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Abstract
This paper provides theoretical insights into high-dimensional binary classification with class-
conditional noisy labels. Specifically, we study the behavior of a linear classifier with a label
noisiness aware loss function, when both the dimension of data p and the sample size n are large
and comparable. Relying on random matrix theory by supposing a Gaussian mixture data model,
the performance of the linear classifier when p, n → ∞ is shown to converge towards a limit,
involving scalar statistics of the data. Importantly, our findings show that the low-dimensional in-
tuitions to handle label noise do not hold in high-dimension, in the sense that the optimal classifier
in low-dimension dramatically fails in high-dimension. Based on our derivations, we design an
optimized method that is shown to be provably more efficient in handling noisy labels in high di-
mensions. Our theoretical conclusions are further confirmed by experiments on real datasets, where
we show that our optimized approach outperforms the considered baselines.

1. Intorduction

Machine learning methods are usually built upon low-dimensional intuitions which do not necessar-
ily hold when processing high-dimensional data. Numerous studies have demonstrated the effects
of the curse of dimensionality, by showing that high dimensions can alter the internal functioning of
various ML methods designed with low-dimensional intuitions. Classical examples include spectral
methods [4], empirical risk minimization frameworks [11, 23], transfer & multi-task learning [34],
deep learning theory with the double descent phenomena [25, 26] and many other works. In all this
literature, random matrix theory (RMT) played a central role in deciphering the high-dimensional
effects by supposing the so-called RMT regime where both the dimension of data and the sample
size are supposed to be large and comparable. We refer the reader to [1] for a general overview on
the spectral analysis of large random matrices, and to [5] for specific applications of RMT in the
realm of machine learning.
In this paper, we aim at exploring the high-dimensional effects on learning with noisy labels. Based
on the framework of [28], who derived an unbiased classifier when faced with a binary classification
problem with class-conditional noisy labels, we introduce a Labels-Perturbed Classifier (LPC) that
is essentially a Ridge classifier with parameterized labels. The introduced classifier encapsulates
different variants depending on the choice of the label parameters including the unbiased method
of [28]. Considering a Gaussian mixture data model and supposing a high-dimensional regime, we
conduct an RMT analysis of LPC by characterizing the distribution of its decision function and de-
riving its theoretical test performance in terms of both accuracy and risk. Our analysis allows us to
gain insight when learning with noisy labels, and more importantly design an optimized classifier
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that surprisingly outperforms the unbiased classifier of [28] in high dimensions, even approaching
the performance of an oracle classifier that is trained with the correct labels. Through this analy-
sis, we demonstrate again that methods designed with low-dimensional intuitions can dramatically
fail in high-dimensions, and careful refinements are needed to design more robust and interpretable
methods. Our theoretical findings are also validated on real data where we show consistent im-
provements under high label noise. See [12] for an extended version of this paper.

2. Problem setting and Background

2.1. Binary classification with noisy labels

We consider that we are given a sequence of n i.i.d p-dimensional training data x1, ...,xn ∈ Rp

with corresponding correct labels y1, ..., yn = ±1. We consider a noisy label setting where the true
labels yi’s are flipped randomly, yielding a noisy dataset (xi, ỹi)i∈[n] such that

P(ỹi = −1 | yi = +1) = ε+, P(ỹi = +1 | yi = −1) = ε−, with ε+ + ε− < 1.

We suppose that xi is sampled from a Gaussian mixture of two clusters C1 and C2, i.e., for a ∈ [2]:

xi ∈ Ca ⇔
{
xi = µa + zi, zi ∼ N (0, Ip),

yi = (−1)a.
(1)

For convenience and without loss of generality, we further assume that µa = (−1)aµ for some
vector µ ∈ Rp. This setting can be recovered by subtracting µ1+µ2

2 from each data point, as such
µ = µ2−µ1

2 and therefore the SNR ∥µ∥ controls the difficulty of the classification problem, in the
sense that large values of ∥µ∥ yield a simple classification problem whereas when ∥µ∥ → 0, the
classification becomes impossible.

Given the noisy dataset (xi, ỹi)i∈[n] as per (1), we consider the following loss which introduces
scalar parameters ρ± to be optimized:

ℓ̃(s, y, ρ) ≡ (1− ρ−y)ℓ(s, y)− ρyℓ(s,−y)

1− ρ+ − ρ−
, (2)

In particular taking ρ± = ε± yields the unbiased approach of [28] which is built upon the intuition
that Eỹ[ℓ̃(s, ỹ, ε)] = ℓ(s, y). Hence, for ℓ(s, y) = (s− y)2 and supposing a linear classifier s(x) =
w⊤x, the empirical loss with ℓ̃ reads as:

Lρ(w) =
1

n

n∑
i=1

(1− ρ−ỹi)(w
⊤xi − ỹi)

2 − ρỹi(w
⊤xi + ỹi)

2

1− ρ+ − ρ−
+ γ∥w∥2.

The solution of which defines our Labels-Perturbed Classifier (LPC) as follows:

wρ =
1

n
Q(γ)XDρỹ, Q(z) =

(
1

n
XX⊤ + zIp

)−1

, (3)

where X = [x1, . . . ,xn] ∈ Rp×n, ỹ = (ỹ1, . . . , ỹn)
⊤ ∈ Rn and Dρ is a diagonal matrix defined

as Dρ = Diag
(
1−ρ−ỹi

+ρỹi
1−ρ+−ρ−

| i ∈ [n]
)
∈ Dn. In the remainder, we will study the performance of
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wρ which encapsulates the following cases: 1) Naive Classifier: which corresponds to ρ± = 0.
2) Unbiased Classifier: by taking ρ± = ε± as introduced by [28]. 3) Optimized Classifier: by
optimizing ρ± to maximize the theoretical test accuracy. 4) Oracle Classifier: which corresponds
to training on the correct labels, i.e., ρ± = ε± = 0.

We aim to characterize the asymptotic performance (i.e., test accuracy and risk) of LPC in the
high-dimensional regime where both the sample size n and the data dimension p grow large at a
comparable rate, which corresponds to the classical random matrix theory (RMT) regime. Specif-
ically, our analysis confirms that the unbiased classifier outperforms the naive classifier in a low-
dimensional regime, i.e., when n ≫ p. In contrast, when considering the RMT regime, we show
that the unbiased classifier becomes sub-optimal and we provide an optimized classifier that consists
of maximizing the derived test accuracy w.r.t the scalars ρ± yielding a closed-form solution. This
sheds light on the fact that low-dimensional intuitions do not necessarily hold for high dimensions
and careful refinements should be considered to enhance the performance of simple algorithms in
these settings. Moreover, and of independent interest, our analysis allows us to design a method to
estimate the rates ε± which is a key step of our approach and the unbiased classifier [28].

3. Main Results

3.1. Asymptotic Behavior of the Labels-Perturbed Classifier (LPC)

We are now in place to present our main technical result which describes the asymptotic behavior
of LPC as defined in (3). Further, define the following quantities which will be used subsequently:

λ− =
1− ρ+ + ρ−
1− ρ+ − ρ−

, λ+ =
1− ρ− + ρ+
1− ρ+ − ρ−

, β =
1

1− ρ+ − ρ−
, h = 1− η

(1 + γ(1 + δ)2)
,

δ =
η − γ − 1 +

√
(η − γ − 1)2 + 4ηγ

2γ
, η = lim

n→∞

p

n
.

(4)

Theorem 1 (Gaussianity of LPC) Let wρ be the LPC as defined in (3) and suppose that as p, n →
∞: p

n → η ∈ (0,∞), na
n → πa ∈ (0, 1) and ∥µ∥ = O(1) where na denotes the cardinality of the

class Ca. The decision function w⊤
ρ x, on some test sample x ∈ Ca independent from X, satisfies:

w⊤
ρ x

D−→ N
(
(−1)amρ, νρ −m2

ρ

)
,

where mρ =
π1(λ− − 2βε−) + π2(λ+ − 2βε+)

∥µ∥2 + 1 + γ(1 + δ)
∥µ∥2,

νρ =
(π1(2βε− − λ−) + π2(2βε+ − λ+))

2

h(∥µ∥2 + 1 + γ(1 + δ))

( ∥µ∥2 + 1

∥µ∥2 + 1 + γ(1 + δ)
− 2(1− h)

)
∥µ∥2

+
1− h

h

(
π1(4β

2ε−(ρ+ − ρ−) + λ2
−) + π2(4β

2ε+(ρ− − ρ+) + λ2
+)
)
.

In a nutshell, Theorem 1 states that LPC is asymptotically equivalent to the thresholding of two
monovariate Gaussian random variables with respective means −mρ and mρ and second moment
νρ, where these statistics express in terms of the different parameters in our setting. Essentially,
Theorem 1 allows us to draw interpretations on the behavior of the different classifiers described
earlier. Define (moracle, νoracle), (mnaive, νnaive) and (munbiased, νunbiased) the statistics (mρ, νρ) for
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the oracle (ρ± = ε± = 0), naive (ρ± = 0) and unbiased (ρ± = ε±) classifiers respectively. From
these statistics, we can explain the behavior of the different classifiers in the low-dimensional versus
high-dimensional regimes. In fact, when n ≫ p the dimensions ratio η → 0 implies that h → 1
as per (4). Therefore, in the low-dimensional setting, the unbiased classifier statistics match those
of the oracle as expected. However, in the high-dimensional regime, i.e., when h ̸= 1, while the
unbiased classifier remains unbiased, the second moment gets amplified due to label noise, resulting
in a larger variance compared with the oracle classifier. Indeed, we have munbiased = moracle and:

νunbiased − νoracle =
1− h

h

(
π1(4β

2ε−(ε+ − ε−) + λ2
−) + π2(4β

2ε+(ε− − ε+) + λ2
+)− 1

)
̸= 0.

This behavior is highlighted in Figure 4 in the Appendix which depicts the histogram of the
decision function for the different classifiers along with the theoretical Gaussian distributions as per
Theorem 1, in both the low-dimensional and high-dimensional settings. Moreover, having charac-
terized the distribution of the decision function of wρ allows us to estimate its generalization per-
formance such as the test accuracy Atest and test risk Rtest which are defined respectively, for a test
set (xtest

i , ytest
i )i∈[ntest]

independent from the training set with ytest
i being correct labels, as follows:

Atest =
1

ntest

ntest∑
i=1

1{sign(w⊤
ρ x

test
i ) = ytest

i }, Rtest =
1

ntest

ntest∑
i=1

(
w⊤

ρ x
test
i − ytest

i

)2
. (5)

Proposition 2 (Asymptotic test accuracy & risk of LPC) The asymptotic test accuracy and risk
of LPC wρ in (3), under the assumptions of Theorem 1 and as ntest → ∞, are respectively given by:

Atest
a.s.−−→ 1− φ

(
(νρ −m2

ρ)
− 1

2mρ

)
, Rtest

a.s.−−→ 1− 2mρ + νρ.

where mρ, νρ are defined in Theorem 1 and φ(x) = 1√
2π

∫ +∞
x e−

t2

2 dt.

Figure 5 in the Appendix depicts both the empirical and theoretical test performance of LPC and
its different variants, where we essentially notice a very accurate matching between simulation and
the theoretical predictions as per Proposition 2, even for a finite sample size. See also Figure 6 for
more plots varying other parameters. In fact, even though we work under an asymptotic regime, our
estimation of Atest and Rtest by their asymptotic counterparts is consistent, as it can be shown that
their fluctuations are of order n− 1

2 under the assumptions of Theorem 1, this is a consequence of
the concentration results of the resolvent Q defined (3) as shown in [21].

Interestingly, when observing the asymptotic test accuracy in terms of ρ+ and ρ− as depicted in
Figure 1, we remarkably find that the accuracy is maximized for any fixed ρ− at some value ρ∗+(ρ−),
and the maximum accuracy is higher than the unbiased accuracy in high-dimension. Moreover,
since φ(·) is monotonous, such maximizer can be obtained analytically by maximizing the ratio
(νρ −m2

ρ)
− 1

2mρ as derived in Appendix C, which yields the following closed-form expression:

ρ∗+(ρ−) =
π2
1ε−(ε− − 1) + π2

2ε+(1− ε+)

π1π2(1− ε+ − ε−)
+ ρ−. (6)

Therefore, our optimized classifier is defined by taking ρ− = 0 and ρ+ = ρ∗+(0) in the expression
of wρ as per (3). We notably notice that ρ∗+ depends solely on the noise probabilities ε± and the
class proportions π1 and π2, especially, it does not involve the SNR ∥µ∥, the regularization γ and
the dimension ratio η which is quite unexpected. We further provide experiments on real data in
Appendix B to demonstrate the effectiveness of the proposed method.

4



A RANDOM MATRIX ANALYSIS OF LEARNING WITH NOISY LABELS

−10 −5 0 5 10
ρ+

0.5

0.6

0.7

0.8

0.9

T
es

t
A

cc
u

ra
cy ρ∗+ = 1.57

ρ̄+ = −0.65

η = 0.1

−10 −5 0 5 10
ρ+

0.5

0.6

0.7

0.8

0.9
ρ∗+ = 1.57

ρ̄+ = −0.65

η = 1.0

−10 −5 0 5 10
ρ+

0.5

0.6

0.7

0.8

0.9

ρ∗+ = 1.57

ρ̄+ = −0.65

η = 10.0

Theory: Oracle LPC Unbiased Naive

Figure 1: Test accuracy of LPC by fixing ρ− = 0 and varying ρ+. We considered n = 1000,
π1 = 0.3, ∥µ∥ = 2, ε+ = 0.4, ε− = 0.3 and optimal γ. We notice that the test accuracy
is maximized at ρ∗+ yielding better accuracy compared with the unbiased approach. Note
that for small values of η, the test accuracy becomes flat in terms of ρ+ and in the limit
η → 0 the maximizer ρ∗+ is not identifiable as discussed in Remark 3 in the Appendix.

4. Conclusion & future directions

This paper introduced new insights into learning with noisy labels in high dimensions. Relying on
tools from random matrix theory, we provided an asymptotic characterization of the performance
of the introduced classifier which accounts for label noise through scalar quantities. Based on this
analysis, we identified that the low-dimensional intuitions to handle label noise do not extend to
high-dimension and developed a new approach that is proven to be more efficient by design. We also
show in Appendix B through empirical evidence that our approach yields improved performance on
real data.

In our current investigation, we restricted our analysis to the cases of squared loss and bi-
nary classification. Our results can be extended beyond these settings by accounting for a gen-
eral bounded loss function ℓ(s, y) and multi-class classification problems. We provide in Appendix
G some experiments with synthetic and real data using the binary-cross-entropy loss function that
show similar behavior to the squared loss (see Figures 7 and 8), namely, the existence of an optimum
ρ∗± that outperforms the unbiased approach in high dimensions. The extension of our study to this
setting can be performed by leveraging the empirical risk minimization framework [11, 23] which
allows the RMT analysis of general loss functions. Moreover, as we provided in Appendix H, our
results extend to a k-class classification setting where we empirically show improved performance
by optimizing a set of 2k scalar parameters (which play the same role as ρ± of the binary case).
Such extension is straightforward in the case of squared loss given our current results and will be
addressed in future work.
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Appendix A. Related work

Numerous studies have been conducted to investigate supervised learning under noisy labels, span-
ning both theoretical and empirical approaches. These studies range from learning theory and statis-
tical perspectives to practical implementations using neural networks and deep learning techniques.

Key contributions in this field include: Bayesian Approaches: [14] conducted a Bayesian study
on learning with noisy labels. [18] estimated noise levels in kernel-based learning a work that was
later extended by [20], who incorporated a probabilistic noise model into the Kernel Fisher dis-
criminant and relaxed distribution assumptions. Robust Optimization Approaches: [13] proposed
a robust boosting algorithm using a non-convex potential, which demonstrated empirical resilience
against random label noise. [16] provided a survey of theoretical results on boosting with noisy la-
bels. Model-Specific Robustness: [2] explored the robustness of SVMs under adversarial label noise
and proposed a kernel matrix correction method to enhance robustness. Algorithmic Innovations:
Several noise-tolerant versions of the perceptron algorithm have been developed, including Passive-
aggressive algorithms [7], Confidence-weighted learning [10], AROW [8], and NHERD algorithm
[6]. Deep Learning Approaches: Recent works have utilized deep learning techniques to address
noisy labels. For example, [19] introduced Dividemix, a semi-supervised learning algorithm for
learning with noisy labels. [22] studied the generalization behavior of deep neural networks (DNNs)
for noisy labels in terms of intrinsic dimensionality, proposing a Dimensionality-Driven Learning
(D2L) strategy to avoid overfitting. [33] addressed noisy labels in computer vision contexts, while
[17] applied these techniques to medical imaging.

Our work is closely related to the studies in [27, 28], which consider adaptive loss functions and
assume the prior knowledge of the noise rates. [30] do not make this assumption and model the true
distribution as satisfying a mutual irreducibility property, then estimating mixture proportions by
maximal denoising of noisy distributions. [24] investigated the impact of the loss function on noise
tolerance, showing that empirical risk minimization under the 0-1 loss has robust properties, while
the squared loss is noise-tolerant only under uniform noise. For a comprehensive overview of the
field, readers can refer to the survey by [32] on learning with noisy labels.

Appendix B. Experiments with real data

In this section, we present experiments with real data to validate our approach. We use the Amazon
review dataset [3] which includes several binary classification tasks corresponding to positive versus
negative reviews of books, dvd, electronics and kitchen. We apply the standard scaler
from sklearn [29] and estimate ∥µ∥ with the normalized data. Figure 2 depicts the histogram
of the decision function of different LPC variants (Naive, Unbiased and Optimized) along with
the theoretical distribution as predicted by Theorem 1. We notably observe a reasonable match
between the empirical histograms and the theoretical predictions which validates our results and
assumptions even on real data. Note that, even though we considered a Gaussian mixture model,
our results extend beyond this assumption as we discuss in Remark 13 subsequently. In fact, our
results can be derived under the more general setting of concentrated random vectors [21] which
typically accounts GAN generated data [31].

From a practical standpoint, we highlight that we estimate the SNR ∥µ∥ on the real data only for
plotting the theoretical distributions in Figure 2. In fact, our optimized classifier does not require the
knowledge of ∥µ∥ since ρ∗+ depends only on the class proportions πa’s and the noise probabilities
ε± as per (6). However, if the latest quantities are unknown, one can estimate them as we show in
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Figure 2: Histogram of the decision function of different LPC variants on the books dataset [3],
along with the theoretical distribution as predicted by Theorem 1. We considered n =
1600, p = 400, π1 = 0.3, ε+ = 0.4, ε− = 0.3 and optimal γ.

Table 1: Accuracy comparison over Amazon review datasets [3] for n = 1600, p = 400, π1 = 0.3,
ε− = 0.4 and optimal γ. As theoretically anticipated, our optimized approach yields better
classification accuracy even approaching oracle trained with the true labels.

ε+ Sub-Dataset Naive (%) Unbiased (%) Optimized (%) Oracle (%)

0.3 Books 72.69 ± 0.11 71.66 ± 0.25 76.36± 0.21 78.78 ± 0.07
Dvd 73.75 ± 0.42 72.24 ± 0.3 77.43± 0.04 80.57 ± 0.12
Electronics 78.22 ± 0.05 77.22 ± 0.09 81.57± 0.12 83.22 ± 0.09
Kitchen 79.64 ± 0.07 78.62 ± 0.05 82.17± 0.06 84.28 ± 0.1

0.4 Books 66.84 ± 0.31 66.68 ± 0.22 75.69± 0.22 78.78 ± 0.07
Dvd 67.2 ± 0.37 67.33 ± 0.34 76.86± 0.16 80.57 ± 0.12
Electronics 72.13 ± 0.18 72.36 ± 0.06 81.04± 0.08 83.22 ± 0.09
Kitchen 73.46 ± 0.29 73.85 ± 0.23 81.65± 0.17 84.28 ± 0.1

0.5 Books 55.37 ± 0.25 59.5 ± 0.43 75.26± 0.19 78.78 ± 0.07
Dvd 55.32 ± 0.41 59.68 ± 0.57 76.42± 0.13 80.57 ± 0.12
Electronics 57.96 ± 0.11 63.21 ± 0.36 80.73± 0.01 83.22 ± 0.09
Kitchen 58.15 ± 0.61 64.71 ± 0.7 81.32± 0.11 84.28 ± 0.1

Appendix D, and therefore the knowledge of ∥µ∥ is required, but can also be consistently estimated
with few data samples as we discuss in Appendix D. Moreover, as theoretically anticipated, the
optimized classifier outperforms the naive and unbiased classifiers in terms of accuracy. Table 1
shows the performance in terms of classification accuracy of the different classifiers, on different
datasets and varying the noise probabilities. We clearly observe that the optimized approach yields
spectacular performances which are almost close to the oracle that assumes perfect knowledge of
the true labels, even under a high noise regime.

10
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Appendix C. Finding optimal parameters

We denote by π = π1 the proportion of data belonging to C1 (hence π2 = 1 − π). Our goal is to
maximize the theoretical test accuracy as defined in Proposition 2 with respect to ρ+ for any fixed

ρ−. This is equivalent to maximizing the term m2
ρ

νρ−m2
ρ

since φ(·) is a decreasing function. We have
that:

r(ρ+) =
m2

ρ

νρ −m2
ρ

=
N1(ρ+)

D1(ρ+)

where:

N1(ρ+) = −hm2
oracle (π (2ϵ− + ρ+ − ρ− − 1)− (π − 1) (2ϵ+ − ρ+ + ρ− − 1))2 (ρ+ + ρ− − 1)2

and

D1(ρ+) = −h
(
κ−m2

oracle
)
(π (2ϵ− + ρ+ − ρ− − 1)− (π − 1) (2ϵ+ − ρ+ + ρ− − 1))2 (ρ+ + ρ− − 1)2

+ (h− 1)
(
π
(
4ϵ− (ρ+ − ρ−) + (−ρ+ + ρ− + 1)2

)
+ (π − 1) (ρ+ + ρ− − 1)2

(
4ϵ+ (ρ+ − ρ−)− (ρ+ − ρ− + 1)2

))
And differentiating r with respect to ρ+ gives us:

r′(ρ+) =
N2(ρ+)

D2(ρ+)

where :

N2(ρ+) = 2hm2
oracle(π(2ϵ− + ρ+ − ρ− − 1)− (π − 1)(2ϵ+ − ρ+ + ρ− − 1))

× (−(π(2ϵ− + ρ+ − ρ− − 1)− (π − 1)(2ϵ+ − ρ+ + ρ− − 1))

× (h(κ−m2
oracle)(2π − 1)(π(2ϵ− + ρ+ − ρ− − 1)− (π − 1)(2ϵ+ − ρ+ + ρ− − 1))(ρ+ + ρ− − 1)

+ h(κ−m2
oracle)(π(2ϵ− + ρ+ − ρ− − 1)− (π − 1)(2ϵ+ − ρ+ + ρ− − 1))2

− (h− 1)(π(4ϵ−(ρ+ − ρ−) + (−ρ+ + ρ− + 1)2) + (π − 1)(4ϵ+(ρ+ − ρ−)− (ρ+ − ρ− + 1)2))

− (h− 1)(π(2ϵ− + ρ+ − ρ− − 1) + (π − 1)(2ϵ+ − ρ+ + ρ− − 1))(ρ+ + ρ− − 1))

+ (h(κ−m2
oracle)(π(2ϵ− + ρ+ − ρ− − 1)− (π − 1)(2ϵ+ − ρ+ + ρ− − 1))2

− (h− 1)(π(4ϵ−(ρ+ − ρ−) + (−ρ+ + ρ− + 1)2) + (π − 1)(4ϵ+(ρ+ − ρ−)− (ρ+ − ρ− + 1)2)))

× (π(2ϵ− + ρ+ − ρ− − 1)− (π − 1)(2ϵ+ − ρ+ + ρ− − 1) + (2π − 1)(ρ+ + ρ− − 1)))

And finally, solving N2(ρ+) = 0 gives us two solutions:

ρ∗+ =
π2ϵ−(ϵ− − 1) + (1− π)2ϵ+(1− ϵ+)

π(1− π)(1− ϵ+ − ϵ−)
+ ρ−, ρ̄+ =

1− 2πε− − 2(1− π)ε+
2π − 1

+ ρ−.

Remark 3 (On the relevance of the RMT analysis) Our RMT analysis relies on the main as-
sumption that both p and n are large and comparable as per Assumption 6. This assumption is
in fact fundamentally crucial for exhibiting the maximizer ρ∗+ defined above. Indeed, supposing an
infinite sample size setting where p is fixed while taking only n → ∞ or alternatively h → 1, would
result in (νρ −m2

ρ)
− 1

2mρ → ∥µ∥. Therefore, the existence of ρ∗+ is only tractable under the large
dimensional setting, which motivates the importance of this assumption.

11
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Appendix D. Estimation of label noise probabilities

Another important aspect of our optimized classifier is the fact that it supposes the prior knowledge
of the noise probabilities ε± which is also the case for the unbiased classifier of [28]. In this section,
based on our theoretical derivations, we propose a simple procedure for estimating ε± by supposing
that the SNR ∥µ∥ and the class proportions π1, π2 are known, in fact the latest can be consistently
estimated with very few training samples as described in [34].

To estimate ε±, we rely on the expression of the second moment νρ = νρ(ε+, ε−) as per The-
orem 1, by viewing it as a function of ε±. Specifically, we consider two different arbitrary couples
ρ1 = (ρ1+, ρ

1
−) and ρ2 = (ρ2+, ρ

2
−) and solve the system:{

ν̂ρ1 = νρ1(ε+, ε−),

ν̂ρ2 = νρ2(ε+, ε−).
(7)

where ν̂ρ = 1
n

∑n
i=1(x

⊤
i w

−i
ρ )2 is the empirical estimate of νρ and w−i

ρ corresponds to LPC trained
on all examples except xi, which discards the statistical dependencies. Figure 3 depicts the esti-
mated versus ground truth value of ε+ and shows consistent estimation for different values of the
SNR ∥µ∥.

0.0 0.2 0.4 0.6
True ε+

0.00

0.25

0.50

0.75

E
st

im
at

ed
ε +

‖µ‖ = 0.1

y = x

0.0 0.2 0.4 0.6
True ε+

0.00

0.25

0.50

0.75
‖µ‖ = 1.0

0.0 0.2 0.4 0.6
True ε+

0.00

0.25

0.50

0.75

‖µ‖ = 10.0

Figure 3: Estimation of the label noise rates as described in Section D. We used n = 1000, p = 100,
π1 =

1
3 , ε− = 0.2, (ρ(1)+ , ρ

(1)
− ) = (0, 0.1) and (ρ

(2)
+ , ρ

(2)
− ) = (0, 0.4).

Appendix E. RMT Background & Useful lemmas

In mathematical terms, the understanding of the asymptotic performance of the classifier wρ boils
down to the characterization of the statistical behavior of the resolvent matrix Q(z) introduced in
(3). In the following, we will recall some important notions and results from random matrix theory
which will be at the heart of our analysis. We start by defining the main object which is the resolvent
matrix.

Definition 4 (Resolvent) For a symmetric matrix M ∈ Rp×p, the resolvent QM (z) of M is defined
for z ∈ C\S(M) as:

QM (z) = (M− zIp)
−1,

where S(M) is the set of eigenvalues or spectrum of M.

12
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The matrix QM (z) will often be denoted Q(z) or Q when there is no ambiguity. In fact, the study
of the asymptotic performance of wρ involves the estimation of linear forms of the resolvent Q in
(3), such as 1

n TrQ and a⊤Qb with a, b ∈ Rp of bounded Euclidean norms. Therefore, the notion
of a deterministic equivalent [15] is crucial as it allows the design of a deterministic matrix, having
(in probability or almost surely) asymptotically the same scalar observations as the random ones in
the sense of linear forms. A rigorous definition is provided below.

Definition 5 (Deterministic equivalent [15]) We say that Q̄ ∈ Rp×p is a deterministic equivalent
for the random resolvent matrix Q ∈ Rp×p if, for any bounded linear form u : Rp×p → R, we have
that, as p → ∞:

u(Q)
a.s.−−→u(Q̄),

where the convergence is in the almost sure sense.

Let us first recall the main assumption that we suppose in our study:

Assumption 6 (Growth Rates) Suppose that as p, n → ∞:

1) p
n → η ∈ (0,∞), 2) na

n → πa ∈ (0, 1), 3) ∥µ∥ = O(1),

where na denotes the cardinality of the class Ca for a ∈ [2].

A deterministic equivalent for the resolvent Q(z) defined in (3) is given by the following Lemma, a
result that is brought from [21].

Lemma 7 (Deterministic equivalent of the resolvent) Under the high-dimensional regime (As-
sumption 6), a deterministic equivalent for Q ≡ Q(γ) as defined in (3) is given by:

Q̄ =

(
µµ⊤ + Ip
1 + δ

+ γIp

)−1

, δ =
1

n
Tr Q̄ =

η − γ − 1 +
√

(η − γ − 1)2 + 4ηγ

2γ
.

In a low-dimensional setting, i.e. when p being fixed while n → ∞, the resolvent Q converges
almost surely to

(
µµ⊤ + (1 + γ)Ip

)−1 which is also covered by Lemma 7 as δ → 0 in this setting.
However, when both p and n are large and comparable, the data dimension induces a bias which
is captured by the quantity δ as it becomes O(1) in the RMT regime. We highlighted in the main
paper that this bias alters the behavior of the classifier wρ in high dimensions, in particular, making
the unbiased classifier wε introduced by [28] unexpectedly sub-optimal when learning with noisy
labels in high-dimensions.

The following lemmas will be useful in the calculus introduced in this section.

Lemma 8 (Resolvent identity) For invertible matrices A and B, we have:

A−1 −B−1 = A−1(B−A)B−1.

Lemma 9 (Sherman-Morisson) For A ∈ Rp×p invertible and u,v ∈ Rp, A+ uv⊤ is invertible
if and only if 1 + v⊤A−1u ̸= 0, and:

(A+ uv⊤)−1 = A−1 − A−1uv⊤A−1

1 + v⊤A−1u
.

Besides,

(A+ uv⊤)−1u =
A−1u

1 + v⊤A−1u
.

13
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Lemma 10 (Relevant Identities) Let Q̄ ∈ Rp×p be the deterministic matrix defined in lemma 7.
If Ca = Ip, then we have:

µ⊤Q̄µ =
(1 + δ)∥µ∥2

∥µ∥2 + 1 + γ(1 + δ)
, µ⊤Q̄2µ =

(
(1 + δ)∥µ∥

∥µ∥2 + 1 + γ(1 + δ)

)2

.

Proof We have that:

Q̄ =

(
µµ⊤

1 + δ
+

(
γ +

1

1 + δ

)
Ip

)−1

= (1 + δ)
(
µµ⊤ + (1 + γ(1 + δ)Ip)

)−1

=
1 + δ

1 + γ(1 + δ)

(
µµ⊤

1 + γ(1 + δ)
+ Ip

)−1

=
1 + δ

1 + γ(1 + δ)

(
Ip −

µµ⊤

∥µ∥2 + 1 + γ(1 + δ)

)
(lemma 9)

where the last equality is obtained using Sherman-Morisson’s identity (lemma 9). Hence,

(Q̄)2 =
(1 + δ)2

(1 + γ(1 + δ))2

(
Ip +

(µµ⊤)2

(∥µ∥2 + 1 + γ(1 + δ))2
− 2µµ⊤

∥µ∥2 + 1 + γ(1 + δ)

)
First identity:

µ⊤Q̄µ =
(1 + δ)

(1 + γ(1 + δ))

(
∥µ∥2 − ∥µ∥4

∥µ∥2 + 1 + γ(1 + δ)

)
=

(1 + δ)∥µ∥2
∥µ∥2 + 1 + γ(1 + δ)

Second identity:

µ⊤Q̄2µ =
(1 + δ)2

(1 + γ(1 + δ))2

(
∥µ∥2 + ∥µ∥6

(∥µ∥2 + 1 + γ(1 + δ))2
− 2∥µ∥4

∥µ∥2 + 1 + γ(1 + δ)

)
=

(1 + δ)2

(1 + γ(1 + δ))2

(
∥µ∥ − ∥µ∥3

∥µ∥2 + 1 + γ(1 + δ)

)2

=

(
(1 + δ)∥µ∥

∥µ∥2 + 1 + γ(1 + δ)

)2

Lemma 11 (Deterministic equivalent of QAQ) For any positive semi-definite matrix A, we have:

QAQ ↔ Q̄AQ̄+
π1

n(1 + δ1)2
Tr(Σ1Q̄AQ̄)E[QΣ1Q] +

π2
n(1 + δ2)2

Tr(Σ2Q̄AQ̄)E[QΣ2Q],

where Σa = µµ⊤ +Ca. In particular, if C = Ip, i.e Σ = µµ⊤ + Ip then:

QAQ ↔ Q̄AQ̄+
1

n

Tr(ΣQ̄AQ̄)

(1 + δ)2
E[QΣQ].

14
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Proof Let Q̄ be a d.e. of Q. We have that:

E[QAQ] = E[Q̄AQ] + E[(Q− Q̄)AQ]

= Q̄(E[AQ] +AE[Q− Q̄]) + E[(Q− Q̄)AQ]

= Q̄AQ̄+ E[(Q− Q̄)AQ]

Using lemma 8, we have that:

Q− Q̄ = Q(Q̄−1 −Q−1)Q̄

= Q

(
π1

Σ1

1 + δ1
+ π2

Σ2

1 + δ2
− 1

n
XX⊤

)
Q̄

= Q(S− 1

n
XX⊤)Q̄

Thus:

E[QAQ] = Q̄AQ̄+ E[Q(S− 1

n
XX⊤)Q̄AQ]

= Q̄AQ̄+ E[QSQ̄AQ]− 1

n

n∑
i=1

E[Qxix
⊤
i Q̄AQ]

We have that:

E[Qxix
⊤
i Q̄AQ] =

1

1 + δ
E[Q−ixix

⊤
i Q̄AQ]

=
1

1 + δi

(
E[Q−ixix

⊤
i Q̄AQ−i]− E[Q−ixix

⊤
i Q̄A

Q−ixix
⊤
i Q−i

n(1 + δi)
]

)
=

1

1 + δi

(
E[Q−iΣiQ̄AQ−i]− E[Q−ixix

⊤
i Q̄A

Q−ixix
⊤
i Q−i

n(1 + δi)
]

)
=

1

1 + δi

(
E[QΣiQ̄AQ]− E[Q−ixix

⊤
i Q̄A

Q−ixix
⊤
i Q−i

n(1 + δi)
]

)

Hence, by replacing in the previous identity, we get:

E[QAQ] = Q̄AQ̄+
1

n

n∑
i=1

1

(1 + δi)2
E[Q−ixi

1

n
x⊤
i Q̄AQ−ixix

⊤
i Q−i]

= Q̄AQ̄+
1

n2

n∑
i=1

1

(1 + δi)2
Tr(ΣiQ̄AQ̄)E[Q−ixix

⊤
i Q−i]

= Q̄AQ̄+
1

n2

n∑
i=1

1

(1 + δi)2
Tr(ΣiQ̄AQ̄)E[QΣiQ]

= Q̄AQ̄+
π1

n(1 + δ1)2
Tr(Σ1Q̄AQ̄)E[QΣ1Q] +

π2
n(1 + δ2)2

Tr(Σ2Q̄AQ̄)E[QΣ2Q]

= Q̄AQ̄+
∑
b

πb
n(1 + δb)2

Tr(ΣbQ̄AQ̄)E[QΣbQ]

15
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Hence, we conclude that:

QAQ ↔ Q̄AQ̄+
π1

n(1 + δ1)2
Tr(Σ1Q̄AQ̄)E[QΣ1Q] +

π2
n(1 + δ2)2

Tr(Σ2Q̄AQ̄)E[QΣ2Q]

Appendix F. RMT Analysis of the Label-Perturbed Classifier

Notation: For a ∈ {1, 2}, we denote by Ia = {i | xi ∈ Ca}, i.e, the set of indices of vectors
belonging to class Ca. Furthermore, we denote Σa = E

[
xx⊤] for x ∈ Ca.

Assumption 12 (Generalized growth rates) Suppose that as p, n → ∞:

1) p
n → η ∈ (0,∞), 2) na

n → πa ∈ (0, 1), 3) ∥µ∥ = O(1), 4) ∥Σa∥ = O(1),

∥Σa∥ is the spectral norm of the matrix Σa.

We consider the LPC with regularization parameter γ given by:

wρ =
1

n
Q(γ)XDρỹ, Q(z) =

(
1

n
XX⊤ + zIp

)−1

, (8)

where X = [x1, . . . ,xn] ∈ Rp×n and ỹ = (ỹ1, . . . , ỹn)
⊤ ∈ Rn.

Remark 13 (On the data model) Note that the previous data assumption (1) can be relaxed to

considering xi = µa+C
1
2
a zi where Ca is some semi-definite covariance matrix and zi are random

vectors with i.i.d entries of mean 0, variance 1 and bounded fourth order moment. In fact, in the
high-dimensional regime when n, p → ∞, the asymptotic performance of the classifier considered
subsequently is universal in the sense that it depends only on the statistical means and covariances
of the data [9, 21, 31]. However, such a general setting comes at the expense of more complex formu-
las, making the isotropic assumption as supposed in the main paper more convenient for readability
and better interpretation of our findings. Hence, we provide a more general result (Theorem 14) of
our main theorem (Theorem 1) by considering arbitrary covariance matrices in this Appendix.

Theorem 14 (Gaussianity of LPC generalized) Let wρ be the LPC as defined in (3) and suppose
that Assumption 12 holds. The decision function w⊤

ρ x, on some test sample x ∈ Ca independent
from X, satisfies:

w⊤
ρ x

D−→ N
(
(−1)amρ, νρ −m2

ρ

)
,
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where:

mρ =

(
π1

(λ− − 2βε−)

1 + δ1
+ π2

(λ+ − 2βε+)

1 + δ2

)
µ⊤Q̄µ,

νρ =

(
π1(λ− − 2βε−)

1 + δ1
+

π2(λ+ − 2βε+)

1 + δ2

)2

µ⊤E[QΣaQ]µ

− T1

1 + δ1

((
π1(λ− − 2βε−)

1 + δ1

)2

µ⊤Q̄µ+
π1π2(λ+ − 2βε+)(λ− − 2βε−)

(1 + δ1)(1 + δ2)
µ⊤Q̄µ

)

+
π1(4β

2ε−(ρ+ − ρ−) + λ2
−)

(1 + δ1)2
T1 +

π2(4β
2ε+(ρ− − ρ+) + λ2

+)

(1 + δ2)2
T2

− T2

1 + δ2

((
π2(λ+ − 2βε+)

1 + δ2

)2

µ⊤Q̄µ+
π1π2(λ+ − 2βε+)(λ− − 2βε−)

(1 + δ1)(1 + δ2)
µ⊤Q̄µ

)
,

where Tb =
1
n Tr(ΣbE[QΣaQ]) for b ∈ [2] and E[QΣaQ] is computed with Lemma 11.

Let gρ(x) = w⊤
ρ x, to prove Theorem 14, we need to compute the expectation and the variance

of gρ(x) which are developed below.

F.1. Test Expectation

Denote by λ̃i =
1−ρ−ỹi

+ρỹi
1−ρ+−ρ−

, then wρ = 1
n

∑n
i=1Q(γ)λ̃iỹixi.

We have:

E [gρ(x)] = E
[
w⊤

ρ x
]
=

1

n

n∑
i=1

E
[
λ̃iỹix

⊤
i Qx

]
=

1

n

∑
i∈I1

E
[
λ̃iỹix

⊤
i Qx

]
+

1

n

∑
i∈I2

E
[
λ̃iỹix

⊤
i Qx

]
=

1

n

∑
i∈I1

E
[
λ̃iỹix

⊤
i Qµa | xi ∈ C1

]
+

1

n

∑
i∈I2

E
[
λ̃iỹix

⊤
i Qµa | xi ∈ C2

]
Recall that:

λ+ =
1− ρ− + ρ+
1− ρ+ − ρ−

, λ− =
1− ρ+ + ρ−
1− ρ+ − ρ−

, β =
λ− + λ+

2
(9)

Then:

E
[
λ̃iỹix

⊤
i Qµa | xi ∈ C1

]
= λ+ε−E

[
x⊤
i Qµa | yi = −1

]
− λ−(1− ε−)E

[
x⊤
i Qµa | yi = −1

]
= ((λ+ + λ−)ε− − λ−)E

[
x⊤
i Qµa | yi = −1

]
= (2βε− − λ−)E

[
x⊤
i Qµa | yi = −1

]
=

(2βε− − λ−)

1 + δ1
µ1Q̄µa

17
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Similarly, we have:

E
[
λ̃iỹix

⊤
i Qµa | xi ∈ C2

]
= λ+(1− ε+)E

[
x⊤
i Qµa | xi ∈ C2

]
− λ−ε+E

[
x⊤
i Qµa | xi ∈ C2

]
= (λ+ − 2βε+)E

[
x⊤
i Qµa | xi ∈ C2

]
=

(λ+ − 2βε+)

1 + δ2
µ2Q̄µa

Therefore,

E [gρ(x) | x ∈ Ca] = π1
(2βε− − λ−)

1 + δ1
µ⊤
1 Q̄µa + π2

(λ+ − 2βε+)

1 + δ2
µ⊤
2 Q̄µa

= (−1)a
(
π1

(λ− − 2βε−)

1 + δ1
+ π2

(λ+ − 2βε+)

1 + δ2

)
µ⊤Q̄µ

F.2. Test Variance

To compute the variance of gρ(x), it only remains to compute the term: E[gρ(x)2].

E[gρ(x)2] =
1

n2

n∑
i,j=1

E[λ̃iλ̃j ỹiỹjx
⊤
i Qxx⊤

j Qx]

=
1

n2

∑
i∈I1

∑
j∈I1

E[λ̃iλ̃j ỹiỹjx
⊤
i Qxx⊤

j Qx | xi ∈ C1, xj ∈ C1]

+
2

n2

∑
i∈I1

∑
j∈I2

E[λ̃iλ̃j ỹiỹjx
⊤
i Qxx⊤

j Qx | xi ∈ C1, xj ∈ C2]

+
1

n2

∑
i∈I2

∑
j∈I2

E[λ̃iλ̃j ỹiỹjx
⊤
i Qxx⊤

j Qx | xi ∈ C2, xj ∈ C2]

Let us develop each sum.

First sum We need to distinguish two cases here: case i = j and i ̸= j
- For i ̸= j :

E[λ̃iλ̃j ỹiỹjx
⊤
i Qxx⊤

j Qx | xi ∈ C1, xj ∈ C1] = E[λ̃iλ̃j ỹiỹjx
⊤
i Qxx⊤

j Qx | yi = −1, yj = −1]

= (λ2
−(1− ε−)

2 − 2λ−λ+ε−(1− ε−) + λ2
+ε

2
−)E[x⊤

i Qxx⊤
j Qx]

= (λ−(1− ε−)− λ+ε−)
2E[x⊤

i Qxx⊤
j Qx]

= (2βε− − λ−)
2E[x⊤

i Qxx⊤
j Qx]
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We have that, knowing xi ∈ C1, xj ∈ C1 and i ̸= j

E[x⊤
i Qxx⊤

j Qx] = E[x⊤
i Qxx⊤Qxj ]

= E[x⊤i QE[xx⊤]Qxj ] (x ⊥⊥ (xi)
n
i=1)

= E[x⊤
i QΣaQxj ]

=
1

(1 + δ1)2
E[x⊤

i Q−iΣaQ−jxj ]

=
1

(1 + δ1)2
E

[
x⊤
i

(
Q−ij −

1
nQ−ijxjx

⊤
j Q−ij

1 + δ1

)
Σa

(
Q−ij −

1
nQ−ijxix

⊤
i Q−ij

1 + δ1

)
xj

]
= A1 −A2 −A3 +A4

Let us compute each term now.

A1 =
1

(1 + δ1)2
E[xi⊤Q−ijΣaQ−ijxj ]

=
1

(1 + δ1)2
µ⊤E[Q−ijΣaQ−ij ]µ

=
1

(1 + δ1)2
µ⊤E[QΣaQ]µ

Hence
A1 =

1

(1 + δ1)2
µ⊤E[QΣaQ]µ (10)

And we have that:

A2 =
1

(1 + δ1)3
E[

1

n
x⊤
i Q−ijΣaQ−ijxix

⊤
i Q−ijxj ]

=
1

(1 + δ1)3
1

n
Tr(Σ1E[QΣaQ])E[x⊤

i Q−ijxj ]

=
1

(1 + δ1)3
1

n
Tr(Σ1E[QΣaQ])µ⊤Q̄µ

Since:

1

n
xi⊤Q−ijΣaQ−ijxi =

1

n
E[xi⊤Q−ijΣaQ−ijxi]

=
1

n
E[Tr(xixi⊤Q−ijΣaQ−ij)]

=
1

n
Tr(E[xixi⊤Q−ijΣaQ−ij ])

=
1

n
Tr(Σ1E[QΣaQ])

And we have that:
A2 = A3

And:
A4 = O(n−1)
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Thus finally:

E[x⊤
i Qxx⊤

j Qx | xi ∈ C1, xj ∈ C1] =
1

(1 + δ1)2

(
µ⊤E[QΣaQ]µ− 2

(1 + δ1)

1

n
Tr(Σ1E[QΣaQ])µ⊤Q̄µ

)
(11)

Thus:

E[λ̃iλ̃j ỹiỹjx
⊤
i Qxx⊤

j Qx | xi ∈ C1, xj ∈ C1] =
(2βε− − λ−)

2

(1 + δ1)2

×
(
µ⊤E[QΣaQ]µ− 2

(1 + δ1)

1

n
Tr(Σ1E[QΣaQ])µ⊤Q̄µ

) (12)

- For i = j : we have that ỹ2i = 1 a.s, then knowing xi ∈ C1

E[λ̃2
i ỹ

2
i (x

⊤
i Qx)2] = (λ2

−(1− ε−) + λ2
+ε−)E[(x⊤

i Qx)2]

= (4β2ε−(ρ+ − ρ−) + λ2
−)E[(x⊤

i Qx)2]

And

E[(x⊤
i Qx)2] = E[x⊤

i Qxx⊤Qxi]

= E[x⊤
i QΣaQxi]

=
1

(1 + δ1)2
E[Tr(xix

⊤
i Q−iΣaQ−i)]

=
1

(1 + δ1)2
Tr(Σ1E[QΣaQ])

Thus:

E[λ̃2
i ỹ

2
i (x

⊤
i Qx)2 | xi ∈ C1] =

(4β2ε−(ρ+ − ρ−) + λ2
−)

(1 + δ1)2
Tr(Σ1E[QΣaQ]) (13)

Second sum: Here by definition, i ̸= j. And we have, knowing xi ∈ C1, xj ∈ C2:

E[λ̃iλ̃j ỹiỹjx
⊤
i Qxx⊤

j Qx | xi ∈ C1, xj ∈ C2]
= (λ2

−ε+(1− ε−)− λ+λ−(1− ε−)(1− ε+)− λ+λ−ε+ε− + λ2
+ε−(1− ε+))E[x⊤

i Qxx⊤
j Qx]

= (2βε+ − λ+)(λ− − 2βε−)E[x⊤
i Qxx⊤

j Qx]

And, we have that:

E[x⊤
i Qxx⊤

j Qx | xi ∈ C1, xj ∈ C2]
= E[x⊤

i QΣaQxj ]

=
1

(1 + δ1)(1 + δ2)
E[x⊤

i Q−iΣaQ−jxj ]

=
1

(1 + δ1)(1 + δ2)
E

[
x⊤
i

(
Q−ij −

1
nQ−ijxjx

⊤
j Q−ij

1 + δ2

)
Σa

(
Q−ij −

1
nQ−ijxix

⊤
i Q−ij

1 + δ1

)
xj

]
=

1

(1 + δ1)(1 + δ2)
(B1 −B2 −B3 +B4)
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We have that:

B1 = E[x⊤
i Q−ijΣaQ−ijxj ] = −µ⊤E[QΣaQ]µ

And

B2 =
1

n(1 + δ1)
E[x⊤

i Q−ijΣaQ−ijxix
⊤
i Q−ijxj ]

=
1

n(1 + δ1)
Tr(Σ1E[QΣaQ])E[x⊤

i Q−ijxj ]

=
−1

n(1 + δ1)
Tr(Σ1E[QΣaQ])µ⊤Q̄µ

And,

B3 =
1

n(1 + δ2)
E[x⊤

i Q−ijxjx
⊤
j Q−ijΣaQ−ijxj ]

=
1

n(1 + δ2)
E[x⊤

i Q−ijxj ] Tr(Σ2E[QΣaQ])

=
−1

n(1 + δ2)
Tr(Σ2E[QΣaQ])µ⊤Q̄µ

And B4 = O(n−1)
Thus, finally:

E[λ̃iλ̃j ỹiỹjx
⊤
i Qxx⊤

j Qx | xi ∈ C1, xj ∈ C2]

=
(λ+ − 2βε+)(λ− − 2βε−)

(1 + δ1)(1 + δ2)
(µ⊤E[QΣaQ]µ− 1

n(1 + δ1)
Tr(Σ1E[QΣaQ])µ⊤Q̄µ

− 1

n(1 + δ2)
Tr(Σ2E[QΣaQ])µ⊤Q̄µ)

Third sum: We have that
- For i ̸= j :

E[λ̃iλ̃j ỹiỹjx
⊤
i Qxx⊤

j Qx | xi ∈ C2, xj ∈ C2] = E[λ̃iλ̃j ỹiỹjx
⊤
i Qxx⊤

j Qx | yi = 1, yj = 1]

= (λ2
−ε

2
+ − 2λ−λ+ε+(1− ε+) + λ2

+(1− ε+)
2)E[x⊤

i Qxx⊤
j Qx]

= (λ−ε+ − λ+(1− ε+))
2E[x⊤

i Qxx⊤
j Qx]

= (2βε+ − λ+)
2E[x⊤

i Qxx⊤
j Qx]

Thus:

E[λ̃iλ̃j ỹiỹjx
⊤
i Qxx⊤

j Qx | xi ∈ C2, xj ∈ C2] =
(2βε+ − λ+)

2

(1 + δ2)2

×
(
µ⊤E[QΣaQ]µ− 2

(1 + δ2)

1

n
Tr(Σ2E[QΣaQ])µ⊤Q̄µ

)
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- For i = j :

E[λ̃2
i ỹ

2
i (x

⊤
i Qx)2] = (λ2

−ε+ + λ2
+(1− ε+))E[(x⊤

i Qx)2]

= (4β2ε+(ρ− − ρ+) + λ2
+)E[(x⊤

i Qx)2]

=
(4β2ε+(ρ− − ρ+) + λ2

+)

(1 + δ2)2
Tr(Σ2E[QΣaQ])

Thus:

E[λ̃2
i ỹ

2
i (x

⊤
i Qx)2 | xi ∈ C2] =

(4β2ε+(ρ− − ρ+) + λ2
+)

(1 + δ2)2
Tr(Σ2E[QΣaQ]) (14)

Recall that we denoted by T1 = 1
n Tr(Σ1E[QΣaQ]) and T2 = 1

n Tr(Σ2E[QΣaQ]), we then
deduce that:

Grouping all the terms:

E[gρ(x)2] =
(π1(λ− − 2βε−))

2

(1 + δ1)2

(
µ⊤E[QΣaQ]µ− 2

1 + δ1
T1µ

⊤Q̄µ

)
+

π1(4β
2ε−(ρ+ − ρ−) + λ2

−)

(1 + δ1)2
T1

+
π1π2(λ+ − 2βε+)(λ− − 2βε−)

(1 + δ1)(1 + δ2)

(
µ⊤E[QΣaQ]µ− 1

1 + δ1
T1µ

⊤Q̄µ− 1

1 + δ2
T2µ

⊤Q̄µ

)
+

(π2(λ+ − 2βε+))
2

(1 + δ2)2

(
µ⊤E[QΣaQ]µ− 2

1 + δ2
T2µ

⊤Q̄µ

)
+

π2(4β
2ε+(ρ− − ρ+) + λ2

+)

(1 + δ2)2
T2

=

(
π1(λ− − 2βε−)

1 + δ1
+

π2(λ+ − 2βε+)

1 + δ2

)2

µ⊤E[QΣaQ]µ

− T1

1 + δ1

((
π1(λ− − 2βε−)

1 + δ1

)2

µ⊤Q̄µ+
π1π2(λ+ − 2βε+)(λ− − 2βε−)

(1 + δ1)(1 + δ2)
µ⊤Q̄µ

)

+
π1(4β

2ε−(ρ+ − ρ−) + λ2
−)

(1 + δ1)2
T1 +

π2(4β
2ε+(ρ− − ρ+) + λ2

+)

(1 + δ2)2
T2

− T2

1 + δ2

((
π2(λ+ − 2βε+)

1 + δ2

)2

µ⊤Q̄µ+
π1π2(λ+ − 2βε+)(λ− − 2βε−)

(1 + δ1)(1 + δ2)
µ⊤Q̄µ

)

Remark 15 The expression E[QΣaQ] can be easily inferred from this identity (obtained using
lemma 11):

E[QΣaQ] = Q̄ΣaQ̄+
π1

n(1 + δ1)2
Tr(Σ1Q̄ΣaQ̄)E[QΣ1Q]+

π2
n(1 + δ2)2

Tr(Σ2Q̄ΣaQ̄)E[QΣ2Q]

(15)
So we get a system of two linear independent equations on E[QΣ1Q] and E[QΣ2Q], and therefore
they are uniquely determined.
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F.3. Isotropic Case

If C = Ip, then we have that:

δ1 = δ2 = δ, T1 = T2 =
1

n
Tr((ΣQ̄)2) =

η(1 + δ)2

(1 + γ(1 + δ))2
(16)

and using lemma 11:

E[QΣQ] =
1

1− 1
n
Tr((ΣQ̄)2)
(1+δ)2

Q̄ΣQ̄ =
1

h
Q̄ΣQ̄ (17)

where :

h = 1− 1

n

Tr((ΣQ̄)2)

(1 + δ)2
= 1− η

(1 + γ(1 + δ))2
(18)

Hence, we get that:

Corollary 16 (Gaussiannity of the label-perturbed classifier) Let wρ be the LPC with parame-
ters ρ±, and Q̄ a deterministic equivalent of Q defined in lemma 7. Under the same assumptions of
6:

w⊤
ρ x

D−→ N
(
(−1)amρ, νρ −m2

ρ

)
,

where:

mρ =
π1(λ− − 2βε−) + π2(λ+ − 2βε+)

1 + δ
µ⊤Q̄µ,

νρ =
(π1(2βε− − λ−) + π2(2βε+ − λ+))

2

h(1 + δ)2

(
µ⊤Q̄ΣQ̄µ− 2

(1 + δ)

1

n
Tr((ΣQ̄)2)µ⊤Q̄µ

)
+

1

hn(1 + δ)2
π1(4β

2ε−(ρ+ − ρ−) + λ2
−) Tr((ΣQ̄)2)

+
1

hn(1 + δ)2
π2(4β

2ε+(ρ− − ρ+) + λ2
+) Tr((ΣQ̄)2).

We get Theorem 1 by simplifying further the expressions using lemma 10 and 16:

mρ =
π1(λ− − 2βε−) + π2(λ+ − 2βε+)

∥µ∥2 + 1 + γ(1 + δ)
∥µ∥2,

νρ =
(π1(2βε− − λ−) + π2(2βε+ − λ+))

2

h(∥µ∥2 + 1 + γ(1 + δ))

( ∥µ∥2 + 1

∥µ∥2 + 1 + γ(1 + δ)
− 2(1− h)

)
∥µ∥2

+
(1− h)

h

(
π1(4β

2ε−(ρ+ − ρ−) + λ2
−) + π2(4β

2ε+(ρ− − ρ+) + λ2
+)
)
.
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Figure 4: Distribution of the decision function w⊤
ρ x of different variants of LPC for n = 5000,

π1 = 1
3 , ε+ = 0.4, ε− = 0.3, ∥µ∥ = 2, γ = 0.1, p = 50 (first row) and p = 1000

(second row). The theoretical Gaussian distributions are predicted as per Theorem 1.
Note that the variance of the decision function for the unbiased classifier increases with
the dimension yielding poor accuracy.
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Figure 5: Test performance (accuracy and risk) of different LPC variants in terms of the positive
noise rate ε+. We considered n = 100, π1 = 1

3 , ε− = 0.2, ∥µ∥ = 2, γ = 10, ρ+ = 0.2
and ρ− = 0 (for LPC in blue). The theoretical curves are obtained as per Proposition 2.
We notice that the effect of label noise is more important in high-dimension, i.e., large
values of η.
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Figure 6: Empirical versus theoretical test accuracy as per Proposition 2 for different variants of
LPC. We used (n, p = 2000, 20) for Low-dimensional plot (n, p = 200, 200) and for
High-dimensional experiment, π1 = 0.3, ε+ = 0.4, ε− = 0.3 and varied γ.

Appendix G. Loss Generalization

To investigate the extension of our approach to other bounded losses in addition to the squared loss
considered in the main paper, we evaluated our LPC trained with the label perturbed loss (2) using
a binary-cross-entropy loss, that is:

ℓ(s(x), y) = −y log (s(x))− (1− y) log (1− s(x)) , (19)

where s(x) = 1
1+exp(−w⊤x)

and y is in {0, 1}. Figures 7 and 8 summarize the obtained test accura-
cies by setting ρ− to zero and varying ρ+ on both synthetic and real data respectively. As anticipated
theoretically with the squared loss, we remark similar behavior about the existence of an optimal
ρ∗+ that maximizes the accuracy beyond the unbiased approach.
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Figure 7: Test Accuracy on Synthetic data with classifiers obtained through minimizing the binary-
cross-entropy loss using gradient descent. We used the parameters n = 1000, p = 1000,
π1 = 0.3, ∥µ∥ = 2, ε+ = 0.4, ε− = 0.3 and a learning rate of 0.1.
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Figure 8: Test Accuracy on Dvd Amazon dataset [3] with classifiers obtained through minimizing
the binary-cross-entropy loss using gradient descent. We used the parameters n = 1600,
p = 400, π1 = 0.3, ∥µ∥ = 2, ε+ = 0.3, ε− = 0.2 and a learning rate of 0.1.
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Appendix H. Multi-class extension: Multi-LPC

In this section, we provide some evidence to show that our setting can be further extended to multi-
class classification by considering the following settings.

H.1. Setting

We consider having a set of n i.i.d p-dimensional vectors x1,x2, ...,xn ∈ Rp and corresponding
labels y1, y2, ..., yn ∈ {1, ..., k} such that the xi’s are sampled from a Gaussian mixture of k clusters
C1, ..., Ck with, a ∈ {1, ..., k}:

xi ∈ Ca ⇔ xi = µa + zi,

where µa ∈ Rp and zi ∈ N (0, Ip). We consider that the true labels are flipped randomly to get
ỹ1, ỹ2, ..., ỹn such that for a, b ∈ {1, ..., k}:

P(ỹi = a | yi = b) = εa,b,
k∑

b=1

εa,b < 1. (20)

H.2. Linear model

Let yi ∈ Rk denote the one-hot encoding of the label yi, i.e., if xi ∈ Ca:

yi,j =

{
1 if j = a,

0 otherwise.

Denote the data matrix X = [x1, ...,xn] ∈ Rp×n and labels matrix Y = [y1, ...,yn] ∈ Rk×n.

Naive approach: We consider a linear model that consists of minimizing the following regular-
ized squared loss:

L(W) =
1

n

n∑
i=1

∥ỹi −W⊤xi∥+ γ∥W∥2F , (21)

where γ ≥ 0 is a regularization parameter, and ∥.∥F denotes the Frobenius norm of a matrix.
The minimizer of this equation reads explicitly as:

W =
1

n
Q(γ)XỸ⊤, Q(γ) =

(
1

n
XX⊤ + γIp

)−1

. (22)

Multi-LPC : Let us sort the data vectors (xi)
n
i=1 in X and their labels (ỹi)

n
i=1 in their matrices

X and Ỹ such that we put the vectors of class C1 in the first columns, then those of class C2, and so
on.
Let Ỹ⊤ = [u1, ...,uk], each vector ui is defined in the following way:

ui,j =

{
1 if

∑i−1
a=1 ña ≤ j <

∑i
a=1 ña

0 otherwise
(23)

27



A RANDOM MATRIX ANALYSIS OF LEARNING WITH NOISY LABELS

where ña is the number of noisy samples belonging to class Ca, i.e., the cardinality of this set
{i ∈ {1, ..., n} | ỹi = a}. Now let α1, ..., αk, β1, ..., βk ∈ R. Our Multi-LPC approach consists of
considering the following label matrix:

Y⊤
α,β = [α1u1 + β1(1n − u1), ..., αkuk + βk(1n − uk)] (24)

= Ỹ⊤D(α) + (M1 − Ỹ⊤)D(β) (25)

where M1 ∈ Rn×k is the matrix containing 1 in all its entries, and D(α) ∈ Rk×k (resp. ,D(β) ∈
Rk×k) is a diagonal matrix containing the coefficients α1, ..., αk (resp. β1, ..., βk) in its diagonal.
Thus the multi-class LPC classifier is defined as:

W =
1

n
Q(γ)XỸ⊤

α,β. (26)

Our aim is to show the existence of parameters (α∗
i )

k
i=1 and (β∗

i )
k
i=1 that maximize the accuracy of

the classifier.

Remark 17 Remark that we can recover the Naive classifier in (21) by taking αi = 1 and βi = 0
for all i ∈ {1, ..., k}.

H.3. Experiments

We tested our extension for k = 3 and k = 4 classes using synthetic data by taking:

For 3 classes (k = 3): We considered the following noise parameters matrix ε and the proportions
π of data in each class (πi is the proportion of data belonging to class Ci):

ε =

 0 0.3 0
0 0 0.4
0.5 0 0

 π = (0.3, 0.3, 0.4)

We also considered class C3 of mean vector µ3 of norm ∥µ3∥ = 2, class C1 of mean µ1 = −µ3 and
a centered class C2 (zero norm mean).

For 4 classes (k = 4): We considered the parameters:

ε =


0 0 0.5 0
0 0 0 0.3
0 0.4 0 0
0.3 0 0 0

 π = (0.3, 0.2, 0.3, 0.2)

We also considered classes C3 and C4 of mean vectors µ3 and µ4 respectively such that: ∥µ3∥ = 2
and ∥µ3∥ = 6, and considered C1 of mean µ1 = −µ4 and C2 of mean µ2 = −µ3.

For each number of classes k, we found the optimal parameters (in terms of accuracy) α∗ =
(α∗

i )
k
i=1 and β∗ = (β∗

i )
k
i=1 and also the worst ones ᾱ = (ᾱi)

k
i=1 and β̄ = (β̄)ki=1 within a grid

of G = 5000 parameters, using Monte Carlo simulation. To visualize the results, we report the
accuracy of the Multi-LPC approach with the parameters ατ = τα∗ + (1− τ)ᾱ and βτ = τβ∗ +
(1 − τ)β̄ by varying the parameter τ ∈ (0, 1). Figure 9 summarizes the obtained results and we
clearly observe improved accuracy for (α∗,β∗) even approaching the oracle classifier.
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Figure 9: Multi-class classification with n = 2000, p = 200 evaluated on 3 random seeds.
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