920

Rd, producing the dot-product similarity classifica-921

tion criterion α:922

α = h
(
ET − 0T

)
. (3)923

When we conduct a same PCA on both h and ET924

to get dot-product similarity in a dimensionality-925

reduced space similar to Fig. 2:926

α̃ = PCAH (h)
(
PCAH (E)T − PCAH (0)T

)
︸ ︷︷ ︸

Mapping direction selected after PCA

(4)

927

=
(
hP̃ − h̄P̃

)(
EP̃

)T
(5)928

= hP̃ P̃ TET − h̄P̃ P̃ TET (6)929

= α− h̄ET . (7)930

Notice that we use the mapping direction931 (
PCAH (E)T − PCAH (0)T

)
after the PCA, in-932

stead of
(
PCAH (E)T − 0T

)
, and this is the rea-933

son why the oblique axis in Fig. 2 does not neces-934

sarily pass through the coordinate origin. In such935

a scenario, the dot productions after PCA only dif-936

fer by a fixed constant bias −h̄ET from the ones937

before PCA. This is the reason why the normal938

line of oblique axis on the 0-point doesn’t pass the939

coordinate origin of the 2D-plane in Fig. 2.940

Decision Boundary after PCA. Notice that the941

decision boundary of two categories l1 and l2 in an942

non-rotated ICL scenario is:943

B =
{
h|hET

l1 − hET
l2 = C

}
. (8)944

Where the C is the calibration term without rota-945

tion. Notice that it is a hyperplane in Rd with nor-946

mal vector (El1 − El2)
T . Also, the normal plane947

which pass the 0-point of direction (El1 − El2)
T

948

in Rd̃ after PCA is:949

B̃ = {PCAH(h)|PCAH(h)

(PCAH(El1 − El2)− PCAH(0))
T = 0}.

(9)950

By the aforementioned transformation, we have:951

B̃ =
{
PCAH(h)|hET

l1 − hET
l2 = h̄

(
ET

l1 − ET
l2

)}
.

(10)952

7Due to excessive superscripts, in this section, we omit the
superscripts U in the notation of un-embedding EU

l .

That is, the dimensionality-reduced decision bound- 953

ary B̃ is perpendicular to the mapped direc- 954

tion (PCAH (El1 − El2)− PCAH(0)), and bi- 955

ased only by a constant
(
h̄
(
ET

l1
− ET

l2

)
− C

)
on 956

the classification criteria comparing to the original 957

space. Specifically, in the two-dimensional case, 958

it is a straight line that may not necessarily pass 959

through the coordinate origin, as shown in Fig. 2. 960

B.5 Details of Experiment in §5.1 961

B.5.1 Calculation Details of Averaged Overlap 962

First, we divide the |Y|-way classification task into 963

C(|Y|, 2) 2-way classification task8, to allow us 964

to use a scalar to characterize the classification 965

criteria for each 2-combination (similar to what 966

we do to the “positive” and “negative” examples 967

in Fig. 2). Then, for each chosen 2-combination, 968

w.l.o.g, given labels denoted as l1 and l2, we build 969

prompt-label sets9 as: 970

Slj =
{
T
(
Dde,(i), x(ci)

) ∣∣∣y(ci) = lj

}nlj

lj∈{l1,l2}
,

(11) 971

where ci is the sampled query index. That is, we 972

sample queries annotated with these two labels and 973

build prompt sets, then collect the prompts with the 974

same query label lj into Slj , with a size nlj . 975

Then, for each prompt s(i) = T
(
Dde,(i), x(i)

)
∈ 976

Slj , we run decoders (vanilla, Con.C, Dom.C and 977

Hidden Calibration) with probability normlization 978

fl1(·) and fl2(·) to get the classification probabili- 979

ties of assigning label l1 and l2 as α(i)
1 = fl1

(
s(i)

)
980

and α
(i)
2 = fl2

(
s(i)

)
. We calculate the difference 981

between α
(i)
1 and α

(i)
2 and collect them into a set: 982

Alj =
{
α
(i)
1 − α

(i)
2

∣∣∣s(i) ∈ Slj

}nlj

i=1
. (12) 983

Now, for the 2-combination of labels (l1, l2), we 984

get Al1 and Al2 , whose elements are the probabili- 985

ties difference between assigning l1 and assigning 986

l2 to example s(i). The difference between Al1 987

and Al2 is: the elements in Al1 are from s(i)s with 988

queries labeled by ground-truth l1, and vice versa. 989

We obtain continuous probability density functions 990

of Al1 and Al2 as pl1(·) and pl2(·) by kernel density 991

estimation, as the curves in Fig. 5. 992

Then, we calculate the overlap area of these 993

curves: 994

Sl1,l2 =

∫ 1

−1
min [pl1(x), pl2(x)] dx. (13) 995

8The C(m,n) is the n-combination number from m ele-
ments.

9Notice that the T is the prompting function.
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Figure 13: The classification performance (Accuracy(%)) of 3 models averaged on 10 datasets.

For each combination10 in the C(|Y|, 2) 2-996

combinations, we repeat to calculate the S·,·, and997

average them as the Averaged Overlap S̄.998

S̄ =
1

C(|Y|, 2)

|Y|∑
i=1

|Y|∑
j=i+1

Sli,lj . (14)999

B.5.2 Experimental Details1000

We conduct experiments resulting Fig. 6 on 3 mod-1001

els with SemEval 2014-Task 4 Restaurant, Se-1002

mEval 2014-Task 4 Laptops, AGNews, Poem Sen-1003

timent, and fiancial_phrasebank, given the demon-1004

stration number k = 4 and calibration example1005

numbers m = 16. We use the whole 512 examples1006

on the test split for each dataset and repeat 5 times.1007

B.5.3 Proof: the Overlap Area is Double to the1008

Error’s Lower Bound1009

Suppose a label combination l1 and l2, w.l.o.g., we1010

have a ground truth probability density function1011

pl1(x) and pl2(x) on a criterion x ∈ X, same as the1012

curves in Fig. 5. Given a specific value of criterion1013

x, the upper-bound classification performance is1014

determined by majority vote, which is the most1015

accurate method on such a point, resulting in a1016

density of error classification:1017

e(x)l1,l2 ⩽ min [pl1(x), pl2(x)] . (15)1018

So, the integral error rate:1019

El1,l2 ⩽

∫
x∈Xmin [pl1(x), pl2(x)] dx∫

x∈X pl1(x)dx+
∫
x∈X pl2(x)dx

(16)1020

=
1

2

∫
x∈X

min [pl1(x), pl2(x)] dx (17)1021

=
1

2
Sl1,l2 . (18)1022

10Notice that on S·,·, the labels are rotational symmetry.

SemE.R
SemE.L

AGNews
PoemS

Fina.P
0.2

0.4

0.6

0.8

Av
er

ag
ed

 O
ve

rl
ap

 o
f K

D OPT-2.7B

SemE.R
SemE.L

AGNews
PoemS

Fina.P

0.2

0.4

0.6

0.8

LLaMa 2-6.5B

None & Bat.C Con.C Dom.C Hidd.C

Figure 14: The augmented results on 2 models of Fig. 6.

B.6 Details of Experiment in §5.2 1023

B.6.1 Calculation of the Distance and 1024

Standard Error 1025

Averaged Centroid Distance. Given a |Y|-way 1026

classification task, for each label l we build its cor- 1027

responding prompt set Sl =
{
s(ci)|y(ci) = l

}nl

i=1
, 1028

where s(ci) is the prompt with query labeled by l, 1029

and ci is the sampled query index. We encode it 1030

into a hidden state set Hl =
{
h(i)

}nl

i=1
, and cal- 1031

culate its centroid h̄l, as what we do in Hidden 1032

Calibration: 1033

h̄l =
1

nl

∑
h(i)∈Hl

h(i). (19) 1034

For every 2-combination of labels l and l′, we calcu- 1035

late the distance of their centroid, and the average 1036

among all the 2-combination is used as the Aver- 1037

aged Centroid Distance: 1038

ACD =
1

C(|Y| , 2)

|Y|∑
i=1

|Y|∑
j=i+1

∥∥h̄i − h̄j
∥∥
2
. (20) 1039

1040

Averaged Intra-category Standard Error. 1041

Given the hidden state set Hl =
{
h(i)

}nl

i=1
w.r.t. 1042
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the label l, we span all the hidden state vectors1043

into a matrix Hl ∈ Rnl×d. The covariance1044

matrix is
(
Hl − H̄l

)T (
Hl − H̄l

)
, where the H̄l is1045

the matrix spanned by the element-wise average1046

vectors of hidden state set Hl. Notice that the ACD1047

is a first-order moment, for a proper comparison,1048

we use the average on the diagonal elements of the1049

element-wise square root of the covariance matrix1050

as the intra-category standard error metric for1051

category l. We average all the standard errors from1052

all the categories as the Averaged Intra-category1053

Standard Error:1054

AIS =
1

|Y|d

|Y|∑
i=1

tr

[√(
Hi − H̄i

)T (
Hi − H̄i

)]
.

(21)1055

B.6.2 Experimental Details1056

We conduct experiments resulting Fig. 10 on 31057

models with SemEval 2014-Task 4 Restaurant, Se-1058

mEval 2014-Task 4 Laptops, AGNews, Poem Sen-1059

timent, and fiancial_phrasebank, given the calibra-1060

tion example numbers m = 16. We use the whole1061

512 examples on the test split for each dataset and1062

repeat 5 times.1063

B.7 Experimental Details in §5.31064

We conduct experiments resulting Fig. 11 on OPT-1065

2.7B with 4 datasets: SemEval 2014-Task 4 Restau-1066

rant, SemEval 2014-Task 4 Laptops, AGNews, and1067

Poem Sentiment, given the demonstration numbers1068

k = 4 and repeat 5 times.1069

C Detailed Results1070

C.1 Details of Main Results1071

Numerical details of Fig. 4 are shown in Table 7, 8,1072

and 6. Accuracy results is shown in Fig. 13.1073

C.2 Details of Averaged Overlaps Results1074

The augmented results on the other 2 models of1075

Fig. 6 are shown in Fig. 14.1076

D Additional Analysis1077

D.1 The Similarity Measures Used in Hidden1078

Calibration1079

In §3.2, we use the Euclidean distance as the simi-1080

larity measure. But this is not the only option. In-1081

tuitively, we can choose other similarity measures1082

as alternatives. Since we get inspired by obser-1083

vation with dot-production similarity, we have an1084

obligation to check the performance on such a mea- 1085

sure instead of the Euclidean distance. This section 1086

uses cosine similarity as an example to illustrate 1087

that there is no significant performance difference 1088

between these measures. We use cosine similar- 1089

ity to repeat the results in §4.2 on LLaMa 2 and 1090

GPT2-XL. 1091

The results are shown in Fig. 12, where the per- 1092

formance based on these two measures is close, 1093

without statistical difference. This indicates that 1094

the hidden space has good properties of both met- 1095

ric and vector space, and Hidden Calibration acts 1096

equally on these measures. 1097

D.2 Time and Space Cost of Hidden 1098

Calibration and baselines 1099

We analyze the upper bound of the additional space- 1100

time cost of the baseline method and Hidden Cal- 1101

ibration, as shown in Table 4. Here, we are most 1102

concerned about the inference time cost, and Hid- 1103

den Calibration is the fastest among all the non- 1104

label-based methods. 1105

Since the product |Y|d is usually not very large, 1106

Hidden Calibration does not add considerable infer- 1107

ence overhead. In contrast, KNN may be incredibly 1108

slow as the calibration dataset scales. 1109

E Statements 1110

E.1 License for Artifacts 1111

Models. GPT2-XL and OPT-2.7B is under the 1112

MIT license, LLaMa 2 is under its specific license. 1113

Datasets. We list the open-source license for the 1114

datasets used in this paper as follows: 1115

• CC-by-4.0: Poem Sentiment, SemEval 2014- 1116

Task 4 Restaurant, SemEval 2014-Task 4 Lap- 1117

tops, tweet_eval_emotion, tweet_eval_hate, 1118

tweet_eval_hate 1119

• CC-by-SA-3.0: financial_phrasebank, GLUE- 1120

RTE 1121

• Unknown: AGNews, rotten_tomatoes 1122

Consistency of Usage. Models and data are used 1123

with their original usage. 1124

E.2 AI Agent Usage 1125

AI Agents are only used for writing improving and 1126

grammar checking in this paper. 1127
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