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Abstract

Causal effects vary within subgroups in the population. If causal effects are hetero-
geneous with respect to observed covariate information, it is possible to estimate
these effects by conditioning on values of the covariates. We call these covariates
effect modifiers and distinguish from prognostic factors, which influence the out-
come but not the treatment effect. In this paper, we contribute to the understanding
of structural causal relations by designing two controlled experiments. In both
experiments, we temporarily disregard the fundamental problem of causal inference
that factual and counterfactual outcomes cannot be observed together. We consider
treatment assignment variable W as a time-variant variable where every possible
treatment value is a measurement occasion and observe the outcome value for all
possible treatments. This approach creates a nested, hierarchical data structure
where we can study the relation between individual (lower-level) and average
(higher-level) treatment effects. Specifically, we compare within-subjects variance
for three hypothetical individual treatment effect distributions and demonstrate
that a traditional two-arm trial without additional covariates assumes a worst-case
scenario for underlying variance distributions. Second, we demonstrate how aggre-
gation functions interfere with assumptions about the presence of prognostic factors
and effect modifiers. Altogether, we believe that our findings provide valuable
insights into the behavior of non-confounding covariates and contribute to a better
understanding of structural causal relations.

1 Introduction

Learning causal representations without having access to ground-truth causal diagrams is non-trivial.
Solving this problem requires, at the very least, a thorough understanding of how causal variables
behave in a controlled setting. This paper contributes to such understanding by designing two
controlled experiments. In both experiments, we temporarily disregard the fundamental problem of
causal inference that factual and counterfactual outcomes cannot be observed together [8]. At the
same time, we stay close to reality by making assumptions such as the Stable Unit Treatment Value
Assumption (SUTVA) [34, 10], no hidden confounders and overlap (i.e., positivity) [3].

Causal effects vary within subgroups in the population. If causal effects are heterogeneous with
respect to observed covariate information, it is possible to estimate these effects by conditioning on
values of the covariates: we call them Conditional Average Treatment Effects (CATEs) [33]. In the
medical domain, the same concept is referred to as Heterogeneity of Treatment Effect (HTE) and
defined as “non-random variation in the magnitude or direction of a treatment effect across levels
of a covariate against a clinical outcome” [14, p.35]. We follow [40] by referring to covariates that
influence the treatment effect (but not the treatment assignment) as effect modifiers.
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Figure 1: Causal diagrams with three variables: outcome Y , treatment assignment W and covariate Z (a) no
structural restrictions; Z can be a prognostic factor, effect modifier or both (b-d) the causal relations are assumed
to be linear (b) Z is a prognostic factor (c) Z is an effect modifier, diagram cf. [29] (d) Z is an effect modifier, a
variation of the diagram cf. [22].

One can distinguish effect modifiers from another type of covariates: prognostic factors. These are
variables that influence the outcome, but not the treatment effect [13] (nor the treatment assignment;
effect modifiers and prognostic factors are not confounders). Both effect modifiers and prognostic
factors are abundant in any observational dataset.

Even if we assume that we know the causal diagram, in the absence of restrictions on the structure
of the causal relationships, we cannot distinguish effect modifiers from prognostic factors [28, 40]
(Figure 1a).2 Alternatively, in this paper, we assume that the causal relations are linearly structured.
Then, the causal diagrams appear slightly different depending on whether Z is a prognostic factor
(Figure 1b) or an effect modifier (Figure 1c cf. [29], and Figure 1d cf. [22]). Accordingly, the relation
between treatment assignment variable W , covariate Z and outcome Y is modeled as

Y = τW + γZ + δWZ, (1)

where parameter τ represents the Average Treatment Effect (ATE) in the population, Z induces
variation in the outcome variable Y through γ (prognostic effect) and δ quantifies the difference
between CATE and τ for certain subgroups in the population (effect modification). If γ and δ are
both significantly different from 0, covariate Z performs both roles simultaneously.

The aim of this paper is to give insights into the prognostic and effect modification behavior of
covariate Z. We do this by considering W to be a time-variant variable where every possible
treatment value is a measurement occasion. We then observe the outcome value for all possible
treatments (i.e., for all possible time steps). This approach creates a nested, hierarchical data structure
where variables are repeatedly measured per individual, which allows us to study the relation between
individual (lower-level) and average (higher-level) treatment effects.

Specifically, we present results from two synthetic data experiments. In the first experiment, we
evaluate within-subjects variance in outcome Y for three hypothetical Individual Treatment Effect
(ITE) distributions. These distributions correspond to the various roles of covariate Z, which is time-
invariant in this experiment. Second, we consider Z to be a time-varying covariate and demonstrate
how aggregation functions interfere with assumptions about the presence of prognostic factors and
effect modifiers. Altogether, we believe that our findings provide valuable insights into the behavior
of non-confounding covariates and contribute to a better understanding of structural causal relations.

2 Background

2.1 Preliminaries

First, consider D = {xi}ni=1 to be a sample of n IID draws from X = (W,Z, Y ) with state space
X =W ×Z × Y such that a sample is a tuple xi = (wi, zi, yi). Variable Y is a numerical outcome
with Y ∈ R. The state spaces of treatment assignment variable W and covariate Z are provided
in Sections 3.1 and 4.1, respectively. Note that in the traditional causal setting, every individual
i ∈ {1, 2, ..., n} is assigned to one out of k treatment groups. Often, we setW ∈ {0, 1} (k = 2);
then {xi ∈ D | wi = 1} reflects the treatment group and {xi ∈ D | wi = 0} the control group.

2In Figure 1, we do not display the noise variables and assume they are jointly independent; the models
satisfy the causal Markov condition [28].
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Next, consider that for a individual i we draw repeated measurements from X (e.g., repeated blood
tests or measuring heart rate over a period of time), denoted as a tuple (x1

i , ...,x
t
i, ...,x

T
i ). These

measurements are non-IID if there exists some form of correlation between measurement xt
i and

xt+λ
i , or if the observed distribution p(Xi) differs from p(Xj) (for individuals i, j ∈ {1, 2, ..., n}).

In the real world, such correlation structure naturally exists. Consequently, the resulting dataset has a
hierarchical or multilevel structure where there exist multiple entity types where the measurements of
the entities of one type (here, entity type time with T entities per individual) are nested in the entities
of another type (here, entity type individual with n entities in the dataset) [9].3

In this paper, we create temporal structure by adopting a slightly unusual scenario where the treatment
assignment value is set to be the time indicator: wt

i ← t. Essentially, we create a hypothetical scenario
where for all individuals, we observe both factual and counterfactual outcomes. In other words, we
model the effect of treatment as time-varying effects.4 This allows us to study the interaction between
Z and W from a within-subjects perspective; an effect that takes place at a lower hierarchical level
than the desired level of inference.

2.2 ANalysis Of VAriance

In Section 3, we use a within-subjects ANalysis Of VAriance (wANOVA) to investigate the variance
distributions in outcome variable Y . An ANOVA is a statistical model that divides variance in an
outcome variable over one or multiple components [39]. Depending on the data structure and research
question, we distinguish a between-subjects ANOVA (bANOVA) from a wANOVA. A bANOVA
divides the variance in the outcome variable between categories of a categorical variable G (an effect
of the presence of groups) and a within-subjects variance that cannot be further explained and is
therefore considered left-over or error variance. In a wANOVA, the grouping variable G is replaced
with a time variable T . The variance in the outcome variable is then divided between an effect of time,
an effect of systematic individual differences and a left-over variance. We provide more in-depth
explanation, equations and a schematic illustration in Appendix A.

2.3 Local Pattern Mining

The concept of global models that explain most of the instances in the data is opposed with that
of local models or patterns [7, 27]. Where global models tend to find the obvious patterns in the
data, local patterns cover small parts of the data that deviate from the population distribution and
display some internal structure; we call them subgroups [15, 38, 16, 17, 1, 5]. In Section 4, we use
Local Pattern Mining (LPM) techniques to discover 1) subgroups of individuals with exceptionally
high outcome values and 2) subgroups of individuals with an exceptional increase in outcome over
time. Specifically, we use the beam search algorithm (a heuristic search algorithm, see Appendix
B) and follow existing LPM literature in aggregating lower level measurements [12, 36] to discover
subgroups of higher-level entities.

3 Experiment 1

In this experiment, we demonstrate how varying underlying ITE distributions affect the variance
structure of an outcome variable Y . We demonstrate that averaging over individuals (as is done in
reality, outside the hypothetical bubble of this experiment) is equivalent to assuming that none of the
left-over variation can be explained by systematic differences between individuals.

3.1 Experimental setup

We generate synthetic data with a hierarchical structure as described in Section 2.1. We set n = 100,
T = 2, and wt

i ← t for all i ∈ {1, 2, ..., n} and t ∈ {0, 1}. We then sample outcome values

3The number of repeated measurements may vary between individuals. In addition, some variables may
be measured only once per individual; others could be repeatedly sampled with varying counts and intervals.
Depending on these data characteristics, the data may be formatted as a flat-table, a relational database or in any
other format.

4We temporarily disregard the fundamental problem of causal inference [8], but still assume SUTVA [10].
We do not belief that time influences the treatment effect; we use time to model the treatment effect.
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yti = π0i + π1iw
t
i + eti. Error eti ∼ N (0, σ2

e) is normally distributed (and jointly independent). To
be precise, we sample values for yti from N (µt, σt) with µ0 = π0i = 5, µ1 = µ0 + π1i = 7.5 and
σ0 = σ1 = 2. Consequently, the ATE is fixed to 2.5.

Next, we re-order the values such that we create three possible ITE distributions as depicted in Figure
2. In Figure 2a, all patients have the same ITE and that ITE equals the ATE. Remark that there exists
variation in Y , but that variation does not induce differences in treatment effects between individuals.
In the second scenario, the ITEs all cross through the Grand Mean (GM) (Figure 2b). Here, an
individual’s ITE is as opposite to the ATE as possible. Third, for every individual we randomly
sample one of the two outcome values as factual outcome, and we set the counterfactual to the group
mean of the counterfactual group, denoted with y0 for the control group and y1 for the treatment
group. Thus, if we randomly sample yt=1

i for individual i, then value y0i ← y0, and similar for t = 0.
The resulting ITE distribution is visualized in Figure 2c. Remark that in all three scenarios, the ATE,
GM, and group means do not change; we only change the underlying ITE distributions.

We deliberately write the coefficients as π0i and π1i to indicate that the sampled values occur at
the lowest hierarchical level (the time level); these effects can be further specified using second-
level attributes, for instance a potential covariate Z. Then, π0i = β00 + β01zi + µ0i and π1i =
β10 + β11zi + µ1i (error normally distributed and jointly independent). Integrating these higher level
equations into the lowest level equation gives:

yti = β00 + β01zi + β10w
t
i + β11w

t
izi + µ1iw

t
i + µ0i + eti. (2)

Consequently, scenario (a) equals the situation that β01 ̸= 0 and β11 = 0: Z is a prognostic factor. In
scenario (b), Z is an effect modifier and β01 = 0 and β11 ̸= 0. In scenario (c), Z is an effect modifier
with an additional prognostic component (β01 ̸= 0 and β11 ̸= 0).

3.2 Experimental results

Inspection with bANOVA and wANOVA gives results as presented in Table 3. Here, the left-most
column shows the traditional bANOVA output and the three right columns the wANOVA results.
We see that the total variance SStot in the outcome variable (1046) can be explained by an effect of
group (219). Based on a statistical test, we would reject the null hypothesis that there is no effect of
treatment with F (1, 198) = 52.44, p < 0.001.

Table 3 furthermore shows that in scenario (a), 814 of the 827 within-subjects variance can be
explained by an effect of subject. This demonstrates the existence of systematic differences between
subjects (individuals). In fact, in scenario (a), the only difference between subjects is given by the
distance of their individual average outcome (yi) and the GM; no further variance is to be explained.

In contrast, in scenario (b), almost none of the within-subjects variance can be explained by a subject
effect. Instead, a subject’s average value does not say much about the outcome values, and there
exists an interaction between treatment and subject that cannot be explained by observed information.

In scenario (c), the total variance decreases to 706 because 100 out of 200 outcome values are set to
the group mean. These 100 group mean values all have a shorter distance to the GM than the original
values and therefore, the total variance decreases. Yet, the ATE in scenario (c) is still the same, as
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Figure 2: Visualizations of three types of ITE
distributions in a two-arm experiment with Y
as the outcome variable and W the treatment
assignment indicator. (a) all ITEs equal the
ATE (b) all ITEs cross through GM (c) coun-
terfactuals equal the group mean.

bANOVA wANOVA
(a) (b) (c)

SStot 1046 1046 1046 706
SSgroup 219 219 219 219
SSind - 814 11 238
SSerror 827 13 816 238

Figure 3: Synthetic data results of Experiment 1 in
Section 3. The table gives the Sum of Squares (SS)
for a bANOVA and a wANOVA for three possible
ITE distributions as visualized in Figure 2. More
information on bANOVA and wANOVA can be
found in Appendix A.
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can be seen from the between-subjects variance of 219. Furthermore, the within-subjects variance is
equally divided between an effect of subjects and an interaction effect. In other words, half of the
variance can be explained by consistent differences between individuals, while the other half of the
variance is non-systematic and therefore unexplained.

4 Experiment 2

In this experiment, we demonstrate that whether or not Z is a prognostic factor or effect modifier,
high-quality individual-level representation of lower-level measurements can discover the variance
distributions of these measurements. However, poorly chosen aggregation functions interfere with
assumptions about the presence of prognostic factors and effect modifiers.

4.1 Experimental setup

We let covariate Z be time-varying, constructed as a random walk of T = 20 steps over nodes
h ∈ H = {a, b, c, d, e}, where P (zti = h | zt−1

i = h′) = 1/5. In other words, per individual,
covariate Z is modeled as an event-sequence of length T where the next event value is independent of
the current event. We model the treatment assignment variable as a time-variant variable where every
possible treatment value is a measurement occasion. Concretely, this means we set the treatment
assignment value as the time indicator: wt

i ← t.

Next, we generate yti = N (10+ υt
i , 0.1), where we let υt

i = αwt
i + ζzti + λwt

iz
t
i be a linear function

of the time indicator t (through wt
i) and the integer position of covariate value zti (i.e., a = 1,

b = 2, etc; assumptions underlying linear regression are slightly violated, but do not influence the
conclusions of our experiment). The aim is to discover exceptional subgroups of individuals using
individual-level representations of the lower-level event sequences. We create various additional
lower-level and individual-level noise variables. We use the beam search algorithm (see Appendix B)
and construct 2× 2× 2 scenarios: all combinations of Ztype ∈ {prognostic, effect modification},
Aggfunc ∈ {imperfect, perfect} and Eval ∈ {average, increase}.
The simulation parameter Ztype refers to whether variable Z acts as a prognostic factor or as an
effect modifier. To let Z have a prognostic effect, α = ζ = 1 and λ = 0 (see visualization in Figure
4a). There are main effects of time and variable Z, but no interaction effect. In contrast, Figure 4b
displays the scenario where Z is an effect modifier without main effects; α = ζ = 0 and λ = 1.

To represent lower-level measurements at the level of the individual, we compare two approaches
for Aggfunc. In the perfect scenario, we know the ground truth values υt

i and average those
using fsum(υ

1
i , ..., υ

T
i ) =

∑T
t=1 υ

t
i and fincr(υ

1
i , ..., υ

T
i ) = υT

i − υ1
i . Alternatively, we construct

an imperfect scenario that reflects handling event-sequences in practice: by counting the average
frequency of each event type, and by determining the average index location. The idea is that high
frequency values capture individuals with highly repetitive sequences (i.e., the random walk stays at
the same node; the path through Figure 4 follows the same color) whereas the index location reflects
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Figure 4: Visualizations of the relation between the time indicator t (through wt
i , x-axis), covariate

values z (colors, from low (event type a, purple) to high (event type e, orange)) and υ. Every
individual i walks a path through these dots from left to right. (a) Z acts as a prognostic factor (b) Z
acts as an effect modifier, there are no main effects.

5



Table 1: Description of the most exceptional subgroup, discovered with φµ (exceptionally high
average outcome) and φθ (exceptionally high increase in outcome). Aggregation of event-sequences
to single values per individual is done with perfect, ground-truth knowledge and imperfect knowledge.
Covariate Z acts as a prognostic factor or effect modifier.

Aggfunc
Eval Ztype imperfect perfect

φµ
prognostic ffreqa ≤ 3 ∧ ffreqe ≥ 4 ∧ ffreqb ≤ 5 fsum ∈ [5, 22]
effect modification fidxa ≥ 11 ∧ fidxe ≤ 10 fsum ∈ [−134,−25]

φθ
prognostic fidxe ≥ 10.5 ∧ fidxa ≤ 9.5 fincr = 3
effect modification ffreqe ≤ 3 ∧ ffreqa ≥ 4 ∧ fidxe ≤ 14 fincr ∈ [−38,−29]

where in the random walk, on average, a certain node is visited (e.g., more in the start or at the end of
the sequence). The resulting 10 features are denoted as ffreqh and fidxh for h ∈ H.

Third, we evaluate the exceptionality of individuals in two ways. If Eval = average, discover
subgroups of individuals with exceptionally high, average outcome values. We quantify exceptionality
with quality measure φµ = (µSG − µD)/se(µSG). Here, µSG = 1/nSG1/T

∑
i∈SG

∑
t=1 y

t
i is the

average outcome value of the individuals covered by the subgroup, se(µSG) is its standard error, and
µD is the average outcome in the entire dataset D. In contrast, if Eval = increase, we discover
subgroups of individuals with an exceptional increase in outcome between t = 1 and t = T . Here,
φθ = (θSG − θΩ)/se(θSG) with θSG = 1/nSG

∑
i∈SG(y

T
i − y1i ).

4.2 Experimental results

For all 8 simulation scenarios, Table 1 presents the description of the most exceptional subgroup.
First, for the scenario where Eval = φµ, Ztype = prognostic, and Aggfunc = imperfect, the
subgroups covers individuals with low frequency of event type a, low frequency of event type b and
high frequency of event type e. These are individuals with event sequences that stay close to the
orange path in Figure 4a. They have the highest υ values and therefore, the highest outcome values.

In contrast, when Eval = φtheta, individuals with an exceptional increase in outcome start their
sequence with event type a (fidxa ≤ 9.5) and end their sequence with event type e (fidxe ≥ 10.5) (see
Table 1, third row). In other words, they start at purple and cross through to end at orange (Figure 4a).

The reversed line of reasoning holds if Ztype = effect modification, as depicted in Figure 4b. Then,
discovering individuals with high outcome values (φµ) requires crossing through colors and hence,
the usage of fidx (second row in Table 1, whereas individuals with a high increase (φθ) need to stay
close to the purple color (event type a) as long as possible (ffreqa ≥ 4).

Interestingly, if we have direct access to υ, we can construct an aggregation function fsum that works
for discovering individuals with high outcome values (φµ) independent of whether Z is a prognostic
factor or effect modifier (right column in Table 1, fsum is used in both rows corresponding to φµ).
Similarly, we can construct fincr in combination with (φθ), independent of the covariate role of Z.

5 Discussion and Conclusion

The aim of this paper is to give insights into the prognostic and effect modification behavior of
covariate Z. We do this by designing two controlled experiments where we temporarily disregard the
fundamental problem of causal inference that factual and counterfactual outcomes cannot be observed
together. We consider linear relations between a treatment assignment variable W , a covariate Z and
an outcome variable Y . Treatment assignment variable W is modeled as a time-variant variable where
every possible treatment value is a measurement occasion. As such, we create a nested, hierarchical
data structure which allows us to study the relation between individual (lower-level) and average
(higher-level) treatment effects.

Our findings from Experiment 1 in Section 3 demonstrate that variance distributions in a traditional
two-arm experiment as measured by bANOVA (most-left column in Table 3) are the same as those in
a wANOVA with covariate Z being an effect modifier (scenario (b) in Figure 2 and Table 3). This
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means that a bANOVA without additional covariates assumes a worst-case scenario for underlying
ITE distributions. Indeed, in the real world, including covariates Z to control for prognostic and effect
modification behavior reduces left-over variance and improves precision in estimating τ [10, 39]: we
would move from scenario (b) to scenario (c) to scenario (a) in Table 3.

Remark that in the real-world, it is non-trivial to distinguish prognostic factors from effect modifiers.
Consequently, is can be difficult to know how to include Z in the model. For instance, when assuming
linear causal relations, Z should be included as a main effect to control for confounding effects
and to control for prognostic effects, and Z should additionally be included in an interaction term
to control for effect modification behavior. With many variables, the number of model parameters
inflates quickly. In the domain of uplift modeling, the problem of causal inference is circumvented
by fitting multiple models: one for each treatment group. An individual’s ITE is then estimated by
comparing the factual outcome with the predicted counterfactual [30, 31]. In fact, the scenario in
Figure 2c represents a baseline double-model where the simplest counterfactual model is the group
average (yk). More advanced methods directly estimate the net difference between two treatment
groups [11, 35].

Our findings from Experiment 2 in Section 4 demonstrate that the quality of individual-level repre-
sentations of lower-level measurements determines whether or not our assumptions about the nature
of a time-varying covariate Z will influence higher-level inference making. With poorly chosen
aggregation functions, assumptions regarding the effect of Z on ITEs influences results. For instance,
in our experiment, aggregation functions based on frequency perform well when Z is a prognostic
factor and the average effect is based on an estimate of the mean, or when Z is an effect modifier and
the average effect is based on an estimate of the slope (first and last row in left column in Table 1).
Aggregation functions based on location work well with reversed relations between Z and the average
treatment effect. However, if the aggregation functions are close to the ground truth, the nature
of Z does not matter for whether or not average treatment effects can be unraveled. For instance,
aggregation function fsum works well for discovering average effects based on estimates of the mean,
whether or not Z is a prognostic factor or effect modifier (first two rows in right column in Table 1).
Overall, the better the quality of individual-level representations, the less our results will interfere
with assumptions about the role of covariate Z. We then do not need to rely on the reliability of those
assumptions.
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A More on bANOVA and wANOVA

An ANalysis Of VAriance (ANOVA) divides the variance in the outcome variable over one or multiple
components [39]. An ANOVA is mathematically equivalent to linear regression in the case of binary-
coded independent variables. In case of two treatment arms, a between-subjects ANOVA (bANOVA)
therefore gives the same solution as regressing Y ∼W .

Specifically, a bANOVA divides the variance in the outcome variable between an effect of group
effect of categorical variable G and a within-subjects variance that cannot be further explained and
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Figure 5: Variance distribution in a numerical outcome variable for three ANOVA models. SS stands for Sum
of Squares. (a) one-way between-subjects ANOVA (b) one-way within-subjects ANOVA (c) mixed between-
within-subjects ANOVA.

is therefore considered left-over or error variance (Figure 5a). The total variance in the outcome
variable, expressed in terms of Sum of Squares (SS), is

SStot =
∑

k∈{0,1}

nk∑
i=1

(Yik −GM)2, (3)

where GM = 1
N

∑
k∈{0,1}

∑nk

i=1 Yik is the Grand Mean. Any systematic difference between the
groups is contained in the variance component

SSG = nk

∑
k∈{0,1}

(Y k −GM)2, (4)

where Y k = 1
nk

∑nk

i=1 Yik is the mean of group k. Within a group, there are no variables that explain
any variance and the left-over variance is

SSS(G) =
∑

k∈{0,1}

nk∑
i=1

(Yik − Y k)
2. (5)

A bANOVA evaluates whether there is a difference in outcome Y between the groups, by comparing
SSG with SSS(G). While taking the degrees of freedom into account; if the former is substantially
larger than the latter, differences in outcome between subjects can be explained by the group
assignment. Then, the treatment has an effect.

Figure 5b displays the variance components in a within-subjects ANOVA (wANOVA). In a wANOVA,
the grouping variable G is replaced with a time variable T , which indicates the time at which value
Yit was measured. Here, the idea is to follow subjects through time and Yit is known for a subject i
for all t ∈ {0, 1, .., T − 1}.
In a wANOVA, the variance in the outcome variable is divided between an effect of time, an effect of
systematic individual differences and a left-over variance. Compared to a bANOVA, the effect of
time is calculated similar as the group effect in Equation (4).

In contrast to a bANOVA, the within-subjects variance in a wANOVA can be further explained by a
subject effect,

SSS =

T−1∑
t=0

nt∑
i=1

(Y i −GM)2 (6)

where Y i = 1
T−1

∑T−1
t=0 Yit is a subject’s average over the T − 1 measurement occasions. Any

further unexplained variance can be calculated by subtracting Equation (6) from Equation (5), or by
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SSST =

T−1∑
t=0

nt∑
i=1

(Yit − Y t − Y i +GM)2. (7)

Note that by writing ST in the subscript in SSST , we indicate that the left-over variance represents
an interaction between subjects and time. In other words, any variance that cannot explained by a
main effect of time, or a main effect of subject, is due to an interaction between these variables. In
the context of linear relations, another word for interaction is effect modification.

It is important to realize that in a wANOVA, it is likely that the variance SSST < SSS(T ). Con-
sequently, it may be easier to find evidence for a main effect of time in a wANOVA than it is in a
bANOVA, because SST is compared against a smaller remainder than SSG. It does require some
degrees of freedom though.

Furthermore, in a one-way wANOVA, there is no grouping variable other than time. Therefore, when
one performs an RCT with repeatedly measured outcome values, the analysis to go to is a mixed
between-within-subjects ANOVA (bwANOVA) rather than a wANOVA. A bwANOVA is shown in
Figure 5c.

In this paper, we simulate the hypothetical situation that we know the factual and counterfactual
outcomes. This allows us specifiy certain ITE distributions and to analyze variance components in a
wANOVA. To translate our findings to a real RCT where covariate information is be used to explain
variation in the data, one can use a two-way between-subjects ANOVA. There, a covariate is added as
an extra grouping variable similarly like S in a wANOVA [39].

B More on Local Pattern Mining and Beam Search

Subgroup Discovery (SD) [15, 38, 16, 6, 18] and Exceptional Model Mining (EMM) [20, 5] aim to
discover subgroups in the dataset that somehow behave exceptionally. Traditionally, SD focuses on
exceptionality defined over 1 target attributes, whereas EMM evaluates a model fitted to ≥ 2 target
attributes.

Traditionally, EMM assumes a dataset Ω to be a bag of n records r ∈ Ω of the form

r = (a1, . . . , ak, ℓ1, . . . , ℓm), (8)

where k and m are positive integers [5]. In EMM, we call a1, . . . , ak the descriptive attributes or
descriptors of r, and ℓ1, . . . , ℓm the target attributes or targets of r. For SD, m = 1, whereas for
EMM, typically m ≥ 2.

The descriptive attributes are used to describe and discover subgroups of cases. A subgroup is defined
using descriptions; a description is a Boolean function D : A → {0, 1} which covers a record
ri if and only if D(ai1, . . . , a

i
k) = 1. Here, A is the collective domain from which the full set of

descriptors is taken; a Cartesian product of the domains of each individual descriptor. Consequently,
a subgroup is defined as follows:

Definition B.1 (Subgroup cf. [5]) A subgroup corresponding to description D is the bag of records
GD ⊆ Ω that D covers:

GD = {ri ∈ Ω | D(ai1, . . . , a
i
k) = 1}.

The complement contains all records that are not covered; GC = Ω \GD.

In EMM, the choice of description language D is free, though generally we let the description be a
conjunction of selection conditions over the descriptors, where condition selj is a restriction on the
domain Aj of the respective attribute aj . For instance, for discrete variables the selector may be an
attribute-value pair (aj = v); for continuous variables it could be a range of values (w1 ≤ aj ≤ w2)
[5, 25, 37].

We aim to discover the descriptions for which the subgroups display exceptional behavior on a
target model, fitted to a set of target attributes. Formally, we quantify exceptionality using a quality
or interestingness measure. A quality measure quantifies the difference between behavior in the
subgroup and some reference behavior, usually the the subgroup’s complement:
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Algorithm 1 Beam Search Algorithm cf. [5, Algorithm 1]
Input Dataset Ω, quality measure φ, refinement operator η, beam width w, beam depth d, result

set size q, constraints C
Output PriorityQueue resultSet

1: candidateQueue← new Queue;
2: candidateQueue.enqueue({});
3: resultSet← new PriorityQueue(q);
4: for (Integer level← 1; level ≤ d; level++) do
5: beam← new PriorityQueue(w);
6: while (candidateQueue ̸= ∅) do
7: seed← candidateQueue.dequeue();
8: set← η(seed);
9: for all (desc ∈ set) do

10: quality← φ (desc);
11: if (desc.SATISFIESALL(C)) then
12: resultSet.insert_with_priority(desc,quality);
13: beam.insert_with_priority(desc,quality);
14: while (beam ̸= ∅) do
15: candidateQueue.enqueue(beam.get_front_element());
16: return resultSet;

Definition B.2 (Quality Measure cf. [5]) A quality measure is a function φ : D → R that assigns
a numerical value to a description D.

In this paper, we follow a SD scenario where outcome variable Y is our target attribute. We evaluate
two types of exceptionalities: one where we aim to discover subgroups of individuals with high
outcome values, and one where we aim to discover subgroups of individuals with a high increase in
outcome values (from t = 0 to t = (T − 1). The equations are given in the main text.

The task of SD and EMM is to effectively search through the space of candidate subgroups to find the
top-q best-scoring subgroups [5]. Many search algorithms exist; some of them developed for particular
kinds of exceptional behavior [e.g., 21, 4, 2, 23], others for particular data types [26, 24, 32, 19].
Nevertheless, most work on EMM considers the search space to be a general-to-specific search lattice
and use a conjunction of selection conditions as description language. Then, the core difference
between most search algorithms is the manner in which they traverse the search lattice; given a
(candidate) subgroup description, the selection of subgroup members is comparable for many search
algorithms.

In this paper, we choose beam search as our search algorithm of choice. We have two important
reasons. First, beam search discovers exceptionally behaving subgroups using a heuristic search
strategy. It is an intuitive method that can easily be understood at a conceptual, non-technical
level. This makes beam search perfect when working together with experts from various domains
(such as medical experts when studying the causal effects of treatments). Second, beam search is
deterministic; given a dataset and fixed parameter settings, the algorithm will always return the same
top-q subgroups.

The beam search algorithm is shown in Algorithm 1. In essence, beam search performs a level-wise
search of d levels (line 4). At each level, w promising descriptions are selected into the beam (line
13); these descriptions are taken to the next level (line 15) and explored further. Exploration of
candidate subgroups occurs by adding selection conditions to existing subgroup descriptions (line 8).

Following [5], the time complexity of the beam search algorithm is:

O(dwkn(c+M(n,m) + log(wq))). (9)

Here, M(n,m) is the time complexity of evaluating the quality of a target model on n records and m
targets; c is the cost of comparing two models. After a pre-specified number of levels d, the top-q
subgroups are returned.

In this paper, we perform beam search with the lbca discretization strategy [25] for numerical
attributes with b = 4 quantiles, search width w = 20 and search depth d = 3.
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