
LLM Meeting Decision Trees on Tabular Data

Hangting Ye1, Jinmeng Li1, He Zhao2 3, Dandan Guo1 ∗ , Yi Chang1 4 5∗

School of Artificial Intelligence, Jilin University1

CSIRO’s Data612; Monash University3; International Center of Future Science, Jilin University4

Engineering Research Center of Knowledge-Driven Human-Machine Intelligence, MOE, China5

{yeht2118,lijm9921}@mails.jlu.edu.cn, he.zhao@data61.csiro.au,
{guodandan,yichang}@jlu.edu.cn

Abstract

Tabular data have been playing a vital role in diverse real-world fields, including
healthcare, finance, etc. With the recent success of Large Language Models (LLMs),
early explorations of extending LLMs to the domain of tabular data have been
developed. Most of these LLM-based methods typically first serialize tabular data
into natural language descriptions, and then tune LLMs or directly infer on these
serialized data. However, these methods suffer from two key inherent issues: (i)
data perspective: existing data serialization methods lack universal applicability for
structured tabular data, and may pose privacy risks through direct textual exposure,
and (ii) model perspective: LLM fine-tuning methods struggle with tabular data, and
in-context learning scalability is bottle-necked by input length constraints (suitable
for few-shot learning). This work explores a novel direction of integrating LLMs
into tabular data through logical decision tree rules as intermediaries, proposing
a decision tree enhancer with LLM-derived rule for tabular prediction, DeLTa.
The proposed DeLTa avoids tabular data serialization, and can be applied to full
data learning setting without LLM fine-tuning. Specifically, we leverage the
reasoning ability of LLMs to redesign an improved rule given a set of decision
tree rules. Furthermore, we provide a calibration method for original decision
trees via new generated rule by LLM, which approximates the error correction
vector to steer the original decision tree predictions in the direction of “errors”
reducing. Finally, extensive experiments on diverse tabular benchmarks show that
our method achieves state-of-the-art performance. The source code is available at
https://github.com/HangtingYe/DeLTa.

1 Introduction

Tabular data, typically organized in a structured table format within a relational database with rows and
columns standing for the data samples and heterogeneous features (e.g., categorical and numerical
features), is fundamental in various real-world fields, including healthcare [1], advertising [2],
finance [3], etc. Given the heterogeneity of features [4, 5, 6, 7], decision tree-based methods [8, 9, 10]
were found to be particularly suitable for tabular data [11, 12, 13]. While deep learning has led to
breakthroughs in computer vision [14] and natural language processing [15], decision tree-based
methods still outperform the majority of existing deep tabular methods on tabular prediction tasks
such as classification and regression. This superiority of decision tree-based methods is explained by
the feature heterogeneity for tabular data, where neural networks struggle to learn the irregular target
functions compared to decision tree-based methods [11, 16].

Recently, LLMs have exhibited remarkable capabilities in natural language understanding and
reasoning [17, 18], sparking growing interest in applying LLMs to structured tabular data tasks [19,

∗Corresponding authors.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/HangtingYe/DeLTa

Table 1: Most existing LLM-based tabular prediction methods require access to tabular samples
and either train the LLMs or perform inference via in-context learning. Many of them are restricted
to constrained settings such as few-shot or classification-only settings. The applicability of each
scenario is determined on the experimental setups in the original papers. For instance, if a method
primarily focuses on for few-shot learning, we mark the few-shot setting as applicable ("); if it can
also be extended to full-data training, we additionally mark the full-data setting as applicable (").

Methods No LLM
access sample required

No LLM training required Applied scenario
No pre-training No fine-tuning Full data Few shot Classification Regression

TabLLM (2023) [20] % " % " " " %

LIFT (2022) [19] % " % " " " "

TP-BERTa (2024) [21] % % % " " " "

GTL (2024) [22] % % " % " " "

SERSAL (2025) [25] % " % "(Unsupervised) " "(Binary classification) %

P2T (2024) [23] % " " % " " "

FeatLLM (2024) [24] % " " " " " %

DeLTa (Ours) " " " " " " "

20, 21, 22, 23, 24, 25]. Typically, most of the existing methods first serialize tabular samples into
natural language descriptions, and then tune LLMs or directly infer via in-context learning on these
serialized data. Despite the success of LLMs on text-based tasks, leveraging LLMs to empower
tabular predictions remains a challenging task. Through an in-depth investigation of prior LLM-based
approaches for tabular data, we identify two inherent characteristics hindering prediction:

(i) Data perspective: To bridge the modality gap between unstructured text and structured tabular data
with heterogeneous features, most existing methods serialize tabular samples into text formats. For
instance, TabLLM [20] converts a sample into listed feature descriptions such as “The [column name]
is [feature value]”, and demonstrates that this template facilitates very-few-shot classification by
leveraging the semantic priors of column names and values already encoded in LLMs. However, many
real-world tabular datasets anonymize feature names using placeholder symbols for privacy [22] (e.g.,
finance), reducing the effectiveness of serialization methods that rely on semantic feature descriptors.
In addition, LLMs tend to be less sensitive to numerical features [26, 21]. The predefined templates
with inserted values often yield text formats that make LLMs struggle to understand the inherent
interactions among different features. Beyond this, directly exposing the serialized tabular samples
containing raw feature values to LLMs raises significant privacy concerns, especially in sensitive
domains such as healthcare and finance, where data security is crucial [27, 28]. These challenges
make it difficult to design a universally suitable serialization template for tabular data.

(ii) Model perspective: One straightforward way to adapt LLMs to tabular prediction tasks is fine-
tuning LLMs’ parameters. For example, LIFT [19] investigated the fine-tuned GPT-3 models [17] on
tabular data, revealing that the performance of fine-tuned LLMs was roughly on par with traditional
tabular prediction methods. Despite the effectiveness, fine-tuning LLMs remains a challenging
task even with recent parameter-efficient fine-tuning methods [29], especially in structured tabular
data [19]. Another research line employs in-context learning by adding few-shot example demonstra-
tions to the prompts without training, which is evidenced by LLMs’ impressive capacity to learn from
demonstrations included as part of the prompt [17]. But most of these methods are inherently limited
by the input length constraints of LLMs, restricting their use to few-shot, or classification-only tasks.
Therefore, LLMs still struggle to make satisfactory predictions for tabular data. We summarize these
related works in Table 1.

In this paper, we explore a novel direction of integrating LLMs into tabular data via logical decision
tree rules [30] as intermediaries. We propose DeLTa, a decision tree enhancer with LLM-derived
rule for tabular prediction. Specifically, we first leverage the reasoning ability of LLMs to redesign
an improved rule given a decision tree rule set, enforcing greater coherence among samples falling
into the same leaf node. The newly generated rule is used to approximate a sample-specific error
correction vector to calibrate the prediction of original decision trees in the direction of “errors”
reducing. The proposed DeLTa could well solve the aforementioned challenges: Solving the data
issue: Unlike serialization methods that convert each sample into unnatural text formats, decision tree
rules are composed of simple comparisons between feature values and thresholds, forming logical,
interpretable structures that can be naturally expressed in text without relying on semantic columns
names. In addition, decision tree rules represent global feature space partitioning rule rather than
individual samples, which helps mitigate privacy concerns by avoiding exposure of sample-level

2

information. Solving the model issue: Moreover, the powerful reasoning ability of LLMs can be
leveraged to redesign decision tree rules and help trees with aggregating their decisions, rather than
directly using LLMs to generate label predictions. Notably, DeLTa avoids serialize tabular data
into natural language format, and does not require additional domain-specific expertise or semantic
information, such as explicit feature names and detailed task background knowledge. Furthermore,
DeLTa can be applied in full data learning setting without LLM fine-tuning.

The contributions of this paper include: 1) We investigated the prior LLM-based methods for tabular
prediction and explore a novel direction of integrating LLMs into tabular data via refining the decision
tree rules, without directly accessing to the data itself, addressing the inherent issue w.r.t. data
perspective and model perspective. 2) We propose a decision tree enhancer with LLM-derived rule
for tabular prediction, DeLTa, which utilizes LLMs to refine a set of decision tree rules derived on
decision trees trained on multiple train subsets, where the newly generated rule is used to infer the
sample-wise error correction vector to calibrate the output of original decision trees. 3) We conduct
extensive experiments on various tabular benchmarks and competing benchmark algorithms, and
comprehensive results along with analysis and visualizations demonstrate our effectiveness.

2 Related work

Machine learning for tabular prediction. The development of effective algorithms for predictive
modeling on tabular data has been a longstanding research topic. In the early days, decision tree-
based methods (e.g. XGBoost [8], CatBoost [10]) were found to be particularly suitable for tabular
data. More recently, inspired by the success of of deep learning in computer vision (CV) [14] and
natural language processing (NLP) [15], numerous methods have been proposed for tabular data to
accomplish tabular prediction tasks. These works mainly include MLP-like models [31, 5, 32, 33],
attention-based architectures [34, 5, 35, 36, 37], and retrieval-augmented architectures [38, 35, 39, 40].
Among these works, DCN V2 [31] is an architecture that consists of an MLP-like module and a
feature crossing module; AutoInt [34] leveraged the Transformer architecture to capture inter-column
correlations; FT-Transformer [5] further enhanced AutoInt’s performance through improved token
embeddings; ModernNCA [38] makes predictions based on the relationships with neighbors in a
learned embedding space. Recently, another line of research has tried to use additional information
outside target dataset to enhance tabular data prediction. XTab [41] pretrains Transformer on a variety
of datasets for cross-table pretraining. TabPFN [42, 43], which is pretrained on a large set of synthetic
datasets, serves as a foundation model for small to medium-sized tabular data.

Large language models for tabular prediction. Motivated by the impressive success of LLMs [17,
18, 44, 45], another promising study has attempted to harness the rich prior knowledge encapsulated
by LLMs in tabular prediction tasks. LIFT [19] investigated the performance of fine-tuned GPT-3
models [17] on tabular data, revealing that the performance of fine-tuned LLMs was roughly on par
with traditional solutions. Extending this line of research, TabLLM [20] employed T0 [46] as the
base LLM and demonstrated competitive performance of fine-tuned LLMs in very few-shot scenarios.
Additionally, recent efforts have focused on pre-training LLMs over diverse tabular datasets from
different domains. Among these, TP-BERTa [21] introduces a tabular-specific tokenization scheme,
enabling a single pre-trained language model to generalize across multiple tabular datasets after
further fine-tuning. GTL [22] further promotes comprehensive instruction-following capabilities for
both zero-shot and in-context learning with a limited number of examples. Despite their promising
results, these approaches typically require training or fine-tuning LLMs. Instead of directly fine-
tuning LLMs, P2T [23] leverages unlabeled data correlated with target data expressed in natural
language form and prompts LLMs for few-shot semi-supervised learning. Recently, Summary [47]
proposed a boosting framework that treats LLMs as weak learners for tabular prediction, particularly
for tasks involving small numbers of data points. FeatLLM [24] prompts LLMs with serialized
training examples to generate new features for few-shot classification tasks. SERSAL [25] explores
to use synergy learning with FT-Transformer to enhance the noisy annotations generated by LLMs
for binary classification tasks in unsupervised manner. This method also needs to fine-tune the LLMs.
Going beyond tabular prediction, Nam et al. [48] leverages LLMs to optimize the feature generator
with tree rules in the field of feature engineering [49], which we do not consider as a close related
work to ours as the primary goal, motivation, and methodology are different.

Although prior works demonstrate that LLMs can make predictions for tabular tasks, the majority
of these approaches rely on first converting tabular data into natural language descriptions, i.e.,

3

serialization, which often produces unnatural texts that differ from how humans might describe the
data [47]. And it is also challenging to design such suitable template. In addition, these methods
suffer from two limitations that either need to train LLMs or are restricted to constrained settings
such as few-shot or classification-only settings. Table 1 summarizes these related works. The above
limitations raise a fundamental question: can we harness the capabilities of LLMs without fine-
tuning and without serializing tabular data, to improve full-data tabular prediction tasks across both
classification and regression?

3 Preliminaries

Problem formulation. Denote a tabular dataset D = {(xi, yi)}Ni=1 as a collection of N samples,
where (xi, yi) is the i-th data pair with xi ∈ X representing input features and yi ∈ Y the corre-
sponding label. Concretely, we have xi = (x

(num)
i , x

(cat)
i) where x

(num)
i and x

(cat)
i represent the

numerical and categorical features respectively. We consider supervised tabular prediction tasks:
binary classification Y= {0, 1}, multiclass classification Y= {1, ..., c} and regression Y=R. For
data splits, Dtrain denotes training set for model training, Dval validation set for early stopping and
hyperparameter tuning, and Dtest test set for final evaluation. The goal is to obtain an accurate model
G : X→ Y trained on Dtrain, that minimizes the expected loss E[L(G(x), y)]. Here, L is a smooth
loss function (e.g., mean squared error or cross-entropy) and G can be any tabular predictive model.

Decision trees (DTs). A decision tree (DT) [30] is a hierarchical model that recursively partitions the
input feature space into disjoint regions, i.e., leaf nodes, through a series of axis-aligned splits. For a
given partitioning rule r, the prediction function f can be formally expressed as:

f(x|Dtrain, r) =

Node(r)∑
l=1

λl · I(x ∈ Ll(r)), (1)

where Node(r) denotes the number of leaf nodes in the tree, Ll(r) denotes the l-th leaf node
containing a set of x from Dtrain, I(·) is an indicator function determining if x of interest would be
assigned to leaf node Ll(r) based on rule r, and λl : X→ Y represents leaf-specific prediction values.
Typically, λl will be the average of corresponding labels for the leaf node in regression tasks, or the
empirical class distribution in classification tasks. The structure of the tree is governed by a feature
index vector ℓ and a threshold vector τ , which together define the decision path containing a series of
internal nodes from the root to each leaf node. Specifically, decision tree is constructed by recursively
applying binary tests of the form xℓj ≤ τj at internal nodes, where j indexes internal node along the
root-to-leaf path, ℓj specifies feature index for j-th internal node split, xℓj denotes the corresponding
feature value, and τj defines corresponding splitting threshold. In this work, we adopt CART [30] as
our decision tree implementation due to two primary reasons: (i) it offers high interpretability and can
be expressed using a simple if-else syntax, (ii) tree-based models, often ensembles of simple decision
trees like CART, outperform deep learning approaches in numerous tabular prediction tasks [11, 5].

4 Proposed method: DeLTa

We propose a novel approach, Decision Tree Enhancer with LLM-derived Rule for Tabular Prediction
(DeLTa), understanding the underlying rule logic encoded by decision trees and generating improved
rules for tabular prediction via LLM, without requiring any fine-tuning of the LLM. This strategy
introduces a fundamentally distinct interface for extending LLM capabilities to tabular tasks, departing
from the majority of conventional data-to-text serialization pipelines that enforce LLMs to understand
the serialized tabular data. In the following, we will elaborate on LLM-based decision tree rules
refinement in Section 4.1; then, we will provide the calibration method for original decision trees
via new generated rule by LLM in Section 4.2; we also give the overall implementation of ours in
Section 4.3. An overview of the proposed framework is depicted in Fig. 1.

4.1 LLM-based decision tree rules refinement

The decision tree rules refinement procedure consists of the following stages: (i) decision tree rules
initialization, that constructs a diverse decision tree rule set, and (ii) rule understanding via LLM, that
leverages the LLM to understand and refine the original rule set to obtain a new rule.

4

Expert 𝒇𝟏

Expert 𝒇𝟐

Expert 𝒇𝟑
…

𝒓𝟏

Prompt 𝒑 for
LLM

Refined
Rule	𝒓∗

Refined Rule	𝒓∗

Gradient Net
𝝓

−𝛁𝑭 𝒙 ℒ(𝑭 𝒙 , 𝒚)

𝑭 𝒙 =/𝒇(𝒙)

𝑭∗ 𝒙 = 𝑭 𝒙 + 𝚫𝒙

LLM-based Decision Tree Rules Refinement(a)

(b) Refined Rule-Guided Decision Tree Error Correction

Main Objective: 𝑭∗ 𝒙 = 𝑭 𝒙 + 𝚫𝐱

−𝛁
𝛁

𝒓𝟐 𝒓𝑲

…

Decision Tree
Rule Set 𝓡

Error increasing

Error reducing

𝑭(𝒙)
+𝚫𝒙

𝑭∗(𝒙)

Loss function
space

Error
correction
vector 𝚫𝒙

Train
Set
𝓓𝒕𝒓𝒂𝒊𝒏 Expert 𝒇𝑲

𝒓𝟑

Gradient
Set
𝓓𝒕𝒓𝒂𝒊𝒏
𝛁

𝑭 𝒙 =/𝒇(𝒙)

DeLTa

𝚫𝒙
⊕

𝑭∗ 𝒙 = 𝑭 𝒙 + 𝚫𝒙

S
e
c
t
i
o
n

4
.
1

S
e
c
t
i
o
n

4
.
2

Zo
om
 i
n

Figure 1: The DeLTa framework. As shown in the main objective, we calibrate the output of original decision
tree experts F (x) in the direction of “errors” reducing. Subfig (a) describes the process of refining decision tree
rules with LLM, and subfig (b) details the refined rule-guided error correction for decision trees.

Decision tree rules initialization. To mitigate the risk of overfitting for a single decision tree
expert [50], the classical Random Forest [51] algorithm trains diverse decision tree experts {fk}Kk=1

on different subsets of Dtrain, and uses the ensemble of {fk}Kk=1 as prediction:

F (x) =
1

K

K∑
k=1

fk(x|Dk
train, rk), (2)

where F (x) denotes the label prediction produced by the Random Forest, K is the number of experts,
Dk

train denotes the subset, rk denotes the rule for expert fk derived from Eq. 1, and R = {rk}Kk=1
denotes a source decision tree rule set. In terms of decision tree rule, each rule represents a logical
comparison between features and thresholds displayed in semantically rich syntax, which thus can be
used to partition the feature space into disjoint regions (i.e., leaf nodes) with high interpretability. A
well understanding of these rules could generate a better feature space partitioning method, thereby
promoting statistical coherence among samples assigned to the same leaf node. Although Random
Forest ensembles the outputs from all rules, the inherent relationships and interactions among rules in
R are ignored. With the development of K, analyzing these independent rules is gradually becoming
more and more difficult, let alone utilizing these rules to partition feature space. To this end, we
propose to leverage LLMs to analyze and summarize the rule set R into a refined rule due to the
powerful logical reasoning ability of LLM.

Rule understanding via LLM. Our objective is to use an LLM to generate a new rule r∗ given
original rule set R. Specifically, we construct a prompt p for the LLM that guides it to understand the
diverse decision tree rule set R and synthesize the redesigned rule from the aggregated diverse knowl-
edge. To effectively leverage the reasoning ability of LLM, the prompt p (please see Appendix A.4) is
designed to include: meta information pmeta that describes the task objective, the extracted decision
tree rule description prule that contains R, and the requirement prequirement for rule refinement. The
formulation of generating r∗ is given by:

r∗ = LLM(p) = LLM(pmeta ⊕ prule ⊕ prequirement), (3)

where ⊕ is the concatenation of each prompt, and this process is achieved through querying the
LLM, without requiring any fine-tuning. Notably, our approach does not require additional domain-
specific expertise or semantic information, such as explicit feature names or detailed task background
knowledge. This makes it applicable to scenarios where such information is unavailable or incomplete.
Instead of relying on the intrinsic domain knowledge of tabular
tasks, such as those in healthcare or finance, we frame the prob-
lem purely as a domain knowledge-agnostic machine learning
task. Our method leverages LLMs to reason decision tree rule
set R into an rule r∗, rather than directly inferring from serial-
ized tabular data. To verify that LLM could generate a better
rule, where samples grouped within the same leaf node exhibit
greater statistical similarity, we compute the intra-node sample
distance over all leaf nodes partitioned by r∗, and observe that
the distance of r∗ is lower than original rule r ∈ R, as illus-
trated in Fig. 2. Next, we will elaborate on how to leverage the
new rule r∗ generated by LLM to enhance tabular predictions.

Different Datasets

Figure 2: Average intra-node dis-
tance comparison.

5

4.2 Refined rule-guided decision tree error correction

The refined rule r∗ is summarized over the rule set R, and thus provides a potentially better strategy
that partitions the feature space of Dtrain into disjoint leaf nodes {Ll(r

∗)}Node(r∗)
l=1 , with each leaf

node containing a subset of x from Dtrain and Node(r∗) denoting the number of leaf nodes. To use
r∗ for making predictions, the simplest strategies include: (1) treating it as a standalone decision
tree by assigning the input x to a specific leaf node, or (2) appending it to the existing ensemble of
decision trees F (x). However, the former may be too isolated, as it does not leverage the predictive
power of the existing ensemble, while the latter may be too diluted, as it does not fully utilize the
refined guidance provided by LLMs. This work introduces a novel way to leverage the power of r∗
together with F (x) inspired by the intuition that estimating the difference between predictions and
labels, i.e., the residual errors is often easier than directly predicting the ground-truth labels [52, 14].
Intuitively, we first use r∗ to partition data samples into its leaf nodes, expecting the samples in the
same node are similar to each other. Motivated by the famous Gradient Boosting algorithm [53, 54],
for the samples in each node, we learn a specific mapping function that predicts residual errors of
F (x) for the samples in that node. These learned functions are subsequently used to adjust the
predictions made by F (x), leading to improved accuracy. Since r∗ is designed to group similar
samples effectively, the residuals within each leaf node are expected to be more structured and thus
easier to predict.

Formally, we introduce the definition of the direction of prediction “errors” increasing and reducing,
and the definition of a new set derived from Dtrain used for fitting the mapping functions as follows.

Definition 1. Prediction “errors” increasing and reducing. For a given training sample x, we
approximate the "error" using the gradient∇F (x)L(F (x), y), where L is the loss function discussed
in Section 3. Intuitively, shifting F (x) in the direction of this gradient (“Errors” Increasing) would
likely worsen the model’s performance, analogous to how traditional gradients indicate a direction in
parameter space that increases the loss [55]. Therefore, it is natural that we should calibrate F (x) in
the direction of negative gradient −∇F (x)L(F (x), y) (“Errors” Reducing).

Definition 2. Gradient set D∇
train. D∇

train = {(x,−∇F (x)L(F (x), y))|(x, y) ∈ Dtrain} is derived
from train set Dtrain and stores training sample features and their corresponding negative gradients
of the loss function with respect to the output of F (x). The only difference between Dtrain and
D∇

train lies in the labels, which are replaced by the negative gradients in D∇
train, while r∗ induces

the same leaf node partitioning of the feature space for both datasets.

After obtaining the Gradient Set D∇
train, we apply a learnable Gradient Net ϕ(x|D∇

train, r
∗) to model

the mapping between x and the corresponding negative gradient within D∇
train, where each leaf

node Ll(r
∗) corresponds to one specific mapping function ϕl(·; θl) : x→ −∇F (x)L(F (x), y). The

training process for ϕl is as follow:

min
θl

∑
x∈Ll(r∗)

∥ϕl(x; θl)− (−∇F (x)L(F (x), y))∥22, (4)

where ϕl could be easily implemented by conventional machine learning model, such as CART [30],
and ϕl over different leaf nodes are trained separately.

At inference time, given x from Dtest, the prediction of Gradient Net ϕ could be produced as a
sample-specific error correction vector ∆x. The final prediction F ∗(x) could be obtained by adding
∆x to F (x), that moves F (x) in the direction of negative gradient (“Errors” Reducing) by one step:

∆x = η ∗ ϕ(x|D∇
train, r

∗) = η ∗
Node(r∗)∑

l=1

ϕl(x; θl) · I(x ∈ Ll(r
∗)), (5)

F ∗(x) = F (x) + ∆x, (6)
where I(·) is an indicator function determining if x of interest would be assigned to leaf node Ll(r

∗)
based on rule r∗, η ∈ R+ is the hyperparameter similar to learning rate controlling the step size, and
∆x approximates −η ∗ ∇F (x)L(F (x), y). We now explain the proposed error correction strategy by
giving a closer look at Eq. 6.

Proposition 1 Let E [L(F (x), y)] denote the expected loss, where F (x) = 1
K

∑K
k fk(x|Dk

train, rk)

and each fk corresponds to a decision tree rule rk from the expert-derived rule set R = {rk}Kk=1.

6

Given a prompt p that contains R, the expected loss E [L(F (x), y)] could be decreased by querying
the LLM with p to generate a refined rule r∗, which enables approximation of a sample-specific error
correction vector ∆x to guide prediction F (x) in the direction of “errors” reducing.

The proof of Proposition 1 is provided in Appendix A.5. To reduce the expected loss, we can
approximate and apply negative gradient-based error correction vector ∆x to F (x).

4.3 Framework overview and discussion

Framework overview. In terms of training stage, the procedure begins by training a set of different
decision tree experts (using CART for each expert) and obtaining the ensemble predictions based
on Eq. 2. We then extract the corresponding decision tree rule set R. The set of rules is used to
construct a prompt p for LLM, which returns an improved rule r∗ (Eq. 3). Subsequently, we compute
the negative gradient for each training sample to construct the Gradient Set D∇

train, and then train the
Gradient Net ϕ based on D∇

train and r∗ (Eq. 4). During the test stage, we can achieve the preliminary
prediction result F (x) for each test sample x based on the random forest; and also compute the
sample-specific error correction vector ∆x by feeding the test sample to Gradient Net. Now the final
prediction can be corrected using Eq. 6. The complete training and inference pipeline is summarized
in Algorithm 1 of Appendix A.3.

Discussion. To sum up, fed with the expert-derived rules R, LLM is prompted to summarize multiple
rules and redesign a new rule r∗, which thus considers the inherent relationships and interactions
among multiple independent rules. Benefiting from the rule-based prompt, we neither need to fine-
tune LLM nor expose the serialized samples into LLM. Due to the powerful reasoning ability of
LLM, the refined rule r∗ that summarizes multiple rules is more effective and also convenient for us
to use. For example, we can not only use the rule to make decision but also to partition the feature
space of training set. The latter means that we can build a set of disjoint leaf nodes, where samples
grouped within the same leaf node exhibit greater statistical similarity and thus can be used to train
network. Here, we use the samples in the same leaf node to model the mapping between sample
and the corresponding negative gradient, which is usually easier than directly fitting the relationship
between samples and the labels. Our proposed DeLTa enables a principled integration of expert
knowledge and LLM-based rule synthesis for enhanced performance, which paves a new way for
LLM-based tabular data learning.

5 Experiments

Datasets. We consider a variety of supervised tabular prediction tasks with heterogeneous features,
including binary classification, multiclass classification, and regression. Specifically, the tabular
datasets include: Blood (BL) [56], Credit (CR) [57], Car [58], Bank (BA) [59], Adult (AD) [60], Jan-
nis (JA) [11], Cpu_act (CP) [11], Credit_reg (CRR) [11], California_housing (CA) [61], House_16H
(HO) [11], Fried (FR) [62], Diomand (DI) [63]. The dataset properties and data pre-processing
details are summarized in Appendix A.1. Following previous studies [5], we use Accuracy (higher is
better) to evaluate binary and multiclass classification tasks, Normalized Root Mean Squared Error
(NRMSE) (lower is better) to evaluate the regression tasks.

Baselines and implementation details. We conduct a comparative analysis between DeLTa and other
prominent methods in the field of tabular prediction. Specifically, we include LLM-based methods
such as TabLLM [20], LIFT [19], TP-BERTa [21], GTL [22], P2T [23], FeatLLM [24]. For LIFT,
we employ two versions, i.e., fine-tuning LLMs (LIFT) and in-context learning (LIFT-ICL) versions,
as provided in their original paper. In addition, we compare DeLTa with non LLM-based methods,
including KNN [64], CART [30], MLP [65], Random Forest [51], XGBoost [8], CatBoost [10],
FT-Transformer [5], TabPFN [42], ModernNCA [38]. More details about the baseline models can be
found in Appendix A.2. Implementation details of DeLTa including hyper-parameters are provided
in Appendix A.3. For LLM usage, DeLTa adopts GPT-4o as its LLM backbone, yet is designed
to be agnostic to the choice of LLMs (see Appendix A.6 for more results). To prevent LLMs
from generating task-irrelevant output, we query LLM 10 times by default and use the average.
In replicating baselines, GPT-4o is utilized for in-context learning. For baselines require LLM
fine-tuning, we employ the LLMs used in their original paper: TabLLM uses T0 [46]; we use the
API provided by OpenAI to perform black-box GPT-3.5 fine-tuning for LIFT, where the fine-tuning

7

Table 2: Test Accuracy (↑) performance of DeLTa and LLM-based baseline methods on classification tasks. “#
Num” indicates the number of training samples. “Tab” indicates whether the LLM requires access to tabular
samples. “Extra” indicates whether the method needs to use extra data samples outside the training set. “Feat”
indicates whether the feature names are needed. “Tune” indicates whether LLM fine-tuning is needed.

Num Method (LLM used) Additional requirements Datasets
Tab Extra Feat Tune BL ↑ CR ↑ Car ↑ BA ↑ AD ↑ JA ↑ Average ↑

All TabLLM (T0) ✓ – ✓ ✓ 0.761 0.737 0.845 0.906 0.864 0.691 0.801
All LIFT (GPT-3.5) ✓ – ✓ ✓ 0.689 0.691 0.729 0.825 0.81 0.647 0.732
All TP-BERTa (RoBERTa) ✓ ✓ ✓ ✓ 0.761 0.730 0.826 0.916 0.844 0.659 0.789
All GTL (LLaMA2) ✓ ✓ ✓ ✓ N/A N/A N/A N/A N/A N/A N/A
All LIFT-ICL (GPT-4o) ✓ – ✓ – N/A N/A N/A N/A N/A N/A N/A
All P2T (GPT-4o) ✓ ✓ ✓ – N/A N/A N/A N/A N/A N/A N/A
All FeatLLM (GPT-4o) ✓ – ✓ – 0.768 0.701 0.589 0.887 0.842 0.540 0.721
All DeLTa (GPT-4o) – – – – 0.829 0.783 0.836 0.908 0.868 0.705 0.822

256 TabLLM (T0) ✓ – ✓ ✓ 0.344 0.690 0.471 0.785 0.787 0.373 0.575
256 LIFT (GPT-3.5) ✓ – ✓ ✓ 0.651 0.682 0.431 0.724 0.773 0.398 0.610
256 TP-BERTa (RoBERTa) ✓ ✓ ✓ ✓ 0.721 0.677 0.408 0.853 0.772 0.464 0.649
256 GTL (LLaMA2) ✓ ✓ ✓ ✓ N/A N/A N/A N/A N/A N/A N/A
256 LIFT-ICL (GPT-4o) ✓ – ✓ – N/A N/A N/A N/A N/A N/A N/A
256 P2T (GPT-4o) ✓ ✓ ✓ – N/A N/A N/A N/A N/A N/A N/A
256 FeatLLM (GPT-4o) ✓ – ✓ – 0.729 0.658 0.459 0.740 0.772 0.473 0.639
256 DeLTa (GPT-4o) – – – – 0.732 0.713 0.736 0.767 0.778 0.476 0.700

64 TabLLM (T0) ✓ – ✓ ✓ 0.245 0.673 0.386 0.602 0.785 0.268 0.493
64 LIFT (GPT-3.5) ✓ – ✓ ✓ 0.643 0.643 0.500 0.728 0.748 0.430 0.615
64 TP-BERTa (RoBERTa) ✓ ✓ ✓ ✓ 0.648 0.646 0.419 0.840 0.761 0.414 0.621
64 GTL (LLaMA2) ✓ ✓ ✓ ✓ 0.613 0.638 0.512 0.719 0.750 0.414 0.608
64 LIFT-ICL (GPT-4o) ✓ – ✓ – 0.348 0.538 0.326 0.469 0.613 0.251 0.424
64 P2T (GPT-4o) ✓ ✓ ✓ – 0.368 0.542 0.334 0.569 0.634 0.243 0.448
64 FeatLLM (GPT-4o) ✓ – ✓ – 0.697 0.643 0.508 0.723 0.749 0.450 0.628
64 DeLTa (GPT-4o) – – – – 0.732 0.663 0.615 0.733 0.758 0.457 0.660

(a) All data (b) 256-shot (c) 128-shot (d) 64-shot

Figure 3: Test NRMSE (↓) performance of DeLTa and LLM-based baseline methods on regression tasks.

method is suggested by the original paper; TP-BERTa employs RoBERTa [66]; GTL uses the 13B
version of LLaMA 2 [67]. The experiments are run on NVIDIA A100-PCIE-40GB GPU.

5.1 Main Results

Comparison with LLM-based methods. We evaluated the performance of DeLTa against main-
stream LLM-based baseline methods on tabular classification tasks, as illustrated in Table 2. In
addition to standard prediction tasks under full-data regimes, we also provide results under low-data
regimes (few-shot learning), as some of these LLM-based baseline methods are constrained by the
limited input length of LLMs and are thus restricted to low-data settings. Following prior work [24],
we simulate the few-shot setting by randomly sampling a fixed number of training examples, where
the number of shots denotes the total number of selected samples. Considering some of the LLM-
based baseline methods are applicable to regression tasks, we further evaluate DeLTa on regression
under both full-data and low-data regimes settings, as illustrated in Fig. 3. Overall, DeLTa achieves
the highest average performance in all settings, including classification and regression, in both full
and low-data regimes. While DeLTa is primarily designed for full-data tabular prediction, our results
demonstrate that it also performs competitively in low-data scenarios. Furthermore, compared to
existing LLM-based tabular prediction methods, the proposed DeLTa requires no additional require-
ments for LLMs as illustrated in Table 2. It also aligns with our claims that we have solved the two
inherent issues for prior LLM-based approaches: (i) the proposed DeLTa avoids reliance on column
names and tabular data serialization, and thus will protect sample-level privacy information, and (ii)
rather than directly using LLMs to generate label predictions, DeLTa utilizes the powerful reasoning

8

Table 3: Runtime in seconds of DeLTa and other LLM-based baseline methods for the training and inference
phase, conducted on Adult dataset. “# Num” indicates number of training samples. †These methods require
querying LLMs for each test sample. * These methods do not require querying LLMs at inference phase.

Num Stage TabLLM† LIFT† TP-BERTa† GTL† LIFT-ICL† P2T† FeatLLM* DeLTa* (Ours)

All Train 177371.37 153689.14 1319.35 N/A N/A N/A 1231.22 35.20
Inference 179.21 90149.48 1.58 N/A N/A N/A 0.14 0.09

64 Train 288.61 191.75 316.40 N/A N/A N/A 1047.55 23.09
Inference 170.42 89684.76 5.01 153501.02 176726.13 200258.24 0.14 0.08

Figure 4: Test performance of DeLTa and non-LLM baseline methods on classification and regression tasks.
Here, “RF” denotes Random Forest, “FT-T” denotes FT-Transformer, “MNCA” denotes ModernNCA.

ability of LLMs to enhance decision trees, enabling effective tabular prediction in both full-data and
low-data regimes without requiring LLM fine-tuning.

Computational efficiency. We compare the computational cost between ours and LLM-based
methods in Table 3. The results show that our proposed DeLTa is computationally efficient in both
training and inference stages. This efficiency stems from key properties: (i) DeLTa utilizes the reason
ability of LLM without fine-tuning LLM, (ii) DeLTa avoids querying LLMs to generate predictions
for individual samples. Instead, it only needs to query LLM via API to generate one refined decision
tree rule for one dataset, enabling significantly more efficient use of LLM resources.

Comparison with conventional methods. We further compare the performance of DeLTa and other
conventional tabular models on full data regimes averaged over all datasets, as illustrated in Fig. 4.
Full results are provided in Appendix A.8. The results show that DeLTa also performs well compared
with conventional tabular models on both classification and regression tasks.

5.2 Further analysis

Ablation study. We further conduct ablation study to demonstrate
the effectiveness of key components of DeLTa, as illustrated in
Table 4, by comparing DeLTa against three variants: (i) DeLTa w/o
“RR”, that replaces the LLM generated r∗ used in Gradient Net
ϕ(x|D∇

train, r
∗) with r ∈ R derived from Random Forest F (x),

(ii) DeLTa w/o “EC”, that directly obtains the label prediction for
test x by utilizing f(x|Dtrain, r

∗) (Eq. 1) with the refined rule r∗,
(iii) Random Forest, which makes decision with F (x) in Eq. 2.
The results show that the decision tree rule refinement via LLM is
important, and the error correction strategy could further enhance
tabular prediction performance.

Table 4: Ablation study on the
different components in DeLTa;
see full results in Appendix A.10.
“RR” denotes the rule refinement
process, and “EC” denotes the
error correction process.

Variants CR ↑ CA ↓

DeLTa (Ours) 0.7829 0.3507
w/o “RR” 0.7257 0.5443
w/o “EC” 0.7657 0.4016
Random Forest 0.7371 0.5057

Additional results. Fig. 5 shows the la-
bel predictions of ours: F (x) + ∆x and
ours w/o ∆x: F (x). We can observe that
two categories of samples are overlapped
in some regions. F (x) struggles to distin-
guish them, but DeLTa could correct the
prediction errors of F (x) to enhance the
prediction for such complex data patterns.

(a) Ground Truth (b) Predicted by Ours w/o Δ! (c) Predicted by Ours

Figure 5: Visualization of label prediction of DeLTa w/ and
w/o error correction vector ∆x on BA dataset.

We incorporate the sensitivity analysis for hyperparameters in Appendix A.11. Additional insights
and analysis regarding the LLM-refined rule can be found in Appendix A.12.

9

6 Conclusion

In this paper, we propose DeLTa, a decision tree enhancer with LLM-derived rule for tabular
prediction, to solve the two challenges w.r.t. data perspective and model perspective in prior LLM-
based approaches for tabular prediction. DeLTa avoids reliance on feature names and tabular data
serialization, and it utilizes the powerful reasoning ability of LLMs to enhance decision trees, enabling
effective tabular prediction in both full-data and low-data regimes without requiring LLM fine-tuning.
The empirical results demonstrated the effectiveness of DeLTa for tabular prediction tasks. Our work
can shed some light on developing better algorithms for similar tasks.

Acknowledgments and Disclosure of Funding

The authors would like to thank the anonymous referees for their valuable comments. In this work,
Hangting Ye, Jinmeng Li, Dandan Guo and Yi Chang are supported by the National Key R&D
Program of China under Grant (No. 2023YFF0905400) and the National Natural Science Foundation
of China (No. 623B2043, No. U2341229, No. 62306125).

Part of this work was carried out during Dandan Guo’s visit to King Abdullah University of Science
and Technology (KAUST).

References
[1] Mikel Hernandez, Gorka Epelde, Ane Alberdi, Rodrigo Cilla, and Debbie Rankin. Synthetic

data generation for tabular health records: A systematic review. Neurocomputing, 493:28–45,
2022.

[2] Dominick L Frosch, David Grande, Derjung M Tarn, and Richard L Kravitz. A decade of
controversy: balancing policy with evidence in the regulation of prescription drug advertising.
American Journal of Public Health, 100(1):24–32, 2010.

[3] Samuel A Assefa, Danial Dervovic, Mahmoud Mahfouz, Robert E Tillman, Prashant Reddy,
and Manuela Veloso. Generating synthetic data in finance: opportunities, challenges and pitfalls.
Proceedings of the First ACM International Conference on AI in Finance, pages 1–8, 2020.

[4] Vadim Borisov, Tobias Leemann, Kathrin Seßler, Johannes Haug, Martin Pawelczyk, and
Gjergji Kasneci. Deep neural networks and tabular data: A survey. IEEE transactions on neural
networks and learning systems, 2022.

[5] Yury Gorishniy, Ivan Rubachev, Valentin Khrulkov, and Artem Babenko. Revisiting deep
learning models for tabular data. Advances in neural information processing systems, 34:18932–
18943, 2021.

[6] Hangting Ye, Wei Fan, Xiaozhuang Song, Shun Zheng, He Zhao, Dan dan Guo, and Yi Chang.
PTaRL: Prototype-based tabular representation learning via space calibration. In The Twelfth
International Conference on Learning Representations, 2024.

[7] Hangting Ye, He Zhao, Wei Fan, Mingyuan Zhou, Dan dan Guo, and Yi Chang. DRL: Decom-
posed representation learning for tabular anomaly detection. In The Thirteenth International
Conference on Learning Representations, 2025.

[8] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. Proceedings of
the 22nd acm sigkdd international conference on knowledge discovery and data mining, pages
785–794, 2016.

[9] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and
Tie-Yan Liu. Lightgbm: A highly efficient gradient boosting decision tree. Advances in neural
information processing systems, 30, 2017.

[10] Liudmila Prokhorenkova, Gleb Gusev, Aleksandr Vorobev, Anna Veronika Dorogush, and
Andrey Gulin. Catboost: unbiased boosting with categorical features. Advances in neural
information processing systems, 31, 2018.

10

[11] Léo Grinsztajn, Edouard Oyallon, and Gaël Varoquaux. Why do tree-based models still
outperform deep learning on typical tabular data? Advances in neural information processing
systems, 35:507–520, 2022.

[12] Wei Fan, Kunpeng Liu, Hao Liu, Pengyang Wang, Yong Ge, and Yanjie Fu. Autofs: Auto-
mated feature selection via diversity-aware interactive reinforcement learning. In 2020 IEEE
International Conference on Data Mining (ICDM), pages 1008–1013. IEEE, 2020.

[13] Wei Fan, Kunpeng Liu, Hao Liu, Yong Ge, Hui Xiong, and Yanjie Fu. Interactive reinforcement
learning for feature selection with decision tree in the loop. IEEE Transactions on Knowledge
and Data Engineering, 35(2):1624–1636, 2021.

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[15] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805,
2018.

[16] Hangting Ye, Peng Wang, Wei Fan, Xiaozhuang Song, He Zhao, Dandan Guo, and Yi Chang.
Deep tabular representation corrector. IEEE Transactions on Pattern Analysis and Machine
Intelligence, pages 1–15, 2025.

[17] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

[18] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4
technical report. arXiv preprint arXiv:2303.08774, 2023.

[19] Tuan Dinh, Yuchen Zeng, Ruisu Zhang, Ziqian Lin, Michael Gira, Shashank Rajput, Jy-yong
Sohn, Dimitris Papailiopoulos, and Kangwook Lee. Lift: Language-interfaced fine-tuning for
non-language machine learning tasks. Advances in Neural Information Processing Systems,
35:11763–11784, 2022.

[20] Stefan Hegselmann, Alejandro Buendia, Hunter Lang, Monica Agrawal, Xiaoyi Jiang, and
David Sontag. Tabllm: Few-shot classification of tabular data with large language models. In
International Conference on Artificial Intelligence and Statistics, pages 5549–5581. PMLR,
2023.

[21] Jiahuan Yan, Bo Zheng, Hongxia Xu, Yiheng Zhu, Danny Chen, Jimeng Sun, Jian Wu, and
Jintai Chen. Making pre-trained language models great on tabular prediction. In The Twelfth
International Conference on Learning Representations, 2024.

[22] Xumeng Wen, Han Zhang, Shun Zheng, Wei Xu, and Jiang Bian. From supervised to generative:
A novel paradigm for tabular deep learning with large language models. In Proceedings of the
30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pages 3323–3333,
2024.

[23] Jaehyun Nam, Woomin Song, Seong Hyeon Park, Jihoon Tack, Sukmin Yun, Jaehyung Kim,
Kyu Hwan Oh, and Jinwoo Shin. Tabular transfer learning via prompting LLMs. In First
Conference on Language Modeling, 2024.

[24] Sungwon Han, Jinsung Yoon, Sercan O Arik, and Tomas Pfister. Large language models can
automatically engineer features for few-shot tabular learning. In International Conference on
Machine Learning, pages 17454–17479. PMLR, 2024.

[25] Jiahuan Yan, Jintai Chen, Chaowen Hu, Bo Zheng, Yaojun Hu, Jimeng Sun, and Jian Wu.
Small models are LLM knowledge triggers for medical tabular prediction. In The Thirteenth
International Conference on Learning Representations, 2025.

11

[26] Xi Fang, Weijie Xu, Fiona Anting Tan, Jiani Zhang, Ziqing Hu, Yanjun Qi, Scott Nickleach,
Diego Socolinsky, Srinivasan Sengamedu, and Christos Faloutsos. Large language models
(llms) on tabular data: Prediction, generation, and understanding–a survey. arXiv preprint
arXiv:2402.17944, 2024.

[27] Biwei Yan, Kun Li, Minghui Xu, Yueyan Dong, Yue Zhang, Zhaochun Ren, and Xiuzhen
Cheng. On protecting the data privacy of large language models (llms): A survey. arXiv preprint
arXiv:2403.05156, 2024.

[28] Yifan Yao, Jinhao Duan, Kaidi Xu, Yuanfang Cai, Zhibo Sun, and Yue Zhang. A survey on large
language model (llm) security and privacy: The good, the bad, and the ugly. High-Confidence
Computing, page 100211, 2024.

[29] Zeyu Han, Chao Gao, Jinyang Liu, Jeff Zhang, and Sai Qian Zhang. Parameter-efficient
fine-tuning for large models: A comprehensive survey. arXiv preprint arXiv:2403.14608, 2024.

[30] Wei-Yin Loh. Classification and regression trees. Wiley interdisciplinary reviews: data mining
and knowledge discovery, 1(1):14–23, 2011.

[31] Ruoxi Wang, Rakesh Shivanna, Derek Cheng, Sagar Jain, Dong Lin, Lichan Hong, and Ed Chi.
Dcn v2: Improved deep & cross network and practical lessons for web-scale learning to rank
systems. Proceedings of the web conference 2021, pages 1785–1797, 2021.

[32] Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter. Self-normalizing
neural networks. Advances in neural information processing systems, 30, 2017.

[33] Hangting Ye, Zhining Liu, Xinyi Shen, Wei Cao, Shun Zheng, Xiaofan Gui, Huishuai Zhang,
Yi Chang, and Jiang Bian. Uadb: Unsupervised anomaly detection booster. In 2023 IEEE 39th
International Conference on Data Engineering (ICDE), pages 2593–2606. IEEE, 2023.

[34] Weiping Song, Chence Shi, Zhiping Xiao, Zhijian Duan, Yewen Xu, Ming Zhang, and Jian Tang.
Autoint: Automatic feature interaction learning via self-attentive neural networks. Proceedings
of the 28th ACM international conference on information and knowledge management, pages
1161–1170, 2019.

[35] Gowthami Somepalli, Micah Goldblum, Avi Schwarzschild, C Bayan Bruss, and Tom Goldstein.
Saint: Improved neural networks for tabular data via row attention and contrastive pre-training.
arXiv preprint arXiv:2106.01342, 2021.

[36] Sercan Ö Arik and Tomas Pfister. Tabnet: Attentive interpretable tabular learning. In Proceed-
ings of the AAAI conference on artificial intelligence, volume 35, pages 6679–6687, 2021.

[37] Xin Huang, Ashish Khetan, Milan Cvitkovic, and Zohar Karnin. Tabtransformer: Tabular data
modeling using contextual embeddings. arXiv preprint arXiv:2012.06678, 2020.

[38] HJ Ye, HH Yin, DC Zhan, and WL Chao. Revisiting nearest neighbor for tabular data: A deep
tabular baseline two decades later. ICLR, 2(3):4, 2025.

[39] Jannik Kossen, Neil Band, Clare Lyle, Aidan N Gomez, Thomas Rainforth, and Yarin Gal.
Self-attention between datapoints: Going beyond individual input-output pairs in deep learning.
Advances in Neural Information Processing Systems, 34:28742–28756, 2021.

[40] Yury Gorishniy, Ivan Rubachev, Nikolay Kartashev, Daniil Shlenskii, Akim Kotelnikov, and
Artem Babenko. Tabr: Tabular deep learning meets nearest neighbors in 2023. arXiv preprint
arXiv:2307.14338, 2023.

[41] Bingzhao Zhu, Xingjian Shi, Nick Erickson, Mu Li, George Karypis, and Mahsa Shoaran. Xtab:
Cross-table pretraining for tabular transformers. arXiv preprint arXiv:2305.06090, 2023.

[42] Noah Hollmann, Samuel Müller, Lennart Purucker, Arjun Krishnakumar, Max Körfer, Shi Bin
Hoo, Robin Tibor Schirrmeister, and Frank Hutter. Accurate predictions on small data with a
tabular foundation model. Nature, 637(8045):319–326, 2025.

12

[43] Noah Hollmann, Samuel Müller, Katharina Eggensperger, and Frank Hutter. TabPFN: A
transformer that solves small tabular classification problems in a second. In The Eleventh
International Conference on Learning Representations, 2023.

[44] Siyuan Guo, Cheng Deng, Ying Wen, Hechang Chen, Yi Chang, and Jun Wang. Ds-agent:
Automated data science by empowering large language models with case-based reasoning.
arXiv preprint arXiv:2402.17453, 2024.

[45] Siyuan Guo, Huiwu Liu, Xiaolong Chen, Yuming Xie, Liang Zhang, Tao Han, Hechang Chen,
Yi Chang, and Jun Wang. Optimizing case-based reasoning system for functional test script
generation with large language models. In Proceedings of the 31st ACM SIGKDD Conference
on Knowledge Discovery and Data Mining V. 2, pages 4487–4498, 2025.

[46] Victor Sanh, Albert Webson, Colin Raffel, Stephen Bach, Lintang Sutawika, Zaid Alyafeai,
Antoine Chaffin, Arnaud Stiegler, Arun Raja, Manan Dey, M Saiful Bari, Canwen Xu, Urmish
Thakker, Shanya Sharma Sharma, Eliza Szczechla, Taewoon Kim, Gunjan Chhablani, Nihal
Nayak, Debajyoti Datta, Jonathan Chang, Mike Tian-Jian Jiang, Han Wang, Matteo Manica,
Sheng Shen, Zheng Xin Yong, Harshit Pandey, Rachel Bawden, Thomas Wang, Trishala
Neeraj, Jos Rozen, Abheesht Sharma, Andrea Santilli, Thibault Fevry, Jason Alan Fries, Ryan
Teehan, Teven Le Scao, Stella Biderman, Leo Gao, Thomas Wolf, and Alexander M Rush.
Multitask prompted training enables zero-shot task generalization. In International Conference
on Learning Representations, 2022.

[47] Hariharan Manikandan, Yiding Jiang, and J Zico Kolter. Language models are weak learners.
In Thirty-seventh Conference on Neural Information Processing Systems, 2023.

[48] Jaehyun Nam, Kyuyoung Kim, Seunghyuk Oh, Jihoon Tack, Jaehyung Kim, and Jinwoo Shin.
Optimized feature generation for tabular data via llms with decision tree reasoning. Advances
in Neural Information Processing Systems, 37:92352–92380, 2024.

[49] Tianping Zhang, Zheyu Aqa Zhang, Zhiyuan Fan, Haoyan Luo, Fengyuan Liu, Qian Liu, Wei
Cao, and Li Jian. Openfe: Automated feature generation with expert-level performance. In
International Conference on Machine Learning, pages 41880–41901. PMLR, 2023.

[50] Tin Kam Ho. The random subspace method for constructing decision forests. IEEE transactions
on pattern analysis and machine intelligence, 20(8):832–844, 1998.

[51] Leo Breiman. Random forests. Machine learning, 45:5–32, 2001.

[52] TONG ZHANG and BIN YU. Boosting with early stopping: Convergence and consistency.
Annals of statistics, 33(4):1538–1579, 2005.

[53] Jerome H Friedman. Greedy function approximation: a gradient boosting machine. Annals of
statistics, pages 1189–1232, 2001.

[54] Jerome H Friedman. Stochastic gradient boosting. Computational statistics & data analysis,
38(4):367–378, 2002.

[55] Sebastian Ruder. An overview of gradient descent optimization algorithms. arXiv preprint
arXiv:1609.04747, 2016.

[56] I-Cheng Yeh. Blood Transfusion Service Center. UCI Machine Learning Repository, 2008.
DOI: https://doi.org/10.24432/C5GS39.

[57] Hans Hofmann. Statlog (German Credit Data). UCI Machine Learning Repository, 1994. DOI:
https://doi.org/10.24432/C5NC77.

[58] Marko Bohanec and Vladislav Rajkovic. Knowledge acquisition and explanation for multi-
attribute decision making. In 8th intl workshop on expert systems and their applications, pages
59–78. Avignon France, 1988.

[59] Sérgio Moro, P. Cortez, and Paulo Rita. A data-driven approach to predict the success of bank
telemarketing. Decis. Support Syst., 62:22–31, 2014.

13

[60] Ron Kohavi et al. Scaling up the accuracy of naive-bayes classifiers: A decision-tree hybrid. In
Kdd, volume 96, pages 202–207, 1996.

[61] R Kelley Pace and Ronald Barry. Sparse spatial autoregressions. Statistics & Probability Letters,
33(3):291–297, 1997.

[62] Leo Breiman. Bagging predictors. Machine learning, 24:123–140, 1996.

[63] Kuan-Yu Chen, Ping-Han Chiang, Hsin-Rung Chou, Ting-Wei Chen, and Tien-Hao Chang.
Trompt: Towards a better deep neural network for tabular data. arXiv preprint arXiv:2305.18446,
2023.

[64] Thomas Cover and Peter Hart. Nearest neighbor pattern classification. IEEE transactions on
information theory, 13(1):21–27, 1967.

[65] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436–444,
2015.

[66] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

[67] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open
foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

[68] Han-Jia Ye, Si-Yang Liu, Hao-Run Cai, Qi-Le Zhou, and De-Chuan Zhan. A closer look at
deep learning on tabular data. arXiv preprint arXiv:2407.00956, 2024.

[69] Si-Yang Liu, Hao-Run Cai, Qi-Le Zhou, and Han-Jia Ye. Talent: A tabular analytics and
learning toolbox. arXiv preprint arXiv:2407.04057, 2024.

[70] Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions.
Advances in neural information processing systems, 30, 2017.

14

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Yes, the claims made in the abstract and introduction accurately reflect the
paper’s contributions.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Yes, we discussed the limitations of the work in Appendix A.14.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

15

Justification: Yes, we provide the full set of assumptions and a complete (and correct) proof
in Appendix A.5.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Yes, we provide the information needed to reproduce the main experimental
results of the paper to the extent that it affects the main claims and/or conclusions of the
paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

16

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Yes, we provide the access to the data and code with instructions to reproduce
the main experimental results at https://github.com/HangtingYe/DeLTa.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Yes, we specify all the training and test details necessary to understand the
results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report standard deviation in Appendix A.7.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

17

https://github.com/HangtingYe/DeLTa
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Yes, we provide information on the computer resources needed to reproduce
the experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Yes, the research conducted in the paper conform with the NeurIPS Code of
Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Yes, we discuss the both potential positive societal impacts and negative
societal impacts of the work performed in Appendix A.16.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

18

https://neurips.cc/public/EthicsGuidelines

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Yes, the creators or original owners of assets used in the paper, properly
credited and are the license and terms of use explicitly mentioned and properly respected.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

19

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Yes, new assets introduced in the paper well documented and is the documen-
tation provided alongside the assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

20

paperswithcode.com/datasets

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: Yes, we describe the usage of LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

21

https://neurips.cc/Conferences/2025/LLM

A Technical Appendices and Supplementary Material

Technical appendices with additional results, figures, graphs and proofs may be submitted with
the paper submission before the full submission deadline (see above), or as a separate PDF in the
ZIP file below before the supplementary material deadline. There is no page limit for the technical
appendices.

A.1 Datasets details

We consider a variety of supervised tabular prediction tasks with heterogeneous features, including
classification and regression. Specifically, the tabular datasets include: Blood (BL), Credit (CR), Car,
Bank (BA), Adult (AD), Jannis (JA), Cpu_act (CP), Credit_reg (CRR), California_housing (CA),
House_16H (HO), Fried (FR), Diomand (DI). The dataset properties are summarized in Table 5.
Our primary objective was to evaluate DeLTa’s effectiveness in the context of LLM-based tabular
prediction, and to ensure fair comparison with existing methods in this category. Accordingly, the
majority of our classification datasets were selected based on their widespread use in recent LLM-
based tabular learning studies such as TabLLM and FeatLLM, both of which primarily focus on
classification tasks. To extend our evaluation beyond classification, we also incorporated regression
datasets from the TALENT benchmark [68, 69], which has recently gained attention for assessing
tabular regression performance. To ensure fair comparisons, we adhere to identical preprocessing
procedures following TALENT benchmark [69] for each dataset.

Table 5: Tabular dataset properties. “#objects” indicates the number of samples in the dataset. “#num.
features” indicates the number of numerical features, and “#cat. features” indicates the number of
categorical features.

BL CR Car BA AD JA CP CRR CA HO FR DI

#objects 748 1000 1728 45211 48842 83733 8192 16714 20640 22784 40768 53940
#num. features 4 7 0 7 6 54 21 10 8 16 10 6
#cat. features 0 13 6 9 8 0 0 0 0 0 0 3

metric Acc. Acc. Acc. Acc. Acc. Acc. NRMSE NRMSE NRMSE NRMSE NRMSE NRMSE
#classes 2 2 4 2 2 4 – – – – – –

A.2 Baseline models details

We include LLM-based methods such as TabLLM, LIFT, LIFT-ICL, TP-BERTa, GTL, P2T, FeatLLM:
(1) TabLLM employs T0 as the base LLM and investigates the performance of fine-tuned T0 model in
very few-shot scenarios; (2) LIFT investigates the performance of fine-tuned GPT models on tabular
data; (3) LIFT-ICL is another version of LIFT provided in the original paper, that utilizes in-context
learning without fine-tuning by providing a few training examples; (4) TP-BERTa introduces a
tabular-specific tokenization scheme, pretraining a single language model across multiple tabular
datasets. Given target tabular datasets, the pretrained language model should be further fine-tuned; (5)
GTL pretrains LLaMA across multiple tabular datasets to achieve zero-shot and in-context learning
on target tabular dataset; (6) P2T leverages extra unlabeled samples outside the training set as
demonstrations to conduct in-context learning; (7) FeatLLM prompts LLMs with a few training
examples to generate new features to replace original features and then trains linear models for
few-shot classification tasks. In replicating baselines, GPT-4o is utilized for in-context learning. For
baselines require LLM fine-tuning, we employ the LLMs used in their original paper: TabLLM
uses T0; we use the API provided by OpenAI to perform black-box GPT-3.5 fine-tuning for LIFT,
where the fine-tuning method is suggested by the original paper; TP-BERTa employs RoBERTa; GTL
uses the 13B version of LLaMA 2. The implementation of these methods is based on their official
open-source code releases.

In addition, we compare DeLTa with non LLM-based methods, including KNN, CART, MLP, Random
Forest, XGBoost, CatBoost, ResNet, FT-Transformer, Saint, TabPFN and ModernNCA. Among
them, (1) KNN classifies or predicts a sample based on the majority vote or average of its k nearest
neighbors in the feature space; (2) CART is an implementation for the simplest decision trees; (3)
MLP is a type of feedforward neural network composed of multiple layers; (4) Random Forest, (5)
XGBoost and (6) CatBoost are the variants of decision tree-based methods; (7) ResNet is a deep

22

neural network architecture that introduces skip connections to enable the training of very deep
networks; (8) FT-Transformer is a token-based method which transforms features to embeddings
and applies a series of attention-based transformations to the embeddings; (9) Saint is a token-based
method that leverages row and column attention mechanisms for tabular data; (10) TabPFN generates
a synthetic dataset with diverse distribution to pretrain a model, and then leverages the training
samples of target dataset for inference. We use the version 2 of TabPFN since it can be applied to both
classification and regression datasets; (11) ModernNCA makes predictions based on the relationships
with neighbors in a learned embedding space. The implementation of these methods is based on the
official open-source code releases from TALENT benchmark [69].

A.3 DeLTa details

Algorithm 1 DeLTa training and inference workflow.

Input: Training set Dtrain, test set Dtest (without accessing to label), number of decision tree
experts K, API of LLM;
Initialize source decision tree rule set R = [];
for k = 1 to K do // This loop can be executed in parallel.

Train one decision tree expert fk on Dk
train with Eq. 1;

Extract the corresponding rule rk of fk;
Update R ← R ∪ rk

end for
Obtain the ensemble prediction of decision tree experts F (x) with Eq. 2;
Form prompt p based on R;
Query LLM with prompt p and generate the new rule r∗ with Eq. 3;
Calculate Gradient Set D∇

train = {(x,−∇F (x)L(F (x), y))|(x, y) ∈ Dtrain};
Train Gradient Net ϕ based on Gradient Set with Eq. 4;
for x in Dtest do // Without accessing to label. And this loop can be executed in parallel.

Estimate error correction vector ∆x = η ∗ ϕ(x|D∇
train, r

∗) with Eq. 5;
Computing final prediction F ∗(x) = F (x) + ∆x with Eq. 6;

end for
Return: Final prediction {F ∗(x)|x ∈ Dtest}.

The DeLTa architecture remains consistent across all datasets. Specifically, the F (x) is produced by
the output of Random Forest. For LLM usage, DeLTa adopts GPT-4o via API as its LLM backbone,
yet is designed to be agnostic to the choice of LLMs (see Table 6 and Table 7 for more results). To
prevent LLMs from generating task-irrelevant output, we query LLM 10 times by default and use
the average. DeLTa needs to construct Gradient Set D∇

train = {(x,−∇F (x)L(F (x), y))|(x, y) ∈
Dtrain}, which stores training sample features and their corresponding negative gradients of the
loss function with respect to the output of F (x). Here, L is a smooth loss function (e.g., mean
squared error for regression or cross-entropy for classification). And −∇F (x)L(F (x), y) ∈ R for
regression, −∇F (x)L(F (x), y) ∈ R for binary classification, and −∇F (x)L(F (x), y) ∈ Rc for
multiclass classification, where c is the number of classes. The Gradient Net ϕ contains learnable leaf
node-specific mapping function ϕl, where ϕl is implemented by CART for classification and TabPFN
for regression, and ϕl over different leaf nodes are trained separately. The number of leaf node for
LLM generated rule r∗ will less than 30, and different ϕl can be trained in parallel, which will result
in a low runtime cost as illustrated in Table 14. The training and inference pipeline is summarized in
Algorithm 1.

A.4 Example prompt for refining decision tree rules

We leverage LLM to refine the decision tree rule set R to generate a better rule r∗, where samples
grouped within the same leaf node exhibit greater statistical similarity. Therefore, we query LLM to
generate a better rule to partition the feature space into disjoint regions (i.e., leaf nodes). Specifically,
the prompt p is designed to include: meta information pmeta that describes the task objective, the
extracted decision tree rule description prule that contains R, and the requirement prequirement for
rule refinement. Please note that our approach does not require additional domain-specific expertise
or semantic information, such as explicit feature names or detailed task background knowledge. This

23

makes it applicable to scenarios where such information is unavailable or incomplete. Instead of
relying on the intrinsic domain knowledge of tabular tasks, such as those in healthcare or finance,
we frame the problem purely as an domain knowledge-agnostic machine learning task. Our method
leverages LLMs to reason decision tree rule set R into an rule r∗, rather than directly inferring from
serialized tabular data, and thus will protect sample-level privacy information. The prompt example
is provided in Fig. 6.

You are an expert in tabular machine learning domain. I will provide the meta information, the CART tree rules about the prediction task.
Please help me design a better rule for inference.
Meta information about dataset.

{
"name": "adult",
"task_type": "binclass",
"n_num_features": 6,
"n_cat_features": 8,
"train_size": 26048,

}

CART tree rules (We provide the example of decision rule of one subtree from the Random Forest below.)

Tree 1 rules:
|--- feature_10 <= -0.59
| |--- feature_4 <= 4.31
| | |--- feature_2 <= 0.94
| | | |--- feature_6 <= -1.82
| | | | |--- class: 1.0
| | | |--- feature_6 > -1.82
| | | | |--- class: 0.0
| | |--- feature_2 > 0.94
| | | |--- feature_3 <= 0.53
| | | | |--- class: 1.0
| | | |--- feature_3 > 0.53
| | | | |--- class: 1.0
| |--- feature_4 > 4.31
| | |--- class: 1.0
|--- feature_10 > -0.59
| |--- feature_0 <= -0.74
| | |--- class: 0.0
| |--- feature_0 > -0.74
| | |--- feature_3 <= 0.80
| | | |--- feature_2 <= 0.94
| | | | |--- class: 0.0
| | | |--- feature_2 > 0.94
| | | | |--- feature_10 <= 1.89
| | | | | |--- class: 0.0
| | | | |--- feature_10 > 1.89
| | | | | |--- class: 1.0
| | |--- feature_3 > 0.80
| | | |--- class: 1.0

Tree 2 rules:
...

CART tree rules end

Based on the above information, please learn the rules evolving process and help me design a better rule like what cart used for inference
to achieve higher performance. Please not just copy, please refine these rules and create a new better one. The new rule aims to divide the
training space into several regions, where each region is denoted by a unique leaf node id. The number of leaf nodes should no more than
x. Please return the dict format of rule, the format should be strictly like:

self.tree = {
"feature": 11,
"threshold": -0.78,
"operator": "<=",
"left": {"id": "leaf_1"},
"right": {

"feature": 7,
"threshold": -0.46,
"operator": "<=",
"left": {"id": "leaf_2"},
"right": {"id": "leaf_3"},

},
}

Please note that each leaf id node can only appear once, for example, "id": "leaf_1" can only appear once. Thus you only need to
return the leaf nodes, rather than the true predictions.

Figure 6: An example of the prompt template for the adult dataset. Here, x denotes the maximum
number of leaf nodes among all the provided decision trees.

24

A.5 Theoretical analysis

Proposition 2 Let E [L(F (x), y)] denote the expected loss, where F (x) = 1
K

∑K
k fk(x|Dk

train, rk)

and each fk corresponds to a decision tree rule rk from the expert-derived rule set R = {rk}Kk=1.
Given a prompt p that contains R, the expected loss E [L(F (x), y)] could be decreased by querying
the LLM with p to generate a refined rule r∗, which enables approximation of a sample-specific error
correction vector ∆x to guide prediction F (x) in the direction of “errors” reducing.

Proof. The the expected loss E [L(F (x), y)] after calibration is formulated as:

E [L(F ∗(x), y)] = E [L(F (x) + ∆x, y)]

≈ E
[
L(F (x), y) + ∆x ∗ ∇F (x)L(F (x), y)

]
= E

[
L(F (x), y) + (−η ∗ ∇F (x)L(F (x), y)) ∗ ∇F (x)L(F (x), y)

]
= E

[
L(F (x), y) + (−η ∗ ∥∇F (x)L(F (x), y)∥22)

]
< E [L(F (x), y)] ,

(7)

where E [L(F (x) + ∆x, y)] ≈ E
[
L(F (x), y) + ∆x ∗ ∇F (x)L(F (x), y)

]
is given by Taylor first-

order expansion and L is a convex loss function (e.g., mean squared error or cross-entropy). Error
correction vector ∆x = η∗ϕ(x|D∇

train, r
∗) approximates the−η∗∇F (x)L(F (x), y) in the direction

of “errors” reducing according to Eq. 4 in the original paper and η ∈ R+ is the hyperparameter. To
reduce the expected loss, we can approximate and apply negative gradient-based error correction
vector ∆x to F (x).

A.6 Varying LLM backbones

To investigate the impact of using different LLMs in our framework, given their distinct prior knowl-
edge and reasoning abilities from being trained on various text corpora, we measured performance
using not only GPT-4o but also the Qwen3-32B (open-source) as a backbone for comparison. The
results in Table 6 and Table 7 indicate that while certain tasks show greater improvement with specific
LLMs, the average performance is similar with different LLMs.

Table 6: Effects of various LLM backbones: GPT-4o vs. Qwen3-32B on classification tasks ↑ in
full-data and low-data regimes. “# Num ” indicates the number of training samples.

Num Various LLM backbones BL ↑ CR↑ Car ↑ BA ↑ AD ↑ JA ↑ Average ↑

All DeLTa (Qwen3-32B) 0.821 0.766 0.832 0.907 0.867 0.703 0.816
All DeLTa (GPT-4o) (Ours) 0.829 0.783 0.836 0.908 0.868 0.705 0.822

256 DeLTa (Qwen3-32B) 0.741 0.707 0.750 0.765 0.778 0.474 0.703
256 DeLTa (GPT-4o) (Ours) 0.732 0.713 0.736 0.767 0.778 0.476 0.700

128 DeLTa (Qwen3-32B) 0.744 0.687 0.679 0.749 0.778 0.456 0.682
128 DeLTa (GPT-4o) (Ours) 0.746 0.683 0.722 0.749 0.774 0.457 0.688

64 DeLTa (Qwen3-32B) 0.736 0.657 0.567 0.729 0.759 0.454 0.650
64 DeLTa (GPT-4o) (Ours) 0.732 0.663 0.615 0.733 0.758 0.457 0.660

Table 7: Effects of various LLM backbones: GPT-4o vs. Qwen3-32B on regression tasks ↓ in full-data
and low-data regimes. “# Num ” indicates the number of training samples.

Num Various LLM backbones CP↓ CRR ↓ CA ↓ HO↓ FR↓ DI↓ Average ↓

All DeLTa (Qwen3-32B) 0.114 0.788 0.367 0.541 0.201 0.129 0.357
All DeLTa (GPT-4o) (Ours) 0.116 0.780 0.351 0.529 0.200 0.130 0.351

256 DeLTa (Qwen3-32B) 0.203 0.854 0.606 0.811 0.358 0.293 0.521
256 DeLTa (GPT-4o) (Ours) 0.234 0.841 0.568 0.799 0.397 0.277 0.519

128 DeLTa (Qwen3-32B) 0.206 0.876 0.709 0.940 0.474 0.348 0.592
128 DeLTa (GPT-4o) (Ours) 0.247 0.857 0.641 0.855 0.512 0.319 0.572

64 DeLTa (Qwen3-32B) 0.289 0.920 0.737 0.944 0.598 0.406 0.649
64 DeLTa (GPT-4o) (Ours) 0.382 0.888 0.701 0.919 0.634 0.383 0.651

25

A.7 Full comparison results with LLM-based baseline methods

We provide the full results of DeLTa against mainstream LLM-based baseline methods in full-data
and low-data regimes in Table 8 to Table 11. “# Num” indicates the number of training samples.
“Tab” indicates whether the LLM requires access to tabular samples. “Extra” indicates whether the
method needs to use extra data samples outside the training set. “Feat” indicates whether the feature
names are needed. “Tune” indicates whether LLM fine-tuning is needed.

Table 8: Comparison with LLM-based methods averaged over all classification datasets ↑. Average
standard deviations over all datasets are given.

Methods Additional requirements Classification, # Num
Tab Extra Feat Tune All 512 256 128 64 16

TabLLM (T0) ✓ – ✓ ✓ 0.801.012 0.568.035 0.575.078 0.519.046 0.493.054 0.413.082
LIFT (GPT-3.5) ✓ – ✓ ✓ 0.732.051 0.625.045 0.610.056 0.650.064 0.615.059 0.556.083

TP-BERTa (RoBERTa) ✓ ✓ ✓ ✓ 0.789.016 0.638.029 0.649.063 0.641.076 0.621.073 0.563.091
GTL (LLaMA2) ✓ ✓ ✓ ✓ N/A N/A N/A N/A 0.608.058 0.552.079

LIFT-ICL (GPT-4o) ✓ – ✓ – N/A N/A N/A N/A 0.424.107 0.382.081
P2T (GPT-4o) ✓ ✓ ✓ – N/A N/A N/A N/A 0.448.060 0.304.072

FeatLLM (GPT-4o) ✓ – ✓ – 0.721.024 0.664.024 0.639.041 0.646.041 0.628.047 0.570.066
Ours (GPT-4o) – – – – 0.822.005 0.719.026 0.700.018 0.688.022 0.660.045 0.579.055

Table 9: Comparison with LLM-based methods averaged over all regression datasets ↓. Average
standard deviations over all datasets are given.

Methods Additional requirements Regression, # Num
Tab Extra Feat Tune All 512 256 128 64 16

TabLLM (T0) ✓ – ✓ ✓ N/A N/A N/A N/A N/A N/A
LIFT (GPT-3.5) ✓ – ✓ ✓ 0.623.048 0.782.056 0.715.054 0.743.047 0.827.098 0.995.095

TP-BERTa (RoBERTa) ✓ ✓ ✓ ✓ 0.403.015 0.496.011 0.582.019 0.642.036 0.727.028 0.887.028
GTL (LLaMA2) ✓ ✓ ✓ ✓ N/A N/A N/A N/A 0.847.072 0.938.087

LIFT-ICL (GPT-4o) ✓ – ✓ – N/A N/A N/A N/A 0.820.084 1.025.084
P2T (GPT-4o) ✓ ✓ ✓ – N/A N/A N/A N/A 0.935.062 1.042.064

FeatLLM (GPT-4o) ✓ – ✓ – N/A N/A N/A N/A N/A N/A
Ours (GPT-4o) – – – – 0.351.008 0.462.015 0.519.028 0.572.032 0.651.043 0.852.056

26

Table 10: Comparison with LLM-based methods on all classification datasets ↑. We also calculate the
average relative improvement of DeLTa against the best baseline method (↑%). “# Num” indicates
the number of training samples. This table serves as an extension of Table 8.

Num Methods BL ↑ CR↑ Car ↑ BA ↑ AD ↑ JA ↑ Average ↑

All TabLLM (T0) 0.761 0.737 0.845 0.906 0.864 0.691 0.801
All LIFT (GPT-3.5) 0.689 0.691 0.729 0.825 0.810 0.647 0.732
All TP-BERTa (RoBERTa) 0.761 0.730 0.826 0.916 0.844 0.659 0.789
All GTL (LLaMA2) - - - - - - -
All LIFT-ICL (GPT-4o) - - - - - - -
All P2T (GPT-4o) - - - - - - -
All FeatLLM (GPT-4o) 0.768 0.701 0.589 0.887 0.842 0.540 0.721
All DeLTa (GPT-4o) (Ours) 0.829 0.783 0.836 0.908 0.868 0.705 0.822 (↑ 2.6%)

512 TabLLM (T0) 0.240 0.712 0.447 0.812 0.788 0.412 0.568
512 LIFT (GPT-3.5) 0.673 0.692 0.503 0.735 0.710 0.437 0.625
512 TP-BERTa (RoBERTa) 0.716 0.694 0.275 0.889 0.767 0.487 0.638
512 GTL (LLaMA2) - - - - - - -
512 LIFT-ICL (GPT-4o) - - - - - - -
512 P2T (GPT-4o) - - - - - - -
512 FeatLLM (GPT-4o) 0.736 0.681 0.544 0.745 0.774 0.504 0.664
512 DeLTa (GPT-4o) (Ours) 0.748 0.719 0.738 0.799 0.790 0.522 0.719 (↑ 8.3%)

256 TabLLM (T0) 0.344 0.690 0.471 0.785 0.787 0.373 0.575
256 LIFT (GPT-3.5) 0.651 0.682 0.431 0.724 0.773 0.398 0.610
256 TP-BERTa (RoBERTa) 0.721 0.677 0.408 0.853 0.772 0.464 0.649
256 GTL (LLaMA2) - - - - - - -
256 LIFT-ICL (GPT-4o) - - - - - - -
256 P2T (GPT-4o) - - - - - - -
256 FeatLLM (GPT-4o) 0.729 0.658 0.459 0.740 0.772 0.473 0.639
256 DeLTa (GPT-4o) (Ours) 0.732 0.713 0.736 0.767 0.778 0.476 0.700 (↑ 7.9%)

128 TabLLM (T0) 0.240 0.692 0.389 0.676 0.769 0.350 0.519
128 LIFT (GPT-3.5) 0.643 0.640 0.693 0.733 0.760 0.430 0.650
128 TP-BERTa (RoBERTa) 0.735 0.682 0.462 0.867 0.743 0.357 0.641
128 GTL (LLaMA2) - - - - - - -
128 LIFT-ICL (GPT-4o) - - - - - - -
128 P2T (GPT-4o) - - - - - - -
128 FeatLLM (GPT-4o) 0.721 0.648 0.568 0.698 0.768 0.474 0.646
128 DeLTa (GPT-4o) (Ours) 0.746 0.683 0.722 0.749 0.774 0.457 0.688 (↑ 6.0%)

64 TabLLM (T0) 0.245 0.673 0.386 0.602 0.785 0.268 0.493
64 LIFT (GPT-3.5) 0.643 0.643 0.500 0.728 0.748 0.430 0.615
64 TP-BERTa (RoBERTa) 0.648 0.646 0.419 0.840 0.761 0.414 0.621
64 GTL (LLaMA2) 0.613 0.638 0.512 0.719 0.750 0.414 0.608
64 LIFT-ICL (GPT-4o) 0.348 0.538 0.326 0.469 0.613 0.251 0.424
64 P2T (GPT-4o) 0.368 0.542 0.334 0.569 0.634 0.243 0.448
64 FeatLLM (GPT-4o) 0.697 0.643 0.508 0.723 0.749 0.450 0.628
64 DeLTa (GPT-4o) (Ours) 0.732 0.663 0.615 0.733 0.758 0.457 0.660 (↑ 5.0%)

16 TabLLM (T0) 0.240 0.665 0.365 0.489 0.501 0.215 0.413
16 LIFT (GPT-3.5) 0.670 0.608 0.408 0.583 0.705 0.363 0.556
16 TP-BERTa (RoBERTa) 0.659 0.609 0.355 0.625 0.734 0.394 0.563
16 GTL (LLaMA2) 0.604 0.622 0.324 0.628 0.746 0.387 0.552
16 LIFT-ICL (GPT-4o) 0.457 0.492 0.324 0.308 0.512 0.198 0.382
16 P2T (GPT-4o) 0.226 0.471 0.320 0.105 0.499 0.203 0.304
16 FeatLLM (GPT-4o) 0.588 0.626 0.450 0.629 0.728 0.399 0.570
16 DeLTa (GPT-4o) (Ours) 0.682 0.638 0.369 0.674 0.730 0.379 0.579 (↑ 1.6%)

27

Table 11: Comparison with LLM-based methods on all regression datasets ↓. We also calculate the
average relative improvement of DeLTa against the best baseline method (↓%). “# Num” indicates
the number of training samples. This table serves as an extension of Table 9.

Num Methods CP↓ CRR ↓ CA ↓ HO↓ FR↓ DI↓ Average ↓

All TabLLM (T0) - - - - - - -
All LIFT (GPT-3.5) 0.379 0.983 0.629 0.902 0.518 0.328 0.623
All TP-BERTa (RoBERTa) 0.138 0.795 0.399 0.708 0.215 0.163 0.403
All GTL (LLaMA2) - - - - - - -
All LIFT-ICL (GPT-4o) - - - - - - -
All P2T (GPT-4o) - - - - - - -
All FeatLLM (GPT-4o) - - - - - - -
All DeLTa (GPT-4o) (Ours) 0.116 0.780 0.351 0.529 0.200 0.130 0.351 (↓ 12.9%)

512 TabLLM (T0) - - - - - - -
512 LIFT (GPT-3.5) 0.432 1.167 0.752 1.385 0.589 0.368 0.782
512 TP-BERTa (RoBERTa) 0.186 0.837 0.528 0.760 0.383 0.280 0.496
512 GTL (LLaMA2) - - - - - - -
512 LIFT-ICL (GPT-4o) - - - - - - -
512 P2T (GPT-4o) - - - - - - -
512 FeatLLM (GPT-4o) - - - - - - -
512 DeLTa (GPT-4o) (Ours) 0.168 0.814 0.515 0.748 0.287 0.238 0.462 (↓ 6.9%)

256 TabLLM (T0) - - - - - - -
256 LIFT (GPT-3.5) 0.324 1.034 0.683 1.294 0.578 0.379 0.715
256 TP-BERTa (RoBERTa) 0.359 0.863 0.557 0.798 0.545 0.368 0.582
256 GTL (LLaMA2) - - - - - - -
256 LIFT-ICL (GPT-4o) - - - - - - -
256 P2T (GPT-4o) - - - - - - -
256 FeatLLM (GPT-4o) - - - - - - -
256 DeLTa (GPT-4o) (Ours) 0.234 0.841 0.568 0.799 0.397 0.277 0.519 (↓ 10.7%)

128 TabLLM (T0) - - - - - - -
128 LIFT (GPT-3.5) 0.290 1.070 0.710 1.300 0.660 0.430 0.743
128 TP-BERTa (RoBERTa) 0.431 0.903 0.597 0.880 0.654 0.390 0.642
128 GTL (LLaMA2) - - - - - - -
128 LIFT-ICL (GPT-4o) - - - - - - -
128 P2T (GPT-4o) - - - - - - -
128 FeatLLM (GPT-4o) - - - - - - -
128 DeLTa (GPT-4o) (Ours) 0.247 0.857 0.641 0.855 0.512 0.319 0.572 (↓ 11.0%)

64 TabLLM (T0) - - - - - - -
64 LIFT (GPT-3.5) 0.610 1.050 0.810 1.320 0.700 0.470 0.827
64 TP-BERTa (RoBERTa) 0.645 0.928 0.704 0.920 0.717 0.445 0.727
64 GTL (LLaMA2) 0.663 1.190 0.834 1.189 0.724 0.483 0.847
64 LIFT-ICL (GPT-4o) 0.637 1.213 0.820 1.045 0.710 0.494 0.820
64 P2T (GPT-4o) 0.697 1.335 0.868 1.452 0.745 0.513 0.935
64 FeatLLM (GPT-4o) - - - - - - -
64 DeLTa (GPT-4o) (Ours) 0.382 0.888 0.701 0.919 0.634 0.383 0.651 (↓ 10.4%)

16 TabLLM (T0) - - - - - - -
16 LIFT (GPT-3.5) 0.890 1.130 1.010 1.350 0.920 0.670 0.995
16 TP-BERTa (RoBERTa) 0.814 0.941 0.924 1.008 0.969 0.669 0.887
16 GTL (LLaMA2) 0.804 1.184 0.904 1.258 0.854 0.624 0.938
16 LIFT-ICL (GPT-4o) 0.815 1.256 1.074 1.172 0.977 0.855 1.025
16 P2T (GPT-4o) 0.795 1.390 0.961 1.438 0.844 0.824 1.042
16 FeatLLM (GPT-4o) - - - - - - -
16 DeLTa (GPT-4o) (Ours) 0.776 1.094 0.860 0.953 0.835 0.593 0.852 (↓ 4.0%)

28

A.8 Full comparison results with conventional baseline methods

We also provide the full results of DeLTa against non LLM-based baseline methods in full-data
regimes in Table 12 and Table 13.

Table 12: Comparison with non LLM-based methods on all classification datasets ↑. We also calculate
the average relative improvement of DeLTa against the best baseline method (↑ 3%).

Methods BL ↑ CR↑ Car ↑ BA ↑ AD ↑ JA ↑ Average ↑

KNN 0.7072 0.6429 0.7730 0.8903 0.8186 0.5168 0.7248
CART 0.7871 0.6829 0.7253 0.8900 0.8392 0.5642 0.7481
MLP 0.6882 0.7171 0.6974 0.9013 0.8523 0.7043 0.7601

RandomForest 0.8061 0.7371 0.7944 0.8915 0.8589 0.6588 0.7911
XGBoost 0.7605 0.7171 0.6102 0.9051 0.8709 0.7140 0.7630
Catboost 0.7757 0.7543 0.6036 0.9080 0.8726 0.7217 0.7727
ResNet 0.6464 0.7200 0.6332 0.9020 0.8512 0.7134 0.7444

FT-Transformer 0.7871 0.7229 0.7862 0.9030 0.8590 0.7272 0.7976
SAINT 0.7490 0.7486 0.7582 0.9051 0.8560 0.7050 0.7870

TabPFN (Version 2) 0.7985 0.7286 0.4507 0.9095 0.8611 0.7020 0.7417
ModernNCA 0.8099 0.7286 0.7368 0.9046 0.8702 0.7248 0.7958

DeLTa (Ours) 0.8289 0.7829 0.8355 0.9080 0.8677 0.7048 0.8213 (↑ 3%)

Table 13: Comparison with non LLM-based methods on all regression datasets ↓. We also calculate
the average relative improvement of DeLTa against the best baseline method (↓ 2.4%).

Methods CP↓ CRR ↓ CA ↓ HO↓ FR↓ DI↓ Average ↓

KNN 0.2347 1.0975 0.5893 0.7970 0.4628 0.2135 0.5658
CART 0.2533 0.8196 0.7100 0.8433 0.6462 0.3504 0.6038
MLP 0.1318 0.8244 0.4628 0.5949 0.2072 0.3068 0.4213

RandomForest 0.1521 0.8093 0.5057 0.6692 0.3712 0.1626 0.4450
XGBoost 0.1285 0.7846 0.4037 0.6169 0.2291 0.1379 0.3835
Catboost 0.1210 0.7779 0.3723 0.5672 0.2024 0.1306 0.3619
ResNet 0.1362 0.8194 0.4434 0.5931 0.2083 0.2143 0.4025

FT-Transformer 0.1187 0.7822 0.3991 0.5851 0.2067 0.1680 0.3766
SAINT 0.1371 0.8276 0.4385 0.6007 0.2063 0.1396 0.3916

TabPFN (Version 2) 0.1375 0.7956 0.3440 0.5527 0.2001 0.1282 0.3597
ModernNCA 0.1242 0.7876 0.3656 0.6270 0.2027 0.1280 0.3725

DeLTa (Ours) 0.1156 0.7804 0.3507 0.5293 0.2000 0.1303 0.3511 (↓ 2.4%)

A.9 Computational efficiency

Table 14: Runtime in seconds of DeLTa and other LLM-based baseline methods for the training and inference
phase, conducted on Adult dataset. “# Num” indicates number of training samples. †These methods require
querying LLMs for each test sample. * These methods do not require querying LLMs at inference phase.

Num Stage TabLLM† LIFT† TP-BERTa† GTL† LIFT-ICL† P2T† FeatLLM* DeLTa* (Ours)

All Train 177371.37 153689.14 1319.35 N/A N/A N/A 1231.22 35.20
Inference 179.21 90149.48 1.58 N/A N/A N/A 0.14 0.09

64 Train 288.61 191.75 316.40 N/A N/A N/A 1047.55 23.09
Inference 170.42 89684.76 5.01 153501.02 176726.13 200258.24 0.14 0.08

29

A.10 Ablation results

Let F (x) denote the well-trained ensemble of decision trees (Random Forest), and R the correspond-
ing decision tree rule set. DeLTa first performs a rule refinement procedure via LLM to derive a new
rule r∗, and subsequently applies an error correction mechanism to compute a sample-specific error
correction vector based on r∗, which is then added to F (x) to produce the final prediction. We further
conduct ablation study to demonstrate the effectiveness of key components of DeLTa, as illustrated in
Table 15 and Table 16, by comparing DeLTa against different groups of variants.

• Variant A to B do not use the rule refinement process or the error correction process: (1) variant A,
that is identical to the single decision tree (CART); (2) variant B, that is identical to the existing
ensemble of decision trees F (x) (Random Forest).

• Variant C to D incorporate the rule refinement process and utilize the r∗ to predict labels, while
removes the error correction process: (3) variant C, that treats the r∗ as a standalone decision tree
by assigning the input x to a specific leaf node; (4) variant D, that further appends r∗ to the existing
ensemble of decision trees F (x).

• Variant E includes both the rule refinement process and the error correction process, and utilizes
the r∗ to predict both labels and error correction vectors: (5) variant E, that uses r∗ to predict
labels like variant D, and also uses r∗ to predict error correction vectors like DeLTa. The final
output is the sum of the predicted label and the predicted error correction vector.

• Variant F removes the rule refinement process, but remains the error correction process: (6) variant
F, that replaces the LLM generated r∗ with r ∈ R derived from Random Forest to predict the
error correction vector, and then adds it to the existing ensemble of decision trees F (x) as the final
prediction.

Table 15: Analysis on the effects of different components of DeLTa on classification tasks. “RF”
corresponds to Random Forest.

Variants Rule Refinement Need RF’s output Error Correction BL ↑ CR↑ Car ↑ BA ↑ AD ↑ JA ↑ Average ↑

A (CART) – – – 0.787 0.683 0.725 0.890 0.839 0.564 0.748
B (RF) – ✓ – 0.806 0.737 0.794 0.892 0.859 0.659 0.791

C ✓(for label) – – 0.811 0.766 0.818 0.900 0.853 0.677 0.804
D ✓(for label) ✓ – 0.812 0.771 0.819 0.899 0.856 0.671 0.805
E ✓(for residual and label) ✓ ✓ 0.816 0.779 0.829 0.895 0.858 0.679 0.809
F – – ✓ 0.810 0.726 0.778 0.892 0.842 0.613 0.777

DeLTa (Ours) ✓(for residual) ✓ ✓ 0.829 0.783 0.836 0.908 0.868 0.705 0.821

Table 16: Analysis on the effects of different components of DeLTa on regression tasks. “RF”
corresponds to Random Forest.

Variants Rule Refinement Need RF’s output Error Correction CP↓ CRR ↓ CA ↓ HO↓ FR↓ DI↓ Average ↓

A (CART) – – – 0.253 0.820 0.710 0.843 0.646 0.350 0.604
B (RF) – ✓ – 0.152 0.809 0.506 0.669 0.371 0.163 0.445

C ✓(for label) – – 0.136 0.808 0.402 0.607 0.272 0.139 0.394
D ✓(for label) ✓ – 0.144 0.800 0.387 0.583 0.258 0.138 0.385
E ✓(for residual and label) ✓ ✓ 0.125 0.799 0.379 0.552 0.251 0.142 0.375
F – – ✓ 0.218 0.819 0.544 0.811 0.619 0.324 0.556

DeLTa (Ours) ✓(for residual) ✓ ✓ 0.116 0.780 0.351 0.529 0.200 0.130 0.351

In the Table 4 in the original paper, DeLTa w/o “RR” corresponds to the variant F, and DeLTa w/o “EC”
corresponds to the variant C. Here, “RR” denotes the rule refinement process, and “EC” denotes the
error correction process. The results show that the decision tree rule refinement via LLM is important.
Directly using the refined rule r∗ to predict labels could also enhance the performance (variant C and
D). And the error correction strategy could further enhance tabular prediction performance (variant E
and DeLTa). However, without r∗, the effect of error correction is limited (variant F). Therefore, the
removal of any of the components degrades the performance of DeLTa.

30

A.11 Hyper parameter sensitivity analysis

We incorporate the sensitivity analysis for the number of LLM querying times for DeLTa in Fig. 7. It
is reasonable for us to set the querying times to 10 by default.

1 2 3 4 5 6 7 8 9 10
Query times

0.34

0.35

0.36

0.37

NR
M

SE

1 2 3 4 5 6 7 8 9 10
Query times

0.80

0.82

0.84

Ac
cu

ra
cy

Figure 7: The effect of the number of LLM queries on performance averaged over all datasets.

A.12 Additional analysis

Fig. 8 shows the label predictions of ours: F (x) + ∆x and ours w/o ∆x: F (x). We can observe that
two categories of samples are overlapped in some regions. F (x) struggles to distinguish them, but
DeLTa could correct the prediction errors of F (x) to enhance the prediction for such complex data
patterns.

Label1
Label2

(a) Ground Truth

Label1
Label2

(b) Predicted by RandomForest

Label1
Label2

(c) Predicted by ours

Figure 8: T-SNE visualization of label prediction of DeLTa w/ and w/o error correction vector ∆x

(i.e., Random Forest) on BA dataset.

We compute the intra-node sample distance averaged over all leaf nodes partitioned by refined rule
r∗ and random forest rules, respectively. The results in Table 17 show that LLM could generate a
better rule, where samples grouped within the same leaf node exhibit greater statistical similarity.

Table 17: Average intra-node distance comparison.
BL Credit Car Bank AD JA Average

RandomForest Rule 2.8520 6.0938 2.6609 5.0186 4.7781 9.9177 5.2202
Refined Rule 1.3551 5.0503 2.5059 4.7078 4.2950 9.4011 4.5525 (↓ 12.79%)

31

We also provide an example of the original decision tree rule set derived from Random Forest in
Fig. 9, along with the corresponding refined rule generated by the LLM in Fig. 10. This example is
taken from the low-data regime with 16 training samples on the Credit dataset.

Tree 0 rules:
|--- feature_2 <= 0.05
| |--- class: 1.0
|--- feature_2 > 0.05
| |--- feature_8 <= -0.26
| | |--- feature_10 <= -1.05
| | | |--- class: 0.0
| | |--- feature_10 > -1.05
| | | |--- class: 1.0
| |--- feature_8 > -0.26
| | |--- class: 0.0

Tree 1 rules:
|--- feature_16 <= 0.82
| |--- feature_15 <= -0.99
| | |--- class: 0.0
| |--- feature_15 > -0.99
| | |--- feature_5 <= 0.20
| | | |--- class: 1.0
| | |--- feature_5 > 0.20
| | | |--- feature_18 <= 0.18
| | | | |--- feature_10 <= -1.05
| | | | | |--- class: 0.0
| | | | |--- feature_10 > -1.05
| | | | | |--- class: 1.0
| | | |--- feature_18 > 0.18
| | | | |--- class: 1.0
|--- feature_16 > 0.82
| |--- feature_4 <= -0.91
| | |--- class: 1.0
| |--- feature_4 > -0.91
| | |--- class: 0.0

Tree 2 rules:
|--- feature_2 <= 0.05
| |--- class: 1.0
|--- feature_2 > 0.05
| |--- feature_17 <= 0.82
| | |--- class: 0.0
| |--- feature_17 > 0.82
| | |--- class: 1.0

Figure 9: An example of three tree rules obtained by the Random Forest.

32

To design a more effective decision rule based on the given CART tree rules and enhance performance,
we should aim to combine the features that appear frequently and are pivotal in making decisions, while
also ensuring that the rule structure is concise and balanced.

From the provided rules, features like `feature_2`, `feature_10`, `feature_16`, and `feature_17` appear to
play significant roles in decision splits. By analyzing the tree depth and split thresholds, we can refine
the rules.

Here's an improved rule set in the specified format, incorporating insights from the provided trees:

```python
self.tree = {
    "feature": 2,
    "threshold": 0.05,
    "operator": "<=",
    "left": {"id": "leaf_1"},  
    "right": {
        "feature": 16,
        "threshold": 0.82,
        "operator": "<=",
        "left": {
            "feature": 10,
            "threshold": -1.05,
            "operator": "<=",
            "left": {"id": "leaf_2"},  
            "right": {
                "feature": 18,
                "threshold": 0.18,
                "operator": ">",
                "left": {"id": "leaf_3"},  
                "right": {"id": "leaf_4"},  
            },
        },
        "right": {
            "feature": 17,
            "threshold": 0.82,
            "operator": "<=",
            "left": {"id": "leaf_5"},  
            "right": {"id": "leaf_6"},  
        },
    },
}
```

Explanation:

1. **Choosing Features and Thresholds**:
 - Feature `2` is a critical deciding factor across multiple trees, with a consistent threshold of `0.05`.
 - Feature `16` was chosen due to its significance in Tree 1 with a prominent threshold of `0.82`.
 - Feature `10` serves as a key deciding factor for certain conditions, particularly effective at
distinguishing classes when less than `-1.05`.
 - Features `17` and `18` have been adapted for further splits on the right branch, consistent with their
impactful splits in Tree 2 and Tree 1, respectively.

2. **Structure**:
 - The initial split on `feature_2` immediately classifies a region into leaf 1.
 - The decision structure on the right branch further splits using `feature_16`, guiding to other regions
depending on values of `feature_10`, `feature_18`, and `feature_17`.

This refined rule set strategically uses key features to balance simplicity and depth, aiming for
improved decision-making accuracy and compactness in the decision space division.

Figure 10: An example of LLM’s response for rule refinement.

33

How an LLM refines decision tree rules.

(i) The intuition. Traditional methods like CART use information gain to make a series of locally
optimal decisions, allowing a data-driven algorithm to find the best feature splits. This can lead to
rules that are brittle or overfit to the specific data sample used for that tree. DeLTa, instead, utilizes
the LLM to analyze diverse rules from a Random Forest and performs a logic-based reasoning task:
(a) It recognizes patterns across multiple “expert” rules to identify features and decision paths that are
consistently important. (b) It abstracts the core logic splits from individual trees. (c) It synthesizes a
new, globally coherent rule that represents a consensus of the most robust patterns.

(ii) A concrete example of a better rule. As shown in Fig. 9 and Fig. 10, we provide a set of decision
tree rules from Random Forest and refined rule by the LLM respectively. This is from the Credit
dataset, where each sample (person) is classified as good or bad credit risks according to the set of
features. To provide deeper insight into how the refined rule improves upon the original ones, we
also provide the average SHAP values [70] of features under the Random Forest and our method
respectively in Table 18. SHAP assigns each feature an importance value (higher is more important)
for a particular prediction, thus it serves an unified framework for interpreting predictions.

The results show that, after LLM refinement, the SHAP importance of features such as “credit_history”
(feature_16) and “employment” (feature_10) are increased, which aligns with the financial expertise.
Let us take a closer look into Fig. 9 and Fig. 10, for “credit_history” (feature_16), this feature appears
near the top of the second tree, indicating its potential significance. However, only 1 out of 3 decision
trees in the original Random Forest rule set explicitly splits on this feature, which may dilute its
influence in the ensemble prediction. For “employment” (feature_10), although it appears in 2 out of
3 rules, its splits occur late in the tree, leading to a low overall contribution in prediction. In contrast,
the LLM-refined rule elevates the prominence of these features.

(iii) Why do traditional techniques not capture such a rule? More broadly, a single decision tree
with information gain has the risk of overfitting. Although Random Forest ensembles the outputs
from all tree rules, the inherent relationships and interactions among these rules are ignored. As the
number of trees increases, analyzing these independent rules is gradually becoming more and more
difficult, let alone utilizing these rules to partition feature space. To this end, we propose to leverage
LLMs to analyze and summarize these rules into a refined rule due to the powerful logical reasoning
ability of LLM. This enables the generation of improved partitioning strategies over the feature space,
thereby promoting statistical coherence among samples assigned to the same leaf node. To verify
it, we compute the intra-node sample distance over all leaf nodes partitioned by LLM refined rule
r∗, and observe that the distance of r∗ is lower than original rule r ∈ R from Random Forest, as
illustrated in Fig. 2 and Table 17.

Table 18: SHAP values of different features.
Original property_magnitude other_payment_plans checking_status purpose housing foreign_worker job credit_history savings_status personal_status

0.1487 0.0471 0.0410 0.0355 0.0326 0.0251 0.0213 0.0189 0.0105 0.0070

Ours property_magnitude credit_history checking_status purpose employment other_payment_plans foreign_worker housing savings_status job
0.1055 0.0436 0.0342 0.0174 0.0155 0.0144 0.0132 0.0106 0.0096 0.0095

Assessing the inherent quality of LLM-rewritten rules. We assess this in a principled way
from three perspectives: (i) SHAP value analysis, (ii) intra-node distance comparison and (iii) the
transparency of the LLM’s process, where the LLM provides a human-readable rationale for its
actions, which allows us to inspect and understand its reasoning process.

34

Comparison on additional datasets. We have include additional datasets from the WhyTrees [11]
benchmark. Specifically, we selected a subset of representative datasets that span different scales and
feature characteristics, including the large-scale, high-dimensional “Year” dataset, to evaluate DeLTa’s
scalability and generalizability. The updated results, summarized in Table 19 and Table 20, further
demonstrate DeLTa’s strong and consistent performance across a more diverse and standardized set
of tabular tasks.

Table 19: Additional tabular dataset properties. “#objects” indicates the number of samples in the
dataset. “#num. features” indicates the number of numerical features, and “#cat. features” indicates
the number of categorical features.

Dataset #objects #num. features #cat. features metric #classes

rl 4970 5 7 Acc. 2
GiveMeSomeCredit 16714 10 0 Acc. 2

Year 515345 90 0 NRMSE –

Table 20: Comparison with baseline methods on additional datasets. “(L)” and “(T)” indicates
correspond to LLM-based and traditional methods, respectively.

Dataset TabLLM (L) FeatLLM (L) LIFT (L) TP-BERTa (L) KNN (T) CART (T) MLP (T) RandomForest (T) XGBoost (T) CatBoost (T) FT-Transformer (T) DeLTa (L)

rl ↑ 0.7716 0.7243 0.6349 0.7394 0.6258 0.6308 0.6630 0.7022 0.7726 0.7746 0.7072 0.7897
GiveMeSomeCredit ↑ 0.7765 0.7137 0.6534 0.7810 0.6063 0.7514 0.7469 0.7768 0.7789 0.7792 0.7610 0.7816

Year ↓ - - 1.0540 0.8258 1.0459 0.9374 0.8134 0.8547 0.8376 0.8157 0.8090 0.8015

35

A.13 Discussion

The existing LLM-based methods for tabular prediction suffer from two key inherent issues: (i) data
perspective: existing data serialization methods lack universal applicability for structured tabular
data, and may pose privacy risks through direct textual exposure, and (ii) model perspective: LLM
fine-tuning methods struggle with tabular data, and in-context learning scalability is bottle-necked by
input length constraints (suitable for few-shot learning). The proposed DeLTa could well solve the
aforementioned challenges: Solving the data issue: Unlike serialization methods that convert each
sample into unnatural text formats, decision tree rules are composed of simple comparisons between
feature values and thresholds, forming logical, interpretable structures that can be naturally expressed
in text without relying on semantic columns names. In addition, decision tree rules represent global
feature space partitioning rule rather than individual samples, which helps mitigate privacy concerns
by avoiding exposure of sample-level information. Solving the model issue: Moreover, the powerful
reasoning ability of LLMs can be leveraged to redesign decision tree rules and help trees with
aggregating their decisions, rather than directly using LLMs to generate label predictions. Notably,
DeLTa avoids serializing tabular data into natural language format, and does not require additional
domain-specific expertise or semantic information, such as explicit feature names and detailed task
background knowledge. Furthermore, DeLTa can be applied in full data learning setting without
LLM fine-tuning.

Overall, DeLTa achieves the highest average performance in all settings, including classification and
regression, in both full and low-data regimes. In addition, DeLTa is computationally efficient in both
training and inference stages. This efficiency stems from key properties: (i) DeLTa utilizes the reason
ability of LLM without fine-tuning LLM, (ii) DeLTa avoids querying LLMs to generate predictions
for individual samples. Instead, it only needs to query LLM via API to generate one refined decision
tree rule for one dataset, enabling significantly more efficient use of LLM resources.

A.14 Limitation

Although the primary focus of this work is tabular data, the flexibility of DeLTa opens up exciting
possibilities for extensions. For example, DeLTa can be extended to other domains such as time
series, graph and so on. We leave the extensions of DeLTa as a future work. While DeLTa avoids
tabular data serialization, it requires training decision trees and extracting corresponding decision
rules. However, single decision tree may be prone to overfitting, potentially resulting in suboptimal
rules and limited performance improvements in our framework. To mitigate this issue, we adopt
Random Forest to generate a diverse set of decision tree rules. This strategy is not only effective but
also easy to implement using standard libraries such as scikit-learn, which conveniently supports both
model training and rule extraction.

Another limitation of DeLTa is that its performance advantage over non-LLM baselines narrows with
increasing dataset sizes. Upon deeper analysis, we have found that DeLTa’s performance advantage
is more pronounced when the dataset size is relatively small, compared to non-LLM baselines.
Conversely, the performance advantage of data-intensive baseline methods, such as neural networks,
tends to increase with larger dataset sizes. This pattern may be attributed to two main factors: (i)
Nature of Base Rules: Our method refines the base rules extracted from Random Forest (RF).
While RF is effective due to its ensemble nature, its trees are independently trained without joint
optimization. As the data volume increases, this independent training may limit RF’s ability to fully
leverage large-scale data. Consequently, the quality of the base rules may plateau with increasing
data, which also affects the upper bound of the refined rules. (ii) Comparison to Neural Networks
(NNs): In contrast, neural networks are typically data-intensive models that require large amounts of
training data to perform well and generalize effectively. Their performance tends to scale better with
larger datasets, as they can learn complex feature interactions.

A.15 Future direction

A key direction involves developing more scalable base rule extraction mechanisms. Exploring
ensembles of jointly optimized trees or hybrid models that better leverage large-scale data could
raise the performance ceiling for refinement. Furthermore, integrating the rule-based paradigm
with data-intensive architectures—for instance, by using neural networks to generate or pre-select

36

candidate rules, or by designing LLM-driven fine-tuning that adapts to dataset scale—presents a
promising avenue to combine the interpretability of rules with the scalability of neural models.

A.16 Broader impacts

DeLTa advances the integration of LLMs with structured tabular data by introducing a novel way
that leverages logical decision tree rules as intermediaries. By representing the entire dataset through
decision tree rules, DeLTa avoids the need for sample-level serialization. This makes it particularly
well-suited for structured tabular data with heterogeneous features, in contrast to the unstructured
nature of textual data. DeLTa also offers practical benefits in terms of data privacy. It could help
mitigate privacy concerns by avoiding exposure of sample-level information, which is useful in
privacy-critical domains such as healthcare and finance. Furthermore, DeLTa can be applied in full
data learning setting without LLM fine-tuning, thereby offering a cost-efficient and scalable solution
for integrating LLMs into tabular learning tasks.

37

	Introduction
	Related work
	Preliminaries
	Proposed method: DeLTa
	LLM-based decision tree rules refinement
	Refined rule-guided decision tree error correction
	Framework overview and discussion

	Experiments
	Main Results
	Further analysis

	Conclusion
	Technical Appendices and Supplementary Material
	Datasets details
	Baseline models details
	DeLTa details
	Example prompt for refining decision tree rules
	Theoretical analysis
	Varying LLM backbones
	Full comparison results with LLM-based baseline methods
	Full comparison results with conventional baseline methods
	Computational efficiency
	Ablation results
	Hyper parameter sensitivity analysis
	Additional analysis
	Discussion
	Limitation
	Future direction
	Broader impacts

