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ABSTRACT

Standard graph neural networks assign vastly different latent embeddings to graphs
describing the same physical system at different resolution scales. This precludes
consistency in applications and prevents generalization between scales as would
fundamentally be needed in many scientific applications. We uncover the underly-
ing obstruction, investigate its origin and show how to overcome it.

1 INTRODUTION

Graphs are ubiquitous in modern science, permeating vast areas of contemporary physics, chemistry
and biology. As a fundamental mathematical representation of interactions between entities, graphs
offer a powerful framework for modeling complex systems at every scale: At shortest distances, this
includes lattice approaches to quantum field theory (Creutz, 1985), fundamental models in condensed
matter physics (Imada et al., 2013) or molecular representations (Ramakrishnan et al., 2014). At
intermediate levels application areas include protein interactions (Jha et al., 2023) or ecological
systems (Dale, 2018). At large distances, graphs are of use in hydrodynamical- (Sanchez-Gonzalez
et al., 2020), atmospheric- (Keisler, 2022) or astrophysical (Krioukov et al., 2012) simulations.

It is hence not surprising, that graph neural networks (GNNs) – machine learning models specifically
adapted to handling graph structured data – are often at the core of machine-learning driven break-
throughs in scientific research. Examples include recent successes in protein structure prediction
(Jumper et al., 2021), material science (Xie & Grossman, 2018), weather forecasting (Lam et al.,
2023), catalyst screening (Price et al., 2022) or quantum many body physics (Carleo & Troyer, 2017).
Despite these numerable successes, a fundamental question in applying graph neural networks to
physical system remains open: How do we consistently incorporate the notion of scale into GNNs?
To understand the significance of this problem, consider for example two graphs
discretely approximating the same continuum system at different resolution
scales; say – for definiteness – two lattice discretizations of the same finite 2D
system (c.f. e.g. Fig. 1 which depicts discretisations of a system with periodic
boundary conditions). When training a graph neural network, the goal is then to
learn the true physics describing the actual underlying continuum system. In
particular, the network should not overfit on the given resolution scale at which
a system is expressed. When querying the final trained network with the same
physical system discretized at different resolution scales, we would hope for
consistent physical predictions across scales. In particular, as we increase the
resolution scale we would hope for convergence of the predictions generated by
the network to those corresponding to the true underlying physical system.

Figure 1: Torus
(two resolutions)

We may further understand this from the perspective of regularization: Discretization of a fundamen-
tally continuous physical system onto a graph introduces a cutoff scale into the system: Interactions
happening at length scales smaller than the minimal distance between nodes are no longer considered.
In physics, this act of restricting descriptions to lengths only above a certain cutoff-scale is called
”UV-regularization” (short for ultra-violet regularization; the name is historical (Bjorken & Drell,
1965)). Those physical theories that are consistent in the sense that removing the UV-cutoff (i.e.
letting the cut-off distance go to zero) recovers the true original physical description are called
UV-complete. This is also what we desire of our graph learning model: As the UV-cutoff is removed
(i.e. the distance between nodes approaches zero), predictions should converge to those describing
the true underlying continuous physical system: Graph Neural Networks should be UV-complete.
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However, also in the non-asymptotic setting of completely finite resolution scales, the consistent
incorporation of varying scales constitutes a vital necessity: The success of any learning method in
learning to model a given system crucially depends on the availability of sufficient training data. For
many physical systems however, training data is generically available only at a coarse scale, as the
generation of fine-detail training data even for modestly-sized systems is prohibitively expensive
(Feynman, 1981). Thus developing graph learning models that can be trained on coarse-scale training
data while still being able to generalize to more complex higher-resolution systems during inference
is of fundamental importance: Graph neural networks should generalize between scales.

2 THE FAILURE MODE: INABILITY TO GENERALIZE BETWEEN SCALES

To show that standard graph learning methods however fail to achieve this, and are in fact unable to
consistently integrate varying scales, we make use of the QM7 dataset (Rupp et al., 2012) (c.f. Section
6.2 and Appendix H for additional experimental settings). This dataset consists of organic molecules
containing both hydrogen and heavy atoms. Prediction target is the molecular atomization energy.
Each molecule is represented by a weighted adjacency matrix whose entries Aij “ ZiZj ¨ |x⃗i´ x⃗j |

´1

correspond to Coulomb energies between atoms i, j, with |x⃗i ´ x⃗j | denoting the interatomic distance.

From a physical perspective, describing a molecule at the level of interacting atoms corresponds to a
specific choice of resolution scale: Interactions of individual protons and neutrons inside the various
atomic nuclei are discarded. Instead, only an aggregate description is used and each nucleus is only
described by a single node.

In order to test the ability of GNNs to do inference on a scale different from which they were trained
on, we additionally also consider a version of QM7 where we lower the resolution scale even further:
Here we aggregate each heavy atomic core additionally together with its surrounding (single-proton)
hydrogen atoms into super-nodes. Appendix H.1 provides exact details. We might interpret this
QM7coarse dataset as a model for data obtained from a resolution-limited observation process unable
to resolve positions of individual (small) hydrogen atoms and only providing information about how
many hydrogen atoms are bound to a given heavy atom.

(a)

(b)

Figure 2: (a) Original graph G corre-
sponding to the Ethane molecule with
Carbon in purple and Hydrogen in green
(b) Coarse grained G with aggregate
Carbon-Hydrogen super-nodes in orange

Table 1: Regression using high- and low-resolution QM7

Mean Absolute Error (Ó) on QM7 [kcal/mol]

Training High Resolution Low Resolution

Inference
Low

Resolution
High

Resolution
Low

Resolution
High

Resolution

GCN 125.34˘2.47 63.17˘0.92 67.75˘3.73 380.51˘30.33

GATv2 415.09˘96.5748.41˘19.20 60.01˘3.34 245.03˘90.97

ChebNet 568.47˘37.70 64.63˘1.21 64.90˘4.55339.64˘101.30

SAG 542.16˘27.33 68.43˘1.93104.20˘3.92 506.75˘60.57

BernNet 765.22˘495.2883.76˘21.75 90.52˘37.17594.62˘341.55

SAG-M 285.53˘95.54 66.22˘4.51 73.57˘14.57 307.67˘77.24

UFGNet 620.21˘4.80 13.71˘1.05 24.53˘4.80156.44˘156.44

Lanczos 939.87˘16.35 10.55˘3.22 83.11˘5.27654.61˘529.13

PushNet 2442.59˘303.27 60.94˘1.83 69.25˘3.11 124.08˘3.94

Table 1 collects results. Mean-absolute-errors (MAEs) during inference increase significantly, when
going from a same-resolution setting to a cross-resolution setting. None of the considered standard
architectures are able to consistently handle more than one scale. Clearly also employing common
multi-scale propagation schemes (SAG-M, UFGNet, Lanczos, PushNet) does not allow to consistently
incorporate scale: Corresponding cross-resolution MAEs are among the largest (of order 102-103).

We can trace this inability of common models to generalize back to the difference in latent embeddings
tF u and tF u these methods generate for original graphs tGu and coarsified graphs tGu: For models
of Table 1 on average 10 À }F ´ F } À 104 (c.f. also Fig. 4 below). Thus latent embeddings
generated for graphs describing the same object on varying resolutions are significantly different.
Note that in practice, this problem may also not be remedied by augmenting the training set, as we
have no way of generating faithful high-resolution descriptions given only lower resolution graphs.
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3 IDENTIFYING THE PROBLEM: STANDARD GNNS ARE NOT CONTINUOUS

Within the coarse graphs tGu of QM7coarse, we have fused hydrogen atoms onto the respective nearest
heavy atoms. We can think of the resulting graph as being the limit of a procedure where hydrogen
atoms are moved out of equilibrium towards their respective nearest heavy atom. The limit graph is
then a coarse grained graph where hydrogen atoms have been captured by the respective heavy atoms.

If standard GNN architectures would act as continuous maps from the space of graphs to the chosen
latent space, then the convergence of this graph modification process towards a limit graph should
be reflected also in the latent space: Latent embeddings of modified graphs should converge to
the latent embedding of the limit graph. In Figure 4, we thus compare embeddings tF u generated
for coarsified graphs tGu, with embeddings tFωu of graphs tGωu where hydrogen atoms have
been moved to reduce the distance towards their nearest heavy atoms by a factor of ω ě 1 (i.e.
distnew “ distequilib.{ω), but have not yet completely arrived at the positions of nearest heavy atoms.

(a) (b) (c)

Figure 3: Collapsing Procedure visualized Figure 4: Latent distance }Fω ´ F }

Figure 4 shows however, that latent embeddings do not converge (}Fω ´ F } Û 0): GNNs cannot be
considered continuous and hence may map similar graphs to vastly different latent embeddings.

4 UNDERSTANDING THE PROBLEM: DISCONNECTED PROPAGATION SCHEMES

We can understand the underlying reason for this discontinuity by exemplarily investigating the
prototypical graph neural network GCN (Kipf & Welling, 2017) (Appendix B contains corresponding
results for all standard GNN architecture types): Inside a GCN-layer, a node feature matrix X P

RNˆF (with number of nodes N and feature dimension F ) is updated as

X ÞÑ ÂXW.

Here W P RFˆF facilitates channel mixing, while information flow over the graph is implemented
via the renormalized adjacency matrix Â P RNˆN ; given as Âij „ Aij{

a

didj (with degrees di). As
we move hydrogen (H) atoms towards heavy atoms (|x⃗H ´ x⃗heavy| Ñ 0), corresponding edge weights
AH,heavy “ 1 ¨ Zheavy ¨ |x⃗H ´ x⃗heavy|´1 of the original adjacency matrix A tend to infinity. Thus also
node-degrees associated to heavy atoms tend to infinity. Since distances (and hence weights) between
heavy atoms remain constant however, the renormalized entries Âheavy,heavy in Â tend to zero instead.

Thus as hydrogen atoms are moved out of equilibrium to-
wards their final positions, the communication between
heavy atoms in the modified graphs Gω becomes severely
disrupted (Âheavy,heavy Ñ 0). Information is only propa-
gated along a severely disconnected effective limit graph
(dissected into distinct connected components; Fig 5 (a))
and not along the true limit graph G (Fig. 5 (b)).

(a) (b)

Figure 5: (a) Effective propagation graph
vs (b) true lower-resolution graph G

Since the information-flows over the graphs Gω, G are vastly different, also the latent embeddings
Fω, F that are being generated for the two respective graphs differ greatly.

5 SOLVING THE PROBLEM: GNNS WITH GLOBAL LAPLACIAN PROPAGATION

To build architectures that will instead be continuous in the setting above, let us formalize rigorously,
in which sense the sequence of graphs Gω approaches the limit graph G. We first observe that,
when moving hydrogen atoms out of equilibrium, we are significantly increasing certain weights
(AH,heavy „ |x⃗H ´ x⃗heavy|´1 „ ω Ñ 8). From a diffusion perspective, information in a graph
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equalizes much faster along edges with very large weights. In the limit where edge-weights within
certain sub-graphs tend to infinity, information within these clusters equalizes immediately and each
such sub-graph thus effectively behaves as a single node in a coarse grained effective graph G.

To quantify this, we recall that the diffusion equation on a graph is given by dXptq{dt “ ´L ¨Xptq
with solution Xptq “ e´Lt ¨Xp0q. As we establish rigorously in Appendix C we then have

ηωptq :“ }e´tLω ´ JÒe´tLJÓ} Ñ 0 for any fixed t ą 0 as ω Ñ 8, (1)

Here Lω, L are the Laplacians of the respective graphs Gω, G. The matrices JÓ,Ò linerarly interpolate
between the graphs Gω and G (of different sizes): JÓ assigns the average over strongly connected
clusters to the super-node representing this cluster in G. The matrix JÒ is its adjoint (JÒ “ rJÓs⊺).

To visualize this convergence behaviour in (1), we
exemplarily, plot ηωptq “ }e´Lωt ´ JÒe´LtJÓ} for
the coarse graining setting of Figure 6 (a,b): We have
ηwp0q ” }IdG ´ JÒJÓ} “ 1 irrespective of the vari-
able edge weight ω (colored red in Fig. 6). For fixed
t ą 0 however, we see that ηωptq Ñ 0 as ω increases.
Additionally, the decay ηwptq Ñ 0 for increasing t is
faster, the larger w is chosen. This is congruent with
our intuition: The stronger two nodes are connected,
the more they act as a single entity.

w

(a)

(b)

Figure 6: ηwptq-plot for graphs (a) & (b)

We might interpret (1) as telling us that applying the matrix e´tLω is more and more the same as
projecting to G via JÓ, applying the matrix e´tL there and interpolating back up via JÒ. Thus, while
the propagation rule X ÞÑ ÂωXW is insufficient and leads to disconnected limit graphs, propagating
as X ÞÑ e´tLωXW , does facilitate contact and similarity between information flows over Gω and G.

More generally, suppose we have for each time t ě 0 individually that }e´Lt ´ JÒe´tLtJÓ} ă δ. If
we build up the propagation matrix ψpLωq as a weighted sum of such diffusion flows e´tLω that have
progressed to various times (ψpLωq „

ř

k ake
´tkLω ) and the coefficients takuk are not too large,

then we can estimate }ψpLωq ´ JÒψpLqJÓ} ď p
ř

k |ak|q ¨ δ by a triangle-inequality argument. Thus
we can still guarantee that for large ω the propagation implemented by the layer-wise update rule

X ÞÑ ψpLωqXW (2)
over Gω is approximately the same as the effective propagation X ÞÑ rJÒψpLqJÓsXW over G.
Generalizing the weighted sum to an integral, we make the following definition:
Definition 5.1. Let ψ̂ be a bounded (generalized) function on r0,8q. The corresponding Global
Laplacian Propagation Matrix is the matrix ψpLq P RNˆN arising as the Laplace transform of ψ̂:

ψpLq :“

ż 8

0

e´tLψ̂ptqdt

Appendix D contains details. Allowing generalized functions means we e.g. allow Dirac distributions
ψ̂δtk ptq :“ δpt ´ tkq; leading to exponential matrices ψkpLq “

ş8

0
δpt ´ tkqe´tLdt “ e´tkL.

Choosing e.g. ψ̂k :“ p´tqk´1e´λt instead yields powers of resolvents ψkpLq “ rpzId` Lq´1sk.

Next we combine Layers where information propagates according to (2) into entire graph networks:
Definition 5.2. Let tψ̂kuk be a collection of bounded generalized functions. Global Laplacian
propagation based methods are networks for which – when deployed on a graph G – the layer-wise
update rule is implemented as X ÞÑ

ř

k ψkpLqXWk, with L the Laplacian of G and the Wks
implementing channel mixing.

In Appendix G we then prove the following result; implying }Fω ´ F } Ñ 0 as ηωptq Ñ 0 in (1):
Theorem 5.3. For the latent embeddings F, F generated by global Laplacian propagation based
methods for graphs G,G, we have

}F ´ F } ď C ¨ max
k

"
ż 8

0

|ψ̂kptq|ηptqdt

*

Ñ 0.

Here the constant C depends on learned weights and biases inside the network, and we make use of
the notation ηptq :“ }e´tL ´ JÒe´tLJÓ} as introduced in (1) above.
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6 VERIFICATION: GLOBAL LAPLACIAN PROPAGATION SOLVES THE PROBLEM

In Section 3 we established that the obstruction for standard GNNs to consistently incorporate varying
scales is their discontinuity. In Section 4 we then constructed continuous networks. Here we thus
now numerically verify that these continuous networks introduced in Definition 5.2 are indeed able to
consistently integrate varying scales into the latent embeddings they generate: Section 6.1 numerically
verifies that such networks based on global Laplacian propagation schemes can generalize between
scales. Section 6.2 verifies that they also are indeed UV-complete in the sense of Section 1.

6.1 ABILITY TO GENERALIZE BETWEEN SCALES

Figure 7: Latent distance }Fω ´ F }

Table 2: Regression using high- and low-resolution QM7

Mean Absolute Error (Ó) on QM7 [kcal/mol]

Training High Resolution Low Resolution

Inference
Low

Resolution
High

Resolution
Low

Resolution
High

Resolution

GCN 125.34˘2.4763.17˘0.9267.75˘3.73380.51˘30.33

PushNet 2442.59˘303.2760.94˘1.8369.25˘3.11 124.08˘3.94

Resolvent 16.54˘3.0116.53˘3.0315.79˘0.98 13.80˘1.34

Exponential 16.37˘1.7116.36˘2.1616.25˘1.41 16.25˘1.41

Theorem 5.3 implies that networks employing global Lapla-
cian propagation schemes are indeed continuous as maps
from the space of graphs into their latent spaces. To numer-
ically verify this, we repeat the experiment of Section 3 for
two models belonging to this category (using resolvent and
exponential matrices; c.f. Section 5). As is evident from
Fig. 7, latent embeddings generated by models employing
global Laplacian propagation do converge (}Fω´F } Ñ 0).

In Section 3 we had identified lack of continuity as the obstruction to generalizing between scales.
Since graph neural networks based on global Laplacian propagation are continuous (and hence map
similar graphs to similar latent embeddings), we hence expect them to generalize between resolution
scales as well. To verify this, we here repeat the experiment of Section 2 again with these networks.

Table 7 details that MAEs of GNNs based on global Laplacian propagation schemes (using either
exponential or resolvent matrices) do not increase when going from a same- to a cross-resolution
setting. Comparing with Table 1, we see that in cross-resolution settings MAEs of methods employing
global Laplacian propagation schemes are lower than those of standard graph learning methods by
factors of order 101 to 102: The methods developed in Section 5 indeed do generalize between scales.

We can further understand this generalization ability using Theorem 5.3: Exemplarily considering
exponential propagation matrices (c.f. Section 5) we have that
ş8

0
|ψ̂kptq|ηωptqdt “

ş8

0
δpt ´ tkqηptqdt “ ηptkq. Choosing tk “ k

(as for the architecture investigated in Table 2; c.f. details in Appendix
H.1), we thus have }F ´ F } À maxkě1 |ηpkq|. When investigating
the differences ηptq “ }e´tL´JÒe´tLJÓ} of diffusion flows, we find
that ηptq drops to zero fast, as exemplarily plotted in Fig. 8 for the
first few molecules of QM7. In particular ηpkq|kě1 À 10´2. Using
this as an upper bound in Theorem 5.3 shows that embeddings F, F
of graphs describing the same molecule at different resolution scales
are similar. This explains the ability to generalize between scales. Figure 8: }e´Lt ´JÒe´tLJÓ}

6.2 UV-COMPLETENESS

To establish that the models introduced in Definition 5.2 are UV complete, we pick up the setting
of Section 1 again. More specifically, we consider the setting of regular grid discretizations of an
underlying continuous physical system at variable resolution scale, as depicted in Figure 1.
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As we discuss in Appendix H.4, the latent embeddings generated by a continuous
model of Definition 5.2 for regular grid discretizations at increasing resolutions
then indeed converge to the embedding such a global Laplace propagation
based network would generate if it were deployed on the underlying continuous
space. Since we can not directly generate the corresponding limit embeddings
of the continuous system, we can not directly show convergence towards them.
Instead we here verify that latent embeddings tFNuN Ď Rd corresponding to
regular grid discretization on N nodes (with latent dimension d) form a Cauchy
sequence. Since the (finite-dimensional) space Rd is complete, this then indeed
implies that the latent embeddings FN converge to a unique limit embedding. Figure 9: Torus

To numerically verify, that the corresponding sequence of latent embeddings indeed is Cauchy
(}FN ´ FM } Ñ 0, as N,M Ñ 8), we fix the number of nodes as N “ |GN | “ 4|GM | in the
respective graphs. We then plot the latent distance }FN ´ FM } “ }FN ´ FN{4} as a function of
the number of nodes N for randomly initialized global Laplacian propagation based networks, with
uncertainty calculated over 100 initializations. Appendix H.4 contains additional details. As evident
from Fig. 9, the latent distance corresponding to methods of Definition 5.2 indeed tends to zero as N
is increased. Thus latent embeddings converge and we have indeed established UV-completeness.

Figure 10: Latent distance }FN ´ FN{4} vs. # Nodes N “ |Gi| “ 4|Gj |

More generally, the concept of finite length discretizations of an underlying continuous system
not only applies to flat space. Also Riemannian manifolds M – which may be thought of as a
generalization of the torus in Fig. 9 – may be approximated using sequences of graphs. In this
manifold setting, the Laplace-Beltrami operator ∆M can be thought of as a continuous analogue of
the Graph Laplacian L (Hein et al., 2006) and the notion of graphs Gi discretely approximating the
same ambient manifold (such as the Torus of Fig. 9) can be made mathematically precise using the
concept of generalized norm resolvent convergence (c.f. e.g. (Post, 2012) for a discussion).

Here we note the following: Given projection operators JÓ

i mapping from M to Gi and interpolation
operators JÒ

i mapping from Gi to M, we may measure the difference }e´t∆M ´ JÒ

i e
´tLiJÓ

i } ď

δi in diffusion flows on the respective spaces. The fidelity of the discrete approximation of the
underlying continuous ambient manifold is then essentially determined by the size of δi ! 1: In
the setting of regular grid discretizations of the torus as discussed above, we e.g. indeed have
}e´t∆M ´ JÒ

i e
´tLiJÓ

i } ď δN Ñ 0 as the number of nodes N tends to infinity (c.f. Appendix H.4).

As we establish in Appendix H.4, we also have UV-completeness in this general Riemannian setting:
As }e´t∆M ´ JÒ

i e
´tLiJÓ

i } Ñ 0, the latent embeddings Fi generated by networks of Definition 5.2
converge to the latent embedding these methods would generate for the true underlying manifold.

7 SUMMARY

In this paper, we discussed the inability of existing graph learning methods to incorporate multiple
scales. We found the underlying obstruction to be a lack of continuity when GNNs are considered
as maps from the space of graphs to their latent space. We derived how to build continuous models
instead and showed that these models can indeed consistently incorporate varying scales.
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A BACKGROUND: (SPECTRAL) CONVOLUTIONAL NETWORKS ON GRAPHS

The architecture proposed in Section 5 (c.f. Theorem 5.3) can be thought of as a particular type of
spectral convolutional network. We hence discuss this type of architecture here in more detail:

A.1 GRAPHS AND THEIR FUNDAMENTAL PROPERTIES

Graphs: A graph G :“ pG, Eq is a collection of nodes G and edges E Ď G ˆ G. We assume (real)
edge-weights. Nodes i P G may have individual node-weights µi ą 0. In a social network, a node
weight µi “ 1 might e.g. signify that node i represents a single user. A weight µj ą 1 would indicate
that node j represents a group of users.

Feature spaces: Given F -dimensional node features on a graph with N “ |G| nodes, we collect
individual scalar node-signals x P RN into a feature matrix X of dimension N ˆ F . Taking
node weights into account, we equip the space of such signals with an inner-product according to
xX,Y y “ TrpX⊺MY q “

řN
i“1

řF
j“1pXijYijqµi with M “ diag ptµiuq the diagonal matrix of

node-weights. Associated to this inner product is the feature norm }X} “ pxX,Xyq
1
2 .

Graph Laplacians: Information about the geometry of a graph is encapsulated into the set of edge
weights. From this information, various characteristic matrix operators encoding the geometry of
the underlying graph may be constructed. Spectral graph neural networks are typically based on
some choice of (positive semi-definite) graph Laplacian L (Defferrard et al., 2016; He et al., 2021;
2022). Most important to us is the un-normalized (in-degree) graph Laplacian L “ M´1pD ´Aq,
due to its intrinsic relation to heat-diffusion on graphs and its ability to capture, disentangle an
encode information on graph structure into its its eigenvalue structure (Chung, 1997). Here A is
the (weighted) adjacency matrix, D is the diagonal (in-)degree matrix and M is the matrix of node-
weights defined above. The ’size’ of such a characteristic operator L is measured in spectral norm:
}L} “ sup}x}“1 }Lx} with x P RN a scalar graph signal.

A.2 SPECTRAL CONVOLUTIONAL FILTERS

A spectral graph convolutional filter is then constructed by applying a learnable function hθp¨q

to an underlying characteristic operator L; typically a graph Laplacian. The resulting filter matrix
hθpLq P RNˆN acts on scalar graph signals x P RN via matrix multiplication; sending x to hθpLq¨x:

x ÞÑ hθpLq ¨ x

In practice it is prohibitively expensive to implement such filters using e.g. an explicit eigendecom-
position (Defferrard et al., 2016). Instead, a generic filter function hθp¨q is typically parameterized
as a weighted sum over ‘simpler’ basis functions tψiuiPI “: Ψ as hθp¨q :“

ř

iPI θi ¨ ψip¨q. The
functions ψip¨q are then often chosen as polynomials ψipλq “

ř

k akλ
k (Defferrard et al., 2016;

Kenlay et al., 2020; He et al., 2021; 2022), so that ψipLq is also given as a polynomial; now in the
matrix L: ψipLq “

ř

k akL
k. The matrices tψipLquiPI are then precomputed. Complete filters

hθpLq are parametrized via the learnable coefficients tθiuiPI as hθpLq :“
ř

iPI θi ¨ ψipLq.

A.3 SPECTRAL GRAPH CONVOLUTIONAL NETWORKS:

Learnable filters are then combined into a (K-layer) graph convolutional network mapping initial
node-features X P RNˆF to final representations XK P RNˆFK . Layer-updates are implemented as
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Xℓ
i: “ ρ

˜

Fℓ´1
ÿ

j“1

hℓθij pLqpXℓ´1
j: q `Bℓi:

¸

(3) ô Xℓ “ ρ

˜

ÿ

iPI

ψipLq ¨Xℓ´1 ¨W ℓ
i `Bℓ

¸

(4)

with biases Bℓ P RNˆFℓ (B:j “ bj ¨ 1G) and weight matrices W ℓ
i P RFℓ´1ˆFℓ . We here con-

sider activation functions ρ satisfying ρp0q “ 0 and |ρpaq ´ρpbq| ď |a´ b| such as e.g. (leaky-)ReLu.
The scalar (3) and matrix (4) viewpoints are connected via the identity hθij pLq ”

ř

kpWkqijψkpLq.
With basis functions Ψ “ tψiuiPI , weights W and biases B, we denote the output of a graph neural
network based on the operator L and applied to the node feature matrix X as Φ “ ΦW ,B,ΨpL,Xq.

B EFFECTIVE PROPAGATION SCHEMES

For definiteness, we here discuss limit-propagation schemes in the setting where edge-weights are
large. A discussion for high-connectivity in the sense of large cliques is also possible and proceeds
analogously.

In this section, we then take up again the setting of Section 4. We reformulate this setting here in
a slightly modified language, that is more adapted to discussing effective propagation schemes of
standard architectures:

We partition edges on a weighted graph G, into two disjoint sets E “ Ereg. 9YEhigh, where the set of
edges with large weights is given by:

Ehigh :“ tpi, jq P E : wij ě Shighu

and the set with small weights is given by:

Ereg. :“ tpi, jq P E : wij ď Sreg.u

for weight scales Shigh ą Sreg. ą 0. Without loss of generality, assume Sreg. to be as low as possible
(i.e. Sreg. “ maxpi,jqPEreg. wij) and Shigh to be as high as possible (i.e. Slarge “ minpi,jqPEhigh ) and no
weights in between the scales.

(a) (b) (c) (d)

Figure 11: (a) Graph G with Ereg. (blue) & Ehigh (red); (b) Greg.; (c) Ghigh; (d) Greg., exclusive

This decomposition induces two graph structures corresponding to the disjoint edge sets on the node
set G: We set Greg. :“ pG, Ereg.q and Ghigh :“ pG, Ehighq c.f. Fig. 11).
We also introduce the set of edges Ereg., exclusive :“ tpi, jq P Ereg.| @k P G : pi, kq R Ehigh & pk, jq R

Ehighu connecting nodes that do not have an incident edge in Ehigh. A corresponding example-graph
Greg., exclusive is depicted in Fig. 11 (d).

We are now interested in the behaviour of graph convolution schemes if the scales are well
separated:

Shigh " Sreg.

B.1 SPECTRAL CONVOLUTIONAL FILTERS

We first discuss resulting limit-propagation schemes for spectral convolutional networks. Such
networks implement convolutional filters as a mapping

x ÞÝÑ gθpT qx

for a node feature x, a learnable function gθ and a graph shift operator T .
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B.1.1 NEED FOR NORMALIZATION

The graph shift operator T facilitating the graph convolutions needs to be normalized for established
spectral graph convolutional architectures:

For Bianchi et al. (2019), this e.g. arises as a necessity for convergence of the proposed implementa-
tion scheme for the rational filters introduced there (c.f. eq. (10) in Bianchi et al. (2019)).

The work Defferrard et al. (2016) needs its graph shift operator to be normalized, as it approximates
generic filters via a Chebyshev expansion. As argued in Defferrard et al. (2016), such Chebyshev
polynomials form an orthogonal basis for the space L2pr´1, 1s, dx{

?
1 ´ x2q. Hence, the spectrum

of the operator T to which the (approximated and learned) function gθ is applied needs to be contained
in the interval r´1, 1s.

In Kipf & Welling (2017), it has been noted that for the architecture proposed there, choosing T to
have eigenvalues in the range r0, 2s (as opposed to the normalized ranges r0, 1s or r´1, 1s) has the
potential to lead to vanishing- or exploding gradients as well as numerical instabilities. To alleviate
this, Kipf & Welling (2017) introduces a ”renormalization trick” (c.f. Section 2.2. of Kipf & Welling
(2017) to produce a normalized graph shift operator on which the network is then based.

We can understand the relationship between normalization of graph shift operator T and the stability
of corresponding convolutional filters explicitly: Assume that we have

}T } " 1.

This might e.g. happen when basing networks on the un-normalized graph Laplacian ∆ or the
weight-matrix W if edge weights are potentially large (such as in the setting Shigh " Sreg. that we are
considering).

By the spectral mapping theorem (see e.g. Teschl (2014)), we have

σ pgθpT qq “ tgθpλq : λ P σpT qu , (5)

with σpT q denoting the spectrum (i.e. the set of eigenvalues) of T . For the largest (in absolute value)
eigenvalue λmax of T , we have

|λmax| “ }T }. (6)

Since learned functions are either implemented directly as a polynomial (as e.g. in Defferrard et al.
(2016); He et al. (2021)) or approximated as a Neumann type power iteration (as e.g. in Bianchi et al.
(2019); Gasteiger et al. (2019a)) which can be thought of as a polynomial, we have

lim
λÑ˘8

|gθpλq| “ 8.

Thus in view of (5) and (6) we have for }T } sufficiently large, that

}gθpT q} “ |gθp˘}T }q|

with the sign ˘ determined by λmax ż 0. Since non-constant polynomials behave at least linearly
for large inputs, there is a constant C ą 0 such that

C ¨ }T } ď }gθpT q}

for all sufficiently large }T }. We thus have the estimate

}x} ¨ C ¨ }T } ď }gθpT qx}

for at least one input signal x (more precisely all x in the eigen-space corresponding to the largest (in
absolute value) eigenvalue λmax). Thus if T is not normalized (i.e. }T } is not sufficiently bounded),
the norm of (hidden) features might increase drastically when moving from one (hidden) layer to the
next. This behaviour persists for all input signals x have components in eigenspaces corresponding to
large (in absolute value) eigenvalues of T .
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B.1.2 SPECTRAL NORMALIZATIONS

As discussed in the previous Section B.1.1, instabilities aris-
ing from non-normalized graph shift operators can be traced
back to the problem of such operators having large eigenval-
ues. It was thus – among other considerations – suggested in
Defferrard et al. (2016) to base convolutional filters on the
spectrally normalized graph shift operator

T “
1

λmaxp∆q
∆, Figure 12: Limit graph correspond-

ing to Fig 11 for spectral normaliza-
tion

with ∆ the un-normalized graph Laplacian. In the setting Shigh " Sreg. we are considering, this
leads to an effective feature propagation along Ghigh (c.f. also Fig. 12) only, as Theorem B.1 below
establishes:

Theorem B.1. With

T “
1

λmaxp∆q
∆,

and the scale decomposition as above we have that
›

›

›

›

T ´
1

λmaxp∆highq
∆high

›

›

›

›

“ O
ˆ

Sreg.

Shigh

˙

(7)

for Shigh " Sreg..

Proof. For convenience in notation, let us write

Thigh “
1

λmaxp∆highq
∆high

and similarly

Treg. “
1

λmaxp∆reg.q
∆reg..

We may write
∆ “ ∆high ` ∆reg.,

which we may rewrite as

∆ “ λmaxp∆highq ¨

ˆ

Thigh `
λmaxp∆reg.q

λmaxp∆highq
¨ Treg.

˙

. (8)

Let us consider the equivalent expression

1

λmaxp∆highq
¨ ∆ “ Thigh `

λmaxp∆reg.q

λmaxp∆highq
¨ Treg.. (9)

We next note that

λmax

ˆ

1

λmaxp∆highq
¨ ∆

˙

“
λmaxp∆q

λmaxp∆highq
. (10)

and
λmax pThighq “ 1

since the operation of taking eigenvalues of operators is multiplicative in the sense of

λmaxp|a| ¨ T q “ |a| ¨ λmaxpT q

for non-negative |a| ě 0.
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Since the right-hand-side of (9) constitutes an analytic perturbation of Thigh, we may apply analytic
perturbation theory (c.f. e.g. Kato (1976) for an extensive discussion) to this problem. With this
(together with }Thigh} “ 1) we find

λmax

ˆ

1

λmaxp∆highq
¨ ∆

˙

“ 1 ` O
ˆ

λmaxp∆reg.q

λmaxp∆highq

˙

. (11)

Using (10) and the fact that
λmaxp∆reg.q

λmaxp∆highq
9
Sreg.

Shigh
, (12)

we thus have
λmax p∆q

λmaxp∆highq
“ 1 ` O

ˆ

Sreg.

Shigh

˙

.

Since for small ϵ, we also have
1

1 ` ϵ
“ 1 ` Opϵq,

the relation (12) also implies

λmaxp∆highq

λmax p∆q
“ 1 ` O

ˆ

Sreg.

Shigh

˙

.

Multiplying (8) with 1{λmaxp∆q yields

T “
λmaxp∆highq

λmaxp∆q
¨

ˆ

Thigh `
λmaxp∆reg.q

λmaxp∆highq
¨ Treg.

˙

. (13)

Since }Thigh}, }Treg.} “ 1 and
λmaxp∆reg.q

λmaxp∆highq
9
Sreg.

Shigh
ă 1

for sufficiently large Shigh, relation (13) implies
›

›

›

›

T ´
1

λmaxp∆highq
∆high

›

›

›

›

“ O
ˆ

Sreg.

Shigh

˙

as desired.

Note that we might in principle also make use of Lemma B.2 below, to provide quantitative bounds:
Lemma B.2 states that

|λkpAq ´ λkpBq| ď }A´B}

for self-adjoint operators A and B and their respective kth eigenvalues ordered by magnitude. On a
graph withN nodes, we clearly have λmax “ λN for eigenvalues of (rescaled) graph Laplacians, since
all such eigenvalues are non-negative. This implies for the difference |1 ´ λmaxp∆q{λmaxp∆highq|

arising in (11) that explicitly
ˇ

ˇ

ˇ

ˇ

1 ´
λmaxp∆q

λmaxp∆highq

ˇ

ˇ

ˇ

ˇ

ď
λmaxp∆reg.q

λmaxp∆highq
.

This in turn can then be used to provide a quantitative bound in (7). Since we are only interested in
the qualitative behaviour for Shigh " Sreg., we shall however not pursue this further.

It remains to state and establish Lemma B.2 referenced at the end of the proof of Theorem B.1:

Lemma B.2. Let A and B be two hermitian nˆ n dimensional matrices. Denote by tλkpMqunk“1
the eigenvalues of a hermitian matrix in increasing order.
With this we have:

|λkpAq ´ λkpBq| ď ||A´B||.
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Proof. After the redefinition B ÞÑ p´Bq, what we need to prove is

|λipA`Bq ´ λipAq| ď ||B||

for Hermitian A,B. Since we have

λipAq ´ λipA`Bq “ λippA`Bq ` p´Bqq ´ λipA`Bq

and || ´B|| “ ||B|| it follows that it suffices to prove

λipA`Bq ´ λipAq ď ||B||

for arbitrary hermitian A,B.

We note that the Courant-Fischer min´max theorem tells us that if A is an nˆ n Hermitian matrix,
we have

λipMq “ sup
dimpV q“i

inf
vPV,||v||“1

v˚Mv.

With this we find

λipA`Bq ´ λipAq “ sup
dimpV q“i

inf
vPV,||v||“1

v˚pA`Bqv ´ sup
dimpV q“i

inf
vPV,||v||“1

v˚Av

ď sup
dimpV q“i

inf
vPV,||v||“1

v˚Av ` sup
dimpV q“i

inf
vPV,||v||“1

v˚Bv

´ sup
dimpV q“i

inf
vPV,||v||“1

v˚Av

“ sup
dimpV q“i

inf
vPV,||v||“1

v˚Bv

“ sup
dimpV q“i

inf
vPV,||v||“1

v˚Bv

ď max
1ďkďn

t|λkpBq|u

“ ||B||.

B.1.3 SYMMETRIC NORMALIZATIONS

Most common spectral graph convolutional networks (such
as e.g. He et al. (2021); Bianchi et al. (2019); Defferrard
et al. (2016)) base the learnable filters that they propose on
the symmetrically normalized graph Laplacian

L “ Id´D´ 1
2WD´ 1

2 .

In the setting Shigh " Sreg. we are considering, this leads
to an effective feature propagation along edges in Ehigh and
Elow, exclusive (c.f. also Fig. 13) only, as Theorem B.3 below
establishes:

Figure 13: Limit graph correspond-
ing to Fig 11 for symmetric normal-
ization

Theorem B.3. With
T “ Id´D´ 1

2WD´ 1
2 ,

and the scale decomposition as introduced above, we have that

›

›

›
T ´

´

Id´D
´ 1

2

highWhighD
´ 1

2

high ´D
´ 1

2
reg. Wlow, exclusiveD

´ 1
2

reg.

¯
›

›

›
“ O

˜
d

Sreg.

Shigh

¸

(14)

for Shigh " Sreg..

Proof. We first note that instead of (14), we may equivalently establish

›

›

›
D´ 1

2WD´ 1
2 ´

´

D
´ 1

2

highWhighD
´ 1

2

high `D
´ 1

2
reg. Wlow, exclusiveD

´ 1
2

reg.

¯
›

›

›
“ O

˜
d

Sreg.

Shigh

¸

.
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We have
W “ Whigh `Wreg..

With this, we may write

D´ 1
2WD´ 1

2 “ D´ 1
2WhighD

´ 1
2 `D´ 1

2Wreg.D
´ 1

2 . (15)

Let us first examine the term D´ 1
2WhighD

´ 1
2 . We note for the corresponding matrix entries that

´

D´ 1
2WhighD

´ 1
2

¯

ij
“

1
?
di

¨ pWhighqij ¨
1

a

dj

Let us use the notation

dhigh
i “

N
ÿ

j“1

pWhighqij , dreg.
i “

N
ÿ

j“1

pWreg.qij and dlow,exclusive
i “

N
ÿ

j“1

pWlow,exclusiveqij .

We then find
1

?
di

“
1

b

dhigh
i

¨
1

c

1 `
dreg.
i

dhigh
i

Using the Taylor expansion
1

?
1 ` ϵ

“ 1 ´
1

2
ϵ` Opϵ2q,

we thus have
´

D´ 1
2WhighD

´ 1
2

¯

ij
“

1
b

dhigh
i

¨ pWhighqij ¨
1

b

dhigh
j

` O

˜

dreg.
i

dhigh
i

¸

.

Since we have
dreg.
i

dhigh
i

9
Sreg.

Shigh
,

this yields

D´ 1
2WhighD

´ 1
2 “ D

´ 1
2

highWhighD
´ 1

2

high ` O
ˆ

Sreg.

Shigh

˙

.

Thus let us turn towards the second summand on the right-hand-side of (15). We have
´

D´ 1
2Wreg.D

´ 1
2

¯

ij
“

1
?
di

¨ pWreg.qij .
1

a

dj
.

Suppose that either i or j is not in Glow, exclusive. Without loss of generality (since the matrix under
consideration is symmetric), assume i R Glow, exclusive, but pWreg.qij ‰ 0. We may again write

1
a

dj
“

1
b

dhigh
j

¨
1

c

1 `
dreg.
i

dhigh
i

.

Since
1

c

1 `
dreg.
i

dhigh
i

ď 1,

we have
ˇ

ˇ

ˇ

ˇ

´

D´ 1
2Wreg.D

´ 1
2

¯

ij

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

1
?
di

¨ pWreg.qij

ˇ

ˇ

ˇ

ˇ

¨
1

b

dhigh
j

“ O

˜
d

Sreg.

Shigh

¸

.

If instead we have i, j P Glow, exclusive, then clearly
´

D´ 1
2Wreg.D

´ 1
2

¯

ij
“

´

D
´ 1

2
reg. Wlow,exclusiveD

´ 1
2

reg.

¯

ij
.
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Thus in total we have established

D´ 1
2WD´ 1

2 “

´

D
´ 1

2

highWhighD
´ 1

2

high `D
´ 1

2
reg. Wlow, exclusiveD

´ 1
2

reg.

¯

` O
ˆ

Sreg.

Shigh

˙

which was to be established.

Apart from networks that make use of the symmetrically normalized graph Laplacian L , some
methods, such as most notably Kipf & Welling (2017), instead base their filters on the operator

T “ D̃´ 1
2 W̃ D̃´ 1

2 ,

with
W̃ “ pW ` Idq

and
D̃ “ D ` Id.

In analogy to Theorem B.3, we here establish the limit propagation scheme determined by such
operators:

Theorem B.4. With
T “ D̃´ 1

2 W̃ D̃´ 1
2 ,

where W̃ “ pW ` Idq and D̃ “ D ` Id as well as the scale decomposition introduced above, we
have that

›

›

›
T ´

´

D
´ 1

2

highWhighD
´ 1

2

high `D
´ 1

2
reg. W̃low, exclusiveD

´ 1
2

reg.

¯
›

›

›
“ O

˜
d

Sreg. ` 1

Shigh

¸

for Shigh " Sreg.. Here W̃low, exclusive is given as

W̃low, exclusive :“ Wlow, exclusive ` diag
`

1Glow, exclusive

˘

and 1Glow, exclusive denotes the vector whose entries are one for nodes in Glow, exclusive and zero for all
other nodes.

The difference to the result of Theorem B.3 is thus that applicability of the limit propagation scheme
of Fig. 13 for the GCN Kipf & Welling (2017) is not only contingent upon Shigh " Sreg. but also
Shigh " 1.

Proof. To establish this – as in the proof of Theorem B.3 – we first decompose T :

D̃´ 1
2 W̃ D̃´ 1

2 “ D̃´ 1
2WhighD̃

´ 1
2 ` D̃´ 1

2Wreg.D̃
´ 1

2 ` D̃´ 1
2 IdD̃´ 1

2 (16)

“ D̃´ 1
2WhighD̃

´ 1
2 ` D̃´ 1

2Wreg.D̃
´ 1

2 ` D̃´1

For the first term, we note
´

D̃´ 1
2WhighD̃

´ 1
2

¯

ij
“

1
?
di ` 1

¨ pWhighqij ¨
1

a

dj ` 1
.

We then find
1

?
di ` 1

“
1

b

dhigh
i

¨
1

c

1 `
dreg.
i `1

dhigh
i

.

Analogously to the proof of Theorem B.3, this yields

´

D̃´ 1
2WhighD̃

´ 1
2

¯

ij
“

1
b

dhigh
i

¨ pWhighqij ¨
1

b

dhigh
j

` O

˜

1 ` dreg.
i

dhigh
i

¸

.
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This implies

D̃´ 1
2WhighD̃

´ 1
2 “ D

´ 1
2

highWhighD
´ 1

2

high ` O
ˆ

Sreg. ` 1

Shigh

˙

.

Next we turn to the second summand in (16):

´

D̃´ 1
2Wreg.D̃

´ 1
2

¯

ij
“

1
?
di ` 1

¨ pWreg.qij .
1

a

dj ` 1
.

Suppose that either i or j is not in Glow, exclusive. Without loss of generality (since the matrix under
consideration is symmetric), assume i R Glow, exclusive, but pWreg.qij ‰ 0. We may again write

1
a

dj ` 1
“

1
b

dhigh
j

¨
1

c

1 `
dreg.
i `1

dhigh
i

.

Since
1

c

1 `
dreg.
i `1

dhigh
i

ď 1,

we have
ˇ

ˇ

ˇ

ˇ

´

D´ 1
2Wreg.D

´ 1
2

¯

ij

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

1
?
1 ` di

¨ pWreg.qij

ˇ

ˇ

ˇ

ˇ

¨
1

b

dhigh
j

ď

ˇ

ˇ

ˇ

ˇ

ˇ

1
a

dreg.
i

¨ pWreg.qij

ˇ

ˇ

ˇ

ˇ

ˇ

¨
1

b

dhigh
j

“ O

˜
d

Sreg.

Shigh

¸

.

If instead we have i, j P Glow, exclusive, then clearly
´

D̃´ 1
2Wreg.D̃

´ 1
2

¯

ij
“

´

D̃
´ 1

2
reg. Wlow,exclusiveD̃

´ 1
2

reg.

¯

ij
.

Finally we note for the third term on the right-hand-side of (16) that

1

di
ď

1

dhigh
i

“ O
ˆ

1

Shigh

˙

if i R Glow, exclusive.

In total we thus have found

D̃´ 1
2 W̃ D̃´ 1

2 “

´

D
´ 1

2

highWhighD
´ 1

2

high `D
´ 1

2
reg. W̃low, exclusiveD

´ 1
2

reg.

¯

` O

˜
d

Sreg. ` 1

Shigh

¸

;

which was to be proved.

B.2 SPATIAL CONVOLUTIONAL FILTERS

Apart from spectral methods, there of course also exist methods that purely operate in the spatial
domain of the graph. Such methods most often fall into the paradigm of message passing neural
networks (MPNNs) Gilmer et al. (2017); Fey & Lenssen (2019): With Xℓ

i P RF denoting the
features of node i in layer ℓ and wij denoting edge features, a message passing neural network may
be described by the update rule (c.f. Gilmer et al. (2017))

Xℓ`1
i “ γ

¨

˝Xℓ
i ,

ž

jPN piq

ϕ
`

Xℓ
i , X

ℓ
j , wij

˘

˛

‚. (17)
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Here N piq denotes the neighbourhood of node i,
š

denotes a differentiable and permutation invariant
function (typically ”sum”, ”mean” or ”max”) while γ and ϕ denote differentiable functions such as
multi-layer-perceptrons (MLPs) which might not be the same in each layer. Fey & Lenssen (2019).

Before we discuss corresponding limit-propagation schemes, we first establish that MPNNs are
not able to reproduce the limit propagation scheme ofFigure 5 (b) and are thus not stable to scale
transitions and topological perturbations.

B.2.1 SCALE-SENSITIVITY OF MESSAGE PASSING NEURAL NETWORKS

Here we establish that message passing networks (as defined in (17) above) are unable to emulate a
limit propagation scheme similar to the one in Figure 5 (b). Hence such architectures are also not
stable to scale-changing topological perturbations such as coarse-graining procedures.

To this end, we consider a simple, fully connected graph G
on three nodes labeled 1, 2 and 3 (c.f. Fig. 14). We assume
all node-weights to be equal to one (µi “ 1 for i “ 1, 2, 3)
and edge weights

w13, w23 ď Sreg.

as well as
w12 “ Shigh.

We now assume Shigh " Sreg..

1 2

3

Figure 14: Three node GraphGwith
on large weight w12 " 1.

Given states tXℓ
1, X

ℓ
2, X

ℓ
3u in layer ℓ, a limit propagation scheme as in Figure 5 (b) would require the

updated feature vector of node 3 to be given by

Xℓ`1
3,desired :“ γ

ˆ

Xℓ
3, ϕ

ˆ

Xℓ
3,
Xℓ

1 `Xℓ
2

2
, pw31 ` w32q

˙˙

However, the actual updated feature at node 3 is given as (c.f. (17)):

Xℓ`1
3,actual :“ γ

´

Xℓ
3, ϕ

`

Xℓ
3, X

ℓ
1, w31

˘

ž

ϕ
`

Xℓ
3, X

ℓ
2, w32

˘

¯

(18)

Since there is no dependence on Shigh in equation (18) – which defines Xℓ`1
3,actual – the desired

propagation scheme can not arise, unless it is paradoxically already present at all scales Shigh. If it is
present at all scales, there is however only propagation along edges in G, even if Shigh « Sreg., which
would imply that the message passing network would not respect the graph structure of G. Hence
Xℓ`1

3,actual Û Xℓ`1
3,desired does not converge as Shigh increases.

B.2.2 LIMIT PROPAGATION SCHEMES

The number of possible choices of message functions ϕ, aggregation functions
š

and update functions
γ is clearly endless. Here we shall exemplarily discuss limit propagation schemes for two popular
architectures: We first discuss the most general case where the message function ϕ is given as a
learnable perceptron. Subsequently we assume that node features are updated with an attention-type
mechanism.

Generic message functions: We first consider the possibility that the message function ϕ in
(18) is implemented via an MLP using ReLU-activations: Assuming (for simplicity in notation) a
one-hidden-layer MLP mapping features Xℓ

i P RFℓ to features Xℓ`1
i P RFℓ`1 we have

ϕpXℓ
i , X

ℓ
j , wijq “ ReLU

`

W ℓ
1 ¨Xℓ

i `W ℓ
2 ¨Xℓ

2 `W ℓ
3 ¨ wij `Bℓ

˘

with bias term Bℓ`1 P RFℓ`1 and weight matrices W ℓ`1
1 ,W ℓ`1

2 P RFℓ`1ˆFℓ and W ℓ
3 P RFℓ`1 .

We will assume that the weight-vecor W ℓ`1
3 has no-nonzero entries. This is not a severe limitation

experimentally and in fact generically justified: The complementary event of at-least one entry of W3

being assigned precisely zero during training has probability weight zero (assuming an absolutely
continuous probability distribtuion according to which weights are learned).
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Let us now assume that the edge pijq belongs to Ehigh and the corresponding weight wij is large
(wij " 1). The behaviour of entries ϕpXℓ

i , X
ℓ
j , wijqa of the message ϕpXℓ

i , X
ℓ
j , wijq P RFℓ`1 is

then determined by the sign of the corresponding entry
`

W ℓ
3

˘

a
of the weight vector W ℓ

3 P RFℓ`1 :

If we have
`

W ℓ
3

˘

a
ă 0, then ϕpXℓ

i , X
ℓ
j , wijqa approaches zero for larger edge-weights wij :

lim
wijÑ8

ϕpXℓ
i , X

ℓ
j , wijqa “ 0 (19)

If we have
`

W ℓ
3

˘

a
ą 0, then ϕpXℓ

i , X
ℓ
j , wijqa increasingly diverges for larger edge-weights wij :

lim
wijÑ8

ϕpXℓ
i , X

ℓ
j , wijqa “ 8 (20)

For either choice of aggregation function
š

in (17) among ”max”, ”sum” or ”mean” the behaviour
in (20) leads to unstable networks if the update function γ is also given as an MLP with ReLU
activations. Apart from instabilities, we also make the following observation: If Shigh " Sreg., then by
(20) and continuity of ϕ we can conclude that components ϕpXℓ

i , X
ℓ
j , wijqa of messages propagated

along Ehigh for which
`

W ℓ
3

˘

a
ą 0 dominate over messages propagated along edges in Ereg.. By (19),

the former clearly also dominate over components ϕpXℓ
i , X

ℓ
j , wijqa of messages propagated along

Ehigh for which
`

W ℓ
3

˘

a
ă 0. This behaviour is irrespective of whether ”max”, ”sum” or ”mean”

aggregations are employed. Hence the limit propagation scheme essentially only takes into account
message channels ϕpXℓ

i , X
ℓ
j , wijqa for which pijq P Ehigh and

`

W ℓ
3

˘

a
ą 0.

Similar considerations apply, if non-linearities are chosen as leaky ReLU. If instead of ReLU
activations a sigmoid-nonlinearity σ like tanh is employed, messages propagated along Elarge become
increasingly uninformative, since they are progressively more independent of featuresXℓ

i and weights
wij . Indeed, for sigmoid activations, the limits (19) and (20) are given as follows:

If we have
`

W ℓ
3

˘

a
ă 0, then we have for larger edge-weights wij that

lim
wijÑ8

ϕpXℓ
i , X

ℓ
j , wijqa “ lim

yÑ´8
σpyq.

If we have
`

W ℓ
3

˘

a
ą 0, then

lim
wijÑ8

ϕpXℓ
i , X

ℓ
j , wijqa “ lim

yÑ8
σpyq.

In both cases, the messages ϕpXℓ
i , X

ℓ
j , wijq propagated along Elarge become increasingly constant as

the scale Shigh increases.

Attention based messages: Apart from general learnable message functions as above, we here
also discuss an approach where edge weights are re-learned in an attention based manner. For this
we modify the method Velickovic et al. (2018) to include edge weights. The resulting propagation
scheme – with a single attention head for simplicity and a non-linearity ρ – is given as

Xℓ`1
i “ ρ

¨

˝

ÿ

jPN piq

αijpWXℓ`1
j q

˛

‚.

Here we have W P RFℓ`1ˆFℓ and

αij “
exp

`

LeakyRelu
`

a⃗J
“

WXℓ
i }WXℓ

j } wij
‰˘˘

ř

kPN piq

exp
`

LeakyRelu
`

a⃗J
“

WXℓ
i }WXℓ

k } wik
‰˘˘ , (21)

with } denoting concatenation. The weight vector a⃗ P R2Fℓ`1`1 is assumed to have a non zero entry
in its last component. Otherwise, this attention mechanism would correspond to the one proposed in
Velickovic et al. (2018), which does not take into account edge weights. Let us denote this entry of a⃗
()determining attention on the weight wij) by aw.
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If aw ă 0, we have for pi, jq P Ehigh that

exp
`

LeakyRelu
`

a⃗J
“

WXℓ
i }WXℓ

j } wij
‰˘˘

ÝÑ 0

as the weight wij increases. Thus propagation along edges in Ehigh is essentially suppressed in this
case.

If aw ą 0, we have for pi, jq P Ehigh that

exp
`

LeakyRelu
`

a⃗J
“

WXℓ
i }WXℓ

j } wij
‰˘˘

ÝÑ 8

as the weight wij increases. Thus for edges pi, jq P Ereg. (i.e. those that are not in Ehigh), we have

αij Ñ 0,

since the denominator in (21) diverges. Hence in this case, propagation along Ereg. is essentially
suppressed and features are effectively only propagated along Ehigh.

C COARSE-GRAINING GRAPHS AND PROOF OF (1)

In this Appendix – using the notation of Appendix B – we illustrate:

}pL` Idq´1 ´ JÒpL` Idq´1JÓ} À 1{λ1p∆highq.

Using Theorem C.5, then yields the prove of the desired estimate

}e´tL ´ JÒe´tLJÓ} À 1{wmin
high for any t ą 0.

after noting the linear relation in scaling behaviour λ1pLclusterq „ wmin
high.

For convenience, we restate the definitions leading up to this setting again:
Definition C.1. Denote by G the set of connected components in Ghigh. We give this set a graph
structure as follows: Let R and P be elements of G (i.e. connected components in Ghigh). We define
the real number

WRP “
ÿ

rPR

ÿ

pPP

Wrp,

with r and p nodes in the original graph G. We define the set of edges E on G as

E “ tpR,P q P G ˆ G :WRP ą 0u

and assign WRP as weight to such edges. Node weights of limit nodes are defined similarly as
aggregated weights of all nodes r (in G) contained in the component R as

µ
R

“
ÿ

rPR

µr.

In order to translate signals between the original graph G and the limit description G, we need
translation operators mapping signals from one graph to the other:
Definition C.2. Denote by 1R the vector that has 1 as entries on nodes r belonging to the connected
(in Ghign) component R and has entry zero for all nodes not in R. We define the down-projection
operator JÓ component-wise via evaluating at node R in G as

pJÓxqR “ x1R, xy{µ
R
.

The upsampling operator JÒ is defined as

JÒu “
ÿ

R

uR ¨ 1R;

where uR is a scalar value (the component entry of u atR P G) and the sum is taken over all connected
components in Ghigh.
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The proof below then follows (Koke, 2025). An initial and more preliminary consideration of the
problem was conducted in (Koke & Kutyniok, 2022; Koke, 2023). Further information may also be
found in (Koke et al., 2023; 2024). We find:

(a) (b) (c) (d)

Figure 15: (a) Graph G with Ereg. (blue) & Ehigh (red); (b) Greg.; (c) Ghigh; (d) Greg., exclusive

Theorem C.3. We have
›

›Rzp∆q ´ JÒRzp∆qJÓ
›

› “ O
ˆ

}∆reg.}

λ1p∆highq

˙

holds; with λ1p∆highq denoting the first non-zero eigenvalue of ∆high.

We here restate the proof for convenience. We use the notation ∆ “ L.

Proof. We will split the proof of this result into multiple steps. For z ă 0 Let us denote by

Rzp∆q “ p∆ ´ zIdq´1,

Rzp∆highq “ p∆high ´ zIdq´1

Rzp∆reg.q “ p∆reg. ´ zIdq´1

the resolvents correspodning to ∆, ∆high and ∆reg. respectively.
Our first goal is establishing that we may write

Rzp∆q “ rId`Rzp∆highq∆reg.s
´1

¨Rzp∆highq

This will follow as a consequence of what is called the second resolvent formula Teschl (2014):

”Given self-adjoint operators A,B, we may write

RzpA`Bq ´RzpAq “ ´RzpAqBRzpA`Bq.”

In our case, this translates to

Rzp∆q ´Rzp∆highq “ ´Rzp∆highq∆reg.Rzp∆q

or equivalently
rId`Rzp∆highq∆reg.sRzp∆q “ Rzp∆highq.

Multiplying with rId`Rzp∆highq∆reg.s
´1 from the left then yields

Rzp∆q “ rId`Rzp∆highq∆reg.s
´1

¨Rzp∆highq

as desired.
Hence we need to establish that rId`Rzp∆highq∆reg.s is invertible for z ă 0.

To establish a contradiction, assume it is not invertible. Then there is a signal x such that

rId`Rzp∆highq∆reg.sx “ 0.

Multiplying with p∆high ´ zIdq from the left yields

p∆high ` ∆reg. ´ zIdqx “ 0

which is precisely to say that
p∆ ´ zIdqx “ 0
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But since ∆ is a graph Laplacian, it only has non-negative eigenvalues. Hence we have reached our
contradiction and established

Rzp∆q “ rId`Rzp∆highq∆reg.s
´1
Rzp∆highq.

Our next step is to establish that

Rzp∆highq Ñ
P high
0

´z
,

where P high
0 is the spectral projection onto the eigenspace corresponding to the lowest lying eigenvalue

λ0p∆highq “ 0 of ∆high. Indeed, by the spectral theorem for finite dimensional operators (c.f. e.g.
Teschl (2014)), we may write

Rzp∆highq ” p∆high ´ zIdq´1 “
ÿ

λPσp∆highq

1

λ´ z
¨ P high

λ .

Here σp∆highq denotes the spectrum (i.e. the collection of eigenvalues) of ∆high and the
tP high

λ uλPσp∆highq are the corresponding (orthogonal) eigenprojections onto the eigenspaces of the
respective eigenvalues. Thus we find

›

›

›

›

›

Rzp∆highq ´
P high
0

´z

›

›

›

›

›

“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

0ăλPσp∆highq

1

λ´ z
¨ P high

λ

›

›

›

›

›

›

;

where the sum on the right hand side now excludes the eigenvalue λ “ 0.

Using orthonormality of the spectral projections, the fact that z ă 0 and monotonicity of 1{p¨ ` |z|q

we find
›

›

›

›

›

Rzp∆highq ´
P high
0

´z

›

›

›

›

›

“
1

λ1p∆highq ` |z|
.

Here λ1p∆highq is the firt non-zero eigenvalue of p∆highq.
Non-zero eigenvalues scale linearly with the weight scale since we have

λpS ¨ ∆q “ S ¨ λp∆q

for any graph Laplacian (in fact any matrix) ∆ with eigenvalue λ. Thus we have
›

›

›

›

›

Rzp∆highq ´
P high
0

´z

›

›

›

›

›

“
1

λ1p∆highq ` |z|
ď

1

λ1p∆highq
ÝÑ 0

as λ1p∆highq Ñ 8.

Our next task is to use this result in order to bound the difference

I :“

›

›

›

›

›

›

«

Id`
P high
0

´z
∆reg.

ff´1
P high
0

´z
´ rId`Rzp∆highq∆reg.s

´1
Rzp∆highq

›

›

›

›

›

›

.

To this end we first note that the relation

rA`B ´ zIds´1 “ rId`RzpAqBs´1RzpAq

provided to us by the second resolvent formula, implies

rId`RzpAqBs´1 “ Id´BrA`B ´ zIds´1.

Thus we have
›

›

›
rId`Rzp∆highq∆reg.s

´1
›

›

›
ď 1 ` }∆reg.} ¨ }Rzp∆q}

ď 1 `
}∆reg.}

|z|
.
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With this, we have

›

›

›

›

›

›

«

Id`
P high
0

´z
∆reg.

ff´1

¨
P high
0

´z
´Rzp∆q

›

›

›

›

›

›

“

›

›

›

›

›

›

«

Id`
P high
0

´z
∆reg.

ff´1

¨
P high
0

´z
´ rId`Rzp∆highq∆reg.s

´1
¨Rzp∆highq

›

›

›

›

›

›

ď

›

›

›

›

›

P high
0

´z

›

›

›

›

›

¨

›

›

›

›

›

›

«

Id`
P high
0

´z
∆reg.

ff´1

´ rId`Rzp∆highq∆reg.s
´1

›

›

›

›

›

›

`

›

›

›

›

›

P high
0

´z
´Rzp∆highq

›

›

›

›

›

¨

›

›

›
rId`Rzp∆highq∆reg.s

´1
›

›

›

ď
1

|z|

›

›

›

›

›

›

«

Id`
P high
0

´z
∆reg.

ff´1

´ rId`Rzp∆highq∆reg.s
´1

›

›

›

›

›

›

`

ˆ

1 `
}∆reg.}

|z|

˙

¨
1

λ1p∆highq
.

Hence it remains to bound the left hand summand. For this we use the following fact (c.f. Horn &
Johnson (2012), Section 5.8. ”Condition numbers: inverses and linear systems”):

Given square matrices A,B,C with C “ B ´A and }A´1C} ă 1, we have

}A´1 ´B´1} ď
}A´1} ¨ }A´1C}

1 ´ }A´1C}
.

In our case, this yields (together with }P high
0 } “ 1) that

›

›

›

›

”

Id` P high
0 {p´zq ¨ ∆reg.

ı´1

´ rId`Rzp∆highq∆reg.s
´1

›

›

›

›

ď
p1 ` }∆reg.}{|z|q

2
¨ }∆reg.} ¨ }

P high
0

´z ´Rzp∆highq}

1 ´ p1 ` }∆reg.}{|z|q ¨ }∆reg.} ¨ }
P high

0

´z ´Rzp∆highq}

For Shigh sufficiently large, we have

} ´ P high
0 {z ´Rzp∆highq} ď

1

2 p1 ` }∆reg.}{|z|q

so that we may estimate

›

›

›

›

›

›

«

Id` ∆reg.
P high
0

´z

ff´1

´ rId` ∆reg.Rzp∆highqs
´1

›

›

›

›

›

›

ď2 ¨ p1 ` }∆reg.}q ¨ }
P high
0

´z
´Rzp∆highq}

“2
1 ` }∆reg.}{|z|

λ1p∆highq

Thus we have now established
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

«

Id`
P high
0

´z
∆reg.

ff´1

¨
P high
0

´z
´Rzp∆q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ O
ˆ

}∆reg.}

λ1p∆highq

˙

.

Hence we are done with the proof, as soon as we can establish
”

´zId` P high
0 ∆reg.

ı´1

P high
0 “ JÒRzp∆qJÓ,
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with JÒ,∆, JÓ as defined above. To this end, we first note that

JÒ ¨ JÓ “ P high
0 (22)

and
JÓ ¨ JÒ “ IdG. (23)

Indeed,the relation (22) follows from the fact that the eigenspace corresponding to the eignvalue
zero is spanned by the vectors t1RuR, with tRu the connected components of Ghigh. Equation (23)
follows from the fact that

x1R,1Ry “ µ
R
.

With this we have
”

Id` P high
0 ∆reg.

ı´1

P high
0 “

“

Id` JÒJÓ∆reg.
‰´1

JÒJÓ.

To proceed, set
x :“ F Óx

and

X “

”

P high
0 ∆reg. ´ zId

ı´1

P high
0 x.

Then
”

P high
0 ∆reg. ´ zId

ı

X “ P high
0 x

and hence X P RanpP high
0 q. Thus we have

JÒJÓp∆reg. ´ zIdqJÒJÓX “ JÒJÓx.

Multiplying with JÓ from the left yields

JÓp∆reg. ´ zIdqJÒJÓX “ JÓx.

Thus we have
pJÓ∆reg.J

Ò ´ zIdqJÒJÓX “ JÓx.

This – in turn – implies
JÒJÓX “

“

JÓ∆reg.J
Ò ´ zId

‰´1
JÓx.

Using
P high
0 X “ X ,

we then have
X “ JÒ

“

JÓ∆reg.J
Ò ´ zId

‰´1
JÓx.

We have thus concluded the proof if we can prove that JÓ∆reg.J
Ò is the Laplacian corresponding to

the graph G defined in Definition C.1. But this is a straightforward calculation.

As a corollary, we find

Corollary C.4. We have
Rzp∆qk Ñ JÒRkp∆qJÓ

Proof. This follows directly from the fact that

JÓJÒ “ IdG.

To prove (1), we establish the following theorem:

Theorem C.5. Consider a graph sequence Gn with }pLn ` λIdq´1 ´ J̃npL̃ ` λIdq´1Jn} Ñ 0.
Then we have }ψpLnq ´ J̃nψpL̃qJn} Ñ 0 if ψ is complex differentiable and limrÑ8 ψprq “ 0.
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Proof. We make use of the holomorphic functional calculus (c.f. e.g. (Koke & Cremers, 2024)) to
establish

}ψpLq ´ J̃ψpL̃qJ} ď
1

2π

¿

Γ

|ψpzq| ¨ }pL´ zIdq´1 ´ J̃pL̃´ zIdq´1J}d|z|.

Since }pLn`λIdq´1 ´ J̃npL̃`λIdq´1Jn} Ñ 0 implies }pLn´ zIdq´1 ´ J̃npL̃´ zIdq´1Jn} Ñ 0
uniformly (in z) on compact sets (c.f. e.g. Arendt (2001)), we can apply dominated convergence, if
we find an majorizing function that is integrable on Γ. But this is ensured by the decay of ψ.

Choosing the function ψ to be given as ψpzq “ e´tz then establishes (1).

D GLOBAL LAPLACIAN PROPAGATION MATRICES, GENERALIZED
FUNCTIONS, MEASURES AND ALL THAT

In this section we discuss global Laplacian propagation matrices, generalized functions and measures

D.1 COMPLEX MEASURES ON Rě0 AND THEIR THEORY OF INTEGRATION

As reference for this section Tao (2013) might serve.

In mathematics, a measure is a formal generalization of concepts such as length, area and volume.

More specifically, we are here interested in assigning a generalized notion of length (or mass) to
subsets of the real half-line

Rě0 “ r0,8q.

These sets will turn out to be elements of a so called σ-Algebra; i.e. a set Σ of sets for which

• H,Rě0 P Σ

• A,B P σ ñ AXB P Σ

• A,B P Σ ñ AzB P Σ

• A,B P Σ ñ AYB P Σ.

We now take ΣRě0 to be the smallest such set of sets Σ that contains all open intervals.

A complex measure then is a set-function that assigns to each set in ΣRě0
a complex number in a

certain way:

Definition D.1. A complex measure µ onRě0 is a complex valued function µ : ΣRě0 Ñ C satisfying

µ

˜

ď

n

An

¸

“
ÿ

n

µ pAnq

for any countable (potentially infinite) collection of sets in ΣRě0 which are pairwise disjoint.

Let us provide some examples:

Example D.2. The prototypical example of a measure is the standard Lebesgue measure that assigns
to any interval pa, bq the length µLebppa, bqq “ |a´ b| (a, b P Rě0).

Example D.3. Alternatively, we might consider the Dirac measure µδt0 , which assigns the value
µδt0 ppa, bqq “ 1 to any interval pa, bq containing t0 (i.e. t0 P pa, bq). Otherwise it assigns the value
µδt0 ppa, bqq “ 0 if t0 R pa, bq.

Example D.4. Every integrable function ψ̂ : Rě0 Ñ C defines a complex measure via µψ̂ppa, bqq “
şb

a
ψ̂ptqdt.
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Hence we may think of measures as generalizations of functions.

Any given measure on Rě0 defines a unique way of integrating (known as Lebesgue inte-
gration) a function f defined on Rě0. This proceeds by approximating any function f via a weighted
sequence of indicator functions (with A P ΣRě0

a set)

χAptq “

"

1 ; t P A

0 ; t R A
.

as
fptq « fnptq :“

ÿ

k

ankχAk
ptq.

with ak P C. For these functions, one then sets
ż

Rě0

fndµ ”
ÿ

k

ank ¨ µpAkq.

Since we have limnÑ8 fn “ f , one then simply sets
ż

Rě0

fdµ ” lim
nÑ8

ż

Rě0

fndµ.

Example D.5. For the prototypical example of the standard Lebesgue measure, this process simply
yields

ż

Rě0

fptqdµLebptq “

ż 8

0

fptqdt.

Example D.6. For the Dirac measure µδt0 , the above process yields
ż

Rě0

fptqdµδt0 ptq “ fpt0q

Example D.7. For measures arising from integrable functions ψ̂ : Rě0 Ñ C as µψ̂ppa, bqq “
şb

a
ψ̂ptqdt, we find

ż

Rě0

fptqdµψ̂ “

ż 8

0

ψ̂ptqfptqdt.

D.2 LAPLACE TRANSFORMS

We say a complex valued measure µ is finite if we have
ż

Rě0

d|µ|ptq ă 8.

Here the measure |µ| arises from the original measure µ via
|µ|ppa, bqq ” |µppa, bqq|.

For any such finite measure µ we may define its Laplace transform as

ψµpzq :“

ż

Rě0

e´tzdµptq.

This function fµ is well defined for z in the right hemisphere
CR :“ tz P C : Repzq ě 0u.

of the complex plane C, since there we have

|ψµpzq| “

ˇ

ˇ

ˇ

ˇ

ż

Rě0

e´tzdµptq

ˇ

ˇ

ˇ

ˇ

ď

ż

Rě0

|e´tz|d|µ|ptq

ď

ż

Rě0

d|µ|ptq ă 8.
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Example D.8. For the Dirac measure µδt0 , we have

ψµδt0
pzq “ e´t0z.

Example D.9. For any integrable function ψ̂, we have

ψpzq ”

ż

Rě0

e´tzdµψ̂ “

ż 8

0

ψ̂ptqe´tzdt.

More specifically, if the integrable function is given as ψ̂k :“ p´tqk´1e´λt (with Repλq ą 0), then
ψkpzq “ pz ` λq´k:

Example D.10. If ψ̂k :“ p´tqk´1e´λt yields ψkpzq “ pz ` λq´k, then

ψkpzq “ pz ` λq´k.

For k “ 1, this can be seen from
ż 8

0

e´tze´λtdt “ ´
1

z ` λ
e´pz`λq

ˇ

ˇ

ˇ

ˇ

8

0

.

For k ą 1, the claim follows from differentiating the above expression with respect to z Note that the
functions ψkpzq “ pz ` λq´k are also defined if Repzq ď 0, as long as z ‰ ´λ.

Using the function ψk of the examples above, a wide class of functions may be parametrized
Theorem D.11. Let f : Rě0 Ñ 0 be any function with lim

xÑ8
fpxq “ 0. Then for any ϵ ą 0, there is

a function
hpxq “

ÿ

k

θkψkpxq

for which
sup

xPr0,8q

|fpxq ´ hpxq| ă ϵ.

Here the basis functions tψku may either be chosen as ψkpzq “ pz ` λq´k or ψkpxq “ e´pkt0qx for
any t0 ą 0.

Proof. This is a direct consequence of the Weierstrass approximation theorem.

D.3 GLOBAL LAPLACIAN PROPAGATION MATRICES

A Global Laplacian Propagation matrix is then constructed by applying a function ψ arising as a
Laplace transform to a graph Laplacian L. The resulting filter matrix ψpLq P RNˆN acts on scalar
graph signals x P RN via matrix multiplication; sending x to ψpLq ¨ x:

x ÞÑ ψpLq ¨ x

E PROOFS RELATED TO GENERALIZATION ABILITY

E.1 GENERALIZATION ABILITY OF GLOBAL LAPLACIAN PROPAGATION MATRICES

In this section, we establish the generalization ability of global Laplacian propagation matrices as
defined in Section 5.
Theorem E.1. We have that }ψpLq ´ JÒψpLqJÓ} ď

ş8

0
|ψ̂ptq|ηptqdt holds true.

Proof. We start by proving the first claim. To this end, we note

}ψpLq ´ JÓψpLqJÓ} “

›

›

›

›

ż

Rě0

“

e´tL ´ JÒe´tLJÓ
‰

dµψ̂

›

›

›

›

ď

ż

Rě0

›

›e´tL ´ JÒe´tLJÓ
›

› d|µ|ψ̂
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In the notation of Section 5, we have d|µ|ψ̂ptq “ |ψ̂ptq|dt and hence

}ψpLq ´ JÓψpLqJÓ} “

›

›

›

›

ż

Rě0

“

e´tL ´ JÒe´tLJÓ
‰

dµψ̂

›

›

›

›

ď

ż

Rě0

›

›e´tL ´ JÒe´tLJÓ
›

› |ψ̂ptq|dt.

Thus if ηptq ”
›

›e´tL ´ JÒe´tLJÓ
›

› « 0 on the support of ψ̂, we also have }ψpLq ´ JÒψpLqJÓ} «

0. In this case, propagation as implemented via ψpLq is essentially the same as propagation via
JÓψpLqJÓ.

F GENERALIZATION AND STABILITY WHEN }L ´ L̃} ! 1

In this section we prove in addition to results in the main body of the paper also stability and
generalization ability in the setting where for the Laplacians L, L̃ of two graphs G, G̃ defined on
a common node set we have }L ´ L̃} ! 1 (as opposed to the setting where one graph is a coarser
version of another). We denote the collection of weight matrices by W , the collection of biases
by B and the (collection of) utilized global Laplacian propagation matrices used in the update
rule ”X ÞÑ

ř

k ψkpLqXWk” as Ψ. We denote the network by ΦW,B,Ψ and write the generated
embeddings for the node feature matrix X as ΦW,B,ΨpXq. With this, we have:
Theorem F.1. Let ΦW ,B,Ψ be a K-layer deep graph convolutional architecture. Assume in each
layer 1 ď ℓ ď K that

ř

i }W ℓ
i } ď W and }Bℓ} ď B. Choose C ě }ΨipLq} (@i P I) and w.l.o.g.

assume CW ą 1. With this, we have with δ “ maxiPIt}ΨipLq ´ ΨiprLq}u that

}ΦW ,B,ΨpL,Xq ´ ΦW ,B,ΨprL,Xq} ď

„

K ¨ CKWK´1 ¨

ˆ

}X} `
1

CW ´ 1
B

˙ȷ

¨ δ.

Proof. For simplicity in notation, let us denote the hidden representations in the network correspond-
ing to L̃ by Xℓ. With this, we note:

}XK ´ X̃K} ď
ÿ

iPI

}ψipLq ´ ψipL̃q} ¨ }XK´1} ¨ }WK
i } `

ÿ

iPI

}ψipL̃q} ¨ }X̃K´1 ´XK´1} ¨ }WK
i }

ď δW }XK´1} ` CW }X̃K´1 ´XK´1}

ď δW }XK´1} ` CWδ}XK´2} ` pCW q2}X̃K´1 ´XK´1}

ď
δ

C
¨

˜

K
ÿ

ℓ“1

pCW qℓ}XK´ℓ}

¸

“
δ

C
¨

˜

K´1
ÿ

j“0

pCW qK´j}Xj}

¸

Hence we need to bound the quantity }Xj} in terms of C,W,B and X .

We have
}Xj} ď

ÿ

i

}ψipLq} ¨ }Xj´1} ¨ }W j
i | ` }BJ}

ď CW }Xj´1} `B

ď pCW q2}Xj´2} ` CWB `B

ď B

˜

j´1
ÿ

k“0

pCW qk

¸

` pCW qj}X}

“

#

B pCW q
j

´1
CW´1 ` pCW qj}X} ;CW ‰ 1

jB ` }X} ;CW “ 1
.
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For the case CW “ 1, we thus find

}XK ´ X̃K} ď
δ

C
¨

˜

K´1
ÿ

j“0

pjB ` }X}q

¸

“
δ

C
¨

ˆ

K}X} `B
KpK ´ 1q

2

˙

.

For the case CW ‰ 1, we find

}XK ´ X̃K} ď
δ

C
¨

˜

K´1
ÿ

j“0

pCW qK´j

„

B
pCW qj ´ 1

CW ´ 1
` pCW qj}X}

ȷ

¸

For CW ą 1, we may further estimate this as

}XK ´ X̃K} ď
δ

C
¨

˜

K´1
ÿ

j“0

pCW qK´j

„

B
pCW qj ´ 1

CW ´ 1
` pCW qj}X}

ȷ

¸

ď δ ¨
KpCW qK

C

„

B

CW ´ 1
` }X}

ȷ

.

This proves the claim.

G PROOF OF THEOREM5.3

The result in Theorem 5.3 is concerned with the graph-level setting; i.e. the setting where entire
graphs are embedded into latent spaces. Before proving this result, we first prove a corresponding
result for the node-level, where individual nodes in a graph are embedded. We will then use this
node-level result (Thoerem G.1 below) to prove the graph-level Theorem 5.3.

In the node-level setting, we start by considering initial node-features X on G. We then fix
a graph neural network Φ based on global Laplacian propagation schemes and consider two ways of
generating embeddings on the graph G: On the one hand, we may simply generate embeddings with
the network Φ on G. On the other hand, we may also project the node feature matrix X to G via
JÓ, apply ne the network Φ to the matrix JÓX on G and then finally interpolate the generated node
embeddings back to G via JÒ.

The following result bounds the difference between these two respective node embeddings generated
on the same graph.

Theorem G.1. Let ΦW ,B,Ψ be a K-layer deep Global-Laplacian-Propagation-based network. As-
sume

ř

iPI }W ℓ
i } ď W and bound bias matrices in layer ℓ as }Bℓ} ď B. Choose C ě }ΨipLq}

(i P I) and w.l.o.g. assume CW ą 1 (which can always be satisfied by choosing C large
enough). Assume ρpJÒXq “ JÒρpXq and if biases are enabled, assume JÒ1G “ 1G. Set
maxiPIt}ψipLq ´ JÒψipLqJÓ}u “ δ1 and define δ2 “ maxiPIt}ψipL

ÒqrJÓJÒ ´ IdGs}u. With
this, we have that

}ΦW ,B,ΨpL,Xq ´ JÒΦW ,B,ΨpL, JÓXq} ď

„

K ¨ CKWK´1 ¨

ˆ

}X} `
1

CW ´ 1
B

˙ȷ

¨ pδ1 ` δ2q.

It should be noted that the result above is more general than the setting considered in Section 5. In
the setting considered in Section 5 we have JÓJÒ “ IdG (in addition to ρpJÒXq “ JÒρpXq). There
we thus automatically have δ2 “ 0.

Proof. Let us define
X :“ JÓX.

Let us further use the notation ψ
i
:“ ψipLq and ψi :“ ψipLq.
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Denote by Xℓ and Xℓ the (hidden) feature matrices generated in layer ℓ for networks based on ψi
and ψ

i
respectively: I.e. we have

Xℓ “ ρ

˜

ÿ

iPI

ψiX
ℓ´1W ℓ

i `Bℓ

¸

and

Xℓ
“ ρ

˜

ÿ

iPI

ψ
i
Xℓ´1W ℓ

i `Bℓ

¸

.

We then have

}ΦW ,B,ΨpL,Xq ´ JÒΦW ,B,ΨpL, JÓXq}

“}XK ´ JÒXK
}

“

›

›

›

›

›

ρ

˜

ÿ

iPI

ψiX
K´1WK

i `BK

¸

´ JÒρ

˜

ÿ

iPI

ψ
i
XK´1WK

i `BL

¸
›

›

›

›

›

“

›

›

›

›

›

ρ

˜

ÿ

iPI

ψiX
K´1WK

i `BK

¸

´ ρ

˜

J
ÿ

iPI

ψ
i
XK´1WK

i `BL

¸
›

›

›

›

›

Here we used the assumption that ρ and J commute. In fact since ReLUp¨q maps positive entries
to positive entries and acts pointwise, it commutes with JÒ. We also made use of the assumption
JÒ1G “ 1G when dealing with biases .
Using the fact that ρp¨q is 1-Lipschitz-continuous, we can establish

}ΦW ,B,ΨpL,Xq ´ JÒΦW ,B,ΨpL, JXq}

ď

›

›

›

›

›

ρ

˜

ÿ

iPI

ψiX
K´1WK

i `BK

¸

´ ρ

˜

JÒ
ÿ

iPI

ψ
i
XK´1WK

i `BL

¸
›

›

›

›

›

ď

›

›

›

›

›

ÿ

iPI

ψiX
K´1WK

i `BK ´ JÒ
ÿ

iPI

ψ
i
XK´1WK

i `BK

›

›

›

›

›

.

Using the assumption that }ψrJÓJÒ ´ IdGs} ď δ2, we have

}ΦW ,B,ΨpL,Xq ´ JÒΦW ,B,ΨpL, JXq}

ď

›

›

›

›

›

ÿ

iPI

ψiX
K´1WK

i ´
ÿ

iPI

pJÒψ
i
JqJÒXK´1WK

i

›

›

›

›

›

`

›

›

›

›

›

ÿ

iPI

JÒψ
i
rIdG ´ JÓJÒsXK´1WK

i

›

›

›

›

›

ď

›

›

›

›

›

ÿ

iPI

ψiX
K´1WK

i ´
ÿ

iPI

pJÒψ
i
JqJÒXK´1WK

i

›

›

›

›

›

` δ2 ¨

›

›

›

›

›

ÿ

iPI

XK´1WK
i

›

›

›

›

›

ď

›

›

›

›

›

ÿ

iPI

ψiX
K´1WK

i ´
ÿ

iPI

pJÒψ
i
JÓqJÒXK´1WK

i

›

›

›

›

›

` δ2 ¨
›

›XK´1
›

› ¨W

From this, we find (assuming }JÒ}, }JÓ} ď 1 for notational simplicity (and which is true in the
setting of Section 5)), that
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}ΦW ,B,ΨpL,Xq ´ JÒΦW ,B,ΨpL, JXq}

ď

›

›

›

›

›

ÿ

iPI

ψiX
K´1WK

i ´
ÿ

iPI

pJÒψ
i
JÓqJÒXK´1WK

i

›

›

›

›

›

` δ2 ¨
›

›XK´1
›

› ¨W

ď

›

›

›

›

›

ÿ

iPI

pψi ´ JÒψ
i
JqXK´1WK

i

›

›

›

›

›

`
ÿ

iPI

}JÒψ
i
J} ¨ }JÒXK´1

´XK´1} ¨ }WK
i } ` δ2 ¨

›

›XK´1
›

› ¨W

ď

›

›

›

›

›

ÿ

iPI

pψi ´ JÒψ
i
JqXK´1WK

i

›

›

›

›

›

` CW ¨ }JÒXK´1
´XK´1} ` δ2 ¨

›

›XK´1
›

› ¨W

ď
ÿ

iPI

›

›

›
pψi ´ JÒψ

i
Jq

›

›

›
¨

›

›XK´1
›

› ¨
›

›WK
i

›

› ` CW ¨ }JÒXK´1
´XK´1} ` δ2 ¨

›

›XK´1
›

› ¨W

ďδ1 ¨
›

›XK´1
›

›W ` CW ¨ }JÒXK´1
´XK´1} ` δ2 ¨

›

›XK´1
›

› ¨W

Arguing as in the proof of Appendix F then yields the claim.

Let us move from the node-level to the graph-level. We first specify how graph-level latent embeddings
arise:
Definition G.2. We aggregate embeddings X P RNˆF of individual nodes to graph-embeddings
ΩpXq P RF as ΩpXqj “

řN
i“1 |Xij | ¨ µi. Here tµiui is the set of node-weights.

In a social network, a node weight µi “ 1 might e.g. signify that node i represents a single user. A
weight µj ą 1 would indicate that node j represents a group of users.
Given such an aggregation of node embeddings into latent-embeddings of entire graphs, we may then
relegate graph-level transferability back to node-level transferability:
Theorem G.3. Assuming ΩpXq “ ΩpJÒXq, we have in the setting of Theorem G.1 that
}Ω ˝ ΦW ,B,ΨpL,Xq ´ Ω ˝ ΦW ,B,ΨpL, JÓXq} ď }ΦW ,B,ΨpL,Xq ´ JÒΦW ,B,ΨpL, JÓXq}.

Proof. We note
}Ω ˝ ΦW ,B,ΨpL,Xq ´ Ω ˝ ΦW ,B,ΨpL, JÓXq}

“}ΩpΦW ,B,ΨpL,Xqq ´ ΩpΦW ,B,ΨpL, JÓXqq}

“}ΩpΦW ,B,ΨpL,Xqq ´ ΩpJÒΦW ,B,ΨpL, JÓXqq}.

To prove the claim from here, we only have to note that the aggregation method Ω as defined in
Definition G.3 above is 1-Lipschitz (as a consequence of the reverse triangle inequality). The proof
for the bidirectional setting proceeds analogously.

This result then proves Theorem 5.3. Indeed: In the notation of Section 5, we have Fω “

ΩpΦW ,B,ΨpLω, Xqq and F “ ΩpΦW ,B,ΨpL, JÓXqq Thus we have
}Fω´F } “ }Ω˝ΦW ,B,ΨpL,Xq´Ω˝ΦW ,B,ΨpL, JÓXq} ď }ΦW ,B,ΨpLω, Xq´JÒΦW ,B,ΨpL, JÓXq}.

By Theorem G.1 and the fact that rIdG ´ JÒJÓs “ 0, we have

}ΦW ,B,ΨpLω, Xq ´ JÒΦW ,B,ΨpL, JÓXq} À max
k

t}ψkpLωq ´ JÒψkpLqJÓ}u,

with ”À” as per usual ”denoting smaller than, up to a positive multiplicative constant”.

Finally Theorem E.1 implies

}ψkpLωq ´ JÒψkpLqJÓ} ď

ż 8

0

|ψ̂kptq|ηptqdt “

ż

Rě0

›

›e´tLω ´ JÒe´tLJÓ
›

› |ψ̂kptq|dt.

Thus upon combining these steps, Theorem 5.3 is indeed proved.
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H ADDITIONAL EXPERIMENTAL CONSIDERATIONS

H.1 ADDITIONAL DETAILS ON COARSE GRAINING EXAMPLE

Collapsing strongly connected clusters: Intuition and exact Definitions

(a) (b)

Figure 16: (a) G (stongly connected)
clusters in red (b) Coarse grained G

From a diffusion perspective, information in a graph equal-
izes faster along edges with large weights. In the limit where
edge-weights within certain sub-graphs tend to infinity, in-
formation within these clusters equalizes immediately and
such sub-graphs thus effectively behave as single nodes. We
might thus consider a coarse grained graph G where these
strongly connected clusters are indeed fused together and
represented only via single nodes. The corresponding node
set G of G is then given by the set of connected components

in Gcluster (c.f. Fig 17). Edges E are given by elements pR,P q P G ˆ G with non-zero accu-
mulated edge weight WRP “

ř

rPR

ř

pPP Wrp. Node weights in G are defined accordingly by

aggregating as µ
R

“
ř

rPR µr. To compare signals on these two graphs, we
define intertwining operators JÓ, JÒ transferring information between G and G:
Let x be a scalar graph signal and let 1R be the vector that has 1 as entry for
nodes r P R and is zero otherwise. Denote by uR the entry of u at node R P G.
Projection JÓ is then defined component-wise by evaluation at node R P G as the
average of x over R: pJÓxqR “ x1R, xy{µ

R
. Going in the opposite direction,

Figure 17:
Gcluster

interpolation is defined as JÒu “
ř

RPG uR ¨ 1R.

In this setting, we have (c.f. Appendix C) that

}e´tL ´ JÒe´tLJÓ} À 1{wmin
high for any t ą 0.

Here wmin
high " 1 denotes the minimal edge weight inside the strongly connected clusters in G.

Dataset: The dataset we consider is the QM7 dataset, introduced in Blum & Reymond (2009);
Rupp et al. (2012). This dataset contains descriptions of 7165 organic molecules, each with up to
seven heavy atoms, with all non-hydrogen atoms being considered heavy. A molecule is represented
by its Coulomb matrix CClmb, whose off-diagonal elements

CClmb
ij “

ZiZj
|Ri ´Rj |

correspond to the Coulomb-repulsion between atoms i and j. We discard diagonal entries of Coulomb
matrices; which would encode a polynomial fit of atomic energies to nuclear charge Rupp et al.
(2012).

For each atom in any given molecular graph, the individual Cartesian coordinates Ri and the atomic
charge Zi are (in principle) also accessible individually. To each molecule an atomization energy -
calculated via density functional theory - is associated. The objective is to predict this quantity. The
performance metric is mean absolute error. Numerically, atomization energies are negative numbers
in the range ´600 to ´2200. The associated unit is rkcal/mols.

Details on collapsing procedure as applied to QM7: Again, we make use of the QM7 dataset
Rupp et al. (2012) and its Coulomb matrix description

CClmb
ij “

ZiZj
|Ri ´Rj |

(24)

of molecules. We modify (all) molecular graphs in QM7 by deflecting hydrogen atoms (H) out of
their equilibrium positions towards the respective nearest heavy atom. This is possible since the QM7
dataset also contains the Cartesian coordinates of individual atoms. Edge weights between heavy

33



Published as a workshop paper at ICLR 2025 MLMP

atoms then remain the same, while Coulomb repulsions between H-atoms and respective nearest
heavy atom increasingly diverge; as is evident from (24).

Given an original molecular graph G with node weights µi “ Zi, the corresponding limit graph
G corresponds to a coarse grained description, where heavy atoms and surrounding H-atoms are
aggregated into single super-nodes.

Mathematically, G is obtained by removing all nodes corresponding to H-atoms fromG, while adding
the corresponding charges ZH “ 1 to the node-weights of the respective nearest heavy atom. Charges
in (24) are modified similarly to generate the weight matrix W .

On original molecular graphs, atomic charges are provided via one-hot encodings. For the graph of
methane – consisting of one carbon atom with charge ZC “ 6 and four hydrogen atoms of charges
ZH “ 1 – the corresponding node-feature-matrix is e.g. given as

X “

¨

˚

˚

˚

˝

0 0 ¨ ¨ ¨ 0 1 0 ¨ ¨ ¨

1 0 ¨ ¨ ¨ 0 0 0 ¨ ¨ ¨

1 0 ¨ ¨ ¨ 0 0 0 ¨ ¨ ¨

1 0 ¨ ¨ ¨ 0 0 0 ¨ ¨ ¨

1 0 ¨ ¨ ¨ 0 0 0 ¨ ¨ ¨

˛

‹

‹

‹

‚

with the non-zero entry in the first row being in the 6th column, in order to encode the charge ZC “ 6
for carbon.

The feature vector of an aggregated node represents charges of the heavy atom and its neighbouring
H-atoms jointly.

Node feature matrices are translated as X “ JÓX . Applying JÓ to one-hot encoded atomic charges
yields (normalized) bag-of-word embeddings on G: Individual entries of feature vectors encode how
much of the total charge of the super-node is contributed by individual atom-types. In the example of
methane, the limit graph G consists of a single node with node-weight

µ “ 6 ` 1 ` 1 ` 1 ` 1 “ 10.

The feature matrix
X “ JÓX

is a single row-vector given as

X “

ˆ

4

10
, 0, ¨ ¨ ¨ , 0,

6

10
, 0, ¨ ¨ ¨

˙

.

Experimental Setup: We randomly select 1500 molecules for testing and train on the remaining
graphs. On QM7 we run experiments for 23 different random random seeds and report mean and
standard deviation. All experiments were performed on a single NVIDIA Quadro RTX 8000 graphics
card.

Additional details on training and models: Typical GNN models are divided into standard
architectures (GCN (Kipf & Welling, 2017), ChebNet (Defferrard et al., 2016), ARMA (Bianchi
et al., 2019), BernNet (He et al., 2021), GATv2 (Brody et al., 2022)) and multi- scale architectures
(PushNet (Busch et al., 2020), UFGNet (Zheng et al., 2021), Lanczos (Liao et al., 2019)). Apart
from UFGNet (already acting as a pooling layer) we also consider self-attention-pooling (Lee et al.,
2019); both acting on the final layer (SAG) and as acting on the output of each indivifual layer, with
resulting layer-wise features concatenated to produce the final embedding (SAG-M). All considered
convolutional layers are incorporated into a two layer deep and fully connected graph convolutional
architecture. In each hidden layer, we set the width (i.e. the hidden feature dimension) to

F1 “ F2 “ 64.

For BernNet, we set the polynomial order to K “ 3 to combat appearing numerical instabilities.
ARMA is set to K “ 2 and T “ 1. ChebNet uses K “ 2. Lnaczos uses 20 Lanczos iterations, as
proposed in the original paper (Liao et al., 2019). UFGNet uses Haar wavelets. For all baselines,
the standard mean-aggregation scheme is employed after the graph-convolutional layers to generate
graph level features. Finally, predictions are generated via an MLP.
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For the resolvent based global Laplacian propagation architecture, we set λ “ 1 and and build filters
using the k “ 1 and “ 2 matrices in ΨRes “ tpz ` λq´kukPN.

For thebased global Laplacian propagation architecture, based global Laplacian propagation
architecture, we set t0 “ 1 and and build filters using the k “ 1 and “ 2 matrices in ΨExp “

te´pkt0qzukPN.

As aggregation, we employ the graph level feature aggregation scheme introduced in Definition G.2
with node weights set to atomic charges of individual atoms. Predictions are then generated via a
final MLP with the same specifications as the one used for baselines.

H.2 TRANSFERABILITY AND GENERALIZATION ON GRAPHS GENERATED VIA STOCHASTIC
BLOCK MODELS

Stochastic Block Models: Stochastic block models (Holland et al., 1983) are generative models for
random graphs that produce graphs containing strongly connected communities. In our experiments
in this section, we consider a stochastic block model whose distributions is characterized by four
parameters: The number of communities cnumber determine how many (strongly connected) communi-
ties are present in the graph that is to be generated. The community size csize determines the number
of nodes belonging to each (strongly connected) community. The probability pconnect determines the
probability that two nodes within the same community are connected by an edge. The probability
pinter determines the probabilities that two nodes in different communities are connected by an edge.

Experimental Setup: Since stochastic block models do not generate node-features, we equip
each node with a randomly-generated unit-norm feature vector. Given such a graph G drawn from
a stochastic block model, we then compute a version G of this graph, where all communities are
collapsed to single nodes as described in Definition C.2. We then compare the feature vectors
generated for G and G. All experiments were performed on a single NVIDIA Quadro RTX 8000
graphics card. As before, we then consider the LTF-ΨRes and LTF-ΨExp together with GCN as a
baseline when investigating transferability.

Experiment: Varying the Connectivity within the Communities: As discussed in detail in
Appendix C, we desire that networks assign similar feature vectors to graphs with strongly connected
communities and coarse-grained versions of these graphs, where these communities are collapsed to
aggregate nodes. The higher the connectivity within these communities, the more similar should the
feature vector of the original graph G and its coarsified version G be, as Appendix C established. In
order to verify this experimentally, we fix the parameters cnumber, csize and pinter in our stochastic block
model. We then vary the probability pconnect that two nodes within the same community are connected
by an edge from pconnect “ 0 to pconnect “ 1. This corresponds to varying the connectivity within the
communities from very sparse (or in fact no connectivity) to full connectivity (i.e. the community
being a clique). In Figure 18 below, we then plot the difference of feature vectors generated by
resolvent and exponential global Laplacian propagation based models as well as GCN for G and G
respectively. For each pconnect P r0, 1s, results are averaged over 100 graphs randomly drawn from
the same stochastic block model.
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(a) (b)

Figure 18: (a) Example Graph (b) Varying the parameter pconnect P r0, 1s for fixed csize “ 20,
pinter “ 2{c2size and cnumber “ 10.

We have chosen pinter “ 2{c2size so that – on average – clusters are connected by two edges. The
choice of two edges (as opposed to 1, 3, 4, 5, ...) between clusters is not important; any arbitrary
choice of pinter ensures a decay behavior as in Figure 18 for networks based on global Laplacian
propagation matrices. A corresponding ablation study is provided below.

As can be inferred from Fig. 18, exponential- and resolvent based global Laplacian propagation
methods produce more and more similar feature-vectors for G and its coarse-grained version G, as
the connectivity within the clusters is increased. As a reference, we plot GCN for which such a
transferability result clearly does not hold.

H.3 NODE LEVEL GENERALIZATION AND GRAPHS WITH VARYING CONNECTIVITY

We next consider popular citation networks (c.f. Appendix
H.3 where each node corresponds to a piece of scientific
writing. Labels correspond to the academic discipline of
the paper and an edge implies a citation. We then expand
individual nodes into connected k-cliques (c.f. Fig. 19).
We might interpret this as further dissecting each article
into subsections, which reference each other.

(a) (b)

Figure 19: Individual nodes (a) replaced
by k-cliques (b)

Figure 20: Node-Classification-Accuracy (Ò) and uncertainty (for 100 runs) vs. clique size.

Both typical models (c.f. Appendix H.3) and global Laplacian propagation based methods were
then trained on the same (k-fold expanded) train-set and asked to classify nodes in the (k-fold
expanded) test-partition. The classification accuracy of methods not employing Laplace Transform
filters decreases significantly with increasing clique size (c.f. Fig. 20). We can understand the
underlying reason for this using GCN as an Example (c.f. again Appendix B for other methods):
Inside a GCN-layer, a node feature matrix X is updated as X ÞÑ ÂXW , with the renormalized
adjacency matrix Â given as Âij „ Aij{

a

didj . As the degree di of each node increases (linearly)
with increasing clique-size k, the message-strength Âij between the respective cliques decreases as
Âij „ 1{k. Hence information propagation between the cliques becomes disrupted as k increases:
GCN is more and more transferable between the given graph and a modified version where edges
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between cliques are removed. Models employing a global Laplacian propagation scheme are not
afflicted by this shortcoming.

Additional details on training and models: All experiments were performed on a single NVIDIA
Quadro RTX 8000 graphics card. We closely follow the experimental setup of Gasteiger et al. (2019b)
on which our codebase builds: All models are trained for a fixed maximum (and unreachably high)
number of n “ 10000 epochs. Early stopping is performed when the validation performance has
not improved for 100 epochs. Test-results for the parameter set achieving the highest validation-
accuracy are then reported. Ties are broken by selecting the lowest loss (c.f. Velickovic et al. (2018)).
Confidence intervals are calculated over multiple splits and random seeds at the 95% confidence level
via bootstrapping.

We train all models on a fixed learning rate of lr “ 0.1. Global dropout probability p of all models
is optimized individually over p P t0.3, 0.35, 0.4, 0.45, 0.5u. We use ℓ2 weight decay and optimize
the weight decay parameter λ for all models over λ P t0.0001, 0.0005u. Where applicable (e.g. not
for He et al. (2021)) we choose a two-layer deep convolutional architecture with the dimensions of
hidden features optimized over

Kℓ P t32, 64, 128u. (25)

In addition to the hyperparemeters specified above, some baselines have additional hyperparameters,
which we detail here: BernNet uses an additional in-layer dropout rate of dp rate “ 0.5 and for its
filters a polynomial order of K “ 10 as suggested in He et al. (2021). Hyperparameters depth T
and number of stacks K of the ARMA convolutional layer Bianchi et al. (2019) are set to T “ 1
and K “ 2. ChebNet also uses K “ 2 to avoid the known over-fitting issue Kipf & Welling (2017)
for higher polynomial orders. The graph attention network Velickovic et al. (2018) uses 8 attention
heads, as suggested in Velickovic et al. (2018).

For the LTF-models, we optimize depth over K “ 1, 2 with hidden feature dimension optimized over
the values in (25) as for baselines. We empirically observed in the setting of unweighted graphs, that
rescaling the Laplacian as

∆nf :“
1

cnf
∆

with a normalizing factor cnf on which we base our ResolvNet architectures improved performance.

We express this normalizing factor in terms of the largest singular value }∆} of the (non-normalized)
graph Laplacian. It is then selected among

cnf {}∆} P t0.001, 0.01, 0.1, 2u.

The value λ for the resolvent is selected among

λ P t0.14, 0.15, 0.2, 0.25u.

H.4 UV COMPLETENESS AND TRANSFERABILITY BETWEEN GRAPHS DISCRETIZING A
COMMON AMBIENT SPACE

The concept of operators capturing the geometry of underlying spaces also applies to manifolds M,
where the Laplace-Beltrami operator ∆M can be thought of as a continuous analogue of the Graph
Laplacian (Hein et al., 2006). This is hence a prime setting for studying generalization ability.
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H.4.1 MAIN RESULTS

We consider the setting of two graphs G1, G2 discretely approximating the same
ambient space (c.f. e.g. Fig. 9). This can be made mathematically precise using
the concept of generalized norm resolvent convergence (c.f. e.g. (Post, 2012)
for a discussion). Here we note the following: Given projection operators JÓ

i

mapping from M to Gi and interpolation operators JÒ

i mapping from Gi to
M, we may measure the difference }e´t∆M ´ JÒ

i e
´tLiJÓ

i } ď δi in diffusion
flows on the respective spaces. The fidelity of the discrete approximation is then
essentially determined by the size of δi ! 1. As discussed in detail in Appendix
H.4.2, we have in this setting:

}e´tL1 ´ pJÓ
1J

Ò
2 qe´tL2pJÓ

2J
Ò
1 q} À pδ1 ` δ2q (26)

Figure 21: Torus
Discretizations

Figure 22: Transferability error E “ }Φ1pJÓ
1fq ´ pJÓ

1J
Ò
2 qΦ2pJÓ

2fq} vs. # Nodes N “ |G2| “ 4|G1|

As an Example, we prove in Appendix H.4.2 below, that for the regular grid discretisation of the Torus
and judiciously chosen translation operators JÒ

i J
Ó

i , we have }e´t∆M ´ JÒ

i e
´tLiJÓ

i }|tą0 ď δi Ñ 0
as the number of nodes in the approximating graphs Gi is increased. Given a fixed input signal
f P L2pMq on the Torus M, eq. (26) together with Theorem G.1 then implies that thus also the
generalization error E “ }Φ1pJÓ

1fq ´ pJÓ
1J

Ò
2 qΦ2pJÓ

2fq} tends to zero as N increases. This error E
measures the difference between sampling the signal f on M to G1 and passing it through a GNN
there, versus sampling f to G2, applying the GNN on G2 instead and subsequently transfering the
output to G1.

To numerically verify, that this generalization error indeed tends to zero for global Laplacian propa-
gation based methods, we fix the number of nodes as N “ |G2| “ 4|G1| in the respective graphs.
We then plot E as a function of the number of nodes N for randomly initialized networks, with
uncertainty calculated over 100 initializations.

We make use of the operators JÒÓ

i defined in Appendix H.4.2. The function f P L2pMq on the torus
is chosen as

f “
1

4π2
sinpϕq cospθq.

All networks have two hidden layers of width 64 and are asked to predict a scalar signal on the
respective graphs.

As evident from Fig. 9, the generalization error for global Laplacian propagation based methods
tends to zero as N is increased. Additionally generalization errors of global Laplacian propagation
based methods are consistently two orders of magnitude smaller than those of other networks.

H.4.2 THEORETICAL DETAILS

Here we further discuss the setting of two graphs discretizing the same ambient space M in the sense
of

}JÒ

i e
´t∆iJÓ

i ´ e´t∆M} ď δ.
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We will assume JÓ

i J
Ò

i “ IdGi
, which is a justified assumption, as Example H.1 below elucidates. In

this setting, we then have

}e´t∆1 ´ pJÓ
1J

Ò
2 qe´t∆2pJÓ

2J
Ò
1 q}

“}e´t∆1 ´ JÓ
1 e

´t∆MJÒ
1 ` JÓ

1 p∆M ` Idq´1JÒ
1 ´ pJÓ

1J
Ò
2 qe´t∆2pJÓ

2J
Ò
1 q}

ď}e´t∆1 ´ JÓ
1 e

´t∆MJÒ
1 } ` }JÓ

1 e
´t∆MJÒ

1 ´ pJÓ
1J

Ò
2 qe´t∆2pJÓ

2J
Ò
1 q}

We note

}e´t∆1 ´ JÓ
1 e

´t∆MJÒ
1 }

“}JÓ
1J

Ò
1 e

´t∆1JÓ
1J

Ò
1 ´ JÓ

1 e
´t∆MJÒ

1 }

ď}JÓ
1 }}JÒ

1 } ¨ }e´t∆1 ´ JÒ
1 e

´t∆MJÓ
1 } À δ.

We consider:

}e´t∆M ´ pJÓ
1J

Ò
2 qe´t∆2pJÓ

2J
Ò
1 q}

ď}JÓ
1 }}JÒ

1 } ¨ }e´t∆M ´ JÒ
2 e

´t∆2JÓ
2 }

À}e´t∆M ´ JÒ
2 e

´t∆2JÓ
2 } ď δ.

Hence we have indeed established

}e´t∆1 ´ pJÓ
1J

Ò
2 qe´t∆2pJÓ

2J
Ò
1 q} À 2δ.

Next let us consider an explicit example.
Example H.1. To this end, let us revisit the torus-setting introduced in Fig. 9.

Figure 23: Distinct Torus Discretizations

We begin by recalling that the standard torus T arises as the cartesian product of two circles S1 of
circumference 2π:

T “ S1 ˆ S1.

Let us parametrize these circles via angles 0 ď θ1, θ1 ď 2π. The Laplacian on T can then be written
as

∆T “ ´B2
θ1 ´ B2

θ2 .

A set of corresponding normalized eigenfunctions are given as

ϕk1,k2 “
1

2π
e´ik1θ1e´ik2θ2

with corresponding eigenvalues
λk1,k2 “ k21 ` k22

and k1, k2 P Z.
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We now consider a regular discretization of T using N2 nodes. This mesh can be thought of as
arising from regular discretizations of each S1 factor; with a node being placed at angles ϕ “ 2π

N k
with 0 ď k ď N . The individual node weight of each node in the mesh discretization of T is set to
µ “

p2πq
2

N2 . We might think of this discretization TN pf T as arising via a cartesian product of the
groupZ{NZ (i.e. the group of integers modulo N ) with itself. Each node ofTN “ Z{NZˆZ{NZ
is then specified by a tuple pa, bq P TN , with a P Z{NZ and b P Z{NZ.

The graph Laplacian ∆N on TN “ Z{NZˆZ{NZ then acts on a scalar node signal xab as

p∆Nxqab “
N2

p2πq2

`

4xab ´ xpa`1qb ´ xpa´1qb ´ xapb`1q ´ xapb´1q

˘

.

Henceforth we will adopt the notation xpa, bq ” xab.
Normalized eigenvectors for this Laplacian ∆N on TN are given as

ϕNk1,k2 “
1

2π
e´i

2πk1
N ae´i

2πk1
N b

with 0 ď k1, k2 ď pN ´ 1q. Corresponding eigenvalues are found to be

λNk1,k2 “
N2

π2

”

sin2
´ π

N
¨ k1

¯

` sin2
´ π

N
¨ k2

¯ı

.

To facilitate contact between T and its graph approximation TN , we define an interpolation operator
JÒ

N that maps a graph signal fpa, bq defined on T “ Z{NZˆZ{NZ to a function f defined on T
by defining

fpθ1, θ2q “ fpa, bq

whenever 2π
N pa´ 1q ď θ1 ď 2π

N a and 2π
N pb´ 1q ď θ2 ď 2π

N b.
We then take JÓ to be the adjoint of JÒ (i.e. JÓ “ pJÒq˚. It is not hard to see that JÓJÒ “ IdTN

.
We now want to show that (for t ą 0)

}e´t∆T ´ JÒe´t∆NJÓ} Ñ 0 (27)

as N Ñ 8. To this end, denote by Pk1,K2
the orthogonal projection onto ϕk1,k2 . Denote by PNk1,K2

the orthogonal projection onto ϕNk1,k2 . We note

}e´t∆T ´ JÒe´t∆NJÓ} “

›

›

›

›

›

›

ÿ

k1,k2PZ

e´λk1,k2
tPk1,k2 ´

ÿ

´´
N´1

2 ďp1,p2ď
N´1

2

e´λk1,k2
tPNp1,p2

›

›

›

›

›

›

.

From this we observe

}e´t∆T ´ JÒe´t∆NJÓ} “

›

›

›

›

›

›

ÿ

k1,k2PZ

e´λk1,k2
tPk1,k2 ´

ÿ

´´
N´1

2 ďp1,p2ď
N´1

2

e´λN
p1,p2

tPNp1,p2

›

›

›

›

›

›

ď

›

›

›

›

›

›

ÿ

N´1
2 ă|k1|,|k2|

e´λk1,k2
tPk1,k2

›

›

›

›

›

›

`

›

›

›

›

›

›

ÿ

´´
N´1

2 ďk1,k2ď
N´1

2

´

e´λk1,k2
tPk1,k2 ´ e´λN

k1,k2
tPNk1,k2

¯

›

›

›

›

›

›

For the first summand, we already have
›

›

›

›

›

›

ÿ

N´1
2 ă|k1|,|k2|

e´λk1,k2
tPk1,k2

›

›

›

›

›

›

ď e´t
pN´1q2

2 .

Hence let us investigate the second summand. We note
›

›

›

›

›

›

ÿ

´
N´1

2 ďk1,k2ď
N´1

2

´

e´λk1,k2
tPk1,k2 ´ e´λN

k1,k2
tPNk1,k2

¯

›

›

›

›

›

›

(28)

ď

›

›

›

›

›

›

ÿ

´
N´1

2 ďk1,k2ď
N´1

2

´

e´λk1,k2
t ´ e´λN

k1,k2
t
¯

PNk1,k2

›

›

›

›

›

›

`

›

›

›

›

›

›

ÿ

´
N´1

2 ďk1,k2ď
N´1

2

e´λk1,k2
tpPk1,k2 ´ PNk1,k2q

›

›

›

›

›

›
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For the first summand we note
›

›

›

›

›

›

ÿ

´
N´1

2 ďk1,k2ď
N´1

2

´

e´λk1,k2
t ´ e´λN

k1,k2
t
¯

PNk1,k2

›

›

›

›

›

›

“ sup
´

N´1
2 ďk1,k2ď

N´1
2

ˇ

ˇ

ˇ
e´λk1,k2

t ´ e´λN
k1,k2

t
ˇ

ˇ

ˇ

“ sup
´

N´1
2 ďk1,k2ď

N´1
2

e´tpk21`k22q

ˇ

ˇ

ˇ

ˇ

1 ´ e
´t

´

N2

π2 sin2p π
N k1q´k21

¯

e
´t

´

N2

π2 sin2p π
N k2q´k22

¯

ˇ

ˇ

ˇ

ˇ

We note
ˆ

N2

π2
sin2

´ π

N
k

¯

´ k2
˙

“ O
ˆ

k4

N2

˙

.

Using
N2

π2
sin2

´ π

N
N

1
3

¯

À N
2
3

we note

sup
´

N´1
2 ďk1,k2ď

N´1
2

e´tpk21`k22q

ˇ

ˇ

ˇ

ˇ

1 ´ e
´t

´

N2

π2 sin2p π
N k1q´k21

¯

e
´t

´

N2

π2 sin2p π
N k2q´k22

¯

ˇ

ˇ

ˇ

ˇ

ď sup
|k1|,|k2|ďN

1
3

e´tpk21`k22q

ˇ

ˇ

ˇ

ˇ

1 ´ e
´t

´

N2

π2 sin2p π
N k1q´k21

¯

e
´t

´

N2

π2 sin2p π
N k2q´k22

¯

ˇ

ˇ

ˇ

ˇ

` sup
|k1|,|k2|ąN

1
3

e´tpk21`k22q

ˇ

ˇ

ˇ

ˇ

1 ´ e
´t

´

N2

π2 sin2p π
N k1q´k21

¯

e
´t

´

N2

π2 sin2p π
N k2q´k22

¯

ˇ

ˇ

ˇ

ˇ

ď e´tp2N
2
3 q ` e´tp2N

2
3 q ` e´tpN

2
3 q.

Hence it remains to bound the second summand in (28). We note

›

›

›

›

›

›

ÿ

´
N´1

2 ďk1,k2ď
N´1

2

e´λk1,k2
tpPk1,k2 ´ PNk1,k2q

›

›

›

›

›

›

ď
ÿ

|k1|,|k2|ď
N´1

2

e´pk21`k22qt}Pk1,k2 ´ PNk1,k2}.

Next we note
}Pk1,k2 ´ PNk1,k2} ď 2 }ϕk1,k2 ´ ϕk1,k2} .

It is not hard to see that
›

›

›
ϕk1,k2 ´ ϕNk1,k2

›

›

›
ď 2Cp|k1| ` |k|2q

2π

N
for some appropriately chosen C ą 0. Hence we have

›

›

›

›

›

›

ÿ

´
N´1

2 ďk1,k2ď
N´1

2

e´λk1,k2
tpPk1,k2 ´ PNk1,k2q

›

›

›

›

›

›

ď
ÿ

|k1|,|k2|ď
N´1

2

e´pk21`k22qt ¨ 2Cp|k1| ` |k|2q
2π

N

“Op1{Nq.

Where the lass claim follows from summability in k1, k2. Thus we have in total indeed established
that (27) holds.
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H.5 CONVERGENCE OF LATENT EMBEDDINGS

As alluded to in 6.2, the latent embeddings generated by a continuous model of Definition 5.2 for
regular grid discretizations at increasing resolutions then indeed converge to the embedding such a
global Laplace propagation based network would generate if it were deployed on the underlying
continuous space. More genereally, we here prove that if – for a manifold M and a sequence of
graphs Gi– we have }e´t∆M ´ JÒ

i e
´tLiJÓ

i } ď δN Ñ 0, then to the latent embeddings Fi gen-
erated for the graphsGi converge to a latent embedding FM representing the underlying manifold M.

To this end, we first discuss how – in theory – we may deploy a network as specified in
Definiton 5.2 on a manifold M.

At the core of such a network – in the graph setting – are global Lapalcian propagation
matrices ψpLq :“

ş8

0
e´tLψ̂ptqdt which are used in updating the layer-wise information as

X ÞÑ
ř

k ψkpLqXWk. Here L is the Laplacian on the graph G, and the node feature matrix X is
an element of the space RNˆF “ RN ‘ ... ‘ RN “ ‘F

i“1R
N , where we have a direct sum of F

summands. We may think of an element in RN as a function mapping from the node-set G (with
cardinality N ) to the real numbers.

Translating this to the manifold setting, features are now elements of ‘F
i“1L

2pMq, with L2pMq

the space of square integrable functions over the manifold M . The analogous object to the graph
Laplacian L is the Laplace Beltrami operator ∆M. Thus global Laplacian propagation operators on
manifolds are defined – in complete analogy to the graph setting – as

ψp∆Mq “

ż 8

0

e´t∆M ψ̂ptqdt.

The layer-wise update rule acting on a feature operator X P ‘F
i“1L

2pMq is also defined in complete
analogy as

X ÞÑ
ÿ

k

ψkp∆MqXWk.

A point-wise non-linearity acts on an element f P L2pMq via composition; i.e. ρpfqpxq :“ ρpfpxqq.
This action then straightforwardly extends to an element X P ‘F

i“1L
2pMq. The aggregation map of

Definition G.2 is then extended to the manifold in complete analogy as well, by defining ΩpXq P RF

component wise, with the jth entry of ΩpXq given as

ΩpXqj “

ż

|Xjpxq|dµpxq.

HereXj P L2pMq is the function corresponding to the jth entry inX P ‘F
i“1L

2pMq and dµ denotes
integration with respect to the natural integration measure on the Riemannian manifold M (c.f. e.g.
(Lee, 2019)). With these preparations, the claim is then proved in complete analogy with the proof of
Theorem G.3 in Appendix G.
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